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Abstract
Let M be the set of all rearrangements of ¢ fixed integers in {1, ..., n}. We consider those
Young tableaux 7, of weight (m,...,m;) in M, arising from a sequence of products of

matrices over a local principal ideal domain, with maximal ideal (p),
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where A, is an n x n nonsingular diagonal matrix, with invariant partition a, and U is an
n x n unimodular matrix. Given a partition @ and an n x n unimodular matrix U, we con-
sider the set T, p7)(U) of all sequences of matrices, as above, with (my, ..., m;) running
over M. The symmetric group acts on 7(, pr)(U) by place permutations of the tuples in M.
When ¢ = 2, 3, the action of the symmetric group on the set of Young tableaux, having the
set T(q,pr)(U) as matrix realization, is described by a decomposition of the indexing sets of
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the Littlewood-Richardson tableau in T(, »7)(U), afforded by the matrix U. This description,
in cases t = 2, 3, gives necessary and sufficient conditions for the existence of an unimodular
matrix U such that T(, p7)(U) is a matrix realization of a set of Young tableaux, with given
shape c/a and weight running over M. If S is the tableau arising from the sequence of
matrices, above, when a = 0, it is shown that the words of the tableaux .7~ and # are Knuth
equivalent. The relationship between this action of the symmetric group and the one described
by A. Lascoux and M.P. Schutzenberger [Noncommutative structures in algebra and geometric
combinatorics, (Naples, 1978), Quaderni de La Ricerca Scientifica, vol. 109, CNR, Rome,
1981; M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its
Applications, vol. 90, Cambridge University Press, Cambridge, 2002], on words, is discussed.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let M be the set of all rearrangements of a sequence of ¢ fixed integers in
{1,...,n}. We consider those Young tableaux 7, of weight (m1,...,m;) in M,
arising from a sequence of products of matrices over a local principal ideal domain,
with maximal ideal (p),

2
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where A, = diag(p®, ..., p*)is ann x n diagonal matrix with invariant partition
a=(ay,...,ay), and U is an n X n unimodular matrix. When (m1, ..., m;) is by

decreasing order, 7 is a Littlewood—Richardson tableau [1-3]. Now, for each parti-
tion a and n x n unimodular matrix U, let T(4, a)(U) be the set of all sequences of
matrices, as above, with (m1, ..., m;) running over M. The symmetric group .%; acts
on M by place permutations of the tuples, and, henceforth, on T(, 37)(U). The action
of the symmetric group, on these sequences of matrices, induces an action on the set
constituted by the indexing sets of the Young tableaux realized by T(,, p)(U). We
describe this action, in cases ¢ = 2, 3. The action of .%; on T4 a)(U), for t =2, 3,
is generated by an explicit decomposition of the indexing sets of the Littlewood—
Richardson tableau in T(, ) (U). This action of the symmetric group has been also
described, independently, in [6], in a purely combinatorial way. Here, we shall see a
matrix translation of this action.

The paper is divided into six sections. In Section 2, we introduce the combinator-
ics of Young tableaux and words. Some well-known results of the plactic monoid,
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important in the sequel, are also discussed. We follow the terminology of [2,3,9],
where strict row tableaux are encoded by indexing sets. It is shown the correspon-
dence between words and indexing sets.

Section 3 is divided into three subsections. In Section 3.1, we discuss proper-
ties of integral matrices, decompositions of unimodular matrices, and subgroups of
unimodular matrices. In Section 3.2, we discuss the notions of matrix realization
of an Young tableau .7, and of a pair of Young tableaux (7, #’), where 7 is of
type (a, (my, ..., m;), c) and A is of type (0, (my, ..., m;), b) [2-4]. When such a
matrix realization exists, (7, #) is called an admissible pair [3,4]. In this paper, we
shall be concerned on admissible pairs, where # is the tableau (0, (1! ),Ziz:l (1),

. Z;Zl(l’”")). Itmy > > my, (7, A) is an admissible pair if and only if I~
is a Littlewood—Richardson tableau [1-3]. In Section 3.3, we introduce the notion of
extension of a matrix. A matrix Z is an extension of X, if X is obtained by zero out
some entries of Z. This concept turns out to be the key for the matrix description of
the aforesaid action of the symmetric group.

In Section 4, we present the main results, Theorems 4.1, 4.5 and 4.7 and their
corollaries. Given a tableau 7 of type (a, m, c), these theorems, in cases t = 2, 3,
answer the following questions: (i) Under what conditions does .7~ belong to T(,, m)
(U); (ii) Under what conditions is the pair (7, #°) admissible. The answer to ques-
tion (i) is equivalent to the description of the action of the symmetric group on
Ta,m)(U), discussed above. The answer to question (ii) follows from the answer
to question (i), and from the characterization of the elements of the Knuth equiv-
alence class of 2, Proposition 4.4 (see also [6]), as shuffles of the rows of the
tableau . (7, /) is an admissible pair if and only if the words of . and #
are Knuth equivalent. In remark 3, for r = 2, it is shown that, given two unimodular
matrices U and V realizing the same LR tableau .7, we may have T, p)(U) #
T(a,m)(V). This means that U and V generate different decompositions of the index-
ing sets of the LR tableau .7, and, thereby, give rise to different parentheses matching
operations of the corresponding Yamanouchi word over a two-letters alphabet. Theo-
rems 4.5 and 4.7 are proved in Section 5. When ¢ > 4, the rows of J# are not enough to
characterize the elements of the Knuth equivalence class of #. For instance, the word
w = 431421 belongs to the Knuth equivalence class of # = 432141, butitis clear that
w is not a shuffle of the rows of s, 4321 and 41. The analysis of the case > 4 needs
a different approach. This will be the content of a subsequent paper.

In the last section, we translate into words over the three-letters alphabet {1, 2, 3},
the group action generated by the decomposition of the indexing sets of an LR
tableau described in Theorem 4.1. This decomposition of the indexing sets is equiv-
alent to a plactic parentheses matching operation satisfying the Moore—Coxeter rela-
tions for "3 on the corresponding Yamanouchi word. We compare it with the one
described by Lascoux and Schutzenberger [11,13] on words. Actually, what we get,
in the matrix context, is a family of parentheses matching operations on a Yamanou-
chi word over the alphabet {1, 2, 3}, compatible with the Knuth or plactic congru-
ence, given by shuffling the output of the Lascoux and Schutzenberger parentheses
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matching operation on the words 1, 21, 3121 and 321. The output of the Lascoux
and Schutzenberger parentheses matching operation on a Yamanouchi word, over
the alphabet {1, 2, 3}, is itself a special shuffle of this kind.

2. Young tableaux and words

Let N be the set of nonnegative integers with the usual order “>".

A partition is a sequence of nonnegative integers a = (ay, az, . . .), all but a finite
number of which are nonzero, such that a; > ap > --- The number |a| := Zi a;
is called the weight of a; the maximum value of i for which @; > 0 is called the
length of a and is denoted by [(a). If I[(a) = |a| = 0 we have the null partition a =
0,0,...).Ifa; =0, for i > k, we shall often write a = (ay, ..., ax). Sometimes it
is convenient to use the notation

a=(da" ay? ....a"),
where a; > a» > --- > a; and a?”, with m; > 0, means that a; appears m; times
as a part of a. We say that a is an elementary partition if there is m > 0 such that
a=1m).

Suppose a = (ay, ..., ai) is a partition of length k with |a| = n. The Young dia-
gram of a is an array of n boxes, (or dots), having k left-justified rows with row
i containing a; boxes for 1 < i < k. We shall identify a partition with its Young
diagram. For example, the Young diagram of a = (4,2, 2, 1) is

|

The conjugate partition of a is the partition whose Young diagram is the transpose of
the Young diagram of a. For instance, (4, 3, 1, 1) is the conjugate of a = (4, 2, 2, 1).
Given two partitions a and ¢, we write a C ¢ to mean @; < c¢;, for all i. Graphically,
this means that the Young diagram of a is contained in the Young diagram of c.
A skew diagram c/a is obtained by removing the smaller diagram of a from the
diagram of c. For example, if a = (4,2,2, 1) and ¢ = (5, 4, 4, 3, 2), the following
shows the skew diagram c/a:

..._]
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We write |c/a| := |c| — |a|. A skew-diagram is called a vertical [horizontal] m-strip,
where m > 0, if it has m boxes and at most one box in each row [column].

Let a and ¢ be partitions such that a C ¢, and (my, ..., m;) a sequence of non-
negative integers. A Young tableau (strictly row) 7 of type (a, (my, ..., m;),c)isa
sequence of partitions

T =@ a',... d) (1)
such that a = a® Ca' € ... Ca' =c and, for each k =1, ..., . The skew-dia-
gram a* /a*~! is a vertical strip labeled by k, with my = |a*/a*~!|. When a° # 0,
7 is often called a skew tableau. The indexing sets Ji, ..., J; of  [2,3] are finite

subsets of N given by
Je={iaf —af7"#£0}, 1<k<ut

That is, Ji is defined by the row indices of the boxes of c¢/a labeled by k, 1 < k < ¢.
Notice that (|J1], ..., |J¢]) = (m1,...,m;) (|J;| denotes the cardinality of J;). The
skew-diagram c/a is called the shape of the tableau J and (my, ..., m;) the weight
of 7. For example,

B

wlw| e

Nf—=|—|e®

e e e e

NDf— e e ©

I )

is a (skew) tableau of type ((4, 2,2, 1), (4, 3,2), (5,4, 4, 3, 2)), with indexing sets
J1 =12,3,4,5}, J, ={1,4,5}, Js = {2, 3}.

Given n € N, [n] denotes the set {1, ..., n}, and 2011 the power-set of [n].

A sequence (Jq, ..., J;) of subsets of [n] may be represented in a grid of points
of Nz, as with matrices, by the set of points (i, k) € N2 such thati € Je, 1 <k <1,
where the first coordinate, the row index, increases as one goes downwards, and the
second coordinate, the column index, increases as one goes from left to right. For
example, the graphical representation of the sequence (Ji, J2, J3) defined by the
indexing sets of the skew tableau (2), above, is

1 2 3
1
s
(3
On its turn, each sequence (Ji, ..., J;) of subsets of [n] gives rise to a word
w(Jq, ..., Jy) over the alphabet [¢], called the word generated by (Ji, ..., J;), ob-

tained by reading the grid from top to bottom, along each row, from right to left,
by assigning a label i to each dot in column i, fori =1, ...,¢. The sets Jy, ..., J;
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are called indexing sets of w(Jy, ..., J;). In picture (3), we have w(Jy, J2, J3) =
231312121. We may now define w(7) the word of the (skew) tableau I (1) as
the word generated by the indexing sets of .7 . That is, w(J) = w(Jy, ..., J;). In
picture (2), the word of 7 is w(7) = 231312121 = w(Jy, Ja, J3).

Conversely, a word w = x1 ...x, over the alphabet [f] may be represented in
a grid of N? as the set of points (i, x;) € N2, 1<i<r. Putting Fp = {i € [r]:
x; =k}, fork=1,...,t, we obtain w(Fy, ..., F;) =x1...x,,and Fy, ..., F; are
indexing sets of w = x| ...x,. For example, according to this definition, we have
respectively the following graphical representations of the words w = 231312121,
already considered in picture (3), and v = 231132121:

1 2 3 1 2 3
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

“4)

The sets F1 = {3,5,7,9}, F» = {1, 6, 8} and F3 = {2, 4} are also indexing sets of
w = 231312121, and therefore w(Ji, Jo, J3) = w(Fy, F>, F3) = 231312121, where
J1, J2, J3 are the indexing sets of the (skew) tableau (2). The sets G| = {3,4,7, 9},
Gy = F> and G3 = {2, 5} are indexing sets of v = 231132121. Clearly, a word may
be generated by different indexing sets. In particular, we may choose always pairwise
disjoint indexing sets.

