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Abstract

Let M be the set of all rearrangements of t fixed integers in {1, . . . , n}. We consider those
Young tableaux T, of weight (m1, . . . , mt ) in M , arising from a sequence of products of
matrices over a local principal ideal domain, with maximal ideal (p),(


a,
aU(pIm1 ⊕ In−m1),
aU

2∏
k=1

(pImk ⊕ In−mk ),

. . . ,
aU

t∏
k=1

(pImk ⊕ In−mk )

)
,

where 
a is an n × n nonsingular diagonal matrix, with invariant partition a, and U is an
n × n unimodular matrix. Given a partition a and an n × n unimodular matrix U , we con-
sider the set T(a,M)(U) of all sequences of matrices, as above, with (m1, . . . , mt ) running
over M . The symmetric group acts on T(a,M)(U) by place permutations of the tuples in M .
When t = 2, 3, the action of the symmetric group on the set of Young tableaux, having the
set T(a,M)(U) as matrix realization, is described by a decomposition of the indexing sets of
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the Littlewood–Richardson tableau in T(a,M)(U), afforded by the matrix U . This description,
in cases t = 2, 3, gives necessary and sufficient conditions for the existence of an unimodular
matrix U such that T(a,M)(U) is a matrix realization of a set of Young tableaux, with given
shape c/a and weight running over M . If H is the tableau arising from the sequence of
matrices, above, when a = 0, it is shown that the words of the tableaux T and H are Knuth
equivalent. The relationship between this action of the symmetric group and the one described
by A. Lascoux and M.P. Schutzenberger [Noncommutative structures in algebra and geometric
combinatorics, (Naples, 1978), Quaderni de La Ricerca Scientifica, vol. 109, CNR, Rome,
1981; M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its
Applications, vol. 90, Cambridge University Press, Cambridge, 2002], on words, is discussed.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be the set of all rearrangements of a sequence of t fixed integers in
{1, . . . , n}. We consider those Young tableaux T, of weight (m1, . . . , mt ) in M,
arising from a sequence of products of matrices over a local principal ideal domain,
with maximal ideal (p),(


a,
aU(pIm1 ⊕ In−m1),
aU

2∏
k=1

(pImk
⊕ In−mk

), . . . ,


aU

t∏
k=1

(pImk
⊕ In−mk

)

)
,

where 
a = diag(pa1 , . . . , pan) is an n × n diagonal matrix with invariant partition
a = (a1, . . . , an), and U is an n × n unimodular matrix. When (m1, . . . , mt ) is by
decreasing order, T is a Littlewood–Richardson tableau [1–3]. Now, for each parti-
tion a and n × n unimodular matrix U , let T(a,M)(U) be the set of all sequences of
matrices, as above, with (m1, . . . , mt ) running over M . The symmetric group St acts
on M by place permutations of the tuples, and, henceforth, on T(a,M)(U). The action
of the symmetric group, on these sequences of matrices, induces an action on the set
constituted by the indexing sets of the Young tableaux realized by T(a,M)(U). We
describe this action, in cases t = 2, 3. The action of St on T(a,M)(U), for t = 2, 3,
is generated by an explicit decomposition of the indexing sets of the Littlewood–
Richardson tableau in T(a,M)(U). This action of the symmetric group has been also
described, independently, in [6], in a purely combinatorial way. Here, we shall see a
matrix translation of this action.

The paper is divided into six sections. In Section 2, we introduce the combinator-
ics of Young tableaux and words. Some well-known results of the plactic monoid,
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important in the sequel, are also discussed. We follow the terminology of [2,3,9],
where strict row tableaux are encoded by indexing sets. It is shown the correspon-
dence between words and indexing sets.

Section 3 is divided into three subsections. In Section 3.1, we discuss proper-
ties of integral matrices, decompositions of unimodular matrices, and subgroups of
unimodular matrices. In Section 3.2, we discuss the notions of matrix realization
of an Young tableau T, and of a pair of Young tableaux (T,H), where T is of
type (a, (m1, . . . , mt ), c) and H is of type (0, (m1, . . . , mt ), b) [2–4]. When such a
matrix realization exists, (T,H) is called an admissible pair [3,4]. In this paper, we
shall be concerned on admissible pairs, where H is the tableau (0, (1m1),

∑2
i=1(1

mi ),

. . . ,
∑t

i=1(1
mi )). If m1 � · · · � mt , (T,H) is an admissible pair if and only if T

is a Littlewood–Richardson tableau [1–3]. In Section 3.3, we introduce the notion of
extension of a matrix. A matrix Z is an extension of X, if X is obtained by zero out
some entries of Z. This concept turns out to be the key for the matrix description of
the aforesaid action of the symmetric group.

In Section 4, we present the main results, Theorems 4.1, 4.5 and 4.7 and their
corollaries. Given a tableau T of type (a,m, c), these theorems, in cases t = 2, 3,
answer the following questions: (i) Under what conditions does T belong to T(a,M)

(U); (ii) Under what conditions is the pair (T,H) admissible. The answer to ques-
tion (i) is equivalent to the description of the action of the symmetric group on
T(a,M)(U), discussed above. The answer to question (ii) follows from the answer
to question (i), and from the characterization of the elements of the Knuth equiv-
alence class of H, Proposition 4.4 (see also [6]), as shuffles of the rows of the
tableau H. (T,H) is an admissible pair if and only if the words of T and H
are Knuth equivalent. In remark 3, for t = 2, it is shown that, given two unimodular
matrices U and V realizing the same LR tableau T, we may have T(a,M)(U) /=
T(a,M)(V ). This means that U and V generate different decompositions of the index-
ing sets of the LR tableau T, and, thereby, give rise to different parentheses matching
operations of the corresponding Yamanouchi word over a two-letters alphabet. Theo-
rems 4.5 and 4.7 are proved in Section 5. When t � 4, the rows ofH are not enough to
characterize the elements of the Knuth equivalence class ofH. For instance, the word
w = 431421 belongs to the Knuth equivalence class ofH = 432141, but it is clear that
w is not a shuffle of the rows of H, 4321 and 41. The analysis of the case t � 4 needs
a different approach. This will be the content of a subsequent paper.

In the last section, we translate into words over the three-letters alphabet {1, 2, 3},
the group action generated by the decomposition of the indexing sets of an LR
tableau described in Theorem 4.1. This decomposition of the indexing sets is equiv-
alent to a plactic parentheses matching operation satisfying the Moore–Coxeter rela-
tions for S3 on the corresponding Yamanouchi word. We compare it with the one
described by Lascoux and Schutzenberger [11,13] on words. Actually, what we get,
in the matrix context, is a family of parentheses matching operations on a Yamanou-
chi word over the alphabet {1, 2, 3}, compatible with the Knuth or plactic congru-
ence, given by shuffling the output of the Lascoux and Schutzenberger parentheses
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matching operation on the words 1, 21, 3121 and 321. The output of the Lascoux
and Schutzenberger parentheses matching operation on a Yamanouchi word, over
the alphabet {1, 2, 3}, is itself a special shuffle of this kind.

2. Young tableaux and words

Let N be the set of nonnegative integers with the usual order “�”.
A partition is a sequence of nonnegative integers a = (a1, a2, . . .), all but a finite

number of which are nonzero, such that a1 � a2 � · · · The number |a| := ∑
i ai

is called the weight of a; the maximum value of i for which ai > 0 is called the
length of a and is denoted by l(a). If l(a) = |a| = 0 we have the null partition a =
(0, 0, . . .). If ai = 0, for i > k, we shall often write a = (a1, . . . , ak). Sometimes it
is convenient to use the notation

a = (
a
m1
1 , a

m2
2 , . . . , a

mk

k

)
,

where a1 > a2 > · · · > ak and a
mi

i , with mi � 0, means that ai appears mi times
as a part of a. We say that a is an elementary partition if there is m > 0 such that
a = (1m).

Suppose a = (a1, . . . , ak) is a partition of length k with |a| = n. The Young dia-
gram of a is an array of n boxes, (or dots), having k left-justified rows with row
i containing ai boxes for 1 � i � k. We shall identify a partition with its Young
diagram. For example, the Young diagram of a = (4, 2, 2, 1) is

The conjugate partition of a is the partition whose Young diagram is the transpose of
the Young diagram of a. For instance, (4, 3, 1, 1) is the conjugate of a = (4, 2, 2, 1).
Given two partitions a and c, we write a ⊆ c to mean ai � ci , for all i. Graphically,
this means that the Young diagram of a is contained in the Young diagram of c.
A skew diagram c/a is obtained by removing the smaller diagram of a from the
diagram of c. For example, if a = (4, 2, 2, 1) and c = (5, 4, 4, 3, 2), the following
shows the skew diagram c/a:
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We write |c/a| := |c| − |a|. A skew-diagram is called a vertical [horizontal] m-strip,
where m > 0, if it has m boxes and at most one box in each row [column].

Let a and c be partitions such that a ⊆ c, and (m1, . . . , mt ) a sequence of non-
negative integers. A Young tableau (strictly row) T of type (a, (m1, . . . , mt ), c) is a
sequence of partitions

T = (a0, a1, . . . , at ) (1)

such that a = a0 ⊆ a1 ⊆ · · · ⊆ at = c and, for each k = 1, . . . , t . The skew-dia-
gram ak/ak−1 is a vertical strip labeled by k, with mk = |ak/ak−1|. When a0 /= 0,
T is often called a skew tableau. The indexing sets J1, . . . , Jt of T [2,3] are finite
subsets of N given by

Jk = {
i : ak

i − ak−1
i /= 0

}
, 1 � k � t.

That is, Jk is defined by the row indices of the boxes of c/a labeled by k, 1 � k � t .
Notice that (|J1|, . . . , |Jt |) = (m1, . . . , mt ) (|Ji | denotes the cardinality of Ji). The
skew-diagram c/a is called the shape of the tableau T and (m1, . . . , mt ) the weight
of T. For example,

(2)

is a (skew) tableau of type ((4, 2, 2, 1), (4, 3, 2), (5, 4, 4, 3, 2)), with indexing sets
J1 = {2, 3, 4, 5}, J2 = {1, 4, 5}, J3 = {2, 3}.

Given n ∈ N, [n] denotes the set {1, . . . , n}, and 2[n] the power-set of [n].
A sequence (J1, . . . , Jt ) of subsets of [n] may be represented in a grid of points

of N2, as with matrices, by the set of points (i, k) ∈ N2 such that i ∈ Jk , 1 � k � t ,
where the first coordinate, the row index, increases as one goes downwards, and the
second coordinate, the column index, increases as one goes from left to right. For
example, the graphical representation of the sequence (J1, J2, J3) defined by the
indexing sets of the skew tableau (2), above, is

(3)

On its turn, each sequence (J1, . . . , Jt ) of subsets of [n] gives rise to a word
w(J1, . . . , Jt ) over the alphabet [t], called the word generated by (J1, . . . , Jt ), ob-
tained by reading the grid from top to bottom, along each row, from right to left,
by assigning a label i to each dot in column i, for i = 1, . . . , t . The sets J1, . . . , Jt
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are called indexing sets of w(J1, . . . , Jt ). In picture (3), we have w(J1, J2, J3) =
231312121. We may now define w(T) the word of the (skew) tableau T (1) as
the word generated by the indexing sets of T. That is, w(T) = w(J1, . . . , Jt ). In
picture (2), the word of T is w(T) = 231312121 = w(J1, J2, J3).

Conversely, a word w = x1 . . . xr over the alphabet [t] may be represented in
a grid of N2 as the set of points (i, xi) ∈ N2, 1 � i � r . Putting Fk = {i ∈ [r] :
xi = k}, for k = 1, . . . , t , we obtain w(F1, . . . , Ft ) = x1 . . . xr , and F1, . . . , Ft are
indexing sets of w = x1 . . . xr . For example, according to this definition, we have
respectively the following graphical representations of the words w = 231312121,
already considered in picture (3), and v = 231132121:

(4)

The sets F1 = {3, 5, 7, 9}, F2 = {1, 6, 8} and F3 = {2, 4} are also indexing sets of
w = 231312121, and therefore w(J1, J2, J3) = w(F1, F2, F3) = 231312121, where
J1, J2, J3 are the indexing sets of the (skew) tableau (2). The sets G1 = {3, 4, 7, 9},
G2 = F2 and G3 = {2, 5} are indexing sets of v = 231132121. Clearly, a word may
be generated by different indexing sets. In particular, we may choose always pairwise
disjoint indexing sets.

Given a word w over the alphabet [t], we write |w|k , k ∈ [t], to mean the mul-
tiplicity of the letter k in the word w. The sequence (|w|1, . . . , |w|t ) is called the
evaluation (or weight) of w, and |w| = |w|1 + · · · + |w|t the length of w. Thus if
(J1, . . . , Jt ) are indexing sets of w, the evaluation and the length of w are respec-
tively (|J1|, . . . , |Jt |) and |J1| + · · · + |Jt |. Notice that every skew tableau gives rise
to a word, and every word arises from some skew tableau.

A word w is said a row if the letters are by strictly decreasing order. Every se-
quence of indexing sets p = (X1, . . . , Xt ) of a row word w is such that Xi = ∅ if
the letter i is missing, otherwise, Xi = {xi} and Xj = {xj } with xi � xj , whenever
i < j are letters of w. Graphically, a row word may be identified with a polygonal
line p with line segments of nonnegative slope. In (4), 321 is a row but neither 312
nor 132 are rows.

A word is said a tableau if it is the word of a tableau (1) with a0 = 0. In this
case, the word has a factorization into rows whose sequence of lengths is the shape
of the tableau. For instance, given m1 � · · · � mt , the word w([m1], . . . , [mt ]) is
the tableau (t · · · 2 1)mt (t − 1 · · · 2 1)mt−1−mt · · · (2 1)m2−m3 1m1−m2 , where expo-
nentiation signifies repetition of the same word, with shape the conjugate partition
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of (m1, . . . , mt ). When we mention the rows of a tableau we are referring to those
whose sequence of lengths is the shape of the tableau.

Knuth’s relation ≡ [10] on words over the alphabet [t] is the equivalence relation
generated by the so-called elementary transformations, where x, y, z are letters and
u, v are words in [t]:

uxzyv ≡ uzxyv, x � y < z, (5)

uyzxv ≡ uyxzv, x < y � z. (6)

In picture (4), using Knuth relation (5), w(J1, J2, J3) = w(F1, F2, F3) = 231 (312)
121 ≡ 231 (132) 121 = w(G1,G2,G3) (the parentheses indicate the elementary
Knuth operation 312 ≡ 132).The triangular polygonal lines drawn in (4) represent
the words 312 and 132 respectively.

In [16], Schensted has described an algorithm, known as Schensted’s insertion
algorithm, which associates to each word w a strictly row tableau P(w). The ele-
mentary step consists in the insertion of a letter x into a strictly row tableau T,
denoted P(x.T). It takes a positive integer x and a tableau T and puts x in a new
box at the end of the first row if possible, that is, if x is strictly larger than all the
entries of the row. If not, it bumps the smallest entry of that row that is larger or
equal to x. This bumped entry moves to the next row, going to the end if possible,
and bumping an element to the next row, otherwise. The process continues until the
bumped entry can go at the end of the next row, or until it becomes the only entry of
a new row. Here is an example of the insertion of 3 in a tableau:

3 →
1 2 4 5
1 2 5
2

4 →
1 2 3 5
1 2 5
2

5 →
1 2 3 5
1 2 4
2

1 2 3 5
1 2 4
2 5

.

For an arbitrary word w = x1 . . . xk in [t], one defines P(w) as the result of insert-
ing xk−1 into the unitary tableau xk = P(xk), then inserting xk−2 into the resulting
tableau P(xk−1.P (xk)), and so on. As an example of the general case, the successive
steps of the calculation of P(231312121) are

1 → 1 2 → 1 2
1

→ 1 2
1 2

→
1 2
1 2
1

→
1 2 3
1 2
1

→
1 2 3
1 2
1
1

→
1 2 3
1 2 3
1
1

→
1 2 3
1 2 3
1 2
1

. (7)

In [8,10,13] is shown that two words w,w′ are Knuth equivalent if and only if
P(w) = P(w′). Therefore, the word 231312121, in (2), (3) and (4), is Knuth equiv-
alent with the tableau 321 321 21 1 in (7).
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Definition 2.1. Let A,B ⊆ [n]. We write A � B if there exists an injection i : B →
A such that b � i(b), for all b ∈ B. We call such an injection a witness for A � B.

Note that if additionally |A| = |B|, every witness of A � B is a bijection. The
relation � defined by A � B is a partial order in 2[n], and we denote it by P[n]. This
relation can be characterized in a number of ways as we shall see in the proposition
below.

Given a finite set A ⊆ [n], let A := [n]\A.

Proposition 2.1 [6]. Given A,B ⊆ [n], the following statements are equivalent:

(a) A � B.

(b) There exists an injection i : B → A such that b � i(b), for all b ∈ B, and
satisfying additionally i|A∩B

= id|A∩B
(id denotes the identity map).

(c) For any k ∈ N, it holds |{a ∈ A : a � k}| � |{b ∈ B : b � k}|.
(d) If a = (a1, a2, . . . a|A|, 0, . . .) and b = (b1, b2, . . . b|B|, 0, . . .) are the decreas-

ing rearrangement of the elements of A and B as embedded into NN, then
a � b in the componentwise order.

(e) There exists X ⊆ A such that |X| = |B| and X � B.

(f) A\Z � B\Z, with Z ⊆ A ∩ B.

Observe that, when |A| = |B|, A � B if and only if B � A.
Notice that using (d) of this proposition, P[n] is clearly a lattice in which the

family of all subsets of a given cardinality forms a sublattice. Thus, given A � B we
may define the least upper bound of B in 2A:

min
B

A = min
{
X ⊆ A : |X| = |B| and X � B

}
.

Let X be any finite set, and let SX denote the set of all bijections on X. In partic-
ular, when X = [n] we write Sn for the symmetric group of order n. Given A � B

with |A| = |B| = m, each witness i : A → B, with i|A∩B
= id|A∩B

, induces a per-
mutation ε ∈ Sm, such that A\B = {u1 > · · · > ur}, B\A = {vε(1) > · · · > vε(r)},
with uj � i(uj ) = vj , j = 1, . . . , r , and ε(j) = j , j = r + 1, . . . , m. Notice that
if A = B, ε = id . Therefore, any witness i can be described completely by the
permutation that it induces. In what follows, by a witness of A � B we mean the
permutation ε ∈ Sm.

We denote by (uv) the transposition in Sn of the integers u and v.

Definition 2.2. Given A,B ⊆ [n] with |A| = |B| and A � B, for each witness ε of
A � B, as above, we define the permutation λA,B,ε = ∏r

k=1(ukvk) in Sn.