Given a word w over the alphabet [7], we write |w|g, k € [t], to mean the mul-
tiplicity of the letter k in the word w. The sequence (Jwly, ..., |wl|;) is called the
evaluation (or weight) of w, and |w| = |w|; + - - - + |w]; the length of w. Thus if
(J1, ..., Jy) are indexing sets of w, the evaluation and the length of w are respec-
tively (|J1], ..., |J:]) and |J1| + - - - + | J;]. Notice that every skew tableau gives rise
to a word, and every word arises from some skew tableau.

A word w is said a row if the letters are by strictly decreasing order. Every se-
quence of indexing sets p = (X1, ..., X;) of a row word w is such that X; = ¢ if
the letter i is missing, otherwise, X; = {x;} and X; = {x;} with x; > x;, whenever
i < j are letters of w. Graphically, a row word may be identified with a polygonal
line p with line segments of nonnegative slope. In (4), 321 is a row but neither 312
nor 132 are rows.

A word is said a tableau if it is the word of a tableau (1) with «® = 0. In this
case, the word has a factorization into rows whose sequence of lengths is the shape
of the tableau. For instance, given m| > --- > my,, the word w([m1], ..., [m;]) is
the tableau (¢---2 1) (t —1---21)"=17" ... (21)™273 ["17M2 where expo-
nentiation signifies repetition of the same word, with shape the conjugate partition
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of (my,...,m;). When we mention the rows of a tableau we are referring to those
whose sequence of lengths is the shape of the tableau.

Knuth’s relation = [10] on words over the alphabet [¢] is the equivalence relation
generated by the so-called elementary transformations, where x, y, z are letters and
u, v are words in [¢]:

uxzyv = uzxyv, x <y <z, &)

Uyzxv = uyxzv, x <y < z. (6)

In picture (4), using Knuth relation (5), w(Jy, J2, J3) = w(Fy, F>, F3) =231 (312)
121 =231 (132) 121 = w(Gy, G2, G3) (the parentheses indicate the elementary
Knuth operation 312 = 132).The triangular polygonal lines drawn in (4) represent
the words 312 and 132 respectively.

In [16], Schensted has described an algorithm, known as Schensted’s insertion
algorithm, which associates to each word w a strictly row tableau P(w). The ele-
mentary step consists in the insertion of a letter x into a strictly row tableau 7,
denoted P(x.7"). It takes a positive integer x and a tableau .7~ and puts x in a new
box at the end of the first row if possible, that is, if x is strictly larger than all the
entries of the row. If not, it bumps the smallest entry of that row that is larger or
equal to x. This bumped entry moves to the next row, going to the end if possible,
and bumping an element to the next row, otherwise. The process continues until the
bumped entry can go at the end of the next row, or until it becomes the only entry of
a new row. Here is an example of the insertion of 3 in a tableau:

1245 1 235 1235 1235
3—>125 4—-1 25 5—>1 2 4 1 2 4
2 2 2 25

For an arbitrary word w = x7 ... x¢ in [¢], one defines P (w) as the result of insert-
ing x;x_1 into the unitary tableau x; = P(xx), then inserting x;_p into the resulting
tableau P (xx_1.P(xx)), and so on. As an example of the general case, the successive
steps of the calculation of P(231312121) are

1 2 1 2 3 23
l1—-1 2— 2—>1 2—)1 2—=1 2 —>1 2
1 1 2 1
1
1 2 3 1 2 3
1 2 3 1 2 3
—>1 —>1 s . @)
1 1

In [8,10,13] is shown that two words w, w’ are Knuth equivalent if and only if
P(w) = P(w'). Therefore, the word 231312121, in (2), (3) and (4), is Knuth equiv-
alent with the tableau 321 321 21 1 in (7).



228 O. Azenhas, R. Mamede / Linear Algebra and its Applications 401 (2005) 221-275

Definition 2.1. Let A, B C [n]. We write A > B if there exists an injectioni : B —
A such that b < i(b), for all b € B. We call such an injection a witness for A > B.

Note that if additionally |A| = |B|, every witness of A > B is a bijection. The
relation > defined by A > B is a partial order in 2071 and we denote it by Z[n]. This
relation can be characterized in a number of ways as we shall see in the proposition
below.

Given a finite set A C [n], let A := [n]\ A.

Proposition 2.1 [6]. Given A, B C [n], the following statements are equivalent:

(a) A > B.

(b) There exists an injection i : B — A such that b < i(b), for all b € B, and
satisfying additionally i, = id,) ., (id denotes the identity map).

(c) Foranyk € N, itholds|{ae A:a > k}| > |{be B:b > k}|.

(d) Ifa = (a1, a2, ...a/4,0,...)andb = (b1, by, ... bp|, 0, ...) are the decreas-
ing rearrangement of the elements of A and B as embedded into NV, then
a = b in the componentwise order.

(e) There exists X C A such that |X| = |B|and X > B.

(f) A\Z > B\Z, with Z C AN B.

Observe that, when |A| = |B|, A > B if and only if B> A.

Notice that using (d) of this proposition, Z[n] is clearly a lattice in which the
family of all subsets of a given cardinality forms a sublattice. Thus, given A > B we
may define the least upper bound of B in 24:

rr}ginA:min{XgA :|1X| =|Bland X > B}.

Let X be any finite set, and let & x denote the set of all bijections on X. In partic-
ular, when X = [n] we write ., for the symmetric group of order n. Given A > B

with |A| = |B| = m, each witness i : A — B, with i),., =id|,.,, induces a per-
mutation ¢ € &, such that A\B = {u1 > --- > u,}, B\A = {ve(1) > -+ > Ve(r)},
withu; >i(u;) =v;, j=1,...,r,and e(j) = j, j =r+1,...,m. Notice that

if A= B, ¢ =id. Therefore, any witness i can be described completely by the
permutation that it induces. In what follows, by a witness of A > B we mean the
permutation & € & ,.

We denote by (u#v) the transposition in .%°, of the integers « and v.

Definition 2.2. Given A, B C [n] with |A| = |B| and A > B, for each witness ¢ of
A > B, as above, we define the permutation A4 g, = ]_[,r(:l (ugvg) in &),

When ¢ =id, we write Agp. If A= B, Ap p =id. Clearly, Ag pc(A) =

B, Aape(B)=A, (AA,B,e)|anp = 1d, )»X}B’S =XdaBe; and Ap BeAc.Do =
AC,D,erA, B0, if (AUB)N(CUD) =40.
Using Proposition 2.1, we may define another relation in 21",
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Definition 2.3 [5]. Let A, B C [n]. We write A >, B if A > X, for some X C B
with | X| = |A|.

The relation >, is a partial order in 271 and we denote it by 2°P[n]. Let op
denote the reverse permutation of #;,. Since A >, B if and only if op(B) > op(A),
2°P[n] is isomorphic to the dual lattice of Z[n].

A word w over the alphabet [7] is said a Yamanouchi word [13] if any right factor
v of w satisfies |v[; = |v]2 = --- > |v]|;. Recalling Proposition 2.1, this is equiva-
lent to say that if (Jp, ..., J;) are indexing sets of w, then every pair (J;, Ji+1),
i=1,...,t— 1,satisfy condition (c) of that proposition. Henceforth, w(Ji, ..., J;)
is a Yamanouchi word if and only if J; > --- > J;. The evaluation of a Yamanouchi
word is a partition.

Definition 2.4. Let u =u;...u, and v =v;...v,, where uy, ..., uy, V1,..., U
are words over the alphabet [¢]. The word sh(u, v) = ujviugvy ... u,v., is called
a shuffle of u and v. That is, sh(u, v) is obtained by moving # and v through one
another.

Let u, v and g be words. We define recursively the shuffle of three (or more words)
by sh(u, v, ¢) = sh(sh(u, v), q).

For instance, the shuffles of 1 and 321 are: 1321, 3121, 3211 = 3211 (the under-
lines indicate the position of the word 1 in the shuffle). The word 3211 can be written
as a shuffle of 321 and 1 into two different ways. The word 132121 is a shuffle of
321, 21 and 1 but not a shuffle of 3121 and 21. On the other hand, 312211 is both a
shuffle of 321, 21, 1, and 3121, 21.

If (J1, ..., J;) are indexing sets of sh(u, v) then J; = H; U F;,i =1, ..., t, where
(Hy, ..., Hy) and (Fy, ..., F}) are indexing sets of u and v respectively, such that
H; N F; = (. Inthis case, we say that (Ji, ..., J;) has adecompositioninto (Hy, . ..,

H;) and (F1, ..., Fy) and we write (J1, ..., Jy) = (Hy, ..., H) W (F1, ..., Fy).

The word w = 231312121, in (4), is a shuffle of 3121, 2 1 and 321 (the over-
lines and underlines indicate the corresponding shuffle components). Below we ex-
hibit a graphical representation of the word w = 231312121 as a shuffle of the words
w({3}, {1}) = 21, w({9}, {8}, {4}) = 321, and w({5, 7}, {6}, {2}) = 312 1. Graph-
ically, w is a union of pairwise disjoint polygonal lines (polygonal lines without
overlapping vertexes):

1 2 3

O 001U AW -
™~
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Another way to write w = 231312121 as a shuffle of 3121, 21 and 321 is w =
231312121 (the overlined and underlined letters indicate respectively the sub-
words 3121 and 21).

The notion of shuffle allows us to give the following characterization of Yama-
nouchi word.

Proposition 2.2. Let w be a word with evaluation (m1, ..., m;), my = --+ > my,
and indexing sets (Ji, ..., Ji). The following conditions are equivalent:

(a) w is a Yamanouchi word.
(b) (J1, ..., Jt) has a decomposition of the form

1
Ay
2 2
A7 Aj
A’1 Ag oo AL
where AY > A5 > - > AL A} = |AS] = - = |A}| = mg —mpsr, 1 <k <
t,withmyyp =0,and A NAS =0, 1 < j <t r+s.
(c) w is a shuffle of the rows of the tableau w([m1], ..., [m;]).
Proof. Letry,...,r,, be the rows of the tableau w([m1], ..., [m;]), by decreasing
order of length, and (/1, ..., [;;,) be the conjugate partition of (my, ..., m;).

(a) < (b) By Proposition 2.1(d), J; > --- > J; if and only if is the union of pair-
wise disjoint polygonal lines with line segments of nonnegative slope p; = (x’i >
o= xf) where xf € Ji, k=1,..., 0, 1 <i <my.

(b) = (¢) Suppose (J1, ..., J;) has a decomposition as displayed in (b). For 1 <
k <t, Alf > A’g > > Ai are indexing sets of a subword of w which is a shuffle
of my — my41 row words k... 2 1.

Now suppose that w is a shuffle of the row words rq, ..., ry,. Since Ji, ..., J;
are indexing sets of w, each row r; determines a polygonal line with line segments
of nonnegative slope p; = (X| > --- > X;l_) where X} = {x;} C Jr,k=1,....1;,
1 <i <my.Clearly, pi, ..., py, are pairwise disjoint.

Henceforth, (Ji, ..., J) =W/, piand J; > --- > J;. O

On the other hand
Proposition 2.3 (13, Lemma 5.4.7). The set of Yamanouchi words with evaluation
(my, ..., my), forms a single Knuth equivalence class, whose representative word is
the tableau w([m1], ..., [m]).

From these two propositions, we find that Knuth operations on Yamanouchi words
of evaluation (m1, ..., m;) are equivalent to shuffle the rows of the tableau w([m],
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..., [m;]. For instance, w =231312121=211332121=231321121=
(7) which are shuffles of 321, 1, 321, and 2 1.

Indeed not every Knuth class satisfy this property. There are two reasons: either
a shuffle of the rows of the tableau in the Knuth class can not be performed by
Knuth operations, and we stay out of the Knuth class, or we stay in the Knuth
class but there are Knuth operations which can not be performed by a shuffle of
the rows of the tableau in the Knuth class. For example, in the first case, the tab-
leau 532142152 #£ 543212152 = sh(5321, 421, 52). In the second case, the Knuth
operation 412 = 142 on a Yamanouchi word over the alphabet [4] always implies a
shuffle of the row words 4321, 21 and 1 but, on the other hand, considering the word
434 121 = 432141, a shuffle of the rows of the tableau 4321 41, the same Knuth
operation on this word can not be performed by a shuffle of the row words 4321, 41,
since 434 121 = sh(4321, 41) = 431421 # sh(4321, 41).

The dual word of w = x1 ---x, in the alphabet [¢] is wop := op(x;) - - - op(x1),
a word in the alphabet [7], with op(i) =¢ —i + 1 the reverse permutation of ..
Clearly, given Jy, ..., J; € [n], Ji, ..., J; are indexing sets of w if and only if
op(Jy), ...,op(J1), with op € ¥, are indexing sets of wo.

A word over the alphabet [¢] is said a dual Yamanouchi word if it is the dual of
some Yamanouchi word over [¢]. Therefore, a word w with indexing sets Ji, ..., J;
is a dual Yamanouchi word if and only if Jy Zqp - -+ Zop Jr. Attending to the char-
acterizations of Yamanouchi words given above, we also find that

Corollary 2.4. Let w be a word with evaluation (my, ..., my), my < --- < my, and
indexing sets (Ji, ..., Ji). The following conditions are equivalent:

(a) w is a dual Yamanouchi word.
) (J1, ..., J;) has a decomposition of the form

Al
2 2
Ar A
A’l Ai_l Al
where Af_kH > > Ak IAf_kHI == A =m 1 —m 1 <k <
t,withmy=0,and A, VA%, =0, 1 < j <t,r+s.
(c) w is a shuffle of the rows of the tableau w([m1], ..., [m:]).

Recalling the Knuth relations (5) and (6), since x > y if and only if op(y) >
op(x), we find that xzy = zxy, with x < y < z if and only if op(y)op(z)op(x) =
op(y)op(x)op(z), with op(z) < op(y) < op(x). Therefore, we have w = w’ if and
only if w,, = wf,p, which allows us to obtain the following characterization of dual
Yamanouchi words:
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Corollary 2.5. The set of dual Yamanouchi words with evaluation (my, ..., my),
my < ... < my, forms a single Knuth equivalence class, whose representative word
is the tableau w([m1], ..., [m]).

Thus, a word w with evaluation (my, ..., m;), m; < --- < my, is a dual Yama-
nouchi word if and only if it is Knuth equivalent to w([m 1], ..., [m:]).

With the relation > and >, in 2111 we may give the following definition
of Littlewood-Richardson tableau [12] and opposite Littlewood—Richardson
tableau.

Definition 2.5 ([2,3,5]). Let 7 be a Young tableau of type (a, (m1, ..., m;), c) with
indexing sets Ji, ..., J;. We say that:

(I) 7 is a Littlewood—Richardson (LR for short) tableau if J; > --- > J;.
(I) 7 is an opposite Littlewood-Richardson (LR, for short) tableau if J; >,
- Zop i

Equivalently, .7~ is an LR (LRop) tableau if and only if w(Jy, ..., J;) is a (dual)
Yamanouchi word. In Section 5, we shall look at an LR, tableau and a dual Yama-
nouchi word under the point of view of an action of the symmetric group.

3. Matrix realizations of Young tableaux
3.1. Smith normal form and subgroups of unimodular matrices

Let 2, be alocal principal ideal domain with maximal ideal (p). In this paper, all
matrices are square and nonsingular, with entries over #,. Let %, be the group of
n x n unimodular matrices. We denote by E;; the n x n matrix having 1 in position
(i, j) and O’s elsewhere, and define the elementary unimodular matrices T;;(x) as
follows:

Tij(x) =1+ xEjj, where i # jand x € Z,;
T;j(v) =1+ (v—1)E;;, where v isaunitof %,.

It is obvious, that E;; E,s = 8, E;5, where 8, denotes the Kronecker symbol, that
is, §j = 1if j =r, and equals O otherwise. Therefore, if i # j and r # s, we find
that

Tij(x)Trs(y)=I+XEij + VErs +xy5eris~ (8

In particular, 7;; (x)T;; (y) = T;j(x + y),if i # j, and the elementary matrices T;; (x)
and T4 (y) commute, whenever i # s and j # r.
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If o € &), we denote by P, the permutation matrix having J;5(;) in position
(i, j). Note that if [n] = {i1, ..., i} = {j1, ..., ju}, then ZZZI E; j, = Ps, where
o is the permutation defined by o (ji) = iy, fork =1,...,n.

Lemma 3.1. Let iy, jix € [n], fork=1,...,r, suchthat {ir, ..., i;}0{j1, ..., jr} =
@. Then, if § = [1j_; Gk Ji)s

(1_[ Tjkjk(—l)) (1 - Z%‘m) (1 + Z%n) (1 -3 Ejkik) = P:.
k=1 k=1 k=1 k=1
)

Proof. Attending to (8) and since {iy, ..., i} N {ji,..., jr} =@, a simple induc-
tion on r shows that [ [ _, 73, j, (1) = I + >_;_, Ej, j,. Therefore, we may write the
first member of (9) as

r

[T 170 (DT (=D T (DT (—1)]

k=1

-
= l_[ Tjji (=1) Z Ess + Eijp = Ejeig
k=1 SFik, Jk

.
=[] Puj=P. O
k=1

Given n x n matrices A and B, we say that B is left equivalent to A (written
B ~p A) if B =UA for some unimodular matrix U; B is right equivalent to A
(written B ~g A) if B = AV for some unimodular matrix V'; and B is equivalent to
A (written B ~ A) if B = U AV for some unimodular matrices U, V. The relations
~r, ~r and ~ are equivalence relations in the set of all n x n matrices over Z.

Let A be an n x n nonsingular matrix. By the Smith normal form theorem (see
[7,15]), there exist nonnegative integers ay, ..., a, with a; > --- > a, such that A
is equivalent to

diag(p®', ..., p™).

The sequence a = (ay, ..., a,) by decreasing order, of the exponents of the p-pow-
ers in the Smith normal form of A, is a partition of length < n, uniquely deter-
mined by the matrix A. We call a the invariant partition of A. More generally, if we
are given a sequence of nonnegative integers eq, ..., e, the following notation for
p-powered diagonal matrices will be used:

diag,(er, ..., ey) = diag(p®, ..., p™).
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Given a partition a of length < n, let A, 1= diagp (a). If a =0 is the null parti-
tion, then Ag = 1. If F C [n], let Dp := diagp(XF), where x ' is the characteristic
function of F, that is, XF(i) =1ifi € F,andequals 0 ifi ¢ F.

Given a sequence of nonnegative integers m = (my,...,m;) and o € &, let
om = (mg_l(l), ey m(,_l(t)). That is, om = Py[m;---m;] . It is a simple exer-
cise to prove that

Ps Ay = Ago Py, P(;IZPZ:PG—I, and (10)

PUTAan =A,-1, :diagp(ag(l), e Ao (n))- (11D
Let (m1, ..., m;) be a sequence of ¢ integers in [n], and define

M, = {m € 7' : m is a rearrangement of (m, ..., m,)}. (12)
Note that there exists o € ; such that o ! (my, ..., m;)is the only partition of M;.

The symmetric group %; acts on M, by place permutations of the 7-uples of M;. For
each permutation o € .9, the map ¢ (o) : M; — M, defined by ¢(c)(m) = om is
a bijection. Thus, the map ¢ : ; — &, defined by ¢ (0)(m) = om, for o € S,
is a group action on M;.

Definition 3.1. Given F C [n], let .4 (F) be the set of n x n matrices of the form
I + X, where X = (x;;) satisfy the condition: x;; # O only ifi € Fand j ¢ F.

Note thatif m = |F| and w € &, is such that F = {w (1), ..., w(m)} = w([m]),
then Pg M(F)Py = M ([m]). Clearly, .#([m]) is a subgroup of %, and, therefore,
A (F) as well. We also consider .# ,(F) :== {I + pX : I + X € ./ (F)}, asubgroup
of M (F). B

Notice that [.#(F)|T = .4 (F) and .4 (%) = {1} = .#([n)).

Given F, G C [n], we define

M(F,G) = M(F)NMG)
and

Mp(F,G):={I+pX:1+X e .dF,G).
Clearly, .4 (F, G) is a subgroup of .Z(F N G), #(F), and ./ (G). Not_ice_that
M(F, F)y=4(F)and M ,(F, F) = . ,(F). Wehave [/ (F, GO)I"=.u(F,G) =
M(FYN MG, and MWD, G) = {1} = M (F, [n]).

Lemma 3.2. Let F, G, H C [n] such that F € G and H C G\F. Then:

() M(F,G).ll(H) = M (H).MUF,G);
(i) 4 (F,G)Df = Dp.l ,(F,G).

Proof. It is enough to prove the result when F = [r] and G = [s], with 0 <
r<s. Qg
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In the conditions of the lemma above, we also have [.#(F, G)|Y.#(H) = /4 (H)
[#(F,G)]", since HC G\F if and only if H C F\G, and .#,(F,G)Dr =
Dr Jl(F, G).

Given F C [n], let

UF) = {I + (xij) € Uy : xij # O onlyifi, j € F}.

If m=|F| and w € &, is such that F ={w(1),...,w(m)} = w([m]), then
Pg%(F)P = 9 ([m]). Note that % ([n]) = %«,. Clearly, % (F) is a subgroup of %,,.

Lemma 3.3. Let F, G, H C [n] such that F C G. Then:

G) U(F)AM(F,G) = JM(F, G)U(F);
(ii) #(F)./(H) = 4 (H)U(F), if H € F;
(iii) (U(F)AM(F)) (M y(H)UH)) = (M ,(H)UH)) (UF)M(F)), if HC F;
Gv) 4 (H,G).4(F\H,G) C U(F)./(F\H,G).#/(H,G), if H C F.

Proof. For (iii), notice that, given an n x n matrix U, det(U + pX) = det(U)(mod
p), for every n x n matrix X. Thus, if U € %,, U + pX is also unimodular. [J

Observe that for x € #Z,, A,-1,Tij(x) ~L A
Tij(p)DF ~r Dp,and T;j(x) D ~g Dp,ifi ¢ F.

o—14>» Whenever o (j) > o (i),

Theorem 3.4. Let U € %U,. Then, there exists o € &, suchthatU = T P, R, where
T is a n x n upper triangular matrix, having 1’s along the main diagonal, and R is
a n x n unimodular matrix, with units along the main diagonal, and multiples of p
above it.

Proof. Let U = [u;;]. Noticing that every row of an unimodular matrix has a unit,
we define

jn = max. {j: upjisaunit}.
Multiplying U, on the left, by suitable elementary matrices Ty, (x), k < n, we may
use uyj, as a pivot to eliminate all nonzero elements of column j, above row n.
Observe that all these matrices are upper triangular with 1’s along the main diagonal.
Denote the product of these elementary matrices by 7,.

By columns operations, we may use u,j, to eliminate all nonzero elements of
row n to the left and right of u,;,. To eliminate the elements to the left of u,;,, we
use lower triangular matrices with 1’s along the main diagonal, and to eliminate the
elements to the right, we use upper triangular matrices whose nondiagonal entries
are multiples of p. Then, multiplying on the right by a suitable diagonal matrix, we
divide column j, by ”;/,11 We denote the product of this elementary matrices by R;,.

The resulting matrix U, := T,,U R,, has all entries of row n and column j, zero,
except the entry (n, j,), which is 1.
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The process is now repeated with row n —1 of U,, obtaining U,_; :=
T,-1T,UR,R,,—1 with all entries of rows n,n — 1 and columns j,, j,—1 zero,
except the entries (n, j,) and (n — 1, j,—1) which are 1.

Continuing the process above, we obtain Ty ---T,UR, --- Ry = Eyj, +---+
Eyj,, with {ji,..., ju} = [n]. Define 0 € &, by o(ji) =i, i=1,...,n. Then
P, =Ej +- +Epj,andU = TP,R,where T =T, ' ... T 'and R = R{" - .-
R ! are as requested. [J

Theorem 3.5. Let U € U,. Then, there exists o € &, such that U =T P,QL,
where T is an n X n upper triangular matrix, with 1’s along the main diagonal, Q
is ann x n upper triangular matrix, with 1’s along the main diagonal, and multiples
of p above it, and L is an n x n lower triangular matrix, with units along the main
diagonal.