When ε = id , we write λA,B . If A = B, λA,B = id . Clearly, λA,B,ε(A) =
B, λA,B,ε(B) = A, (λA,B,ε)|A∩B

= id , λ−1
A,B,ε = λA,B,ε; and λA,B,ελC,D,- =

λC,D,ελA,B,-, if (A ∪ B) ∩ (C ∪ D) = ∅.
Using Proposition 2.1, we may define another relation in 2[n].
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Definition 2.3 [5]. Let A,B ⊆ [n]. We write A �op B if A � X, for some X ⊆ B

with |X| = |A|.
The relation �op is a partial order in 2[n], and we denote it by Pop[n]. Let op

denote the reverse permutation of Sn. Since A �op B if and only if op(B) � op(A),
Pop[n] is isomorphic to the dual lattice of P[n].

A word w over the alphabet [t] is said a Yamanouchi word [13] if any right factor
v of w satisfies |v|1 � |v|2 � · · · � |v|t . Recalling Proposition 2.1, this is equiva-
lent to say that if (J1, . . . , Jt ) are indexing sets of w, then every pair (Ji, Ji+1),
i = 1, . . . , t − 1, satisfy condition (c) of that proposition. Henceforth, w(J1, . . . , Jt )

is a Yamanouchi word if and only if J1 � · · · � Jt . The evaluation of a Yamanouchi
word is a partition.

Definition 2.4. Let u = u1 . . . ur and v = v1 . . . vr , where u1, . . . , ur , v1, . . . , vr
are words over the alphabet [t]. The word sh(u, v) = u1v1u2v2 . . . urvr , is called
a shuffle of u and v. That is, sh(u, v) is obtained by moving u and v through one
another.

Let u, v and q be words. We define recursively the shuffle of three (or more words)
by sh(u, v, q) = sh(sh(u, v), q).

For instance, the shuffles of 1 and 321 are: 1321, 3121, 3211 = 3211 (the under-
lines indicate the position of the word 1 in the shuffle). The word 3211 can be written
as a shuffle of 321 and 1 into two different ways. The word 132121 is a shuffle of
321, 21 and 1 but not a shuffle of 3121 and 21. On the other hand, 312211 is both a
shuffle of 321, 21, 1, and 3121, 21.

If (J1, . . . , Jt ) are indexing sets of sh(u, v) then Ji = Hi ∪ Fi , i = 1, . . . , t , where
(H1, . . . , Ht ) and (F1, . . . , Ft ) are indexing sets of u and v respectively, such that
Hi ∩ Fi = ∅. In this case, we say that (J1, . . . , Jt ) has a decomposition into (H1, . . . ,

Ht ) and (F1, . . . , Ft ) and we write (J1, . . . , Jt ) = (H1, . . . , Ht ) � (F1, . . . , Ft ).
The word w = 23 1 3 1 2 121, in (4), is a shuffle of 3 1 2 1, 2 1 and 321 (the over-

lines and underlines indicate the corresponding shuffle components). Below we ex-
hibit a graphical representation of the word w = 231312121 as a shuffle of the words
w({3}, {1}) = 21, w({9}, {8}, {4}) = 321, and w({5, 7}, {6}, {2}) = 3 1 2 1. Graph-
ically, w is a union of pairwise disjoint polygonal lines (polygonal lines without
overlapping vertexes):
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Another way to write w = 231312121 as a shuffle of 3121, 21 and 321 is w =
2 31 3 1 2 12 1 (the overlined and underlined letters indicate respectively the sub-
words 3121 and 21).

The notion of shuffle allows us to give the following characterization of Yama-
nouchi word.

Proposition 2.2. Let w be a word with evaluation (m1, . . . , mt ), m1 � · · · � mt,

and indexing sets (J1, . . . , Jt ). The following conditions are equivalent:

(a) w is a Yamanouchi word.
(b) (J1, . . . , Jt ) has a decomposition of the form

A1
1

A2
1 A2

2
...

...

At
1 At

2 . . . At
t ,

where Ak
1 � Ak

2 � · · · � Ak
k , |Ak

1| = |Ak
2| = · · · = |Ak

k| = mk − mk+1, 1 � k �
t , with mt+1 = 0, and Ar

j ∩ As
j = ∅, 1 � j < t , r /= s.

(c) w is a shuffle of the rows of the tableau w([m1], . . . , [mt ]).

Proof. Let r1, . . . , rm1 be the rows of the tableau w([m1], . . . , [mt ]), by decreasing
order of length, and (l1, . . . , lm1) be the conjugate partition of (m1, . . . , mt ).

(a) ⇔ (b) By Proposition 2.1(d), J1 � · · · � Jt if and only if is the union of pair-
wise disjoint polygonal lines with line segments of nonnegative slope pi = (xi

1 �
· · · � xi

li
) where xi

k ∈ Jk , k = 1, . . . , li , 1 � i � m1.
(b) ⇒ (c) Suppose (J1, . . . , Jt ) has a decomposition as displayed in (b). For 1 �

k � t , Ak
1 � Ak

2 � · · · � Ak
k are indexing sets of a subword of w which is a shuffle

of mk − mk+1 row words k . . . 2 1.
Now suppose that w is a shuffle of the row words r1, . . . , rm1 . Since J1, . . . , Jt

are indexing sets of w, each row ri determines a polygonal line with line segments
of nonnegative slope pi = (Xi

1 � · · · � Xi
li
) where Xi

k = {xi
k} ⊆ Jk , k = 1, . . . , li ,

1 � i � m1. Clearly, p1, . . . , pm1 are pairwise disjoint.
Henceforth, (J1, . . . , Jt ) = ⊎m1

i=1 pi and J1 � · · · � Jt . �

On the other hand

Proposition 2.3 (13, Lemma 5.4.7). The set of Yamanouchi words with evaluation
(m1, . . . , mt ), forms a single Knuth equivalence class, whose representative word is
the tableau w([m1], . . . , [mt ]).

From these two propositions, we find that Knuth operations on Yamanouchi words
of evaluation (m1, . . . , mt ) are equivalent to shuffle the rows of the tableau w([m1],
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. . . , [mt ]). For instance, w = 2 3 1 3 1 2 1 2 1 ≡ 2 11 3 3 2 1 2 1 ≡ 2 3 1 3 2 1 1 2 1 ≡
(7) which are shuffles of 3 2 1, 1, 321, and 2 1.

Indeed not every Knuth class satisfy this property. There are two reasons: either
a shuffle of the rows of the tableau in the Knuth class can not be performed by
Knuth operations, and we stay out of the Knuth class, or we stay in the Knuth
class but there are Knuth operations which can not be performed by a shuffle of
the rows of the tableau in the Knuth class. For example, in the first case, the tab-
leau 5321 421 52 �≡ 54321 21 52 = sh(5321, 421, 52). In the second case, the Knuth
operation 412 ≡ 142 on a Yamanouchi word over the alphabet [4] always implies a
shuffle of the row words 4321, 21 and 1 but, on the other hand, considering the word
434 121 ≡ 4321 41, a shuffle of the rows of the tableau 4321 41, the same Knuth
operation on this word can not be performed by a shuffle of the row words 4321, 41,
since 434 121 = sh(4321, 41) ≡ 431 421 /= sh(4321, 41).

The dual word of w = x1 · · · xr in the alphabet [t] is wop := op(xr) · · · op(x1),
a word in the alphabet [t], with op(i) = t − i + 1 the reverse permutation of St .
Clearly, given J1, . . . , Jt ⊆ [n], J1, . . . , Jt are indexing sets of w if and only if
op(Jt ), . . . , op(J1), with op ∈ Sn, are indexing sets of wop.

A word over the alphabet [t] is said a dual Yamanouchi word if it is the dual of
some Yamanouchi word over [t]. Therefore, a word w with indexing sets J1, . . . , Jt

is a dual Yamanouchi word if and only if J1 �op · · · �op Jt . Attending to the char-
acterizations of Yamanouchi words given above, we also find that

Corollary 2.4. Let w be a word with evaluation (m1, . . . , mt ), m1 � · · · � mt, and
indexing sets (J1, . . . , Jt ). The following conditions are equivalent:

(a) w is a dual Yamanouchi word.
(b) (J1, . . . , Jt ) has a decomposition of the form

A1
t

A2
t−1 A2

t
...

...

At
1 . . . At

t−1 At
t ,

where Ak
t−k+1 � · · · � Ak

t , |Ak
t−k+1| = · · · = |Ak

t | = mt−k+1 − mt−k , 1 � k �
t , with m0 = 0, and Ar

j ∩ As
j = ∅, 1 < j � t , r /= s.

(c) w is a shuffle of the rows of the tableau w([m1], . . . , [mt ]).

Recalling the Knuth relations (5) and (6), since x � y if and only if op(y) �
op(x), we find that xzy ≡ zxy, with x � y < z if and only if op(y)op(z)op(x) ≡
op(y)op(x)op(z), with op(z) < op(y) � op(x). Therefore, we have w ≡ w′ if and
only if wop ≡ w′

op, which allows us to obtain the following characterization of dual
Yamanouchi words:
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Corollary 2.5. The set of dual Yamanouchi words with evaluation (m1, . . . , mt ),

m1 � . . . � mt, forms a single Knuth equivalence class, whose representative word
is the tableau w([m1], . . . , [mt ]).

Thus, a word w with evaluation (m1, . . . , mt ), m1 � · · · � mt , is a dual Yama-
nouchi word if and only if it is Knuth equivalent to w([m1], . . . , [mt ]).

With the relation � and �op in 2[n], we may give the following definition
of Littlewood–Richardson tableau [12] and opposite Littlewood–Richardson
tableau.

Definition 2.5 ([2,3,5]). Let T be a Young tableau of type (a, (m1, . . . , mt ), c) with
indexing sets J1, . . . , Jt . We say that:

(I) T is a Littlewood–Richardson (LR for short) tableau if J1 � · · · � Jt .
(II) T is an opposite Littlewood–Richardson (LRop for short) tableau if J1 �op

. . . �op Jt .

Equivalently, T is an LR (LRop) tableau if and only if w(J1, . . . , Jt ) is a (dual)
Yamanouchi word. In Section 5, we shall look at an LRop tableau and a dual Yama-
nouchi word under the point of view of an action of the symmetric group.

3. Matrix realizations of Young tableaux

3.1. Smith normal form and subgroups of unimodular matrices

Let Rp be a local principal ideal domain with maximal ideal (p). In this paper, all
matrices are square and nonsingular, with entries over Rp. Let Un be the group of
n × n unimodular matrices. We denote by Eij the n × n matrix having 1 in position
(i, j) and 0’s elsewhere, and define the elementary unimodular matrices Tij (x) as
follows:

Tij (x) = I + xEij , where i /= j and x ∈ Rp;
Tii(v) = I + (v − 1)Eii, where v is a unit of Rp.

It is obvious, that EijErs = δjrEis , where δjr denotes the Kronecker symbol, that
is, δjr = 1 if j = r , and equals 0 otherwise. Therefore, if i /= j and r /= s, we find
that

Tij (x)Trs(y) = I + xEij + yErs + xyδjrEis . (8)

In particular, Tij (x)Tij (y) = Tij (x + y), if i /= j , and the elementary matrices Tij (x)

and Trs(y) commute, whenever i /= s and j /= r .
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If σ ∈ Sn, we denote by Pσ the permutation matrix having δiσ (j) in position
(i, j). Note that if [n] = {i1, . . . , in} = {j1, . . . , jn}, then

∑n
k=1 Eikjk = Pσ , where

σ is the permutation defined by σ(jk) = ik , for k = 1, . . . , n.

Lemma 3.1. Let ik, jk ∈ [n], for k = 1, . . . , r, such that {i1, . . . , ir}∩{j1, . . . , jr} =
∅. Then, if ξ = ∏r

k=1(ikjk),(
r∏

k=1

Tjkjk (−1)

)(
I −

r∑
k=1

Ejkik

)(
I +

r∑
k=1

Eikjk

)(
I −

r∑
k=1

Ejkik

)
= Pξ .

(9)

Proof. Attending to (8) and since {i1, . . . , ir} ∩ {j1, . . . , jr} = ∅, a simple induc-
tion on r shows that

∏r
k=1 Tikjk (1) = I +∑r

k=1 Eikjk . Therefore, we may write the
first member of (9) as

r∏
k=1

[
Tjkjk (−1)Tjkik (−1)Tikjk (1)Tjkik (−1)

]
=

r∏
k=1

Tjkjk (−1)

 ∑
s /=ik,jk

Ess + Eikjk − Ejkik


=

r∏
k=1

P(ikjk) = Pξ . �

Given n × n matrices A and B, we say that B is left equivalent to A (written
B ∼L A) if B = UA for some unimodular matrix U ; B is right equivalent to A

(written B ∼R A) if B = AV for some unimodular matrix V ; and B is equivalent to
A (written B ∼ A) if B = UAV for some unimodular matrices U,V . The relations
∼L, ∼R and ∼ are equivalence relations in the set of all n × n matrices over Rp.

Let A be an n × n nonsingular matrix. By the Smith normal form theorem (see
[7,15]), there exist nonnegative integers a1, . . . , an with a1 � · · · � an such that A
is equivalent to

diag(pa1 , . . . , pan).

The sequence a = (a1, . . . , an) by decreasing order, of the exponents of the p-pow-
ers in the Smith normal form of A, is a partition of length � n, uniquely deter-
mined by the matrix A. We call a the invariant partition of A. More generally, if we
are given a sequence of nonnegative integers e1, . . . , en, the following notation for
p-powered diagonal matrices will be used:

diagp(e1, . . . , en) := diag(pe1 , . . . , pen).
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Given a partition a of length � n, let 
a := diagp(a). If a = 0 is the null parti-
tion, then 
0 = I . If F ⊆ [n], let DF := diagp(χ

F ), where χF is the characteristic
function of F , that is, χF (i) = 1 if i ∈ F , and equals 0 if i /∈ F .

Given a sequence of nonnegative integers m = (m1, . . . , mt ) and σ ∈ St , let
σm := (mσ−1(1), . . . , mσ−1(t)). That is, σm = Pσ [m1 · · ·mt ]T. It is a simple exer-
cise to prove that

Pσ
a = 
σaPσ , P−1
σ = PT

σ = Pσ−1 , and (10)

PT
σ 
aPσ = 
σ−1a = diagp(aσ(1), . . . , aσ(n)). (11)

Let (m1, . . . , mt ) be a sequence of t integers in [n], and define

Mt := {
m ∈ Zt : m is a rearrangement of (m1, . . . , mt )

}
. (12)

Note that there exists σ ∈ St such that σ−1(m1, . . . , mt ) is the only partition of Mt .
The symmetric group St acts on Mt by place permutations of the t-uples of Mt . For
each permutation σ ∈ St , the map φ(σ) : Mt → Mt defined by φ(σ)(m) = σm is
a bijection. Thus, the map φ : St → SMt defined by φ(σ)(m) = σm, for σ ∈ St ,
is a group action on Mt .

Definition 3.1. Given F ⊆ [n], let M(F ) be the set of n × n matrices of the form
I + X, where X = (xij ) satisfy the condition: xij /= 0 only if i ∈ F and j /∈ F .

Note that if m = |F | and ω ∈ Sn is such that F = {ω(1), . . . , ω(m)} = ω([m]),
then P T

ωM(F )Pω = M([m]). Clearly, M([m]) is a subgroup of Un and, therefore,
M(F ) as well. We also consider Mp(F ) := {I + pX : I + X ∈ M(F )}, a subgroup
of M(F ).

Notice that [M(F )]T = M(F ) and M(∅) = {I } = M([n]).
Given F,G ⊆ [n], we define

M(F,G) := M(F ) ∩ M(G)

and

Mp(F,G) := {
I + pX : I + X ∈ M(F,G)

}
.

Clearly, M(F,G) is a subgroup of M(F ∩ G), M(F ), and M(G). Notice that
M(F, F ) = M(F ) and Mp(F, F ) = Mp(F ). We have [M(F,G)]T = M(F ,G) =
M(F ) ∩ M(G); and M(∅,G) = {I } = M(F, [n]).

Lemma 3.2. Let F,G,H ⊆ [n] such that F ⊆ G and H ⊆ G\F. Then:

(i) M(F,G)M(H) = M(H)M(F,G);
(ii) M(F ,G)DF = DFMp(F ,G).

Proof. It is enough to prove the result when F = [r] and G = [s], with 0 �
r � s. �
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In the conditions of the lemma above, we also have [M(F,G)]TM(H) = M(H)

[M(F,G)]T, since H ⊆ G\F if and only if H ⊆ F\G, and Mp(F,G)DF =
DFM(F,G).

Given F ⊆ [n], let

U(F ) := {
I + (xij ) ∈ Un : xij /= 0 only if i, j ∈ F

}
.

If m = |F | and ω ∈ Sn is such that F = {ω(1), . . . , ω(m)} = ω([m]), then
P T
ωU(F )Pω = U([m]). Note that U([n]) = Un. Clearly, U(F ) is a subgroup of Un.

Lemma 3.3. Let F,G,H ⊆ [n] such that F ⊆ G. Then:

(i) U(F )M(F,G) = M(F,G)U(F );
(ii) U(F )M(H) = M(H)U(F ), if H ⊆ F ;

(iii) (U(F )M(F ))
(
Mp(H)U(H)

) = (
Mp(H)U(H)

)
(U(F )M(F )) , if H ⊆ F ;

(iv) M(H,G)M(F\H,G) ⊆ U(F )M(F\H,G)M(H,G), if H ⊆ F.

Proof. For (iii), notice that, given an n × n matrix U , det(U + pX) = det(U)(mod
p), for every n × n matrix X. Thus, if U ∈ Un, U + pX is also unimodular. �

Observe that for x ∈ Rp, 
σ−1aTij (x) ∼L 
σ−1a , whenever σ(j) � σ(i),
Tij (p)DF ∼R DF , and Tij (x)DF ∼R DF , if i /∈ F .

Theorem 3.4. Let U ∈ Un. Then, there exists σ ∈ Sn such that U = T PσR, where
T is a n × n upper triangular matrix, having 1’s along the main diagonal, and R is
a n × n unimodular matrix, with units along the main diagonal, and multiples of p
above it.

Proof. Let U = [uij ]. Noticing that every row of an unimodular matrix has a unit,
we define

jn := max
1�j�n

{
j : unj is a unit

}
.

Multiplying U , on the left, by suitable elementary matrices Tkn(x), k < n, we may
use unjn as a pivot to eliminate all nonzero elements of column jn above row n.
Observe that all these matrices are upper triangular with 1’s along the main diagonal.
Denote the product of these elementary matrices by Tn.

By columns operations, we may use unjn to eliminate all nonzero elements of
row n to the left and right of unjn . To eliminate the elements to the left of unjn , we
use lower triangular matrices with 1’s along the main diagonal, and to eliminate the
elements to the right, we use upper triangular matrices whose nondiagonal entries
are multiples of p. Then, multiplying on the right by a suitable diagonal matrix, we
divide column jn by u−1

njn
. We denote the product of this elementary matrices by Rn.