Proof. Given an unimodular matrix U, by Theorem 3.4, there exists o € ., such
that U = T P, R, where T is an n x n upper triangular matrix, with 1’s along its
main diagonal, and R is an unimodular matrix, with units along the main diagonal,
and multiples of p above it.

Attending to the form of matrix R, the application of Theorem 3.4 to R gives
R =T'IR’, where T’ is upper triangular, with 1’s in the main diagonal, and mul-
tiples of p above it, and R’ is lower triangular matrix, with units along the main
diagonal. Solet Q :=T"and L :=R'. O

Remark 1. Notice that the decomposition given in this theorem is not unique. For
instance, let

1+ 1
A=|: lp 0i|€@l2.

We get the decompositions A =T P12y QL, with T =T12(p), Q =1 and L =T (1),
and also A = T'P(12) QL' with T = Tjp(1 4+ p),and Q = L' = I.

3.2. Matrix realizations of Young tableaux

Now, we analyze products of matrices of the form A,U Dy}, where 1 <m < n
and U € %,. By the previous theorem, we may write U = T P, QL. Since T is upper
triangular with 1’s along the main diagonal, and L is lower triangular with units along
the main diagonal, we have

AUDp ~ Ag Py Q Dy,

for any partition b of length < n. Thus, without loss of generality, we may assume
that U = P, Q, where Q is upper triangular with 1’s along the main diagonal and
multiples of p above it, and o € &),.
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Lemma 3.6. Let a be a partition of length < n, and F a subset of {1, ..., n}. Then,
there exists a permutation o € &y, such thato = ol a+ X”(F) is a partition, F >
o(F) and o(a) = a. In particular, if a = (ay, ..., a,) is such that ay > --- > ay,
a+ x ¥ is always a partition.

Proof. Straightforward. [J
In order to avoid cumbersome notation, we write o[m] := o ([m]).

Theorem 3.7. Let U € %U,, and 1 < m < n. Given a partition a of length < n,
there exists o € Sy such that AgU Dy ~ diag,(a + ¥ where a + x°" is a
partition.

Proof. Let U = P, Q, with 0 € ¥, and Q an upper triangular matrix, with 1’s
along the main diagonal, and multiples of p above it. We may write

_|B1 pB
where By and Bj3 are, respectively, m x m and (n — m) x (n — m) upper triangular

matrices, with 1’s along its main diagonal, and multiples of p above it. Thus, we
have

AaPy QDipy = Ay Py Dy Q',  where Q/z[%l gﬂ (13)
3

Therefore, Ay Po QDim) ~r AaPoDim) ~R AaDoim) = diag,(a + xeolmly,

If a + x°"! is not a partition, then by previous lemma and conditions (10),
there exists a permutation p such that P, A, P, = A, and a + x*°" is a partition.
Hence, AU Dy ~ diag,(a + yHelmlhy O

From this proof, it follows

Corollary 3.8. LetU € U, and 1 <m’' <m < n. Let a' be the invariant partition
of AU Dy, and a' the invariant partition of AyU Dy, Then, a’  a' and a'/a’
is a vertical strip.

Given a sequence of n x n nonsingular matrices Ag, Bi, ..., B, where Ag has
invariant partition a, and B, has elementary invariant partition (1”7), forr =1, ..., 1,
it holds

AoBy ... B ~ AU1 Dy iU Dy - - Uk Dy, k=108, (14)

for some n x n unimodular matrices Uy, ..., U;. Therefore, by the application of
the previous theorem, there exist o, ..., 0 € &, such that (14) is equivalent to the
diagonal matrix

AaDoyimy)*++ Doyimy = diag,, (@ + x0T oy omh) g =1, 1
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This leads us to the notion of matrix realization of a Young tableau.

Definition 3.2. Let 7 = (% a!,...,a") be a Young tableau of type (a, (my,
...,my), c),withl(c) < n. A sequence of n x n nonsingular matrices Ao, By, ..., B;
is a matrix realization of .7~ (or realizes .7) if:

(I) Foreach r € {1, ..., t}, the matrix B, has invariant partition (1”7, 0"~").
(II) For each r € {0, 1, ..., t}, the matrix A, := AgBj --- B, has invariant parti-
tion a”.

Observe that, according to Theorem 3.7, given a sequence of n x n nonsingular
matrices Ag, By, ..., By, where Ag has invariant partition a, and B, has elementary
invariant partition (1”7, 0"="), r =1, ...,t, Ao, B1, ..., B; is a matrix realization
of one and only one Young tableau of type (a, (m1, ..., m;), c), where c is the invari-
ant partition of AgBj ... B;. In particular, I, By, ..., B; is a matrix realization of a
Young tableau of type (0, (my, ..., m;), b). Thus, it is natural to give the following
definition.

Definition 3.3. Let 7 = (a°,a',...,a") and # = (0,b', ..., b") be Young tab-
leaux of types (a, (my,...,m;),c) and (0, (my,...,m;), b), respectively, where
I(c) < n. We say that a sequence of n x n nonsingular matrices Ag, By, ..., B; is
a matrix realization of the pair of Young tableaux (7, ) (or realizes (7, X)) if:

(I) Foreach r € {1, ..., t}, the matrix B, has invariant partition (17, 0" =),
(II) For each r € {0, 1, ..., t}, the matrix A, := AgBj ... B, has invariant parti-
tion a”.
(III) For each r € {1, ..., t}, the matrix Bj ... B, has invariant partition b".

(7, ) is called an admissible pair of tableaux.

Clearly # = (0, (1m)y, Z?Zl(lm"), ce Z§:1(1'"i))) is the only Young tableau

of type (0, (my, ..., m;), Z;zl(lmi)), and its indexing sets are [m], ..., [m,]. For
the remainder of this paper, we shall consider pairs of Young tableaux (7, %),
where J is this tableau. Thus, in order to verify property (III), it is sufficient to
show that By - - - B, has invariant partition (1"1) + - .- + (1™).

Given a matrix realization Ao, By, ..., B; of a pair of Young tableaux (7, ),
there are, in general, many sequences of matrices S, ..., S; realizing 2 and such
that By --- B; = S1--- S;. Whenm > --- > my, it was proved in [2] that Ag, S1, .. .,
S; is also a matrix realization of (7, /). The next theorem generalizes this result to
any sequence (miy, ..., ny).

Proposition 3.9 (Hermite normal form). Given an n x n matrix A, there exists a
matrix U € U, such that AU is lower triangular.
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Proof. See [15]. O

Theorem 3.10. Let Ay, By, ..., By be a matrix realization of the pair (7, H).
Moreover, assume that we are given n X n matrices Sy, ..., S; suchthat 1, Sy, ..., S;
realizes A and By ---B; = S1---8;. Then Ao, Sy, ..., S; is also a matrix realiza-

tion of (7, 7).

Proof. We may assume without loss of generality that B=B;...B; = S1...5;
is in Smith normal form B = diag,((1"") + - - - + (1")). We claim that there exist
unimodular matrices Wy, ..., W; such that Wy = W; = I and

Wi__l1 B; W; is the Smith normal form of B;. (15)

By the Hermite normal form theorem, there exist unimodular matrices Vi, ...,
Vi_1 such that B Vq, Vf] BV, ..., Vf_lth,l V;_1 are lower triangular. It follows
that Vl__ll B; is lower triangular as well. So, we may assume that each B; is lower tri-
angular and that its diagonal D; = diag(B;) has powers of p along the main diagonal.
Thus, D; contains m; elements equal to p and the others equal to 1. As Dy ... D; =
diag[, (1) 4 ... 4 (1)), we find that D; is the Smith normal form of B;, fori =
1,...,t. Therefore we may find lower triangular unimodular matrices 71, ..., Ty
in such a way that B;Ty = Dy, T, ' BoyT» = Da, ..., T, yB,_1T,_1 = D,_. This
forces Tt:ll B; = D;. Our claim (15) is proved.

We may apply the same argument to the S;’s. Therefore AgBj --- B and ApSy - - -

S, are right equivalent, forr = 1,...,¢. O
Let I, By, ..., B; be a matrix realization of J. Since By --- B; ~g UDy;,;- -
Dy, for some n x n unimodular matrix U, and I, UDyy,3, ..., Dy, is also a

matrix realization of 7, it follows from previous theorem:
Corollary 3.11. The following conditions are equivalent:

(a) (7, A) is an admissible pair.
(b) There exists U € U, such that Ay, UDyy,], ..., Dim,) realizes (7, ).
(c) There exists U € Uy such that Ay, U Dy, . . ., Dy, realizes .

Therefore, when we are referring to a matrix realization of (7, #) we may
assume, without loss of generality, that it is of the form Ay, UDjy,y, ..., Dim,),
for some U € %,. Thus, often, we shall say that U realizes 7 .

Next, we analyze the invariant partitions associated with product of matrices
AaUD[ml]D[m2], where U € @ln, and mip,my € [n]

Proposition 3.12. Let U € U, and m, m; € [n]. Then, there exist 0 € &, and
1+ X € A ([m1], [m3]), such that AaUD[ml]D[mz] ~ AaPUD[mI](I + X)D[mz] ~
A4U Dyyy) Dy for every partition a of length < n.
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Proof. In view of the proof of Theorem 3.7, we may write
AqU Dy 1 Dimy) ~ Da Po Dimy1 Q' Dimy)

where Q' is as in (13). Without loss of generality, assume m| > my. We may write
the matrix

Ay pAy Aj
Q=[]0 Ay As|,
0 0 A

where A1, my X my, Ay, (m; —mp) x (m; —my), and Ag, (n —my) X (n —my),
are upper triangular matrices with 1’s along its main diagonal and multiples of p
above it. Hence,

1mg 0 X Ay PAZ 0
Q/ = 0 Iml—mz 0 0 Ay As |,
0 0 Li—m, 0 0 As
I+X Q"

where X| = A3Ag], I+ X € /([m], [m>]) and Q” is unimodular. Therefore,

AgPo Dy} Q' Dimy) = Aq Py Dy (I + X) Q" Diyny
~R Ag Po Dy | (I + X) Dpyy)
= A4 Po Dyny) Dimy\imy1 (I + X) Dimy)
= APy Dipyy(I + X)Dppyy. - O

my

According to this proposition, it is enough to consider products of matrices
AgPs(I + X)Dp, with I + X € 4 (F).

Definition 3.4. Giveno € &, let{iy,...,i,} = [n]suchthat[n] = {o(i}) > - >
o(in)}. We define € &, by 6 (i) =k, fork=1,...,n.

We have o (i) > o (j) if and only if 6(j) > 6 (i). Thus, given A, B C [n] with
|A| = | B], we find that 6 (A) > o (B) if and only if 6 (B) > 6 (A).

Lemma 3.13 [3]. Let F C [n], I + X € M (F) and 0 € &,,. Then, there exist {iy,
e iy} S Foand {j1, ..., jr} C[n\F, with o(is) > o(js), for s =1,...,r, and

o(iy) > --- > o(i,), such that

(1) AyPs(I + X)Dp ~ Ay Ps (I + Zzzl Eikjk)DFa
(ii) AgPs(I + XV Dz~ A Ps(I + 34—y Ejuir) D

for every partition a of length < n.

Proof. Fix a partition a, arbitrarily, of length < n. Recall that P(;r Aq Py = diag),
(@s(1y, - - - » Ao n))- Without loss of generality, we may assume that all nonzero ele-
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ments of X are units. Let x;; be the unit in row i € F, and column j ¢ F of X. If
o(j) = o(i) we use 1, in position (j, j) of I + X, as a pivot to zero out x;; by row
operations. Therefore, we may assume that / + X € .Z(F) satisfy x;; # 0 only if
xjjisaunitand o (i) > o (j).