The resulting matrix Un := TnURn has all entries of row n and column jn zero,
except the entry (n, jn), which is 1.
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The process is now repeated with row n − 1 of Un, obtaining Un−1 :=
Tn−1TnURnRn−1 with all entries of rows n, n − 1 and columns jn, jn−1 zero,
except the entries (n, jn) and (n − 1, jn−1) which are 1.

Continuing the process above, we obtain T1 · · · TnURn · · ·R1 = E1j1 + · · · +
Enjn , with {j1, . . . , jn} = [n]. Define σ ∈ Sn by σ(ji) = i, i = 1, . . . , n. Then
Pσ = E1j1 + · · · + Enjn and U = T PσR, where T = T −1

n · · · T −1
1 and R = R−1

1 · · ·
R−1

n are as requested. �

Theorem 3.5. Let U ∈ Un. Then, there exists σ ∈ Sn such that U = T PσQL,

where T is an n × n upper triangular matrix, with 1’s along the main diagonal, Q
is an n × n upper triangular matrix, with 1’s along the main diagonal, and multiples
of p above it, and L is an n × n lower triangular matrix, with units along the main
diagonal.

Proof. Given an unimodular matrix U , by Theorem 3.4, there exists σ ∈ Sn such
that U = T PσR, where T is an n × n upper triangular matrix, with 1′s along its
main diagonal, and R is an unimodular matrix, with units along the main diagonal,
and multiples of p above it.

Attending to the form of matrix R, the application of Theorem 3.4 to R gives
R = T ′IR′, where T ′ is upper triangular, with 1’s in the main diagonal, and mul-
tiples of p above it, and R′ is lower triangular matrix, with units along the main
diagonal. So let Q := T ′ and L := R′. �

Remark 1. Notice that the decomposition given in this theorem is not unique. For
instance, let

A =
[

1 + p 1
1 0

]
∈ U2.

We get the decompositions A = T P(12)QL, with T = T12(p), Q = I and L = T21(1),
and also A = T ′P(12)QL′, with T = T12(1 + p), and Q = L′ = I .

3.2. Matrix realizations of Young tableaux

Now, we analyze products of matrices of the form 
aUD[m], where 1 � m � n

and U ∈ Un. By the previous theorem, we may write U = T PσQL. Since T is upper
triangular with 1’s along the main diagonal, and L is lower triangular with units along
the main diagonal, we have


aUDb ∼ 
aPσQDb,

for any partition b of length � n. Thus, without loss of generality, we may assume
that U = PσQ, where Q is upper triangular with 1’s along the main diagonal and
multiples of p above it, and σ ∈ Sn.
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Lemma 3.6. Let a be a partition of length � n, and F a subset of {1, . . . , n}. Then,
there exists a permutation σ ∈ Sn such that σ = σ−1, a + χσ(F) is a partition, F �
σ(F ) and σ(a) = a. In particular, if a = (a1, . . . , an) is such that a1 > · · · > an,

a + χF is always a partition.

Proof. Straightforward. �

In order to avoid cumbersome notation, we write σ [m] := σ([m]).

Theorem 3.7. Let U ∈ Un, and 1 � m � n. Given a partition a of length � n,

there exists σ ∈ Sn such that 
aUD[m] ∼ diagp(a + χσ [m]), where a + χσ [m] is a
partition.

Proof. Let U = PσQ, with σ ∈ Sn and Q an upper triangular matrix, with 1’s
along the main diagonal, and multiples of p above it. We may write

Q =
[
B1 pB2
0 B3

]
,

where B1 and B3 are, respectively, m × m and (n − m) × (n − m) upper triangular
matrices, with 1’s along its main diagonal, and multiples of p above it. Thus, we
have


aPσQD[m] = 
aPσD[m]Q′, where Q′ =
[
B1 B2
0 B3

]
. (13)

Therefore, 
aPσQD[m] ∼R 
aPσD[m] ∼R 
aDσ [m] = diagp(a + χσ [m]).
If a + χσ [m] is not a partition, then by previous lemma and conditions (10),

there exists a permutation µ such that Pµ
aPµ = 
a and a + χµσ [m] is a partition.
Hence, 
aUD[m] ∼ diagp(a + χµσ [m]). �

From this proof, it follows

Corollary 3.8. Let U ∈ Un and 1 � m′ � m � n. Let a1 be the invariant partition
of 
aUD[m], and a′ the invariant partition of 
aUD[m′]. Then, a′ ⊆ a1 and a1/a′
is a vertical strip.

Given a sequence of n × n nonsingular matrices A0, B1, . . . , Bt , where A0 has
invariant partition a, and Br has elementary invariant partition (1mr ), for r = 1, . . . , t ,
it holds

A0B1 . . . Bk ∼ 
aU1D[m1]U2D[m2] . . . UkD[mk], k = 1, . . . , t, (14)

for some n × n unimodular matrices U1, . . . , Ut . Therefore, by the application of
the previous theorem, there exist σ1, . . . , σt ∈ Sn such that (14) is equivalent to the
diagonal matrix


aDσ1[m1] · · ·Dσk[mk] = diagp

(
a + χσ1[m1] + · · · + χσk[mk]), k = 1, . . . , t.
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This leads us to the notion of matrix realization of a Young tableau.

Definition 3.2. Let T = (a0, a1, . . . , at ) be a Young tableau of type (a, (m1,

. . . , mt ), c), with l(c) � n. A sequence of n × n nonsingular matrices A0, B1, . . . , Bt

is a matrix realization of T (or realizes T) if:

(I) For each r ∈ {1, . . . , t}, the matrix Br has invariant partition (1mr , 0n−mr ).
(II) For each r ∈ {0, 1, . . . , t}, the matrix Ar := A0B1 · · ·Br has invariant parti-

tion ar .

Observe that, according to Theorem 3.7, given a sequence of n × n nonsingular
matrices A0, B1, . . . , Bt , where A0 has invariant partition a, and Br has elementary
invariant partition (1mr , 0n−mr ), r = 1, . . . , t , A0, B1, . . . , Bt is a matrix realization
of one and only one Young tableau of type (a, (m1, . . . , mt ), c), where c is the invari-
ant partition of A0B1 . . . Bt . In particular, I, B1, . . . , Bt is a matrix realization of a
Young tableau of type (0, (m1, . . . , mt ), b). Thus, it is natural to give the following
definition.

Definition 3.3. Let T = (a0, a1, . . . , at ) and H = (0, b1, . . . , bt ) be Young tab-
leaux of types (a, (m1, . . . , mt ), c) and (0, (m1, . . . , mt ), b), respectively, where
l(c) � n. We say that a sequence of n × n nonsingular matrices A0, B1, . . . , Bt is
a matrix realization of the pair of Young tableaux (T,H) (or realizes (T,H)) if:

(I) For each r ∈ {1, . . . , t}, the matrix Br has invariant partition (1mr , 0n−mr ).
(II) For each r ∈ {0, 1, . . . , t}, the matrix Ar := A0B1 . . . Br has invariant parti-

tion ar .
(III) For each r ∈ {1, . . . , t}, the matrix B1 . . . Br has invariant partition br .

(T,H) is called an admissible pair of tableaux.

Clearly H =
(

0, (1m1),
∑2

i=1(1
mi ), . . . ,

∑t
i=1(1

mi ))
)

is the only Young tableau

of type (0, (m1, . . . , mt ),
∑t

i=1(1
mi )), and its indexing sets are [m1], . . . , [mt ]. For

the remainder of this paper, we shall consider pairs of Young tableaux (T,H),
where H is this tableau. Thus, in order to verify property (III), it is sufficient to
show that B1 · · ·Bt has invariant partition (1m1) + · · · + (1mt ).

Given a matrix realization A0, B1, . . . , Bt of a pair of Young tableaux (T,H),
there are, in general, many sequences of matrices S1, . . . , St realizing H and such
that B1 · · ·Bt = S1 · · · St . When m1 � · · · � mt , it was proved in [2] that A0, S1, . . . ,

St is also a matrix realization of (T,H). The next theorem generalizes this result to
any sequence (m1, . . . , mt ).

Proposition 3.9 (Hermite normal form). Given an n × n matrix A, there exists a
matrix U ∈ Un such that AU is lower triangular.
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Proof. See [15]. �

Theorem 3.10. Let A0, B1, . . . , Bt be a matrix realization of the pair (T,H).

Moreover, assume that we are given n× n matrices S1, . . . , St such that I, S1, . . . , St

realizes H and B1 · · ·Bt = S1 · · · St . Then A0, S1, . . . , St is also a matrix realiza-
tion of (T,H).

Proof. We may assume without loss of generality that B = B1 . . . Bt = S1 . . . St

is in Smith normal form B = diagp((1
m1) + · · · + (1mt )). We claim that there exist

unimodular matrices W0, . . . ,Wt such that W0 = Wt = I and

W−1
i−1BiWi is the Smith normal form of Bi. (15)

By the Hermite normal form theorem, there exist unimodular matrices V1, . . . ,

Vt−1 such that B1V1, V −1
1 B2V2, . . . , V

−1
t−2Bt−1Vt−1 are lower triangular. It follows

that V −1
t−1Bt is lower triangular as well. So, we may assume that each Bi is lower tri-

angular and that its diagonal Di = diag(Bi) has powers of p along the main diagonal.
Thus, Di contains mi elements equal to p and the others equal to 1. As D1 . . . Dt =
diagp ((1m1) + · · · + (1mt )), we find that Di is the Smith normal form of Bi , for i =
1, . . . , t . Therefore we may find lower triangular unimodular matrices T1, . . . , Tt−1
in such a way that B1T1 = D1, T −1

1 B2T2 = D2, . . . , T
−1
t−2Bt−1Tt−1 = Dt−1. This

forces T −1
t−1Bt = Dt . Our claim (15) is proved.

We may apply the same argument to the Si’s. Therefore A0B1 · · ·Br and A0S1 · · ·
Sr are right equivalent, for r = 1, . . . , t . �

Let I, B1, . . . , Bt be a matrix realization of H. Since B1 · · ·Bt ∼R UD[m1] · · ·
D[mt ] for some n × n unimodular matrix U , and I, UD[m1], . . . , D[mt ] is also a
matrix realization of H, it follows from previous theorem:

Corollary 3.11. The following conditions are equivalent:

(a) (T,H) is an admissible pair.
(b) There exists U ∈ Un such that 
a,UD[m1], . . . , D[mt ] realizes (T,H).

(c) There exists U ∈ Un such that 
a,UD[m1], . . . , D[mt ] realizes T.

Therefore, when we are referring to a matrix realization of (T,H) we may
assume, without loss of generality, that it is of the form 
a , UD[m1], . . . , D[mt ],
for some U ∈ Un. Thus, often, we shall say that U realizes T.

Next, we analyze the invariant partitions associated with product of matrices

aUD[m1]D[m2], where U ∈ Un, and m1, m2 ∈ [n].

Proposition 3.12. Let U ∈ Un and m1, m2 ∈ [n]. Then, there exist σ ∈ Sn and
I + X ∈ M([m1], [m2]), such that 
aUD[m1]D[m2] ∼ 
aPσD[m1](I + X)D[m2] ∼

aUD[m2]D[m1] for every partition a of length � n.
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Proof. In view of the proof of Theorem 3.7, we may write


aUD[m1]D[m2] ∼ 
aPσD[m1]Q′D[m2]
where Q′ is as in (13). Without loss of generality, assume m1 � m2. We may write
the matrix

Q′ =
A1 pA2 A3

0 A4 A5
0 0 A6

 ,

where A1, m2 × m2, A4, (m1 − m2) × (m1 − m2), and A6, (n − m1) × (n − m1),
are upper triangular matrices with 1’s along its main diagonal and multiples of p

above it. Hence,

Q′ =
Im2 0 X1

0 Im1−m2 0
0 0 In−m1


︸ ︷︷ ︸

I+X

A1 pA2 0
0 A4 A5
0 0 A6


︸ ︷︷ ︸

Q′′

,

where X1 = A3A
−1
6 , I + X ∈ M([m1], [m2]) and Q′′ is unimodular. Therefore,


aPσD[m1]Q′D[m2] = 
aPσD[m1](I + X)Q′′D[m2]
∼R
aPσD[m1](I + X)D[m2]
= 
aPσD[m2]D[m1]\[m2](I + X)D[m2]
= 
aPσD[m2](I + X)D[m1]. �

According to this proposition, it is enough to consider products of matrices

aPσ (I + X)DF , with I + X ∈ M(F ).

Definition 3.4. Given σ ∈ Sn, let {i1, . . . , in} = [n] such that [n] = {σ(i1) > · · · >
σ(in)}. We define σ̂ ∈ Sn by σ̂ (ik) = k, for k = 1, . . . , n.

We have σ(i) � σ(j) if and only if σ̂ (j) � σ̂ (i). Thus, given A,B ⊆ [n] with
|A| = |B|, we find that σ(A) � σ(B) if and only if σ̂ (B) � σ̂ (A).

Lemma 3.13 [3]. Let F ⊆ [n], I + X ∈ M(F ) and σ ∈ Sn. Then, there exist {i1,
. . . , ir } ⊆ F and {j1, . . . , jr} ⊆ [n]\F, with σ(is) > σ(js), for s = 1, . . . , r, and
σ(i1) > · · · > σ(ir ), such that

(i) 
aPσ (I + X)DF ∼ 
aPσ (I +∑r
k=1 Eikjk )DF ,

(ii) 
aPσ̂ (I + XT)DF ∼ 
aPσ̂ (I +∑r
k=1 Ejkik )DF ,

for every partition a of length � n.

Proof. Fix a partition a, arbitrarily, of length � n. Recall that P T
σ 
aPσ = diagp

(aσ(1), . . . , aσ(n)). Without loss of generality, we may assume that all nonzero ele-
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ments of X are units. Let xij be the unit in row i ∈ F , and column j /∈ F of X. If
σ(j) � σ(i) we use 1, in position (j, j) of I + X, as a pivot to zero out xij by row
operations. Therefore, we may assume that I + X ∈ M(F ) satisfy xij /= 0 only if
xij is a unit and σ(i) > σ(j).

If X = 0, then 
aPσ (I + X)DF = 
aPσDF .
If X /= 0, let

σ(i1) = max
{
σ(i) : i ∈ F and ∃j : xij /= 0

}
and

σ(j1) = min
{
σ(j) : j /∈ F and xi1j /= 0

}
.

Clearly, σ(i1) > σ(j1). Also, if i ∈ F and xij /= 0, we have σ(i1) � σ(i). Then,
we use the unit in position (i1, j1), say z1, as a pivot to zero out the remaining entries
of row i1 and afterwards the remaining entries of column j1 in X. Note that i1 ∈ F

and j1 /∈ F .
Therefore, (I + X)DF ∼R T (I + X1 + z1Ei1j1)DF , where z1 is a unit, T is a

product of elementary matrices Tii1(x) such that σ(i1) > σ(i), I + X1 ∈ M(F ), and
X1 = (x1

ij ) has row i1 and column j1 null, and x1
ij /= 0 only if x1

ij is a unit and
σ(i) > σ(j).

If X1 = 0, the reduction process is finished. If not, we repeat the above process
with the matrix X1. Eventually, after a finite number of steps, we obtain

(I + X)DF ∼R T ′(I + z1Ei1j1 + · · · + zrEir jr )DF ,

where z1, . . . , zr are units, i1, . . . , ir are distinct elements of F , and j1, . . . , jr are
distinct elements of {1, . . . , n}\F such that σ(is) > σ(js), for s = 1, . . . , r , and
σ(i1) > · · · > σ(ir ), and T ′ is a product of elementary matrices Tki(x) such that
σ(i) > σ(k).

Let Y := diag(y1, . . . , yn), where ys = z−1
s if s ∈ {i1, . . . , ir}, and ys = 1 if s /∈

{i1, . . . , ir}. Then

Y−1(I + Ei1j1 + · · · + Eirjr )Y = I + z1Ei1j1 + · · · + zrEir jr ,

and we may write


aPσ (I + X)DF ∼R 
aPσT
′Y (I + Ei1j1 + · · · + Eirjr )DF . (16)

Since T ′ is a product of elementary matrices Tki(x) with σ(i) > σ(k), using row
operations, we find that 
aPσT

′ ∼L 
aPσ . Therefore,

(16) ∼L 
aPσ (I + Ei1j1 + · · · + Eirjr )DF .

Finally, recalling that I + XT ∈ M(F ), and that σ(i) � σ(j) if and only if σ̂ (j) �
σ̂ (i), we may repeat on 
aPσ̂ (I + X)TDF the operations performed on 
aPσ (I +
X)DF , to get equation (i). In this way, we obtain equation (ii). �
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Notice that in this lemma, ξ = (i1j1) · · · (irjr ) ∈ Sn satisfy σ(F ) � σξ(F ). This
leads us to the following definition.

Definition 3.5. Let F, J ⊆ [n] and σ ∈ Sn such that |F | = |J | = m and σ(F ) �
J . Let ε ∈ Sm be a witness of σ(F ) � J . We define the n × n matrix S(σ (F ), J,

σ, ε), whose entry sij satisfy

sij =
{

1 if σ(i) ∈ σ(F )\J and λσ(F),J,εσ (i) = σ(j),

0 otherwise.

When ε = id , we write S(σ (F ), J, σ ).

Clearly, I + S(σ (F ), J, σ, ε) ∈ M(F ), and if J = σ(F ), S(σ (F ), J, σ ) = 0. No-
tice that for each witness ε ∈ Sm of σ(F ) � J , in the conditions of definition
2.2, there exist {i1, . . . , ir } ⊆ F with σ(i1) > · · · > σ(ir ), and {j1, . . . , jr} ⊆ [n]\F
with σ(is) > σ(js), for s = 1, . . . , r , and σ(jε(1)) > · · · > σ(jε(r)), such that
σ−1λσ(F),J,εσ = (i1j1) · · · (irjr ). Therefore, S(σ (F ), J, σ, ε) = ∑r

k=1 Eikjk .

Lemma 3.14. In the conditions of the definition above, put Sε = S(σ (F ), J, σ, ε).

Then, we have always


aPσ (I + Sε)DF ∼ 
aPσP(σ−1λσ(F),J,εσ )DF

∼R diagp(a + χJ ),

for every partition a of length � n. In other words, the invariant partition of

aPσ (I + Sε)DF does not depend on the witness ε of σ(F ) � J .