If X =0,then Ay Po(I + X)Dp = Ay P; Dp.

If X #£0, let

o (i1) = max {a(i) tie Fand3dj:x; 9&0}
and
o(ji) =min{o(j): j ¢ Fand x;,; # 0}.

Clearly, o (i1) > o (j1). Also, if i € F and x;; # 0, we have o (i1) > o (i). Then,
we use the unit in position (i1, ji), say z1, as a pivot to zero out the remaining entries
of row i and afterwards the remaining entries of column j; in X. Note thati; € F
and j; ¢ F.

Therefore, (I + X)Dp ~gr T(I + X1+ z1E},j,)DF, where z1 is a unit, T is a
product of elementary matrices T;;, (x) such thato (i) > o (i), I + Xy € .4 (F), and
X1 = (xil.) has row i1 and column j; null, and xilj # 0 only if xilj is a unit and
o(i) > o (j).

If X1 = 0, the reduction process is finished. If not, we repeat the above process
with the matrix X. Eventually, after a finite number of steps, we obtain

(I +X)Dp ~g T'(I + 21Ej,j, + -+ 2+Ej, j,) DF,

where z1, ..., z, are units, iy, ..., i, are distinct elements of F, and ji, ..., j. are
distinct elements of {1,...,n}\F such that o(i;) > o(js), for s =1,...,r, and
o(i1) > --->0(i,), and T’ is a product of elementary matrices Ty;(x) such that
o (i) > o(k).

Let Y := diag(y1, ..., yn), Where y; = z; ' if s € {i1, ..., i}, and ys = 1 if 5 ¢
{i1,...,i}. Then

YT+ Eijy + -+ Eij)Y =T+ 21Eyjy + - + % Ei .
and we may write
AgPs(I +X)Dp ~r AgPoT'Y(I + Eijj, + -+ Ei,j,)Dp. (16)

Since T’ is a product of elementary matrices T; (x) with o (i) > o (k), using row
operations, we find that A, P, T’ ~; A, P,. Therefore,

(16) ~p AgPs(I + Ejjj, +---+ E; j)DF.

Finally, recalling that I + xT e M (F), and that o (i) > o(j) if and only if 6 (j) >
6 (i), we may repeat on A, Ps (I + X )TDF the operations performed on A, P, (I +
X)DF, to get equation (i). In this way, we obtain equation (ii). O
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Notice that in this lemma, & = (i1j1) - - - (i; j») € Sy satisfy o (F) > 0&(F). This
leads us to the following definition.

Definition 3.5. Let F,J C [n] and 0 € ¥, such that |F| = |J| =m and o (F) >
J. Let e € ¥, be a witness of o (F) > J. We define the n x n matrix S(o (F), J,
o0, £), whose entry s;; satisfy

|1 ifo () € o(F)\J and Ao (F),s,:0 (i) = 0 (j),
710 otherwise.

When ¢ = id, we write S(o(F), J, o).

Clearly, I + S(o(F), J,0,¢) € M (F),andif J = o (F),S(o(F), J,0) = 0.No-
tice that for each witness € € %), of o(F) > J, in the conditions of definition
2.2, there exist {i1, ..., iy} C Fwitho(i;) > -+ > o(i,),and {ji, ..., j-} C [n]\F
with o (is) > o(js), for s =1,...,r, and o(je1)) > -+ > 0(je)), such that
o Yo (F), 160 = (i1j1) - - - (ir jr). Therefore, S(o (F), J,0,8) = Y 1_; Ei ji-

Lemma 3.14. [n the conditions of the definition above, put Se = S(o (F), J, 0, €).
Then, we have always

AqPo(I 4 Se)DF ~ AaPo Pig-1y, ) .0V DF
~r diag,(a + x 7).
for every partition a of length <n. In other words, the invariant partition of

Ay Py (I + S;) D does not depend on the witness € of o (F) > J.

Proof. Fix an arbitrary partition a. Recall that I + S, € .#(F). Thus, we have

AgPy(I + S)Dp ~ rAq P (I + Se)Dp(I — pS)) (17)
= AuPo (I + S)(I — SHD. (18)

Consider now the permutation a‘l)\(,(pu,ga = (i1j1) - - - (ir j»), and note that, by
Lemma 3.1, we have

P Z(I — SHY(I + Se)(I — 81,

_])\J.J(F),eo') =

where Z = [];_, Tj j.(=1). Since o (is) > o(js), s =1,...,r, we may use row
operations to zero out all nonzero elements of S;F, and obtain

AgPoZ(I = ST) ~1 Ay Ps.
Therefore, we have

AgPy Py, \Dp = A Po Z(I — SH(I+ Se)(I — S})Dr

~1 AgPo(I + Se)(I — SHDE. (19)

o(F),J,60
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By (17) and (19) we find that

AaPo(I +X)Dp ~ A Piyp) .0)DF ~r diag, @+ x7). O

Theorem 3.15. Given F C [n], I + X € M (F), ando € &, there exists J C [n]
with |J| = |F| and o (F) > J, such that, by putting S = S(o (F), J,0),

AyPs(I +X)Dp ~ Ay Py (I + S)DF

~ AQPO'P(Ufl)»a(F)JO')DF
~p diag, (@ + x”),

for every partition a of length < n.

Proof. Fix a partition a. Let m := |F|. By Lemma 3.13, there exist {i{, ..., i} C F
and {ji1, ..., jr} C [n]\F with 0 (is) > 0(js), fors =1,...,r,and o(ij) > --- >
o (i), such that

AgPs(I +X)Dp ~ AgPs(I + Ejyj, +---+ Eji j,)DF.

Let J := [0 (F)\{o (i), ..., o)} U{o (). ..., 0@} Clearly, o (F) > J, and
the permutation € € %, such that o (jg(1)) > -+ > 0 (je(r)) is a witness of o (F) >
J. Thus, Aspy,je = (0(i1)o(j1))...(0(i;)o(jr)), and, by definition of S, =
S(o(F), J,0,¢), weobtain [ + S, = I + Ej;,j, +---+ Ej, j,. Therefore,

AgPo(I 4+ X)Dp ~ AgPs(I + So)Dp ~ diag,(a + x7).

From previous lemma, we may choose ¢ = id, hence

AyPs(I +X)Dp ~ Ay Po(I +Se)Dp ~ Ay P (I + S)Dp
~diagp(a+xj). O

Observe that if @ + x” is not a partition then, by Lemma 3.6, there exists a per-
mutation y such that A, Dy ~ diagp (a+ x*"yand o (F) > J > u(J). Therefore,
we obtain:

Corollary 3.16. In the conditions of the theorem above, given a partition a, let
a + x’ be the invariant partition of Ay Py (I + X)Dp. If ' is a partition of length
< n such that either a’/a or aja’ is a vertical strip, then there exists | € S, such
that the invariant partition of Ay Py (I + X)Dp is given by a’ + x*), where J >
w(J).

This corollary will be useful in the following section. As an application of the pre-
vious theorem, we shall characterize the tableaux realized by a sequence of matrices
of the form Ay, UDyy,, - .., Dym,|, Wheren > my = --- > m; > 1.



244 O. Azenhas, R. Mamede / Linear Algebra and its Applications 401 (2005) 221-275

Proposition 3.17 [3]. Let U € U, andn > my = my > 1. Then Ay, U Dy, D,
realizes an LR tableau of weight (m1, m»).

Proof. By Lemma 3.6 and Proposition 3.12, there exists o € .%’, such that

AqU Dy 1 Dimyy ~ A P Dimy1(I + X) Dy = AaDofm,1Po (I + X) Dy
(20)

with I + X € .4 ([m], [m>]) and a + Xo[””] a partition. Let J; := o[m].
By Theorem 3.15, there exists Jo C [r] with o[m3] > J> and |J2| = my, such
that

(20) ~ diag,(a + x "' + x ™),

with a + x/1 4+ x 2 is a partition.
Finally, note that J1 = o[m] > o[m2] = J>. Then Ay, U Dy, 1, Dy, is @ matrix
realization of the LR tableau 7 = (a,a + x”',a + x’/' + x’2). O

Next result generalizes the proposition above.

Theorem 3.18 [3]. Let U € U, andn >my = --- =2 m; = 1.Then Ay, UDjp 3, - . .,
Dy, realizes an LR tableau of weight (my, ..., m;).

Proof. By induction on ¢. For t = 1 there exists a permutation o € ., such that
AqU Dy ~ diag,(a + ™Mby where a + x°"1] is a partition. Therefore, A,
U Dy, realizes the tableau 7 = (a, a + x°™11), which is an LR tableau. The case
t = 2 was proved in previous lemma.

Let s > 2. By induction, the sequence A U, Dy, - .., Dy, ;1 1s @ matrix reali-
zation of an LR tableau with indexing sets J; > --- > J;_1. Therefore, there exists
an n X n unimodular matrix V such that

1
AaUDyny1 - Dim,_1Dimy ~L A"V Dy, 1Dpm, 15

where Al = diag,(a + x4 ).

By the previous lemma, A'V Dy, 1Dy, realizes an LR tableau 7 with index-
ing sets J;_1 = J;. Therefore, A U Dy, ... Dy, realizes the LR tableau J =
(a,a',....a"),witha' =a+x"' + -+ xli fori=1,...,t. O

In view of this result, we conclude that a pair of Young tableaux (7, #) of
weight (my,...,m;), where m| > --- > my, is an admissible pair only if .7 is an
LR tableau. In [2,3] was also proved that (7, ) is an admissible pair if 7 is an
LR tableau. We shall recover the “if” part in the last section for = 2, 3. In [1], using
a different characterization of LR tableau, the “if” part was proved as well.
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3.3. Matrix extensions

Let X be ann x n matrix, and denote by R(X) the set of the indices of the nonnull
rows of X, and by C(X) the set of the indices of the nonnull columns of X. Given
ann x n matrix Z, we say that Z is an extension of X if there exists an n x n matrix
X = (xlfj) with xl.’j # O only if x;; =0 suchthat Z= X 4+ X'. When Z = X + X’
is an extension of X such that C(X) N C(X’) = @ [R(X) N R(X') = @], we say that
Z is a column [row] extension of X.

Let F C[n],o0 € ¥, and I + X € .Z(F). By the application of Theorem 3.15
and Lemma 3.6, we conclude that, for every partition a, there exists J < [n] such
that the invariant partition of the product of matrices

AaPU(I+X)DF (21)

is a + x”. In the following results, using Lemma 3.13, we analyze the relationship
between the invariant partition of the product (21) and the product A, P, (I + Z)DrF,
with I + Z € ./ (F) and Z an extension of X. We start with the case where Z is a
column extension of X.

Lemma 3.19. Let F C [n], {i1,...,ir} S F,{jo, j1,---,Jr} S [n\F ando € &
such that o (i) > o (), k =1, ..., r. Consider a matrix X' such that C(X') =
{jo} and R(X") C F. Then, there exist {vy, ..., vs} € Fand {fi1, ..., fs} € {jo. j1.
cosjrt, with o(vg) >0 (fr), k=1,...,s, and c&(F) > oc&'(F), where & =
(i1j1) -+~ Grjr) and & = (v1 f1) - - - (vs fy), such that

,
APy (1 +Y E, jk) Dp ~ diag,(a + x°5")
k=1

and

r N
AyPy (1 + ZE,-W +X,) Dp~ A,P, (1 +2Ekak> Dp

k=1 k=1
~ diag,(a + x5,

for every partition a of length < n.

Proof. Fix a partition a. The proof will be handle by induction on the number m
of nonzero entries of X'. Let X = 22:1 E;, j, and notice that, by Theorem 3.15, we
have Ay Py (I + X)Dp ~ diag,(a + x¢F)), where & = (i1 j1) - -+ (ir jr).

Without loss of generality, we may assume that all nonzero entries of X’ = (x;;)
are units, and that x;, # O only if o (i) > o (jo), withi € F and jo ¢ F.

Suppose that m = 1, that is, X' = 20Ej,j, for some unit zo. Clearly, o (ip) >
o (jo)- Ifip ¢ R(X), then by Theorem 3.15, we have
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-
AgPo(l + X + X)Dp = AgP, (1 +> Eik,k> Dy ~ diag,(a + ¢ "),
k=0
where & = (iojo)(i1j1) - - - (iy jr) satisfy oc&(F) > o&'(F). If ip € R(X), without
loss of generality, we may assume that iy = i;. Now, either we have o (jo) > o (j1)
or o (j1) > o(jo).

If o (jo) > o(j1), since ji, jo ¢ F, we may eliminate zo by column operations,
using the unit in position (i1, j;) as a pivot, obtaining A, P, (I + X + X')Dp ~
Ay Ps(I + X)Dp. Clearly, § = &'.

If o(j1) > o(jo), since ji, jo ¢ F, we use zo as a pivot to eliminate, by column
operations, the unit in position (i1, ji). Thus, by Theorem 3.15, we find that

-
AgPo(I + X + X/)DF ~ Ay Py <I + Eil.fo + Z Eik./k) DFp
k=2
~ diag, (@ + ¥ "),

where &' := (i1 jo)(i2j2) - - - (ir jr) satisfy c&(F) > o0& (F), since o (j1) > o (jo).

Now, suppose m > 1. Let X' = (x; i), and denote by z¢ the unit in position (io, jo)
of X', where o (i9) :== max{o (i) : i € F and x; j, # 0}. If ip ¢ R(X), then we may
use 7o to eliminate, by row operations, all entries of column jy of X’, obtaining

p
AaPo(l + X + X )Dp ~ Mg Py (1 +2 Em) Dy ~ diag,(a + x¥' "),
k=0
where &' = (igjo)(i1Jj1) - - - (ir jr) satisfy c&(F) > o&'(F).
Assume now that ig = i1 € R(X). If o (jo) > o(j1), we use the unit in position
(i1, j1), as a pivot, to eliminate zo by column operations. Thus, for every partition a,
we have

AaPa(I+X+X/)DFNAaPJ(I+X+X//)DF» (22)
where X” has m — 1 nonzero entries in column jy, and zero elsewhere. By the
inductive step and Theorem 3.15, there exist {vy,...,vs} € F and {fi, ..., fi} C

{jos j1s s jrywitho () > o (fi), k=1,...,s,and 0&(F) > o&'(F), such that

N
s (I > Ef) D ~ diagy(a + 7 "),
k=1

where &' = (v1 f1) - - - (vs f5)-
If o (j1) > o (jo), we use zg to zero out, by column operations, the unit in position
(i1, j1), and all entries of column jj of X', by row operations. Therefore, we obtain

p
AyPs(I + X + X )Dp ~ Ay Py (1 +Eijo+ Y Eij + X”) Dr,  (23)

k=2
where X” has m — 1 nonzero entries in column jj, and zero elsewhere. Notice
that, by Theorem 3.15, Ay Py (I + Ei j, + > r—» Eiy j)DF ~ diag,(a + xOE )y,
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where &' := (i1 jo)(i2j2) - - - (i jr) satisfy 0&(F) > o&'(F). Then, by the inductive
step, there exist {vy, ..., vs} € F,and {f1, ..., fs} < {Jo, J1, ..., Jr} Witho (vg) >
o(fr),k=1,...,s,suchthat 0&(F) > o&'(F) > o&”(F) and

N
(23) ~ A, P, (1 +> Ekak) Dr ~ diag,(a + x°¢' D),
k=1

where £ = (vi f1) -+ (vs fy). O

Theorem 3.20. Let F C [nlando € Fy. Let  + X, I + Z € M/ (F) such that Z
is a column extension of X. Then, there exist J, J' C [n] with J > J’ satisfying

AgPy(I + X)Dp ~ diag,(a + x7),

APy (I + Z)Dr ~ diag,(a+ x”),

for every partition a of length < n.

Proof. Fix a partition a, arbitrarily. Since Z is a column extension of X, we have
Z = X 4+ X' such that C(X) N C(X’) = . Without loss of generality, we may as-
sume that all nonzero entries of X and X’ are units. As in Lemma 3.13, using row
operations, let us zero out the elements x;; of X and xlf. of X" such that o (j) > o (i).

Using the decomposition, of Lemma 3.13, on matrix [ 4 X, there exist
{ir,...,iy} S [n]and {j1, ..., jr} € [n]\F such that o (i) > o (jx), k=1,...,r,
o(iy)) >--->o0(i,),and

,
AgPy(I + X)Dp ~ Ay Py <I+2Eim> Dr. (24)
k=1

By Theorem 3.15, we find that (24) ~ diag,,(a + x7), where o (F) > J = 0&(F)
with & = (i1j1) - - - (iy jr). We may repeat on I + X + X’ the operations just per-
formed on I + X to get (24). So we have

,
AaPo(I+X +X')Dp ~ APy (HZEW +Y> Dr, (25)
k=1

where the matrix Y satisfy R(Y) € F and C(Y) N C(X) = .

We will prove, by induction on the number m := |C(Y)|, the existence of a set
J' C [n] such that J > J" and (25) ~ diag,(a + x7.

When m = 1, the result was proved in Proposition 3.19. Suppose now m > 1.
Let jo € C(Y) and consider the matrix Y’ obtained from Y by replacing all non-
zero entries, outside column jp, by zero. Again, by Proposition 3.19, there exist
(oo v} ©F and (1,0 £} S Uos jis - - ) with o) > o (fi), k =1,
...,s,and J > o&/(F), such that
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r s
AaPy (1 + 3 Eig + Y/) Dp~ AP, (1 +y Ekak> Dr

=1 k=1
~ diag ,(a + X8y, (26)

where & = (v1 f1) - - - (vs f5). We may repeaton [ + >, E;, j, + Y the operations
just performed on [ + Y~ _, Ej, j, + Y’ to get (26). Therefore, we obtain

s
(25) ~ Ay P, <1 + Z Ey g + Y”) Dp, (27)
k=1

where Y satisfy C(Y")N{f1,..., fsy} =0 and |C(Y")| =m — 1. Applying the
inductive step to equations (26) and (27), there exists J' C [n] such that (27) ~
diag, (@ + x’)and J > o&'(F) > J'. O

Next, we prove the analogous of the theorem above, in the case, of a row extension
of X.

Theorem 3.21. Let F C[nland o € &y. Let I + X, 1 + Z € M4/ (F) such that Z
is a row extension of X. Then, there exist J, J' C [n] with J > J' satisfying

APy (I + X)Dp ~ diag,(a + x7),

AaPs(I + Z)DF ~ diag,(a + x'),
for every partition a of length < n.
Proof. Let a be an arbitrarily partition. Since Z is a row extension of X, we must
have Z = X + X/, where R(X) N R(X’) = . Note that I + XT, I + X + X'T ¢

J(F)with c(X'TynC(X Ty = @. In view of the proof of Theorem 3.20, there exist
£, & € &, such that

AaPs(I + XT) Dy ~ Ay Ps Pe Dy ~ diag ,(a + x*¢ )
and
AaPs(I + X" + XTYDy ~ Ay Ps Py D ~ diag y(a + x°§' ),

with 6&(F) > 6&'(F). Thus, we have 6&'(F) > 6£(F), and, by the definition of
6 (Definition 3.4), we find that & (F) > o&’(F). Finally, recall from (i) and (ii) of
Lemma 3.13, that the permutations &, &’ are such that

AgPs(I + X)Dp ~ Ay Py PsDp ~ diagp(a + X“f(F))’
and

AqPo(I+ X + X\Dp ~ APy Py Dp ~ diag, (a+ 7). O
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Next theorem states the relationship between the invariant partition of the product
of matrices A, P, (I + X)Dp and A, P,(I + Z)Dp, when Z is an extension of X
and I + X, 1+ Z € JM(F).

Theorem 3.22. Let F C[nlando € . Let | + X, 1 + Z € M (F) such that Z
is an extension of X. Then, there exist J, J' C [n] with J > J' satisfying

Ay Py (I + X)Dp ~ diag,(a + x 7).

AaPy(I + Z)DF ~ diag,(a + x'),
for every partition a of length < n.

Proof. Fix a partition a. Since Z is an extension of X, there exists an n X n matrix
X’ such that Z = X + X'. Let Y be the matrix obtained from X’ by replacing all
entries x,fj with i ¢ R(X) by zero. Thus, I + X +Y € .4 (F) and C(Y) N C(X) =
(. By Theorem 3.20, there exist J, fg [7] such that J > f,

AyPy(I + X)Dp ~ diag,(a + x”)
and
AgPy(I + X +Y)Dp ~ diag,(a + x7).

Let Y’ := X’ — Y and notice that R(Y") N R(X + Y) = @. Therefore, by Theorem
3.21, there exists J' C [n] with J > J > J’ such that

AaPo(I+ X +Y +Y)Dp ~diag,(a+x’). O

Notice that if, in the theorem above, either a + xj or a+ XJ "is not a parti-
tion then, by Lemma 3.6, there exist permutations u, 1’ € %, such that diag ,,(a +
x7) ~L diag,(a+ x"V) anddiag, (a+x’") ~ diag,(a+ x"*' ")), witha+ *)
anda + x*' ) partitions, and satisfying J > w(J),J' > ' (J)),and u(J) > ' (J').
Therefore, without loss of generality, we may assume that the sets J, J’ are such that
a+ x’ anda + X]/ are partitions.

Corollary 3.23. LetU € U, and 1 < m3 <mp <my < n.

(1) If J1, J» and Fy, F are the indexing sets of AgU Diy 1 Dimy) and AyU Dy,
Dyyyy, respectively, then J, > .

(i) If J1, J2 and Fy, F, are the indexing sets of AqU Dy D,y and AU Dy,
Dy, respectively, then J, > F».

Proof. We may assume U = P, Q, where o € ¥, and Q is an upper triangular
matrix, with 1’s along the main diagonal, and multiples of p above it. Without loss
of generality, assume that a' := a + X"[’"i] is a partition, i = 1, 2, 3.
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(i) By Proposition 3.12, we may write
Aq Py Q Dy, Dimy) ~ diag,,(a") Py (I + X) Dy ~ diag,(a’ + x7),
where I + X € .4 ([m1], [m3]), and

Ay Py QD[mz]D[m3] ~ diagp(az)Po(I +Y + Y/)D[m3] ~ diag,,(a2 + XFz)s
(28)

where I +Y + Y’ € .4 ([m2], [m3)) satisfy R(Y') = R(X), C(Y") = C(X), and
yij =0, ylfj = x;j + p for all (i, j) € R(X) x C(X), where X = (x;;), ¥ = (yij)
and Y' = (y; j). By column operations, we may eliminate all multiples of p in I +
Y + Y’ and obtain

(28) ~g diag, (a®) Py (I + ¥ + X) Djpy).
By Corollary 3.8, a' /a? is a vertical strip. Then, by Corollary 3.16, the invariant par-
tition a2 + x” of diagp(az)Pg(I + X) Dy satisfy Jo > J. Applying now theorem
3.22, we have J > F>.

(i1) Easy calculations, following the proof of Proposition 3.12, give

AqU Dipy) Dymy) ~ diag (@) Po (I + X) Dy ~ diag, (@ + x ™).
where I + X € . ([m3], [m1]), and

AqU Dipy) Dimy) ~ diag (@) Po (I + X + X') Dyy) ~ diag, (a® + x ™),

where I + X + X' € 4 ([m3], [m1]) satisfy R(X) N R(X") = 0.