Proof. Fix an arbitrary partition a. Recall that I + Sε ∈ M(F ). Thus, we have


aPσ (I + Sε)DF ∼ R
aPσ (I + Sε)DF (I − pST
ε ) (17)

= 
aPσ (I + Sε)(I − ST
ε )DF . (18)

Consider now the permutation σ−1λσ(F),J,εσ = (i1j1) · · · (irjr ), and note that, by
Lemma 3.1, we have

P(σ−1λJ,σ(F ),εσ ) = Z(I − ST
ε )(I + Sε)(I − ST

ε ),

where Z = ∏r
k=1 Tjkjk (−1). Since σ(is) > σ(js), s = 1, . . . , r , we may use row

operations to zero out all nonzero elements of ST
ε , and obtain


aPσZ
(
I − ST

ε

) ∼L 
aPσ .

Therefore, we have


aPσP(σ−1λσ(F),J,εσ )DF = 
aPσZ(I − ST
ε )(I + Sε)(I − ST

ε )DF

∼L 
aPσ (I + Sε)(I − ST
ε )DF . (19)
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By (17) and (19) we find that


aPσ (I + X)DF ∼ 
aP(λσ(F),J,εσ )DF ∼R diagp(a + χJ ). �

Theorem 3.15. Given F ⊆ [n], I + X ∈ M(F ), and σ ∈ Sn, there exists J ⊆ [n]
with |J | = |F | and σ(F ) � J, such that, by putting S = S(σ (F ), J, σ ),


aPσ (I + X)DF ∼ 
aPσ (I + S)DF

∼ 
aPσP(σ−1λσ(F),J σ )DF

∼R diagp(a + χJ ),

for every partition a of length � n.

Proof. Fix a partition a. Let m := |F |. By Lemma 3.13, there exist {i1, . . . , ir } ⊆ F

and {j1, . . . , jr} ⊆ [n]\F with σ(is) > σ(js), for s = 1, . . . , r , and σ(i1) > · · · >
σ(ir ), such that


aPσ (I + X)DF ∼ 
aPσ (I + Ei1j1 + · · · + Eirjr )DF .

Let J := [
σ(F )\{σ(i1), . . . , σ (ir )}

] ∪ {σ(j1), . . . , σ (jr )}. Clearly, σ(F ) � J , and
the permutation ε ∈ Sm such that σ(jε(1)) > · · · > σ(jε(r)) is a witness of σ(F ) �
J . Thus, λσ(F),J,ε = (σ (i1)σ (j1)) . . . (σ (ir )σ (jr )), and, by definition of Sε =
S(σ (F ), J, σ, ε), we obtain I + Sε = I + Ei1j1 + · · · + Eirjr . Therefore,


aPσ (I + X)DF ∼ 
aPσ (I + Sε)DF ∼ diagp(a + χJ ).

From previous lemma, we may choose ε = id , hence


aPσ (I + X)DF ∼ 
aPσ (I + Sε)DF ∼ 
aPσ (I + S)DF

∼ diagp(a + χJ ). �

Observe that if a + χJ is not a partition then, by Lemma 3.6, there exists a per-
mutation µ such that 
aDJ ∼ diagp(a + χµ(J )) and σ(F ) � J � µ(J ). Therefore,
we obtain:

Corollary 3.16. In the conditions of the theorem above, given a partition a, let
a + χJ be the invariant partition of 
aPσ (I + X)DF . If a′ is a partition of length
� n such that either a′/a or a/a′ is a vertical strip, then there exists µ ∈ Sn such
that the invariant partition of 
a′Pσ (I + X)DF is given by a′ + χµ(J ), where J �
µ(J ).

This corollary will be useful in the following section. As an application of the pre-
vious theorem, we shall characterize the tableaux realized by a sequence of matrices
of the form 
a,UD[m1], . . . , D[mt ], where n � m1 � · · · � mt � 1.
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Proposition 3.17 [3]. Let U ∈ Un and n � m1 � m2 � 1. Then 
a,UD[m1], D[m2]
realizes an LR tableau of weight (m1, m2).

Proof. By Lemma 3.6 and Proposition 3.12, there exists σ ∈ Sn such that


aUD[m1]D[m2] ∼ 
aPσD[m1](I + X)D[m2] = 
aDσ [m1]Pσ (I + X)D[m2]
(20)

with I + X ∈ M([m1], [m2]) and a + χσ [m1] a partition. Let J1 := σ [m1].
By Theorem 3.15, there exists J2 ⊆ [n] with σ [m2] � J2 and |J2| = m2, such

that

(20) ∼ diagp(a + χJ1 + χJ2),

with a + χJ1 + χJ2 is a partition.
Finally, note that J1 = σ [m1] � σ [m2] � J2. Then 
a , UD[m1], D[m2] is a matrix

realization of the LR tableau T = (a, a + χJ1 , a + χJ1 + χJ2). �

Next result generalizes the proposition above.

Theorem 3.18 [3]. Let U ∈ Un and n � m1 � · · · � mt � 1. Then 
a,UD[m1], . . . ,
D[mt ] realizes an LR tableau of weight (m1, . . . , mt ).

Proof. By induction on t . For t = 1 there exists a permutation σ ∈ Sn such that

aUD[m1] ∼ diagp(a + χσ [m1]) where a + χσ [m1] is a partition. Therefore, 
a,

UD[m1] realizes the tableau T = (a, a + χσ [m1]), which is an LR tableau. The case
t = 2 was proved in previous lemma.

Let t > 2. By induction, the sequence 
aU,D[m1], . . . , D[mt−1] is a matrix reali-
zation of an LR tableau with indexing sets J1 � · · · � Jt−1. Therefore, there exists
an n × n unimodular matrix V such that


aUD[m1] · · ·D[mt−1]D[mt ] ∼L 
1VD[mt−1]D[mt ],

where 
1 = diagp(a + χJ1 + · · · + χJt−2).
By the previous lemma, 
1VD[mt−1]D[mt ] realizes an LR tableau T′ with index-

ing sets Jt−1 � Jt . Therefore, 
aUD[m1] . . . D[mt ] realizes the LR tableau T =
(a, a1, . . . , at ), with ai = a + χJ1 + · · · + χJi , for i = 1, . . . , t . �

In view of this result, we conclude that a pair of Young tableaux (T,H) of
weight (m1, . . . , mt ), where m1 � · · · � mt , is an admissible pair only if T is an
LR tableau. In [2,3] was also proved that (T,H) is an admissible pair if T is an
LR tableau. We shall recover the “if” part in the last section for t = 2, 3. In [1], using
a different characterization of LR tableau, the “if” part was proved as well.



O. Azenhas, R. Mamede / Linear Algebra and its Applications 401 (2005) 221–275 245

3.3. Matrix extensions

Let X be an n × n matrix, and denote by R(X) the set of the indices of the nonnull
rows of X, and by C(X) the set of the indices of the nonnull columns of X. Given
an n × n matrix Z, we say that Z is an extension of X if there exists an n × n matrix
X′ = (x′

ij ) with x′
ij /= 0 only if xij = 0 such that Z = X + X′. When Z = X + X′

is an extension of X such that C(X) ∩ C(X′) = ∅ [R(X) ∩ R(X′) = ∅], we say that
Z is a column [row] extension of X.

Let F ⊆ [n], σ ∈ Sn and I + X ∈ M(F ). By the application of Theorem 3.15
and Lemma 3.6, we conclude that, for every partition a, there exists J ⊆ [n] such
that the invariant partition of the product of matrices


aPσ (I + X)DF (21)

is a + χJ . In the following results, using Lemma 3.13, we analyze the relationship
between the invariant partition of the product (21) and the product 
aPσ (I + Z)DF ,
with I + Z ∈ M(F ) and Z an extension of X. We start with the case where Z is a
column extension of X.

Lemma 3.19. Let F ⊆ [n], {i1, . . . , ir} ⊆ F, {j0, j1, . . . , jr} ⊆ [n]\F and σ ∈ Sn

such that σ(ik) > σ(jk), k = 1, . . . , r. Consider a matrix X′ such that C(X′) =
{j0} and R(X′) ⊆ F. Then, there exist {v1, . . . , vs} ⊆ F and {f1, . . . , fs} ⊆ {j0, j1,

. . . , jr}, with σ(vk) > σ(fk), k = 1, . . . , s, and σξ(F ) � σξ ′(F ), where ξ =
(i1j1) · · · (irjr ) and ξ ′ = (v1f1) · · · (vsfs), such that


aPσ

(
I +

r∑
k=1

Eikjk

)
DF ∼ diagp(a + χσξ(F ))

and


aPσ

(
I +

r∑
k=1

Eikjk + X′
)
DF ∼ 
aPσ

(
I +

s∑
k=1

Evkfk

)
DF

∼ diagp(a + χσξ ′(F )),

for every partition a of length � n.

Proof. Fix a partition a. The proof will be handle by induction on the number m

of nonzero entries of X′. Let X = ∑r
k=1 Eikjk and notice that, by Theorem 3.15, we

have 
aPσ (I + X)DF ∼ diagp(a + χσξ(F )), where ξ = (i1j1) · · · (irjr ).
Without loss of generality, we may assume that all nonzero entries of X′ = (xij )

are units, and that xij0 /= 0 only if σ(i) > σ(j0), with i ∈ F and j0 /∈ F .
Suppose that m = 1, that is, X′ = z0Ei0j0 for some unit z0. Clearly, σ(i0) >

σ(j0). If i0 /∈ R(X), then by Theorem 3.15, we have
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aPσ (I + X + X′)DF = 
aPσ

(
I +

r∑
k=0

Eikjk

)
DF ∼ diagp(a + χσξ ′(F )),

where ξ ′ = (i0j0)(i1j1) · · · (irjr ) satisfy σξ(F ) � σξ ′(F ). If i0 ∈ R(X), without
loss of generality, we may assume that i0 = i1. Now, either we have σ(j0) > σ(j1)

or σ(j1) > σ(j0).
If σ(j0) > σ(j1), since j1, j0 /∈ F , we may eliminate z0 by column operations,

using the unit in position (i1, j1) as a pivot, obtaining 
aPσ (I + X + X′)DF ∼

aPσ (I + X)DF . Clearly, ξ = ξ ′.

If σ(j1) > σ(j0), since j1, j0 /∈ F , we use z0 as a pivot to eliminate, by column
operations, the unit in position (i1, j1). Thus, by Theorem 3.15, we find that


aPσ (I + X + X′)DF ∼ 
aPσ

(
I + Ei1j0 +

r∑
k=2

Eikjk

)
DF

∼ diagp(a + χσξ ′(F )),

where ξ ′ := (i1j0)(i2j2) · · · (irjr ) satisfy σξ(F ) � σξ ′(F ), since σ(j1) > σ(j0).
Now, suppose m > 1. Let X′ = (xij ), and denote by z0 the unit in position (i0, j0)

of X′, where σ(i0) := max{σ(i) : i ∈ F and xi,j0 /= 0}. If i0 /∈ R(X), then we may
use z0 to eliminate, by row operations, all entries of column j0 of X′, obtaining


aPσ (I + X + X′)DF ∼ 
aPσ

(
I +

r∑
k=0

Eikjk

)
DF ∼ diagp(a + χσξ ′(F )),

where ξ ′ = (i0j0)(i1j1) · · · (irjr ) satisfy σξ(F ) � σξ ′(F ).
Assume now that i0 = i1 ∈ R(X). If σ(j0) > σ(j1), we use the unit in position

(i1, j1), as a pivot, to eliminate z0 by column operations. Thus, for every partition a,
we have


aPσ (I + X + X′)DF ∼ 
aPσ (I + X + X′′)DF , (22)

where X′′ has m − 1 nonzero entries in column j0, and zero elsewhere. By the
inductive step and Theorem 3.15, there exist {v1, . . . , vs} ⊆ F and {f1, . . . , fs} ⊆
{j0, j1, . . . , jr} with σ(vk) > σ(fk), k = 1, . . . , s, and σξ(F ) � σξ ′(F ), such that

(22) ∼ 
aPσ

(
I +

s∑
k=1

Evkfk

)
DF ∼ diagp(a + χσξ ′(F )),

where ξ ′ = (v1f1) · · · (vsfs).
If σ(j1) > σ(j0), we use z0 to zero out, by column operations, the unit in position

(i1, j1), and all entries of column j0 of X′, by row operations. Therefore, we obtain


aPσ (I + X + X′)DF ∼ 
aPσ

(
I + Ei1j0 +

r∑
k=2

Eikjk + X′′
)
DF , (23)

where X′′ has m − 1 nonzero entries in column j1, and zero elsewhere. Notice
that, by Theorem 3.15, 
aPσ (I + Ei1j0 +∑r

k=2 Eikjk )DF ∼ diagp(a + χσξ ′(F )),
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where ξ ′ := (i1j0)(i2j2) · · · (irjr ) satisfy σξ(F ) � σξ ′(F ). Then, by the inductive
step, there exist {v1, . . . , vs} ⊆ F , and {f1, . . . , fs} ⊆ {j0, j1, . . . , jr} with σ(vk) >

σ(fk), k = 1, . . . , s, such that σξ(F ) � σξ ′(F ) � σξ ′′(F ) and

(23) ∼ 
aPσ

(
I +

s∑
k=1

Evkfk

)
DF ∼ diagp(a + χσξ ′′(F )),

where ξ ′′ = (v1f1) · · · (vsfs). �

Theorem 3.20. Let F ⊆ [n] and σ ∈ Sn. Let I + X, I + Z ∈ M(F ) such that Z
is a column extension of X. Then, there exist J, J ′ ⊆ [n] with J � J ′ satisfying


aPσ (I + X)DF ∼ diagp(a + χJ ),


aPσ (I + Z)DF ∼ diagp(a + χJ ′
),

for every partition a of length � n.

Proof. Fix a partition a, arbitrarily. Since Z is a column extension of X, we have
Z = X + X′ such that C(X) ∩ C(X′) = ∅. Without loss of generality, we may as-
sume that all nonzero entries of X and X′ are units. As in Lemma 3.13, using row
operations, let us zero out the elements xij of X and x′

ij of X′ such that σ(j) > σ(i).
Using the decomposition, of Lemma 3.13, on matrix I + X, there exist

{i1, . . . , ir} ⊆ [n] and {j1, . . . , jr} ⊆ [n]\F such that σ(ik) > σ(jk), k = 1, . . . , r ,
σ(i1) > · · · > σ(ir ), and


aPσ (I + X)DF ∼ 
aPσ

(
I +

r∑
k=1

Eikjk

)
DF . (24)

By Theorem 3.15, we find that (24) ∼ diagp(a + χJ ), where σ(F ) � J = σξ(F )

with ξ = (i1j1) · · · (irjr ). We may repeat on I + X + X′ the operations just per-
formed on I + X to get (24). So we have


aPσ (I + X + X′)DF ∼ 
aPσ

(
I +

r∑
k=1

Eikjk + Y

)
DF , (25)

where the matrix Y satisfy R(Y ) ⊆ F and C(Y ) ∩ C(X) = ∅.
We will prove, by induction on the number m := |C(Y )|, the existence of a set

J ′ ⊆ [n] such that J � J ′ and (25) ∼ diagp(a + χJ ′
).

When m = 1, the result was proved in Proposition 3.19. Suppose now m > 1.
Let j0 ∈ C(Y ) and consider the matrix Y ′ obtained from Y by replacing all non-
zero entries, outside column j0, by zero. Again, by Proposition 3.19, there exist
{v1, . . . , vs} ⊆ F and {f1, . . . , fs} ⊆ {j0, j1, . . . , jr} with σ(vk) > σ(fk), k = 1,
. . . , s, and J � σξ ′(F ), such that
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aPσ

(
I +

r∑
k=1

Eikjk + Y ′
)
DF ∼ 
aPσ

(
I +

s∑
k=1

Evkfk

)
DF

∼ diagp(a + χσξ ′(F )), (26)

where ξ ′ = (v1f1) · · · (vsfs). We may repeat on I +∑r
k=1 Eikjk + Y the operations

just performed on I +∑r
k=1 Eikjk + Y ′ to get (26). Therefore, we obtain

(25) ∼ 
aPσ

(
I +

s∑
k=1

Evkfk
+ Y ′′

)
DF , (27)

where Y ′′ satisfy C(Y ′′) ∩ {f1, . . . , fs} = ∅ and |C(Y ′′)| = m − 1. Applying the
inductive step to equations (26) and (27), there exists J ′ ⊆ [n] such that (27) ∼
diagp(a + χJ ′

) and J � σξ ′(F ) � J ′. �

Next, we prove the analogous of the theorem above, in the case, of a row extension
of X.

Theorem 3.21. Let F ⊆ [n] and σ ∈ Sn. Let I + X, I + Z ∈ M(F ) such that Z
is a row extension of X. Then, there exist J, J ′ ⊆ [n] with J � J ′ satisfying


aPσ (I + X)DF ∼ diagp(a + χJ ),


aPσ (I + Z)DF ∼ diagp(a + χJ ′
),

for every partition a of length � n.

Proof. Let a be an arbitrarily partition. Since Z is a row extension of X, we must
have Z = X + X′, where R(X) ∩ R(X′) = ∅. Note that I + XT, I + X + X′T ∈
M(F ) with C(X′T ) ∩ C(XT) = ∅. In view of the proof of Theorem 3.20, there exist
ξ, ξ ′ ∈ Sn such that


aPσ̂ (I + XT)DF ∼ 
aPσ̂PξDF ∼ diagp(a + χσ̂ξ(F ))

and


aPσ̂ (I + XT + X′T )DF ∼ 
aPσ̂Pξ ′DF ∼ diagp(a + χσ̂ξ ′(F )),

with σ̂ ξ(F ) � σ̂ ξ ′(F ). Thus, we have σ̂ ξ ′(F ) � σ̂ ξ(F ), and, by the definition of
σ̂ (Definition 3.4), we find that σξ(F ) � σξ ′(F ). Finally, recall from (i) and (ii) of
Lemma 3.13, that the permutations ξ, ξ ′ are such that


aPσ (I + X)DF ∼ 
aPσPξDF ∼ diagp(a + χσξ(F )),

and


aPσ (I + X + X′)DF ∼ 
aPσPξ ′DF ∼ diagp(a + χσξ ′(F )). �
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Next theorem states the relationship between the invariant partition of the product
of matrices 
aPσ (I + X)DF and 
aPσ (I + Z)DF , when Z is an extension of X

and I + X, I + Z ∈ M(F ).

Theorem 3.22. Let F ⊆ [n] and σ ∈ Sn. Let I + X, I + Z ∈ M(F ) such that Z
is an extension of X. Then, there exist J, J ′ ⊆ [n] with J � J ′ satisfying


aPσ (I + X)DF ∼ diagp(a + χJ ),


aPσ (I + Z)DF ∼ diagp(a + χJ ′
),

for every partition a of length � n.