Again, by Corollary 3.8, a*/a> is a vertical strip. Then, by Corollary 3.16, the
invariant partition a® 4+ x’ of diagp(az)Pg(I + X) Dy, satisfy Jo > J. Finally, by
Theorem 3.22, we have J > F,. [

4. The main results

Let r > 2 and consider the transpositions of consecutive positive integers s; =
(@i +1),1<i<t— 1. Denote the identity by s9. The symmetric group %%, t > 2,
is generated by these ¢+ — 1 transpositions which satisfy the Moore—Coxeter relations:
si2 =50, 8;8; = 8js;,if [i — j| # 1, and s;s;418; = siy18i8i41, 1 <i <t — L

The elements of .%;, t > 2, can be written as words in the alphabet {s1, ..., s;—1}.
We define .%; recursively:
1 = {s0},
w
St—1w
ytz S1-251-1@ ,Cl)eyt_] lfl>2

$182...8—1w
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We call to these presentations of the elements of ., canonical words. For example,
if t = 2 we have %) = {s0, 51}, and if t = 3 we have %3 = {50, 51, 52, 5152, 5251,
515281 }

Givenm = (my,...,m;) € M, (12), we let D,, denote the sequence of diagonal
matrices

Dy := (I, Dymy1s Dimy1Ppmsls « - > Dimy1Dima) - - - Dpmy1)
and define the set of all these sequences, with m running over M;,

Ty, :={Dy, : m € M;}.

t

Let o € ., such that ¢ ~'m is the partition of M;. The sequence D,, realizes the
unique tableau #, = (0, (1), Z?Zl(l’”"), el Zle(l’"i)) of type (0, (my,
e, My), Zﬁzl(lm")). We may identify Ty, with the set {#, : 0 € &}, the set of
tableaux of shape the conjugate partition of M, and words w([m1], ..., [m,]), with
m running over M;.

The symmetric group .#’; acts on M; by place permutations of the tuples. The map
v S — S, defined by ¥ (si)(Dp) = Dg;m, for 0 <i <t —1andm € My, is
a group action on Ty,. The map @, (#'5) = H 5,5, 1 < i <t — 1, defines an action
of the symmetric group %; on {#'s : 0 € ;}.

For example, if m = (4, 3) the tableaux realized by Ty, = {Dy,, Dy, } are

2
2
> (29)

DO = = =

and, if m = (4, 3, 2), the tableaux realized by

TM3 = {Dm’ DS]WH Dszma DS]Szm’ D82S1m5 DS]SzS]Wl}

are
1 2 3 1 2 3 1 2 3
, 1 2 3 1 2 3 ) 1 2 3
e%so = 1 2 ) r?fs] = 1 2 ’ %SZSI = 1 3 ’
1 2 3
1 2 3 1 2 3 1 2 3
1 2 3 1 2 3 1 2 3
%sz = 1 3 , %slsz = 2 3 ) ‘#523152 = 2 3
1 2 3

We may write Ty, = {H,, #,}, and
Ty = {%sov H sy Hsysys Hsys Hsisgs Hsiss }
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Now, fix a partition a = (ay, ..., a,) and U € %,. For each m = (my,...,m;) €
Ml" let

AaUDm = (Aa, AqU Diy1, AaU Dipy 1 Dimy)s -+ - » AaU Dy 1 Dy ...D[mt]>,
and define
Tamy(U) == {AUDy :m € My}.
Clearly the symmetric group .%; also acts on T(,, m,)(U) by putting
V(si)(AqUDy) = AyUDy,y, 0<i<t—1.

For each m € M;, A,UD,, realizes a pair of Young tableaux (J, #,) with
weight m, where o~ !m is the partition of M;. According to Corollary 3.11, we
replace the notation (7, # ) by I 4, 0 € ;. Thus, we may identify T, p,)(U)
with{Z 4,0 € %, : dm € M, A, U D,, realizes 7 ,}. We shall characterize this set
in cases t = 2, 3. In order to do this, we need to introduce the following definitions.

Definition 4.1 [6]. Let Fy > F> and F = {(F, FY) € 2")? : 0 € (s1)}. We say
that [ is generated by (Fy, F), if (F}°, F,") = (Fy, F»), and the following relations
are satisfied:

(i) F' € F, (i) F{' 2 F>, |F2| = |F"], (30)
(i) FINF, CF', (iv) Fy;' = F,U(F\F"). (31)

Recalling Definition 2.3, we have F;' Zop F)' . Let O(F{, Fy) = (F}', F,').
Then, ®? = id, and the symmetric group %> acts on any set generated by (Fy, F>).

Given sets F1 > F,, there exists always a set generated by (Fj, F>). For instance,
Ffl = ming, F| and szl =MhU (F1\F1S1) satisfy (30). In this case, we say that the
set [ is x-generated by (Fy, F>) [6].

Definition 4.2 [6]. Given F| > F> > F3 and F={(F],F§,F{)e 2") :0 €
(s1,52)}, with (F\°, F5°, F;") = (Fy, Fa, F3), we say that F is generated by (Fj,
Py, F3) if

(M (a) Fé:' = 3 and {(F{, F5) : 0 € (s1)} is generated by (F1, F3).
(b) F|*> = Fy and {(Fy, FY) : 0 € (s2)} is generated by (F2, F3).
(D (a) F}**' = F{" and {(F;"", Fy"") 1 0 € (s2)} is generated by (F,', F;') with
52 5251
Fzsm? F2 sz. a5 o5 . 52 ) .
(b) F3S ) = F3s and {(F ™, F, ™) 1 0 € (s1)} is generated by (F|*, F,") with
2 > Bl
2 =1
) (a) F3"2' = F2% ((F)™, F)'Y) 1o € (s1)} is generated by (Fy2"!, Fy'),
and F;""' = F"%2
(b) {(Fy'*2, F5'™), (F,"™", F3""*1)} is generated by (F,"", F3'™).
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In [6] it has been shown directly that if we are given sets F| > F>» > F3 in [n],
there exists always the set Fx-generated by (F1, F>, F3). Here, in section 5, Theorem
4.7, we shall see a matrix interpretation of the generation of a set [ based on the fol-
lowing facts: in [2] it has been proved that given an LR tableau .7 of type (a, m, ¢),
there exists always an unimodular matrix U such that A,U D,, realizes .7, on the
other hand the symmetric group acts on T, », (U) which leads to a such set [. In the
next theorem, the elements of a set [, generated by (Fi, F, F3), are given explicitly.

Theorem 4.1. Let F| > F, > F3. The following assertions are equivalent:

(@) F={(F, F7, F§) : 0 € (s1, 52)} is generated by (Fy, F2, F3).
(b) Thg sequence F\ > F>» > F3 has a decomposition F| = U?:] Al R = U‘;=3
A3, F3 = AU A3,

Al
A3 A3

FI,F, F3=A4] A3 (32)
At A3
A A A3

satisfying:
1. AT > A3 > AT > A3, with |A]| = |A}] = |A}] = |A3],
A > A3 > A3, with |A3| = |A3| = |A3],
A} = A3, with |A]] = | A3,
2. AVNA] =0, ifi # ],
ALNAL =0, ifi # J,
AINA3 =9,
3. FINAS C A3,
(F1\A}) N A} C A,
[FI\(A] U ADIN A3 C A7,
[F, U (A3UADIN A € A2, and
[F>U(A2U ADIN A3 € A3,
such that the sets F{, Fy, Fy, with o € {s1, 52, 5152, 5251, S15251}, are ob-
tained from Fy, F,, F3 as follows:

1 1

Al Al

A7 A3 A7 A3

S S ST 3 3 8§28 828 $281 3 3
F'E'\F' =AY A3 | FPL R RPN = A A3,
4 4 4 4

Al AZ Al A2

5 5 5 5 5 5
Al A2 A3 Al A2 A3
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A
A% A2
1 3
S18528 51828 S18281 __ 3 3
F1 ',F2 ',F31 = Al A2,
Al A3
5 5 5
A1 A2 A3
1 1
A1 A1
A7 A3 AT A3
Fi"Z’ ng, F§2 — A% Aga Fflszv F§'152’ F;lSZ — A:]; Ag
A A3 A A3
5 5 5 5 5 5
Al A2 A3 Al A2 A3

Proof. (a) = (b) See the proof of the “only if” part of Theorem 4.7.
(b) = (a) Obvious. [

Remark 2. In the previous theorem, if Ji, J» and J3 are pairwise disjoint, con-
dition 3 vanishes and, in that case, we may consider the decomposition (32) with
A = A} = A3 = A} =0.

Corollary 4.2. Let I\ > F> > F3 and F = {((F{, F], Fj) : 0 € (51, 52)} gener-
ated by (F1, F», F3). Fori = 1,2, let ©; : F — [ defined by

O;(F7, F5, F{) = (F}'°, F,'°  F}'°), o € (s1,5).
Then, @iz =id,i =1,2,and 010,01 = ©,010>. That is, the symmetric group
S5 acts on the set .

Proof. Follows from Theorem 4.1. [

In what follows we put m = (my, ..., m;) for the partition in M;, t = 2, 3. We
may now define o-Yamanouchi word for o € %, t =2, 3.

Definition 4.3. Letr = 2,3 and o € .%;. Let w be a word over the alphabet [#] with
evaluation om. We say that w is a o-Yamanouchi word if w = 7.

In [6], Definition 4.4, we have introduced this concept using the indexing sets of
the word. We will see that these two definitions do coincide.

Proposition 4.3. Let 0 € 9y and w a word over the alphabet [2], with evaluation
om and indexing sets (F1, F»). The following conditions are equivalent:

(a) w is a o-Yamanouchi word.

(b) w is a shuffle of the rows of # .
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(c) (F1, F2) has a decomposition either of the form
1 1
Aé , fo=s0 or A%
AT A3 AT A3
where A} > A3 with |A}| = |A] = my, and Al N A3 = A5 N AL = 0.

(d) (F1, F7) belongs to a set | generated by some J1 = J,.

ifo =si,

Proof. (a) < (b) follows from Proposition 2.3 and Corollary 2.5.

(b) ¢ (c). Notice that #'5, = w([m1], [m2]) and H#'5;, = w([m2], [m]). Clearly,
w(F1, F») is a Yamanouchi word, when o = id, and w(Fi, F>) is a dual Yama-
nouchi word, when o = s1. The result follows from Proposition 2.2 and Corollary
2.4.

(¢) < (d) follows from Definition 4.1. [J

Proposition 4.4. Let 0 € &3 and w a word over the alphabet [3], with evaluation
om and indexing sets (Fy, F, F3). The following conditions are equivalent:

(a) w is a o -Yamanouchi word.
(b) w is a shuffle of the rows of # .
(c) (Fy, Fa, F3) has a decomposition according to

Al A
A% A% ifo =59, A% A% ifo =s1,
Al A3 A3 A3 A3 A3
A Aj
A% A% if o = s2s81, A% A% ifo = 515251,
A} A A A} A A
Al Al
A% A% ifo = s, Ag A% ifo = 5182,
Al A3 A3 A} A3 A3

where A3 > A3 > A3, with |AJ| = |A3| = |A3| = Im3|; AT N AS =0, forr #
s.i=1,2,3, and AT > A3, AT > A3, A3 > A3, with |A3| = |A]] = |A}| =
[ma| — |m3.

(d) (F1, F», F3) belongs to a set | generated by some J1 > Jy > J3.

Proof. (a) < (b) Let o in 3. A careful analysis of the Schensted’s insertion algo-
rithm, Section 2, shows that when we apply this algorithm to a shuffle of the rows of
H 5, we get H . So, if w is a shuffle of the rows of #',, w = H#,,.

Notice that the tableau J, is respectively (321)™3(21)"27"3 1172 if ¢ = s50;
(B21)m321)m2—m3mi—m2 - qf g =g1; (321)™3@1)™27m33mMTM 0 if o = sp81;
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(321)"3(32)m27m33M M2 {f g = s15p87; (321)"3(31)27M3 1M if o = gp; and
(321)3(32)m2—m3M—"M2 if o = g15. Therefore, if w is a shuffle of the rows of
A+, when applying, to w, the elementary Knuth transformations xyx = yxx, and
yxy = yyx, with 1 < x < y < 3, we do still obtain a word of the same form. In the
case of the Knuth transformations 132 = 312 and 231 = 213, notice that 31 is a row
of the tableau #'; only when o = sps1. In this case, w is a shuffle of m| — m> rows
321, mp — m3 rows 31 and m3 rows 3. Thus the letter 2 appears only as a letter of
the row 321. So, w = #, implies that w is a shuffle of the rows of 7. It is now
easy to conclude that a Knuth class containing a word which is a shuffle of the rows
of # ,, only contains words which are shuffles of those rows, and the representative
tableau of this Knuth class is .