Proof. Fix a partition a. Since Z is an extension of X, there exists an n × n matrix
X′ such that Z = X + X′. Let Y be the matrix obtained from X′ by replacing all
entries x′

ij with i /∈ R(X) by zero. Thus, I + X + Y ∈ M(F ) and C(Y ) ∩ C(X) =
∅. By Theorem 3.20, there exist J, Ĵ ⊆ [n] such that J � Ĵ ,


aPσ (I + X)DF ∼ diagp(a + χJ )

and


aPσ (I + X + Y )DF ∼ diagp(a + χĴ ).

Let Y ′ := X′ − Y and notice that R(Y ′) ∩ R(X + Y ) = ∅. Therefore, by Theorem
3.21, there exists J ′ ⊆ [n] with J � Ĵ � J ′ such that


aPσ (I + X + Y + Y ′)DF ∼ diagp(a + χJ ′
). �

Notice that if, in the theorem above, either a + χJ or a + χJ ′
is not a parti-

tion then, by Lemma 3.6, there exist permutations µ,µ′ ∈ Sn such that diagp(a +
χJ ) ∼L diagp(a+χµ(J ))and diagp(a+χJ ′

) ∼L diagp(a+χµ′(J ′)), witha+χµ(J )

anda + χµ′(J ′) partitions, and satisfyingJ � µ(J ),J ′ � µ′(J ′), andµ(J ) � µ′(J ′).
Therefore, without loss of generality, we may assume that the sets J, J ′ are such that
a + χJ and a + χJ ′

are partitions.

Corollary 3.23. Let U ∈ Un and 1 � m3 � m2 � m1 � n.

(i) If J1, J2 and F1, F2 are the indexing sets of 
aUD[m1]D[m3] and 
aUD[m2]
D[m3], respectively, then J2 � F2.

(ii) If J1, J2 and F1, F2 are the indexing sets of 
aUD[m3]D[m1] and 
aUD[m2]
D[m1], respectively, then J2 � F2.

Proof. We may assume U = PσQ, where σ ∈ Sn and Q is an upper triangular
matrix, with 1’s along the main diagonal, and multiples of p above it. Without loss
of generality, assume that ai := a + χσ [mi ] is a partition, i = 1, 2, 3.
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(i) By Proposition 3.12, we may write


aPσQD[m1]D[m3] ∼ diagp(a
1)Pσ (I + X)D[m3] ∼ diagp(a

1 + χJ2),

where I + X ∈ M([m1], [m3]), and


aPσQD[m2]D[m3] ∼ diagp(a
2)Pσ (I + Y + Y ′)D[m3] ∼ diagp(a

2 + χF2),

(28)

where I + Y + Y ′ ∈ M([m2], [m3]) satisfy R(Y ′) = R(X), C(Y ′) = C(X), and
yij = 0, y′

ij = xij + ṗ for all (i, j) ∈ R(X) × C(X), where X = (xij ), Y = (yij )

and Y ′ = (y′
ij ). By column operations, we may eliminate all multiples of p in I +

Y + Y ′ and obtain

(28) ∼R diagp(a
2)Pσ (I + Y + X)D[m3].

By Corollary 3.8, a1/a2 is a vertical strip. Then, by Corollary 3.16, the invariant par-
tition a2 + χJ of diagp(a

2)Pσ (I + X)D[m3] satisfy J2 � J . Applying now theorem
3.22, we have J � F2.

(ii) Easy calculations, following the proof of Proposition 3.12, give


aUD[m3]D[m1] ∼ diagp(a
3)Pσ (I + X)D[m1] ∼ diagp(a

3 + χJ2),

where I + X ∈ M([m3], [m1]), and


aUD[m2]D[m1] ∼ diagp(a
2)Pσ (I + X + X′)D[m1] ∼ diagp(a

2 + χF2),

where I + X + X′ ∈ M([m2], [m1]) satisfy R(X) ∩ R(X′) = ∅.
Again, by Corollary 3.8, a2/a3 is a vertical strip. Then, by Corollary 3.16, the

invariant partition a2 + χJ of diagp(a
2)Pσ (I + X)D[m1] satisfy J2 � J . Finally, by

Theorem 3.22, we have J � F2. �

4. The main results

Let t � 2 and consider the transpositions of consecutive positive integers si =
(ii + 1), 1 � i � t − 1. Denote the identity by s0. The symmetric group St , t � 2,
is generated by these t − 1 transpositions which satisfy the Moore–Coxeter relations:
s2
i = s0, sisj = sj si , if |i − j | /= 1, and sisi+1si = si+1sisi+1, 1 � i � t − 1.

The elements of St , t � 2, can be written as words in the alphabet {s1, . . . , st−1}.
We define St recursively:

S1 = {s0},

St =



ω

st−1ω

st−2st−1ω
...

s1s2 . . . st−1ω

,ω ∈ St−1


if t � 2.
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We call to these presentations of the elements of St , canonical words. For example,
if t = 2 we have S2 = {s0, s1}, and if t = 3 we have S3 = {s0, s1, s2, s1s2, s2s1,

s1s2s1}.
Given m = (m1, . . . , mt ) ∈ Mt (12), we let Dm denote the sequence of diagonal

matrices

Dm := (
I,D[m1],D[m1]D[m2], . . . , D[m1]D[m2] . . . D[mt ]

)
,

and define the set of all these sequences, with m running over Mt ,

TMt := {Dm : m ∈ Mt }.
Let σ ∈ St such that σ−1m is the partition of Mt . The sequence Dm realizes the
unique tableau Hσ = (0, (1m1),

∑2
i=1(1

mi ), . . . ,
∑t

i=1(1
mi )) of type (0, (m1,

. . . , mt ),
∑t

i=1(1
mi )). We may identify TMt with the set {Hσ : σ ∈ St }, the set of

tableaux of shape the conjugate partition of Mt and words w([m1], . . . , [mt ]), with
m running over Mt .

The symmetric group St acts on Mt by place permutations of the tuples. The map
ψ : St → STMt

defined by ψ(si)(Dm) = Dsim, for 0 � i � t − 1 and m ∈ Mt , is
a group action on TMt . The map �i (Hσ ) = Hsiσ , 1 � i � t − 1, defines an action
of the symmetric group St on {Hσ : σ ∈ St }.

For example, if m = (4, 3) the tableaux realized by TM2 = {Dm,Ds1m} are

Hs0 =
1 2
1 2
1 2
1

, Hs1 =
1 2
1 2
1 2
2

, (29)

and, if m = (4, 3, 2), the tableaux realized by

TM3 = {
Dm,Ds1m,Ds2m,Ds1s2m,Ds2s1m,Ds1s2s1m

}
are

Hs0 =
1 2 3
1 2 3
1 2
1

, Hs1 =
1 2 3
1 2 3
1 2
2

, Hs2s1 =
1 2 3
1 2 3
1 3
3

,

Hs2 =
1 2 3
1 2 3
1 3
1

, Hs1s2 =
1 2 3
1 2 3
2 3
2

, Hs2s1s2 =
1 2 3
1 2 3
2 3
3

.

We may write TM2 = {Hs0 ,Hs1}, and

TM3 = {
Hs0 ,Hs1 ,Hs2s1 ,Hs2 ,Hs1s2 ,Hs1s2s1

}
.
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Now, fix a partition a = (a1, . . . , an) and U ∈ Un. For each m = (m1, . . . , mt ) ∈
Mt , let


aUDm :=
(

a,
aUD[m1],
aUD[m1]D[m2], . . . , 
aUD[m1]D[m2] . . . D[mt ]

)
,

and define

T(a,Mt )(U) := {

aUDm : m ∈ Mt

}
.

Clearly the symmetric group St also acts on T(a,Mt )(U) by putting

ψ(si)(
aUDm) = 
aUDsim, 0 � i � t − 1.

For each m ∈ Mt , 
aUDm realizes a pair of Young tableaux (T,Hσ ) with
weight m, where σ−1m is the partition of Mt . According to Corollary 3.11, we
replace the notation (T,Hσ ) by Tσ , σ ∈ St . Thus, we may identify T(a,Mt )(U)

with {Tσ , σ ∈ St : ∃m ∈ Mt,
aUDm realizes Tσ }. We shall characterize this set
in cases t = 2, 3. In order to do this, we need to introduce the following definitions.

Definition 4.1 [6]. Let F1 � F2 and F = {(F σ
1 , F σ

2 ) ∈ (2[n])2 : σ ∈ 〈s1〉}. We say
that F is generated by (F1, F2), if (F s0

1 , F
s0
2 ) = (F1, F2), and the following relations

are satisfied:

(i) F
s1
1 ⊆ F1, (ii) F s1

1 � F2, |F2| = |F s1
1 |, (30)

(iii) F1 ∩ F2 ⊆ F
s1
1 , (iv) F s1

2 = F2 ∪ (F1\F s1
1 ). (31)

Recalling Definition 2.3, we have F
s1
1 �op F

s1
2 . Let C(Fσ

1 , F σ
2 ) = (F

s1σ
1 , F

s1σ
2 ).

Then, C2 = id , and the symmetric group S2 acts on any set generated by (F1, F2).
Given sets F1 � F2, there exists always a set generated by (F1, F2). For instance,

F
s1
1 := minF2 F1 and F

s1
2 := F2 ∪ (F1\F s1

1 ) satisfy (30). In this case, we say that the
set F is ∗-generated by (F1, F2) [6].

Definition 4.2 [6]. Given F1 � F2 � F3 and F = {(F σ
1 , F σ

2 , F σ
3 ) ∈ (2[n])3 : σ ∈

〈s1, s2〉}, with (F
s0
1 , F

s0
2 , F

s0
3 ) = (F1, F2, F3), we say that F is generated by (F1,

F2, F3) if

(I) (a) F
s1
3 = F3 and {(F σ

1 , F σ
2 ) : σ ∈ 〈s1〉} is generated by (F1, F2).

(b) F
s2
1 = F1 and {(F σ

2 , F σ
3 ) : σ ∈ 〈s2〉} is generated by (F2, F3).

(II) (a) F
s2s1
1 = F

s1
1 and {(F σs1

2 , F
σs1
3 ) : σ ∈ 〈s2〉} is generated by (F

s1
2 , F

s1
3 ) with

F
s2
2 � F

s2s1
2 .

(b) F
s1s2
3 = F

s2
3 and {(F σs2

1 , F
σs2
2 ) : σ ∈ 〈s1〉} is generated by (F

s2
1 , F

s2
2 ) with

F
s1s2
2 � F

s1
2 .

(III)(a) F
s1s2s1
3 = F

s2s1
3 , {(F σs2s1

1 , F
σs2s1
2 ) : σ ∈ 〈s1〉} is generated by (F

s2s1
1 , F

s2s1
2 ),

and F
s1s2s1
1 = F

s1s2
1 .

(b) {(F s1s2
2 , F

s1s2
3 ), (F

s1s2s1
2 , F

s1s2s1
3 )} is generated by (F

s1s2
2 , F

s1s2
3 ).
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In [6] it has been shown directly that if we are given sets F1 � F2 � F3 in [n],
there exists always the set F∗-generated by (F1, F2, F3). Here, in section 5, Theorem
4.7, we shall see a matrix interpretation of the generation of a set F based on the fol-
lowing facts: in [2] it has been proved that given an LR tableau T of type (a,m, c),
there exists always an unimodular matrix U such that 
aUDm realizes T, on the
other hand the symmetric group acts on Ta,M3(U) which leads to a such set F. In the
next theorem, the elements of a set F, generated by (F1, F2, F3), are given explicitly.

Theorem 4.1. Let F1 � F2 � F3. The following assertions are equivalent:

(a) F = {(F σ
1 , F σ

2 , F σ
3 ) : σ ∈ 〈s1, s2〉} is generated by (F1, F2, F3).

(b) The sequence F1 � F2 � F3 has a decomposition F1 = ⋃5
j=1 A

j

1, F2 = ⋃5
j=3

A
j

2, F3 = A5
3 ∪ A2

3,

F1, F2, F3 =

A1
1

A2
1 A2

3

A3
1 A3

2

A4
1 A4

2

A5
1 A5

2 A5
3

(32)

satisfying:
1. A4

1 � A4
2 � A2

1 � A2
3, with |A4

1| = |A4
2| = |A2

1| = |A2
3|,

A5
1 � A5

2 � A5
3, with |A5

1| = |A5
2| = |A5

3|,
A3

1 � A3
2, with |A3

1| = |A3
2|,

2. Ai
1 ∩ A

j

1 = ∅, if i /= j,

Ai
2 ∩ A

j

2 = ∅, if i /= j,

A2
3 ∩ A5

3 = ∅,
3. F1 ∩ A5

2 ⊆ A5
1,

(F1\A5
1) ∩ A4

2 ⊆ A4
1,

[F1\(A5
1 ∪ A4

1)] ∩ A3
2 ⊆ A3

1,

[F2 ∪ (A2
1 ∪ A1

1)] ∩ A2
3 ⊆ A2

1, and
[F2 ∪ (A2

1 ∪ A1
1)] ∩ A5

3 ⊆ A5
2,

such that the sets Fσ
1 , F σ

2 , F σ
3 , with σ ∈ {s1, s2, s1s2, s2s1, s1s2s1}, are ob-

tained from F1, F2, F3 as follows:

F
s1
1 , F

s1
2 , F

s1
3 =

A1
1

A2
1 A2

3

A3
1 A3

2

A4
1 A4

2

A5
1 A5

2 A5
3

, F
s2s1
1 , F

s2s1
2 , F

s2s1
3 =

A1
1

A2
1 A2

3

A3
1 A3

2

A4
1 A4

2

A5
1 A5

2 A5
3

,
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F
s1s2s1
1 , F

s1s2s1
2 , F

s1s2s1
3 =

A1
1

A2
1 A2

3

A3
1 A3

2

A4
1 A4

2

A5
1 A5

2 A5
3

,

F
s2
1 , F

s2
2 , F

s2
3 =

A1
1

A2
1 A2

3

A3
1 A3

2
A4

1 A4
2

A5
1 A5

2 A5
3

, F
s1s2
1 , F

s1s2
2 , F

s1s2
3 =

A1
1

A2
1 A2

3

A3
1 A3

2
A4

1 A4
2

A5
1 A5

2 A5
3

.

Proof. (a) ⇒ (b) See the proof of the “only if” part of Theorem 4.7.
(b) ⇒ (a) Obvious. �

Remark 2. In the previous theorem, if J1, J2 and J3 are pairwise disjoint, con-
dition 3 vanishes and, in that case, we may consider the decomposition (32) with
A2

1 = A4
1 = A4

2 = A2
3 = ∅.

Corollary 4.2. Let F1 � F2 � F3 and F = {(F σ
1 , F σ

2 , F σ
3 ) : σ ∈ 〈s1, s2〉} gener-

ated by (F1, F2, F3). For i = 1, 2, let �i : F → F defined by

�i

(
Fσ

1 , F σ
2 , F σ

3

) = (
F

siσ
1 , F

siσ
2 , F

siσ
3

)
, σ ∈ 〈s1, s2〉.

Then, �
i
2 = id, i = 1, 2, and �1�2�1 = �2�1�2. That is, the symmetric group

S3 acts on the set F.

Proof. Follows from Theorem 4.1. �

In what follows we put m = (m1, . . . , mt ) for the partition in Mt , t = 2, 3. We
may now define σ -Yamanouchi word for σ ∈ St , t = 2, 3.

Definition 4.3. Let t = 2, 3 and σ ∈ St . Let w be a word over the alphabet [t] with
evaluation σm. We say that w is a σ -Yamanouchi word if w ≡ Hσ .

In [6], Definition 4.4, we have introduced this concept using the indexing sets of
the word. We will see that these two definitions do coincide.

Proposition 4.3. Let σ ∈ S2 and w a word over the alphabet [2], with evaluation
σm and indexing sets (F1, F2). The following conditions are equivalent:

(a) w is a σ -Yamanouchi word.
(b) w is a shuffle of the rows of Hσ .
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(c) (F1, F2) has a decomposition either of the form

A1
1

A2
1 A2

2

if σ = s0 or
A1

2

A2
1 A2

2

if σ = s1,

where A1
2 � A2

2 with |A1
2| = |A2

2| = m2, and A1
1 ∩ A2

1 = A2
2 ∩ A1

2 = ∅.
(d) (F1, F2) belongs to a set F generated by some J1 � J2.

Proof. (a) ⇔ (b) follows from Proposition 2.3 and Corollary 2.5.
(b) ⇔ (c). Notice that Hs0 = w([m1], [m2]) and Hs1 = w([m2], [m1]). Clearly,

w(F1, F2) is a Yamanouchi word, when σ = id , and w(F1, F2) is a dual Yama-
nouchi word, when σ = s1. The result follows from Proposition 2.2 and Corollary
2.4.

(c) ⇔ (d) follows from Definition 4.1. �

Proposition 4.4. Let σ ∈ S3 and w a word over the alphabet [3], with evaluation
σm and indexing sets (F1, F2, F3). The following conditions are equivalent:

(a) w is a σ -Yamanouchi word.
(b) w is a shuffle of the rows of Hσ .

(c) (F1, F2, F3) has a decomposition according to

A1
1

A2
1 A2

2

A3
1 A3

2 A3
3

if σ = s0,

A1
2

A2
1 A2

2

A3
1 A3

2 A3
3

if σ = s1,

A1
3

A2
1 A2

3

A3
1 A3

2 A3
3

if σ = s2s1,

A1
3

A2
2 A2

3

A3
1 A3

2 A3
3

if σ = s1s2s1,

A1
1

A2
1 A2

3

A3
1 A3

2 A3
3

if σ = s2,

A1
2

A2
2 A2

3

A3
1 A3

2 A3
3

if σ = s1s2,

where A3
1 � A3

2 � A3
3, with |A3

1| = |A3
2| = |A3

3| = |m3|; Ar
i ∩ As

i = ∅, for r /=
s, i = 1, 2, 3, and A2

1 � A2
2, A

2
1 � A2

3, A
2
2 � A2

3, with |A2
1| = |A2

2| = |A2
3| =

|m2| − |m3|.
(d) (F1, F2, F3) belongs to a set F generated by some J1 � J2 � J3.

Proof. (a) ⇔ (b) Let σ in S3. A careful analysis of the Schensted’s insertion algo-
rithm, Section 2, shows that when we apply this algorithm to a shuffle of the rows of
Hσ , we get Hσ . So, if w is a shuffle of the rows of Hσ , w ≡ Hσ .

Notice that the tableau Hσ is respectively (321)m3(21)m2−m3 1m1−m2 , if σ = s0;
(321)m3(21)m2−m3 2m1−m2 , if σ = s1; (321)m3(31)m2−m3 3m1−m2 , if σ = s2s1;
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(321)m3(32)m2−m3 3m1−m2 if σ = s1s2s1; (321)m3(31)m2−m3 1m1−m2 if σ = s2; and
(321)m3(32)m2−m3 2m1−m2 if σ = s1s2. Therefore, if w is a shuffle of the rows of
Hσ , when applying, to w, the elementary Knuth transformations xyx ≡ yxx, and
yxy ≡ yyx, with 1 � x < y � 3, we do still obtain a word of the same form. In the
case of the Knuth transformations 132 ≡ 312 and 231 ≡ 213, notice that 31 is a row
of the tableau Hσ only when σ = s2s1. In this case, w is a shuffle of m1 − m2 rows
321, m2 − m3 rows 31 and m3 rows 3. Thus the letter 2 appears only as a letter of
the row 321. So, w ≡ Hσ implies that w is a shuffle of the rows of Hσ . It is now
easy to conclude that a Knuth class containing a word which is a shuffle of the rows
of Hσ , only contains words which are shuffles of those rows, and the representative
tableau of this Knuth class is Hσ .

(b) ⇔ (c) Notice that w(A3
1, A

3
2, A

3
3) is a shuffle of m3 rows 321, w(A2

1, A
2
2) is a

shuffle of m2 − m3 rows 21, w(A2
1, A

2
3) is a shuffle of m2 − m3 rows 31, w(A2

3, A
2
2)

a shuffle of m2 − m3 rows 32, w(A1
1) is a shuffle of m1 − m2 rows 1, w(A1

2) is a
shuffle of m2 − m3 rows 2, and w(A1

3) is a shuffle of m2 − m3 rows 3.
(c) ⇒ (d) If F1, F2, F3 are pairwise disjoint then condition 3 of Theorem 4.1

vanishes and we may consider A2
3 = ∅. Otherwise, it has been shown, in [6], the exis-

tence of a set F ∗-generated by a sequence J1 � J2 � J3, containing (F1, F2, F3).
Furthermore, if (F1, F2, F3) are the indexing sets of some tableau T of type
(a, σm, c), then J1 � J2 � J3 are the indexing sets of an LR tableau of type (a,m, c).

(d) ⇒ (c) From Theorem 4.1 it is clear that (F1, F2, F3) has a decomposition of
one of these forms. �

We are now in conditions to state the two main theorems of this paper. Let t =
2, 3. Let c be the invariant partition of 
aUDm. Given a Young tableau T of type
(a, σm, c), σ ∈ St , the theorems, below, show that T ∈ T(a,Mt )(U) if and only if
the indexing sets of T belong to some set F generated by the indexing sets of the LR
tableau in T(a,Mt )(U).

Theorem 4.5. Let T and Ts1 be Young tableaux, respectively, with indexing sets
J1, J2, F1, F2, and types (a,m, c), (a, s1m, c), where l(c) � n. Then, there exists
an n × n unimodular matrix U such that T(a,M2)(U) = {T,Ts1} if and only if
{(J1, J2), (F1, F2)} is generated by J1 � J2.

This theorem has been stated in [4], without proof, using a different language.

Corollary 4.6. Let σ ∈ S2. Let T be a Young tableau of type (a, σm, c). Then,
(T,Hσ ) is an admissible pair if and only if w(T) ≡ Hσ .

Proof. Let F1, F2 be the indexing sets of T. From [2] and [5], (T,Hσ ) is an
admissible pair if and only if w(F1, F2) is a Yamanouchi word, when σ = id , and
w(F1, F2) is a dual Yamanouchi word, when σ = s1. Therefore, the result follows
from Proposition 4.3. �
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Theorem 4.7. For each σ ∈ S3, let Tσ be a Young tableau of type (a, σm, c), with
indexing sets Fσ

1 , F σ
2 , F σ

3 , and l(c) � n. Then, there exists an n × n unimodular
matrixU such thatT(a,M3)(U) = {Tσ , σ ∈ S3} if and only if the set {(F σ

1 , F σ
2 , F σ

3 ) :
σ ∈ S3} is generated by F

s0
1 � F

s0
2 � F

s0
3 .

Corollary 4.8. Let σ ∈ S3. Let T be a Young tableau of type (a, σm, c). Then,
(T,Hσ ) is an admissible pair if and only if w(T) ≡ Hσ .

Proof. Let F1, F2, F3 be the indexing sets of T. If (T,Hσ ) is an admissible pair,
there exists an unimodular matrix U such that 
aUDσm realizes (T,Hσ ). There-
fore, by previous theorem, T is an element of T(a,M3)(U) and, by Proposition 4.4,
we have w(T) ≡ Hσ .

Conversely, if w(T) ≡ Hσ , by Proposition 4.4, there exists a set F generated
by a sequence J1 � J2 � J3 which contains (F1, F2, F3). By previous theorem,
(T,Hσ ) is an admissible pair. �

5. Proof of the main results

We start this section with an auxiliary result in which we analyze the structure of
some n × n matrices.

Lemma 5.1 [14]. Let 0 � m3 � m2 � m1 � n. Let J1 = ⋃1
k=3 Ak

1, J2 = ⋃2
k=3 Ak

2
be subsets of [n], with J1 � J2, and σ, θ ∈ Sn such that

1. Ak
i ∩ A

j
i = ∅, for i = 1, 2, k /= j,

|J1| = m1, |A2
1| = |A2

2| = m2 − m3, |A3
1| = |A3

2| = m3 with Ak
1 � Ak

2,

for k = 2, 3,
2. J1 ∩ A3

2 ⊆ A3
1,

(J1\A3
1) ∩ A2

2 ⊆ A2
1,

3. σ [m3] = A3
1, σ ([mk]\[mk+1]) = Ak

1, for k = 1, 2, and θ = λA3
1A

3
2
.

Then,

(I) I + S(A2
1, A

2
2, θσ ) ∈ M([m2]\[m3], [m1]);

(II) if |A2
1| = |A3

2|, the matrix S(A2
1, A

3
2, θσ ) has nonzero entries in position (i, j)

only if i ∈ σ−1(A3
2) and j ∈ σ−1(A2

1).

Proof. (I) By definition of S(A2
1, A

2
2, θσ ) = (sij ), if sij = 1 we must have θσ (i) ∈

A2
1\A2

2 and θσ (j) ∈ A2
2\A2

1. It follows that i ∈ σ−1θ−1(A2
1) = σ−1(A2

1) = [m2]\
[m3].
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Suppose j ∈ [m1]. Then θσ (j) ∈ θσ [m1] = A3
2 ∪ A2

1 ∪ A1
1. Since θσ (j) ∈ A2

2
and the sets A2

2 and A3
2 are disjoint, we find that θσ (j) ∈ (A1

1 ∪ A2
1) ∩ A2

2 ⊆ A2
1,

which is a contradiction.
Therefore, I + S(A2

1, A
2
2, θσ ) ∈ M([m2]\[m3], [m1]).

(II) Again by definition of S(A2
1, A

3
2, θσ ), we have θσ (i) ∈ A3

2\A2
1 = A3

2 and
θσ (j) ∈ A2

1\A3
2 = A2

1, since the sets A2
1 and A3

2 are disjoint. �

5.1. The case t = 2

Proof of Theorem 4.5 [4,14]. The “only if ” part. Let T and Ts1 be tableaux,
respectively, of type (a,m, c), with indexing sets J1, J2, and of type (a, s1m, c),
with indexing sets F1, F2, with l(c) � n. Suppose there exists an n × n unimodular
matrix U such that T(a,M2)(U) = {T,Ts1}. We will prove that conditions (i), (ii),
(iii) and (iv) of Definition 4.1 are fulfilled.

Assume U = PσQ, where σ ∈ Sn and Q is a upper triangular matrix, with 1’s
along its main diagonal, and multiples of p above it.

By Proposition 3.12, we find that 
aPσQD[m1]D[m2] ∼ 
aPσD[m1](I + X)

D[m2], with I + X ∈ M([m1], [m2]). Therefore,


a, PσD[m2]D([m1]\[m2]), (I + X)D[m2] realizes (T,H), (33)


a, PσD[m2], (I + X)D([m1]\[m2])D[m2] realizes (Ts1 ,Hs1). (34)

Recalling the type and the indexing sets of Ts1 , we find that 
aPσD[m2] has
invariant partition a + χF1 , and is equivalent to diagp(a + χσ [m2]). It follows, by
Lemma 3.6, that there exists a permutation θ = θ−1 such that


a = 
θa = P T
θ 
aPθ and θσ [m2] = F1. (35)

Now, we have

diagp(a + χJ1)∼
aPσD[m1] by hypothesis on T

=P T
θ 
aPθσD[m2]D([m1]−[m2]) by (35)

∼
aDθσ [m2]PθσD([m1]−[m2])
∼diagp(a + χF1 + χθσ([m1]−[m2])).

Note that F1 ∩ θσ ([m1]\[m2]) = ∅. Hence, there exists an α ∈ Sn such that,
with θ ′ = αθσ , it follows J1 = F1 ∪ θ ′([m1]\[m2]). In particular, (i) follows.

By hypothesis,

c − a := (c1 − a1, . . . , cn − an) = χJ1 + χJ2 = χF1 + χF2 . (36)

Hence, subtracting χF1 on both sides of (36), and using (i), we find (iv). Furthermore,
(36) also shows us that J1 ∩ J2 = F1 ∩ F2. So, necessarily (ii) follows. Finally, note
that, by Theorem 3.15, there exist J ⊆ [n] with |J | = m2 and θσ [m2] � J such that
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diagp(a + χJ1 + χJ2)∼
aPσD[m1](I + X)D[m2]

∼diagp(a + χJ1)Pθσ (I + X)D[m2]

∼diagp(a + χJ1 + χJ ), (37)

with F1 = θσ [m2] � J . If J /= J2 then, by Lemma 3.6, there exists a permutation
µ = µ−1 such that µ(a + χJ1) = a + χJ1 and J � µ(J ) = J2. Thus, F1 � J2 and
(30) is satisfied. Therefore, {(J1, J2), (F1, F2)} is generated by J1 � J2.

The “if ” part. Given J1, J2 and F1, F2 ⊆ [n] satisfying (i), (ii), (iii), and (iv) of
Definition 4.1 with |J1| = |F2| = m1, |J2| = |F1| = m2, let σ1 ∈ Sn be a permuta-
tion such that σ1[m2] = F1 and σ1([m1]\[m2]) = J1\F1.

Since F1 � J2, we may consider the permutations θ2 = λF1J2 , σ2 = θ2σ1, and the
matrix S = S(F1, J2, σ1), which, by Lemma 5.1, belongs to M([m1], [m2]).

Consider the sequence


a, Pσ1D[m1], (I + S)(I − ST)D[m2]. (38)

In view of the proof of Theorem 3.15, we have

(38) = 
aDσ1[m1]Pσ1(I + S)(I − ST)D[m2]
∼L 
aDJ1Pσ1Pσ−1

1 θ2σ1
D[m2]

∼R 
aDJ1Dθ2σ1[m2]
= diagp(a + χJ1 + χJ2).

On the other hand, since I + S ∈ M([m1], [m2]), we may write

(38)=
aPσ1D[m2]D([m1]\[m2])(I + S)(I − ST)D[m2]
=
aPσ1D[m2](I + S)(I − ST)D([m1]\[m2])D[m2]. (39)

Thus, again, by Theorem 3.15, we have

(38) = 
aDσ1[m2]Pσ1(I + S)(I − ST)D[m1]
∼L 
aDF1Pσ1Pσ−1

1 θ2σ1
D[m1]

∼R 
aDF1Dθ2σ1[m1]
= diagp(a + χF1 + χF2).

Finally, note, that by Lemma 3.2(ii), we have

(38) ∼R 
aPσ1D[m1](I + S)D[m2] = 
Pσ1(I + pS)D[m1]D[m2].

Therefore, the matrix U := Pσ1(I + pS) is such that 
aUDm and 
aUDs1m

realizes, respectively, (T,H) and (Ts1 ,Hs1). That is, {T,Ts1} =
T(a,M2)(U). �
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In view of the theorem above, the indexing sets of Ts1 satisfy F1 �op F2. As a
consequence of this result, we obtain, below, necessary conditions for the admissibil-
ity of a pair (T,H), with t � 2. As we shall see, in the case t = 3, these conditions
are not, in general, sufficient.

Theorem 5.2. Let (m1, . . . , mt ) ∈ Mt, with t � 2, and let T be a Young tableau
of type (a, (m1, . . . , mt ), c), with indexing sets F1, . . . , Ft . Suppose (T,H) is an
admissible pair. Then we have:

1. If mi � mi+1, Fi � Fi+1.

2. If mi � mi+1, Fi �op Fi+1.

Proof. By hypothesis, there exists U ∈ Un such that 
a,UD[m1], . . . , D[mt ] is a
matrix realization of (T,H).

Thus, 
a,UD[m1], . . . , D[mi−1] ∼R 
1V , where 
1 = diagp(a + χF1 + · · · +
χFi−1) and V is a unimodular matrix.

If we denote by a′ the partition a + χF1 + · · · + χFi−1 , we have


1VD[mi ]D[mi+1] ∼ diagp(a
′ + χFi + χFi+1).

Now, if mi � mi+1 then Theorem 3.17 says that the sequence 
1, VD[mi ],D[mi+1]
realizes a pair (T′,H′), where T′ is an LR-tableau with indexing sets Ji, Ji+1, and
H′ = (0, (1mi ), (1mi ) + (1mi+1)). Therefore, Ji � Ji+1.

If mi < mi+1. The sequence 
1, VD[mi ],D[mi+1] realizes a pair of tableaux
(T′′,H′′), where T′′ is a tableau with indexing sets Fi, Fi+1, and H′′ = (0, (1mi ),

(1mi ) + (1mi+1)). Since 
1, VD[mi+1],D[mi ] is a matrix realization of a pair (F, H̃),
where F is an LR tableau, and H̃ = (0, (1mi+1), (1mi+1) + (1mi )), by Theorem 4.5,
we have Fi �op Fi+1. �

Remark 3. In general, an LR tableau may be realized by more than one unimod-
ular matrix U . For example, let T be the LR tableau (a, a + χJ1 , a + χJ1 + χJ2),
where a = (3, 2, 0, 0), J1 = {4, 3, 2} and J2 = {1}, and consider the matrices U =
P(14)(I + pE14) and U ′ = P(14)(I + E12). Let σ = (14) ∈ S4, m1 = 3 and m2 =
1, and note that, by Proposition 3.12, since σ [m1] = J1, we may write


aP(14)(I + pE14)D[m1]D[m2] = diagp(a + χJ1)P(14)(I + E14)D[m2] (40)

and


aP(14)(I + E12)D[m1]D[m2] = diagp(a + χJ1)P(14)(I + E12)D[m2]. (41)

Now, Theorem 3.15 and Lemma 3.6 give

(40) ∼L diagp(a + χJ1)P(14)P(14)D[m2] = diagp(a + χJ1 + χJ2)

and

(41) ∼L diagp(a + χJ1)P(14)P(12)D[m2] ∼ diagp(a + χJ1 + χJ2).
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Therefore, both matrices U and U ′ realize T. On the other hand, applying the
procedure used above, we may show that 
UD[m2]D[m1] ∼ diagp(a + χF1 + χF2)

and 
U ′D[m2]D[m1] ∼ diagp(a + χF ′
1 + χF ′

2), where F1 = {3}, F2 = {4, 2, 1}, and
F ′

1 = {2}, F ′
2 = {4, 3, 1}. That is, matrix U gives rise to the set {(J1, J2), (F1, F2)}

generated by (J1, J2), while matrix U ′ gives rise to the set {(J1, J2), (F
′
1, F

′
2)} gen-

erated by (J1, J2) as well, with F ′
1 = minJ2 J1 and F ′

2 = J2 ∪ (J1\F ′
1). This is con-

sistent with Definition 4.1, given sets J1 � J2, there is, in general, more that one set
generated by the sequence (J1, J2).

5.2. The case t = 3

Proof of Theorem 4.7. The “only if ” part. Let σ ∈ S3, and suppose there exists an
unimodular matrix U such that 
aUDσm realizes (Tσ ,Hσ ), where the tableau Tσ

has indexing sets Fσ
1 , F σ

2 , F σ
3 . For simplicity, we shall often say that Fσ

1 , F σ
2 , F σ

3 are
the indexing sets of 
aUDσm. We observe, as we shall see through the proof, that in
proving that F = {(F σ

1 , F σ
2 , F σ

3 ) : σ ∈ S3} is generated by the sequence (F
s0
i )3

i=1,
we also prove that (a) ⇒ (b) in Theorem 4.1.

By Theorem 5.2, the indexing sets of 
aUD(m1,m2,m3) satisfy F
s0
1 � F

s0
2 � F

s0
3 ,

and the indexing sets of 
aUD(m2,m1,m3) satisfy F
s1
1 �op F

s1
2 � F

s1
3 , with F

s0
3 =

F
s1
3 . Applying Theorem 4.5 to the set {
aUD(m1,m2), 
aUD(m2,m1)}, we find that

|F s1
1 | = |F s0

2 |,
F

s1
1 ⊆ F

s0
1 , F

s0
1 ∩ F

s0
2 ⊆ F

s1
1 , F

s1
1 � F

s0
2 and

F
s1
2 = F

s1
2 ∪ (F

s0
1 \F s1

1 ). (42)

There exists an n × n unimodular matrix V such that 
aUD[m1] ∼L 
a′V , where


a′ = diagp(a + χF
s0
1 ). Recalling Theorem 5.2, the indexing sets of 
a′VD(m2,m3)

and 
aUD(m3,m2) are F
s0
2 � F

s0
3 and F

s2
2 �op F

s2
3 , respectively. Thus, applying

again Theorem 4.5, it follows that |F s2
2 | = |F s0

3 |,
F

s2
2 ⊆ F

s0
2 , F

s0
2 ∩ F

s0
3 ⊆ F

s2
2 , F

s2
2 � F

s0
3 and

F
s2
3 = F

s0
3 ∪ (F

s0
2 \F s2

2 ). (43)

We have 
aUD[m2] ∼L 
a′′V ′, for some unimodular matrix V ′, with 
a′′ =
diagp(a + χF

s1
1 ). Since the indexing sets of 
aUD(m2,m1,m3) and 
aUD(m2,m3,m1)

are F
s1
1 , F

s1
2 , F

s0
3 and F

s1
1 , F

s2s1
2 , F

s2s1
3 , respectively, recalling Theorem 5.2, we find

that 
a′VD(m1,m3) has indexing sets F s1
2 � F

s0
3 and 
a′VD(m3,m1) has indexing sets

F
s2s1
2 �op F

s2s1
3 . Again by Theorem 4.5, it follows that |F s1s2

2 | = |F s0
3 |,

F
s2s1
2 ⊆ F

s1
2 , F

s1
2 ∩ F

s0
3 ⊆ F

s2s1
2 , F

s2s1
2 � F

s0
3 and

F
s2s1
3 = F

s0
3 ∪ (F

s1
2 \F s2s1

2 ). (44)
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By (42) and (44), we have F
s2s1
2 ⊆ F

s1
2 = F

s0
2 ∪ (F

s0
1 \F s1

1 ), so we may write

F
s2s1
2 = A5

2 ∪ A2
1, (45)

where A5
2 ⊆ F

s1
2 and A2

1 ⊆ F
s0
1 \F s1

1 . Let A1
1 := (F

s0
1 \F s1

1 )\A2
1.

From (45), and since F
s2s1
2 � F

s0
3 and |F s2s1

2 | = |F s0
3 |, we can factorize F

s0
3 as

F
s0
3 = A5

3 ∪ A2
3,

where A5
2 � A5

3, A
2
1 � A2

3 are such that |A5
2| = |A5

3|, |A2
1| = |A2

3|, F s1
2 ∩ A5

3 ⊆ A5
2,

and F
s1
2 ∩ A2

3 ⊆ A2
1.

Recall again Theorem 5.2, and consider 
aUD(m2,m3,m1) and 
aUD(m3,m2,m1),

which have indexing sets

F
s1
1 � F

s2s1
2 �op F

s2s1
3 and F

s1s2s1
1 �op F

s1s2s1
2 �op F

s2s1
3 , (46)

respectively. The application of Theorem 4.5 to the set {
aUD(m2,m3), 
aU

D(m3,m2)} gives

F
s1s2s1
1 ⊆ F

s1
1 , F

s1
1 ∩ F

s2s1
2 ⊆ F

s1s2s1
1 , F

s1s2s1
1 � F

s2s1
2 and

F
s1s2s1
2 = F

s2s1
2 ∪ (F

s1
1 \F s1s2s1

1 ). (47)

Since F
s1s2s1
1 � F

s2s1
2 = A5

2 ∪ A2
1, and |F s1s2s1

1 | = |F s2s1
2 |, define

A5
1 := min

{
X ⊆ F

s1s2s1
1 : |X| = |A5

2| and X � A5
2

}
,

and

A4
1 := F

s1s2s1
1 \A5

1.

Since F
s1s2s1
1 ⊆ F

s1
1 , let A3

1 := F
s1
1 \F s1s2s1

1 . Then we obtain F
s1s2s1
1 = A5

1 ∪ A4
1 and

F
s1s2s1
2 = A5

2 ∪ A2
1 ∪ A3

1. From the inequality F
s1s2s1
1 � F

s2s1
2 and the definition of

A5
1, it follows that

A4
1 > A2

1 � A2
3 and A5

1 � A5
2 � A5

3.

Also, from (42), (44) and (47), we obtain F1 ∩ A5
2 ⊆ A5

1.
Observe that 
aUD(m1,m3) has indexing sets F

s0
1 � F

s2
2 , and from (46),


aUD(m2,m3) has indexing sets F
s1
1 � F

s2s1
2 . Then, by Corollary 3.23(i), we must

have

F
s2
2 � F

s2s1
2 . (48)

Since the tableaux 
aUD(m1,m3,m2) and 
aUD(m3,m1,m2) have indexing sets

F
s2
1 = F

s0
1 , F

s2
2 , F

s2
3 and F

s1s2
1 , F

s1s2
2 , F

s2
3 ,

Theorem 4.5 applied to {
aUD(m1,m3), 
aUD(m3,m1)} gives

F
s1s2
1 ⊆ F

s0
1 , F

s0
1 ∩ F

s1
2 ⊆ F

s1s2
1 , F

s1s2
1 � F

s2
2 and

F
s1s2
2 = F

s0
2 ∪ (F

s0
1 \F s1s2

1 ). (49)

Observe that 
aUD(m3,m1) has indexing sets F
s1s2
1 �op F

s1s2
2 , and 
aUD(m2,m1)

has indexing sets F
s1
1 �op F

s1
2 . Then, by Corollary 3.23(ii), we must have
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F
s1s2
2 � F

s1
2 . (50)

Finally, consider the tableaux 
aUD(m3,m1,m2) and 
aUD(m3,m2,m1), which have,
respectively, indexing sets

F
s1s2
1 , F

s1s2
2 , F

s2
3 and F

s1s2s1
1 , F

s1s2s1
2 , F

s2s1
3 ,

with F
s1s2
1 = F

s1s2s1
1 . There exists an unimodular matrix V ′′ such that 
aUD[m3] ∼L


a′′′V ′′. Then, the application of Theorem 4.5 to the set {
a′′′V ′′D(m1,m2), 
a′′′V ′′
D(m2,m1)} gives

F
s1s2s1
2 ⊆ F

s1s2
2 , F

s1s2
2 ∩ F

s2
3 ⊆ F

s1s2s1
2 , F

s1s2s1
2 � F

s2
3 and

F
s2s1
3 = F

s2
3 ∪ (F

s1s2
2 \F s1s2s1

2 ). (51)

From (43) and the inclusion A5
2 ∪ A2

1 ∪ A3
1 = F

s1s2s1
2 ⊆ F

s1s2
2 = F

s2
2 ∪ A1

1 ∪ A2
1 ∪

A3
1, it follows that

A5
2 ⊆ F

s2
2 ∪ A1

1.

But the sets A5
2 and A1

1 are disjoint. Therefore A5
2 ⊆ F

s2
2 . Let A4

2 := F
s2
2 \A5

2 and
A3

2 := F
s0
2 \F s2

2 . Since |F s2
2 | = |F s1s2

1 |, we also have |A4
1| = |A4

2|, |A3
1| = |A3

2|,
(F

s0
1 \A5

1) ∩ A4
2 ⊆ A4

1 and
(
F

s0
1 \(A5

1 ∪ A4
1)
) ∩ A3

2 ⊆ A3
1. Moreover, from the inequal-

ity F
s1s2
1 � F

s2
2 , we obtain A4

1 � A4
2. From the inequalities (48) and (50), we find that

A4
2 � A2

1 and A3
1 � A3

2.
Thus, the sequence (F

s0
1 , F

s0
2 , F

s0
3 ) satisfy (b) of Theorem 4.1, and, therefore, F

is generated by F
s0
1 � F

s0
2 � F

s0
3 .

The “if ” part. Suppose the set F = {(F σ
i )3

i=1 : σ ∈ S3} is generated by (F
s0
i )3

i=1.
Then, there exists a decomposition of (F

s0
i )3

i=1 satisfying (b) of Theorem 4.1. We
will prove the existence of a unimodular matrix U such that {Tσ : σ ∈ S3} =
T(a,M3)(U).

Let m′
3 := |A5

1| and m′
1 := |F s0

1 \A1
1|. Let σ1 be a permutation in Sn such that

σ1([m′
3]) = A5

1,

σ1([m3]\[m′
3]) = A4

1,

σ1([m2]\[m3]) = A3
1,

σ1([m′
1]\[m2]) = A2

1,

σ1([m1]\[m′
1]) = A1

1,

and consider the following permutations:

θ25 = λA5
1,A

5
2
, θ35 = λA5

2,A
5
3
,

θ24 = λA4
1,A

4
2
, θ32 = λA2

1,A
3
2
,

θ23 = λA3
1,A

3
2
, θ12 = λA4

2,A
2
1
.

Let σ2 := θ23θ24θ25σ1 and σ3 := θ32θ35θ12σ2. Note that since (A2
1 ∪ A4

2) ∩ (A3
1 ∪

A3
2) = ∅, the permutations θ23 and θ12 commute. Consider the following matrices:
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S25 = S(A5
1, A

5
2, σ1), S12 = S(A4

2, A
2
1, σ2),

S24 = S(A4
1, A

4
2, θ25σ1), S35 = S(A5

2, A
5
3, θ12σ2),

S23 = S(A3
1, A

3
2, θ24θ25σ1), S32 = S(A2

1, A
2
3, θ35θ12σ2).

Notice that by Lemma 5.1(II), the entry (i, j) of S12 is nonnull only if i ∈ [m3]\[m′
3]

and j ∈ [m′
1]\[m2]. Again, by Lemma 5.1(I), we have

I + S25, I + S35 ∈ M([m′
3], [m1]),

I + S24, I + S32 ∈ M([m3]\[m′
3], [m1]),

I + S23 ∈ M([m2]\[m3], [m1]).
(52)

Let Sij := (I + Sij )(I − ST
ij ), and consider the following product of matrices:


aPσ1D[m1]S25S24S23D[m2]S12S35S32D[m3]. (53)

Recall (52). Since D([m1]\[m2]) commute with S25S24S23, we may write

(53) = 
aPσ1D[m2]S25S24S23D([m1]\[m2])D[m2]S12S35S32D[m3]
= 
aPσ1D[m2]S25S24S23D[m1]S12S35S32D[m3]. (54)

Matrices D[m1] and D([m1]\[m3]) commute with S12 and S35S32, respectively. Thus,
we have

(54) = 
aPσ1D[m2]S25S24S23S12D[m3]S35S32D[m1]. (55)

Note that S12S23 = S23S12, and the diagonal matrices D([m2]\[m3]) and D[m3] com-
mute with S25S24S12 and S23, respectively. So,

(55) = 
aPσ1D[m3]S25S24S12D[m2]S23S35S32D[m1]. (56)

Consider again (53), and observe that the diagonal matrices D([m2]\[m3]) and D[m3]
commute with S12S35S32 and S23, respectively. So, we get

(53) = 
aPσ1D[m1]S25S24D[m3]S23S12S35S32D[m2]. (57)

Finally, note that D([m1]\[m3]) commute with S25S24. Therefore,

(57) = 
aPσ1D[m3]S25S24D[m1]S23S12S35S32D[m2]. (58)

We will show that (53), (54), (55), (56), (57) and (58) are, respectively, matrix real-
izations of the pair of Young tableaux (Tσ ,Hσ ), for σ = s0, s1, s2s1, s1s2s1, s2,

s1s2. Consider the sequence (53). Recalling Lemma 3.14, we may write


aPσ1D[m1] = 
aDσ1[m1]Pσ1 ∼R 
aDσ1[m1],


aPσ1D[m1]S25S24S23D[m2] = 
aDσ1[m1]Pσ1S25S24S23D[m2]
∼L 
aDσ1[m1]Pσ2D[m2]
= 
aDσ1[m1]Dσ2[m2]Pσ2

∼R 
aDσ1[m1]Dσ2[m2],
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and

(53) = 
aDσ1[m1]Dσ2[m2]Pσ2S12S35S32D[m3]
∼L 
aDσ1[m1]Dσ2[m2]Pσ3D[m3]
∼R 
aDσ1[m1]Dσ2[m2]Dσ3[m3].

Since σi[mi] = F
s0
i for i = 1, 2, 3, we obtain (53) ∼ 
aDF

s0
1
D

F
s0
2
D

F
s0
3

. By a sim-

ilar process, we find that

(54) ∼ 
aDσ1[m2]Dσ2[m1]Dσ3[m3] = 
aDF
s1
1
D

F
s1
2
D

F
s1
3
,

(55) ∼ 
aDσ1[m2]Dθ12σ2[m3]Dσ3[m1] = 
aDF
s2s1
1

D
F

s2s1
2

D
F

s2s1
3

,

(56) ∼ 
aDσ1[m3]Dθ12θ24θ25σ1[m2]Dσ3[m1] = 
aDF
s1s2s1
1

D
F

s1s2s1
2

D
F

s1s2s1
3

,

(57) ∼ 
aDσ1[m1]Dθ24θ25σ1[m3]Dσ3[m2] = 
aDF
s2
1
D

F
s2
2
D

F
s2
3
,

(58) ∼ 
aDσ1[m3]Dθ24θ25σ1[m1]Dσ3[m2] = 
aDF
s1s2
1

D
F

s1s2
2

D
F

s1s2
3

.

By Theorem 3.10, it remains to prove the existence of an unimodular matrix U

such that

Pσ1D[m1]S25S24S23D[m2]S12S35S32D[m3] ∼R UD[m1]D[m2]D[m3].
We start by noticing that, attending to (52) and to Lemma 3.3(iv), we may write

3∏
k=5

S2k = A2B2 and
∏

k=5,2

S3k = A3B3,

where Ai ∈ U([mi])M([mi], [m1]) and Bi ∈ M([mi], [m1]), i = 2, 3. Thus, by
Lemma 3.2(ii), we have

(53) = 
aPσ1D[m1]A2B2D[m2](I + S12)(I − ST
12)A3B3D[m3]

∼R 
aPσ1A
′
2D[m1]D[m2]B ′

2(I + S12)(I − ST
12)A3D[m3], (59)

where A′
2 ∈ U([m2])Mp([m2], [m1]) and B ′

2 ∈ Mp([m2], [m1]) ⊆
U([m1])Mp([m1]).

Next, note that

I + S12 ∈ U([m3])M([m3]).
Then, by Lemma 3.3(iii), there exist C,C′ ∈ U([m3])M([m3]) and B ′′

2 ∈
U([m1])Mp([m1]) such that

D[m1]D[m2]B ′
2(I + S12) = D[m1]D[m2]CB ′′

2 = C′D[m1]D[m2]B ′′
2 .

Attending to the structure of ST
12, we have I − ST

12 ∈ M([m′
1]\[m2]). Thus, by Lem-

mas 3.3(ii) and 3.2(i), we may write
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(59) = 
aPσ1A
′
2C

′D[m1]D[m2]B ′′
2A

′
3FD[m3], (60)

for some matrices F ∈ M([m′
1]\[m2]) and A′

3 ∈ U([m3])M([m3], [m1]) ⊆
U([m3])M([m3]). Finally, again by Lemmas 3.3(iii) and 3.2(ii), we obtain

(60) ∼R 
aPσ1A
′
2C

′A′′
3D[m1]D[m2]D[m3],

for some A′′′
3 ∈ U([m3])M([m3]). Therefore, the matrix U := Pσ1A

′
2C

′A′′
3 is uni-

modular and satisfy {Tσ : σ ∈ S3} = T(a,M3)(U). �

6. Final remarks and examples

In this section we translate into words the action of the symmetric group S3
described in Theorems 4.1 and 4.7, and relate it with the action of the symmetric
group generated by the parentheses matching operation on words as described by
Lascoux and Schutzenberger in [11,13]. Actually, from the matrix context we get a
family of parentheses matching operations on a Yamanouchi word over the alphabet
{1, 2, 3}, compatible with the Knuth equivalence, given by shuffling the output of
the Lascoux and Schutzenberger parentheses matching operation on words 1, 21,
3121 and 321. The output of the Lascoux and Schutzenberger parentheses matching
operation on a Yamanouchi word, over the alphabet {1, 2, 3}, is itself a special shuffle
of this kind.

A parentheses matching operation θi , 1 � i � t − 1, on a word w over the alpha-
bet [t] consists of a longest matching between letters i + 1 and letters i to their right,
by putting a left parenthesis on the left of each letter i + 1, and a right parenthesis on
the right of each letter i, such that the unmatched right and left parentheses indicate
a subword of the form is(i + 1)r which will be replaced in w with ir (i + 1)s . For
each i ∈ {1, . . . , t − 1}, the nonnegative integers r and s are uniquely determined.

Lascoux and Schutzenberger have introduced involutions θ∗
i , for i = 1, . . . , t −

1, to describe the following parentheses matching operation on words over the alpha-
bet [t]. Let w be a word over the alphabet [t]. To compute θ∗

i (w), first extract from w

the subword w′ containing the letters i and i + 1 only. Second, bracket every factor
i + 1i of w′. The letters which are not bracketed constitute a subword w′

1 of w′.
Then bracket every factor i + 1i of w′

1. There remains a subword w′
2. Continue this

procedure until it stops, giving a word w′
k of type ir (i + 1)s . Then, replace it with

the word is(i + 1)r and, after this, recover all the removed letters of w, including the
ones different from i and i + 1.

The operations θ∗
i are compatible with the plactic or Knuth equivalence ≡ [11,13].

For example, let w = 231312121 be a Yamanouchi word over the alphabet [3].
To compute θ∗

1 (w), we get w′ = (21)1(21)(21), and w′
1 = 1 = 120. Thus,

θ∗
1 (w) = 2 3 1 3 2 2 1 2 1, (61)
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where the underlined letter is the subword w′
1 replaced with 2 = 102. To compute

θ∗
2 (w), we get w′ = 23(32)2, w′

1 = 2(32), and w′
2 = 2 = 2130. Thus,

θ∗
2 (w) = 3 3 1 3 1 2 1 2 1, (62)

where the underlined letter indicates the subword w′
2 replaced with 3 = 2031. There-

fore, we have

θ∗
1 θ

∗
2 (w) = 3 3 2 3 2 2 1 2 1,

θ∗
2 θ

∗
1 (w) = 3 3 1 3 2 2 1 3 1, (63)

θ∗
1 θ

∗
2 θ

∗
1 (w) = 3 3 2 3 2 2 1 3 1 = θ∗

2 θ
∗
1 θ

∗
2 (w).

Let w be a Yamanouchi word over the alphabet [3] of evaluation (m1, m2, m3). The
set W∗ = {θ∗(w) : θ∗ ∈ 〈θ∗

1 , θ
∗
2 〉} is called the set ∗-generated by w. In our exam-

ple above, the elements ∗-generated by w = 231312121 are displayed in (61)–(63).
Clearly, S3 acts on W∗.

Given a group G = 〈x1, . . . , xt−1〉 satisfying the Moore–Coxeter relations for
St , we say that x ∈ G and σ ∈ St have the same word if there exist i1, . . . , ik ∈
{1, . . . , t − 1} such that x = xi1 . . . xik and σ = si1 . . . sik .

Let H = {Hσ : σ ∈ S3} be the set of σ -Yamanouchi tableau words of evalua-
tion σm. That is, Hσ = θ∗(Hs0) whenever θ∗ and σ have the same word. Recall
w ≡ Hs0 if and only if θ∗(w) ≡ Hσ . Indeed, given a word w over the alphabet [t],
for each i = 1, . . . , t − 1, we might have several parentheses matching operations
θi on w. Some of them are giving rise to the same output as θ∗

i and others are not.
From [6], we know that for every word w and for all i = 1, . . . , t − 1, θi(w|{i,i+1}) ≡
θ∗
i (w|{i,i+1}). Equivalently, θi(w|{i,i+1}) = θ∗

i (u
′), for some word u′ ≡ w|{i,i+1} with

u′ over the subalphabet {i, i + 1}. This means, that θi(w) = θ∗
i (u), where u is the

word obtained from w replacing w|{i,i+1} with u′. For t > 2, we may have w �≡ u,
and, henceforth, θi(w) = θ∗

i (u) �≡ θ∗
i (w). It is easy to exhibit parentheses matching

operations ξi , i = 1, 2, satisfying the Moore–Coxeter relations for S3 on a Yama-
nouchi word over the alphabet [3] which do not preserve the Knuth equivalence class
Hσ . For example, given the Yamanouchi word 3211,

3211
ξ2←→ 3211

ξ1←→ 3 2 1 2
ξ2←→ 3312

3211
ξ1←→ 3 2 1 2

ξ2←→ 3312
ξ1←→ 3312,

and 3312 ≡ 31 32 �≡ θ∗
1 θ

∗
2 θ

∗
1 (3211) = 321 3 = Hs1s2s1 . Although, ξ2(322) =

θ∗
2 (232) = 332, with 322 ≡ 232, we have 3212 �≡ 2312 and, henceforth, θ∗

2 (3212) =
3213 �≡ θ∗

2 (2312) = ξ2(3212) = 3312.

Definition 6.1. Given a Yamanouchi word w over the alphabet [3], the parentheses
matching operations θi , i = 1, 2, satisfying the Moore–Coxeter relations for S3 on
w, are said plactic if θ(w) ≡ Hσ , whenever θ ∈ 〈θ1, θ2〉 and σ have the same word.
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That is, putting W = {θ(w) : θ ∈ 〈θ1, θ2〉}, called the set generated by w and
〈θ1, θ2〉, we have θ(w) ≡ Hσ , with θ and σ with the same word.

Using Theorem 4.1, we characterize a family of plactic parentheses matching oper-
ations θi , i = 1, 2, on a Yamanouchi wordw over the alphabet [3]. The translation into
words of the action generated by the decomposition given in Theorem 4.1 says:

• write the Yamanouchi word w of evaluation (m1, m2, m3) as a shuffle of 0 � k �
m3 words v = 3 1 2 1, m3 − k words w3 = 3 2 1, m2 − m3 words w2 = 2 1, and
m1 − m2 − k words w1 = 1, that is,

w = sh
(
w

m3−k
3 , w

m2−m3
2 , w

m1−m2−k
1 , vk

); (64)

• compute θ∗(w1), θ∗(w2), and θ∗(v), with θ∗ running over 〈θ∗
1 , θ

∗
2 〉, as displayed

below:

w1 = 1
θ∗

1←→ 2
θ∗

2←→ 3
θ∗

1←→ 3

w1 = 1
θ∗

2←→ 1
θ∗

1←→ 2
θ∗

2←→ 3

w2 = 21
θ∗

1←→ 21
θ∗

2←→ 31
θ∗

1←→ 32

w2 = 21
θ∗

2←→ 31
θ∗

1←→ 32
θ∗

2←→ 32 (65)

v = 3121
θ∗

1←→ 3221
θ∗

2←→ 3231
θ∗

1←→ 3231

v = 3121
θ∗

2←→ 3121
θ∗

1←→ 3221
θ∗

2←→ 3231,

and note that the row word w3 = 321 is invariant under θ∗
i ;

• for each θ∗ ∈ 〈θ∗
1 , θ

∗
2 〉, let

sh
(
w

m3−k
3 , (θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k

)
(66)

be the word obtained by replacing in sh(wm3−k
3 , w

m2−m3
2 , w

m1−m2−k
1 , vk) (64), wi

with θ∗wi , i = 1, 2, and v with θ∗v.

Considering (66), let ij . . . k be a word over the alphabet [2] and put

θiθj . . . θk(w) := sh
(
w

m3−k
3 , (θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k

)
, (67)

where θ∗ = θ∗
i θ

∗
j · · · θ∗

k . Clearly, that θi , i = 1, 2, are matching operations satisfying
the Moore–Coxeter relations for S3 on w. From Proposition 4.4, we have θ(w) =
sh(wm3−k

3 , (θ∗w2)
m2−m3 , (θ∗w1)

m1−m2−k, (θ∗v)k) ≡ Hσ , σ and θ with the same
word, and thus θi are plactic operations.

Reciprocally, let

W = {
sh
(
w

m3−k
3 , (θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k

) : θ∗ ∈ 〈θ∗
1 , θ

∗
2 〉},

(68)
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be the set generated by sh(wm3−k
3 , w

m2−m3
2 , w

m1−m2−k
1 , vk) with m1 − m2, m3 �

k � 0, and 〈θ1, θ2〉 defined in (67).
Fix arbitrarily indexing sets (F1, F2, F3) of w = sh(wm3−k

3 , w
m2−m3
2 ,

w
m1−m2−k
1 , vk), and let F = {(F σ

1 , F σ
2 , F σ

3 ) : σ ∈ S3} such that

w(Fσ
1 , F σ

2 , F σ
3 ) = sh

(
w

m3−k
3 , (θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k

)
,

(69)

where θ∗ and σ have the same word. Translating to W the involution �i , i = 1, 2,
defined on F, Corollary 4.2, we find that �(F1, F2, F3) are indexing sets of
sh(w

m3−k
3 , (θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k), where the word of � ∈

〈�1,�2〉 and θ∗ ∈ 〈θ∗
1 , θ

∗
2 〉 is the same. That is, for each i = 1, 2, �i (F

σ
1 , F σ

2 , F σ
3 )

are the indexing sets of θi(w(Fσ
1 , F σ

2 , F σ
3 )) = sh(wm3−k

3 , (θ∗
i θ

∗w2)
m2−m3 ,

(θ∗
i θ

∗w1)
m1−m2−k, (θ∗

i θ
∗v)k). Thus we have

θ(w) = sh
(
w

m3−k
3 , (θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k

)
= w(Fσ

1 , F σ
2 , F σ

3 )

where θ ∈ 〈θ1, θ2〉, θ∗ and σ have the same word.
In [6], it is shown that when ∗-generation is considered in Theorem 4.1, the action

of symmetric group described in that theorem coincides with the action of the sym-
metric group generated by the involutions θ∗

i , i = 1, 2 on a Yamanouchi word w. Let
us denote by

sh∗(wm3−k
3 , w

m2−m3
2 , w

m1−m2−k
1 , vk

)
any shuffle of w afforded by a decomposition of the indexing sets (F1, F2, F3) given
by ∗-generation. Then, ∗-generation by w corresponds to the ∗-generation by the
class of indexing sets of w,

W∗ = {
θ∗(w) = sh∗(wm3−k

3 , (θ∗w2)
m2−m3 , (θ∗w1)

m1−m2−k, (θ∗v)k
) :

θ∗ ∈ 〈θ∗
1 , θ

∗
2 〉} (70)

and, henceforth, the action of the symmetric group generated by the parentheses
matching operation θ∗

i on a Yamanouchi word w is achieved. As we shall see below,
in examples 1 and 2, ∗-generation on indexing sets may give rise to several decom-
positions of the indexing sets and, henceforth, to several shuffles of w. Nevertheless,
all of them are giving rise to the same group action, that is θ∗(w) = sh∗(wm3−k

3 ,
(θ∗w2)

m2−m3 , (θ∗w1)
m1−m2−k, (θ∗v)k) and among them there exists one that coin-

cides with the parenthesization of θ∗.
We observe that the construction given by Theorem 4.1 does not give all plactic

parentheses matching operations on a Yamanouchi word. For instance, consider the
Knuth class [3211] = {3211, 3121, 1321}. The following diagram exhibits a
family of plactic parentheses matching operations for each Yamanouchi word in
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[3211] = {3211, 3121, 1321}. In particular, all the sets W (68) generated, according
to Theorem 4.1, by the elements of the Knuth class [3211]

(71)

but

3211[≡ 3121] µ1←→ 3221[≡ 2321] µ2←→ 3 3 2 1
µ1←→ 3321

3211
µ2←→ 3 2 1 1

µ1←→ 3221[≡ 3212] µ2←→ 3321[≡ 3231],
where µi , i = 1, 2, satisfy the Moore–Coxeter relations on 3211, shows that
{µ(3211) : µ ∈ 〈µ1, µ2〉} is not generated by Theorem 4.1.

We also observe that θ∗ preserves the Q-tableau of a word, that is, Q(w) =
Q(θ∗w) (see [13]). But in general θ ∈ 〈θ1, θ2〉 (67) does not. For instance, consider-
ing 〈θ1, θ2〉 given by

3211
µ1←→ 3221

θ∗
2←→ 3 3 3 1

θ∗
1←→ 3231

3121
θ∗

2←→ 3 2 1 1
µ∗

1←→ 3221
θ∗

2←→ 3231,

we have Q(3211) = 431 2 /= Q(3221) = 421 3.
Let H = {Hσ : σ ∈ S3} be the set of σ -Yamanouchi tableau words of evaluation

σm. That is Hσ = θ∗(Hs0) = w
m3
3 (θ∗w2)

m2−m3(θ∗w1)
m1−m2 , where the word of

θ∗ and σ is the same. Clearly, H is ∗-generated by Hs0 . Let W = {sh(wm3−k
3 ,

(θ∗w2)
m2−m3 , (θ∗w1)

m−1−m2−k, (θ∗v)k) : θ∗ ∈ 〈θ∗
1 , θ

∗
2 〉} as in (70), generated by

(64), a shuffle of Hs0 . We address the question: How are the sets H and W related?
Note that from (65), θ∗v = θ∗(3121) ≡ w3(θ

∗w1) ≡ (θ∗w1)w3, where θ∗ ∈
〈θ∗

1 , θ
∗
2 〉. For each θ∗ ∈ 〈θ∗

1 , θ
∗
2 〉, replace in the word sh(wm3−k

3 , (θ∗w2)
m2−m3 ,

(θ∗w1)
m1−m2−k, (θ∗v)k), θ∗v with w3θ

∗(w1). We obtain a word ŝh(wm3
3 ,

(θ∗w2)
m2−m3 , (θ∗w1)

m1−m2). This defines a set

Ŵ = {
ŝh(wm3

3 , (θ∗w2)
m2−m3 , (θ∗w1)

m1) : θ∗ ∈ 〈θ∗
1 , θ

∗
2 〉}

generated by the word ŵ obtained replacing in w, v = 3121 with w3w1 = 3211.
Now, for each θ∗, we may again shuffle sh(wm3

3 , (θ∗w2)
m2−m3 , (θ∗w1)

m1−m2)

to get Hσ = w
m3
3 (θ∗w2)

m2−m3(θ∗w1)
m1−m2 , and, therefore, H.

6.1. Examples

Consider again the word w = 231312121 and fix indexing sets J1 = {3, 5, 7, 9},
J2 = {1, 6, 8} and J3 = {2, 4}. The examples below exhibit several decompositions
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of the sequence (J1, J2, J3) satisfying (b) of Theorem 4.1. In particular, using the
procedure given in [6], Proposition 4.6, Examples 1 and 2, exhibit decompositions
of (J1, J2, J3) that give rise to the action of the symmetric group generated by the
parentheses matching operations θ∗

i on w.

Example 1

The grid below exhibits a decomposition of the sequence (J1, J2, J3) satisfying
(b) of Theorem 4.1,

This decomposition of the indexing sets is equivalent to write the word w =
231312121 as a shuffle of the words w2 = w({3}, {1}) = 21, w3 = w({7}, {6}, {2}) =
321, and v = w({5, 9}, {8}, {4}) = 3121. According to this decomposition we have
the following action of S3:
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The translation of this action into words yields

w = 2 3 1 3 1 2 1 2 1
θ1←→ 2 3 1 3 2 2 1 2 1

θ2←→ 3 3 1 3 2 2 1 3 1
θ2% θ1%

3 3 1 3 1 2 1 2 1
θ1←→ 3 3 2 3 2 2 1 2 1

θ2←→ 3 3 2 3 2 2 1 3 1

,

(72)

where the overlined letters define the word w2 and its image under the operations
θi , i = 1, 2, the underlined letters define v and its image under θi , i = 1, 2, and the
remaining letters define w3.

Below, we illustrate this action on a set of skew Young tableaux generated by an
LR tableau T whose word is w = 231312121:

T =

• • • • 2
• • 1 3
• • 1 3
• 1 2
1 2

θ1←→

• • • • 2
• • 1 3
• • 2 3
• 1 2
1 2

θ2←→

• • • • 3
• • 1 3
• • 2 3
• 1 2
1 3

%θ2 %θ1

• • • • 3
• • 1 3
• • 1 3
• 1 2
1 2

θ1←→

• • • • 3
• • 2 3
• • 2 3
• 1 2
1 2

θ2←→

• • • • 3
• • 2 3
• • 2 3
• 1 2
1 3

.

Example 2

The decomposition of (J1, J2, J3), in the previous example, gives rise to a match-
ing operation θi which coincides with θ∗

i . Compare (72) with (61)–(63). The grid
below exhibits another decomposition of (J1, J2, J3), satisfying (b) of Theorem 4.1,
giving rise to the symmetric group action described by Lascoux and Schutzenberger
as well, but which corresponds to a different parentheses matching.
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The translation into words of the action of S3 on the set generated by this decom-
position of (J1, J2, J3) gives

w = 2 3 1 3 1 2 1 2 1
θ1←→ 2 3 1 3 2 2 1 2 1

θ2←→ 3 3 1 3 2 2 1 3 1
θ2% θ1%

3 3 1 3 1 2 1 2 1
θ1←→ 3 3 2 3 2 2 1 2 1

θ2←→ 3 3 2 3 2 2 1 3 1

,

(73)

where the overlined letters define the word w2 = w({3}, {2}) = 21 and its image
under the operations θi , the underlined letters define v = ({5, 9}, {8}, {2}) = 3121
and its image under θi , i = 1, 2, and the remaining letters define w3 = w({7}, {6},
{4}) = 321. Although, the action of the symmetric group obtained by this decom-
position of (J1, J2, J3) coincides with the one in (61)–(63), the matching between
letters 3 and letters 2 to their right, respectively, in θ1w and θ∗

1 w, and in θ1θ2w and
θ∗

2 θ
∗
1 w is not the same.

Example 3

The next grid exhibits a decomposition of the indexing sets (J1, J2, J3), satisfy-
ing (b) of Theorem 4.1, whose matching operation θi gives rise to an action of the
symmetric group different from the one described by θ∗

1 and θ∗
2 ,

According to this decomposition, we have w = 2 3 1 3 1 2 1 2 1 as a shuffle of wi ,
i = 2, 3, and v, which, by (65), leads to the following action of S3:

w = 2 3 1 3 1 2 1 2 1
θ1←→ 2 3 1 3 2 2 1 2 1

θ2←→ 3 3 1 3 2 3 1 2 1
θ2% θ1%

3 3 1 3 1 2 1 2 1
θ1←→ 3 3 2 3 2 2 1 2 1

θ2←→ 3 3 2 3 2 3 1 2 1

.

(74)

Below, we illustrate this action on a set of skew Young tableaux generated by the LR
tableau T considered previously:
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T =

• • • • 2
• • 1 3
• • 1 3
• 1 2
1 2

θ1←→

• • • • 2
• • 1 3
• • 2 3
• 1 2
1 2

θ2←→

• • • • 3
• • 1 3
• • 2 3
• 1 3
1 2

%θ2 %θ1

• • • • 3
• • 1 3
• • 1 3
• 1 2
1 2

θ1←→

• • • • 3
• • 2 3
• • 2 3
• 1 2
1 2

θ2←→

• • • • 3
• • 2 3
• • 2 3
• 1 3
1 2

.

Example 4

Finally, we consider a decomposition of the indexing sets (J1, J2, J3) such that
w is a shuffle of the row words w1 = w({5}) = 1, w2 = w({1, 3}) = 21, and w1

3 =
w({7, 6, 2}) = 321 = w2

3 = ({9, 8, 4}). According to this decomposition, we have

w = 2 3 1 3 1̂ 2 1 21 as a shuffle of wi , i = 1, 2, where w1 = 1̂, and w1
3, w2

3. Thus,
by (65), the symmetric group acts on w in the following way:

w = 2 3 1 3 1̂ 2 1 2 1
θ1←→ 2 3 1 3 2̂ 2 1 2 1

θ2←→ 3 3 1 3 3̂ 2 1 2 1
θ2% θ1%

3 3 1 3 1̂ 2 1 2 1
θ1←→ 3 3 2 3 2̂ 2 1 2 1

θ2←→ 3 3 2 3 3̂ 2 1 2 1

.

(75)

This action clearly differs from the one considered in (61)–(63) but the output is still
in the same Knuth class.

References

[1] G. Appleby, A simple approach to matrix realizations for Littlewood–Richardson sequences, Linear
and Multilinear Algebra 291 (1999) 1–14.

[2] O. Azenhas, E. Marques de Sá, Matrix realizations of Littlewood–Richardson sequences, Linear and
Multilinear Algebra 27 (1990) 229–242.

[3] O. Azenhas, Realizações Matriciais de Quadros de Young e Suas Formas Canónicas (in Portuguese),
Phd Thesis, Universidade de Coimbra, Coimbra, 1991.

[4] O. Azenhas, A Regra de Littlewood–Richardson: Generalizações e Realizações Matriciais, Proceed-
ings of the Third Meeting of the Portuguese Algebraists (in Portuguese), Coimbra, 1993, pp. 9–32.

[5] O. Azenhas, Opposite Litlewood–Richardson sequences and their matrix realizations, Linear Alge-
bra Appl. 225 (1995) 91–116.

[6] O. Azenhas, R. Mamede, Actions of the Symmetric Group on Sets Generated by Yamanouchi Words,
2003, preprint.



O. Azenhas, R. Mamede / Linear Algebra and its Applications 401 (2005) 221–275 275

[7] W.C. Brown, Matrices over Commutative Rings, in: Monographs and Textbooks in Pure and Applied
Mathematics, Marcel Dekker, New York, 1993.

[8] W. Fulton, Young Tableaux, London Mathematical Society Student Texts 35, Cambridge, University
Press, 1997.

[9] T. Klein, The multiplication of Schur functions and extensions of p-modules, J. London Math. Soc.
43 (1968) 280–282.

[10] D.E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970)
709–727.

[11] A. Lascoux, M.P. Schutzenberger, Le Monoïde Plaxique, Noncommutative structures in algebra and
geometric combinatorics, (Naples, 1978), Quaderni de La Ricerca Scientifica, vol. 109, CNR, Rome,
1981.

[12] D.E. Littlewood, A.R. Richardson, Group characters and algebra, Philos. Trans. Roy. Soc. London
A 233 (1934) 99–141.

[13] M. Lothaire, Algebraic Combinatorics on Words, in: Encyclopedia of Mathematics and its Applica-
tions 90, Cambridge University Press, Cambridge, 2002.

[14] R. Mamede, Permutações de Sequências de Littlewood–Richardson e suas Realizações Matriciais
(in Portuguese), Master Thesis, Universidade de Coimbra, Coimbra, 2000.

[15] M. Newman, Integral Matrices, Academic Press, New York, 1972.
[16] C. Schensted, Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961).


	Action of the symmetric group on setsof skew-tableaux with prescribed matrix realization
	Introduction
	Young tableaux and words
	Matrix realizations of Young tableaux
	Smith normal form and subgroups of unimodular matrices
	Matrix realizations of Young tableaux
	Matrix extensions

	The main results
	Proof of the main results
	The case t=2
	The case t=3

	Final remarks and examples
	Examples

	References