(b) & (c) Notice that w(A3, A3, A}) is a shuffle of m3 rows 321, w(A?, A3) isa
shuffle of my — ms3 rows 21, w(A?, A%) is a shuffle of my — m3 rows 31, w(AZ, A%)
a shuffle of my — m3 rows 32, w(A%) is a shuffle of m| — my rows 1, w(Aé) is a
shuffle of my — m3 rows 2, and w(A%) is a shuffle of my — m3 rows 3.

(c)= (d) If Fy, F>, F3 are pairwise disjoint then condition 3 of Theorem 4.1
vanishes and we may consider A_% = (). Otherwise, it has been shown, in [6], the exis-
tence of a set [ *-generated by a sequence J; > Jo > J3, containing (Fy, F3, F3).
Furthermore, if (Fp, F», F3) are the indexing sets of some tableau 7 of type
(a,om,c),then J; > Jp > J3 are the indexing sets of an LR tableau of type (a, m, ¢).

(d) = (c) From Theorem 4.1 it is clear that (F, F>, F3) has a decomposition of
one of these forms. [

We are now in conditions to state the two main theorems of this paper. Let t =
2, 3. Let ¢ be the invariant partition of A,U D,,. Given a Young tableau J of type
(a,om,c), o € 9, the theorems, below, show that I € T(, p,)(U) if and only if
the indexing sets of .7~ belong to some set [ generated by the indexing sets of the LR
tableau in T4, pm,)(U).

Theorem 4.5. Let J and T, be Young tableaux, respectively, with indexing sets
J1, Ja, F1, Fa, and types (a, m, c), (a, sym, c), where l(c) < n. Then, there exists
an n x n unimodular matrix U such that Tiu my)(U) =1{7, T} if and only if
{(J1, o), (F1, F2)} is generated by Jy > J>.

This theorem has been stated in [4], without proof, using a different language.

Corollary 4.6. Let 0 € 9. Let T be a Young tableau of type (a,om, c). Then,
(7, H ) is an admissible pair if and only if w(T) = H .

Proof. Let Fi, F> be the indexing sets of 7. From [2] and [5], (7, #) is an
admissible pair if and only if w(Fi, F>) is a Yamanouchi word, when o = id, and
w(F1, F») is a dual Yamanouchi word, when o = 5. Therefore, the result follows
from Proposition 4.3. [
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Theorem 4.7. For eacho € 93, let 7 5 be a Young tableau of type (a, om, c), with
indexing sets F{, 3, Fy, and [(c) < n. Then, there exists an n x n unimodular
matrix U such that Ty p13)(U) = {7 5, 0 € S3}ifand only ifthe set {(F{, Fy , FY) :
o € 3} is generated by FISO > Fzm > F3s°.

Corollary 4.8. Let 0 € 3. Let I be a Young tableau of type (a,om, c). Then,
(T, H ) is an admissible pair if and only if w(T ) = H ;.

Proof. Let Fy, F>, F3 be the indexing sets of 7. If (7, # ;) is an admissible pair,
there exists an unimodular matrix U such that A,U D, realizes (9, # ). There-
fore, by previous theorem, .7 is an element of T(, ;)(U) and, by Proposition 4.4,
we have w(7) = A,,.

Conversely, if w(7) = #,, by Proposition 4.4, there exists a set [ generated
by a sequence J; > J, > J3 which contains (Fy, F>, F3). By previous theorem,
(7, H ) is an admissible pair. [

5. Proof of the main results

We start this section with an auxiliary result in which we analyze the structure of
some n X n matrices.

Lemma 5.1 [14]. Let 0 < m3 < mp <my < n. Let Jy = Uj_3 AX, 1o = Uj_5 AS
be subsets of [n], with J1 > Ja, and 0,0 € &, such that

LASNA =0, fori =12,k + ],

il =mi, A} = A5l =my—m3, |A|=|A5l=m3 with A} > A5,
fork =123,

2. J1NA3 C A3,

(\AH N 43 € A%,
3. 0[m3] = A}, o (Imd\[mis1]) = A}, fork = 1,2, and 6 = ;3 3.

Then,

(D I+ S(AT, A3, 60) € A ([ma)\[m3], [m1]);
(D) if|A%| = |A;|, the matrix S(A2, A;, 0o ) has nonzero entries in position (i, j)
only ifi € o_l(A%) and j € U_I(A%).

Proof. (I) By definition of S(A?, A3, 00) = (s;j), if s;j = 1 we must have 0o (i) €
A\ A3 and 0o (j) € AJ\A?. It follows that i € 0107 1(A}) = 07 1(A}) = [ma]\
[m3].
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Suppose j € [m1]. Then 6o (j) € Bo[mi] = A3 U A3 U Al. Since 0o (j) € A3
and the sets A3 and A3 are disjoint, we find that 6o (j) € (A] U A?) N A3 € A},
which is a contradiction.

Therefore, I + S(A3, A3, 00) € 4 ([ma]\[m3], [m1]).

(II) Again by definition of S(A}, A3, 6c), we have 0o (i) € A3\A} = A3 and
0o (j) € A%\A3 = A%, since the sets A% and A% are disjoint. [

5.1. Thecaset =2

Proof of Theorem 4.5 [4,14]. The “only if” part. Let J and J, be tableaux,
respectively, of type (a, m, c¢), with indexing sets Ji, J2, and of type (a, sym, ¢),
with indexing sets Fi, F», with [(c) < n. Suppose there exists an n X n unimodular
matrix U such that T(4 um,)(U) = {7, T, }. We will prove that conditions (i), (ii),
(iii) and (iv) of Definition 4.1 are fulfilled.

Assume U = P, Q, where 0 € &, and Q is a upper triangular matrix, with 1’s
along its main diagonal, and multiples of p above it.

By Proposition 3.12, we find that A, Py QD 1Dim,y) ~ Aa Po Dy, 1(I + X)
Dypyy, with I + X € A ([m], [m2]). Therefore,

Ay, Py D[mz]D([m]]\[mz])a I+ X)D[mz] realizes (7, H), 33)

Ay, Po Diny)y (I + X)D(my\ima)) Pimy)  realizes (T, Hs)). (34)

Recalling the type and the indexing sets of 7, we find that A, Py Dy;,) has

invariant partition a + x 1, and is equivalent to diag pla+ x°lm21y 1t follows, by
Lemma 3.6, that there exists a permutation § = 6! such that

Ay =Agg =Py APy and Oo[msy] = F). 35)

Now, we have

diagp(a + XJ‘ )~ Ay Py Dy, 1 by hypothesis on 7~
= P AaPoo Dy ) D(pmy1-[ma) bY (35)
~ 8aDooimy) Poo D (imy1-[ma1)
~diag ) (a + x 1 + x?7 mil=tmby
Note that F1 NOo([m1]\[m2]) = @. Hence, there exists an o« € %, such that,
with 0’ = afo, it follows J; = Fy U 0’ ([m1]\[m2]). In particular, (i) follows.
By hypothesis,
c—a:=(c1—ai,...,cp —ay) :XJ‘ —i—sz = XFI +XF2. (36)
Hence, subtracting x 1 on both sides of (36), and using (i), we find (iv). Furthermore,

(36) also shows us that J1 N J, = F1 N F». So, necessarily (ii) follows. Finally, note
that, by Theorem 3.15, there exist J C [n] with |J| = m and 8o [m>] > J such that
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diagp(a + XJl + ij)"’AaPaD[nn](I + X) Dy
~diag,,(a + x”") Poo (I + X) Dy
~diag,(a + x"" + x7), (37)
with F1 = 6o [my] > J. If J # J, then, by Lemma 3.6, there exists a permutation
w=pn"'suchthat u(a + x”") =a+ x’t and J > u(J) = Jo. Thus, F; > J, and
(30) is satisfied. Therefore, {(J1, J2), (F1, F2)} is generated by J; > J>.

The “if” part. Given Ji, J and Fy, F> C [n] satisfying (i), (ii), (iii), and (iv) of
Definition 4.1 with |J{| = |F2| = m1, |J2| = |F1| = ma, let o1 € ¥, be a permuta-
tion such that o1 [m2] = Fj and o ([m]\[m2]) = J1\F1.

Since Fy > Jo, we may consider the permutations 8, = Af, ,, 02 = 6207, and the

matrix § = S(Fy, J2, 01), which, by Lemma 5.1, belongs to .# ([m1], [m2]).
Consider the sequence

Aa. Po, Dipyy. (I + S)I = ST) Dipyy. (38)
In view of the proof of Theorem 3.15, we have
(38) = Au Doy my) Poy (I + S)(I — ST) Dipy)
~rp AgDy, Py, P0f192(71 Dy
NR Aa DJ1 D02¢71 [n12]
= diag,(a + xI 3.
On the other hand, since I + S € .#([m], [m>]), we may write

(38)= A4 Poy Dimy) D i) I + S)(I = ST) Dpyy)
=24 Po, Dimy) (I + S)UI = ") D, 1) Dimy1- (39)

Thus, again, by Theorem 3.15, we have

(38) = Ay Doy [my) Poy (I + S)(I — ST Dy

~L Ay DF, Py, nglgzgl Dy

~R AaDFl D920‘1[m1]
= diag,(a + x4 .
Finally, note, that by Lemma 3.2(ii), we have
(38) ~r Ay Py D) (I + S) Dy = APy (I + pS) D1 Dy

Therefore, the matrix U := Py, (I + pS) is such that A,UD,, and A,U Dy, ,
realizes, respectively, (J,#) and (J,H). That is, (7,7} =
T(a,Mz)(U)~ O
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In view of the theorem above, the indexing sets of 7, satisfy Fy >, F2. As a
consequence of this result, we obtain, below, necessary conditions for the admissibil-
ity of a pair (7, &), with t > 2. As we shall see, in the case t = 3, these conditions
are not, in general, sufficient.

Theorem 5.2. Let (my,...,m;) € My, with t > 2, and let 7 be a Young tableau
of type (a, (my, ...,my), c), with indexing sets Fy, ..., F;. Suppose (7, #) is an

admissible pair. Then we have:

LIfm; =2 miyy, F; 2> Fiqy.
2. Ifm; <mjq, Fi Zop Fiti.

Proof. By hypothesis, there exists U € %, such that Ay, UDypy,p, ..., Dy, is a
matrix realization of (7, ).

Thus, Ay, UDpm,). ... D) ~& A1V, where Aj = diag,(a + x™' + -+ +
xFi-1) and V is a unimodular matrix.

If we denote by a’ the partition a + x 1 4 --- + xFi-1, we have

ALY Dim) Dimi 11 ~ diagp(a’ + x B4y Firny,

Now, if m; > m; then Theorem 3.17 says that the sequence Ay, V Dy, , Dy, )
realizes a pair (7', #"), where 7 is an LR-tableau with indexing sets J;, J; 1, and
H' = (0, (1™i), (1™i) 4 (1™i+1)). Therefore, J; > Jiy.

If m; <mjy1. The sequence Ay, V D1, Dy, realizes a pair of tableaux
(7", #"), where 7" is a tableau with indexing sets F;, F; 1, and #” = (0, am,
(1) + (1™i+1)). Since Ay, V Dy, 11, Dy, 1s a matrix realization of a pair (#, #),
where 7 is an LR tableau, and # = (0, (1Mi+1), (1™Mi+1) 4 (1™i)), by Theorem 4.5,
we have F; Z2op Fip1. U

Remark 3. In general, an LR tableau may be realized by more than one unimod-
ular matrix U. For example, let .7 be the LR tableau (a, a + le ,a+ le + XJZ),
where a = (3,2,0,0), J; = {4, 3,2} and J, = {1}, and consider the matrices U =
P4y(I + pE14) and U = Pasy(I + Epp). Leto = (14) € 4, my =3 and mp =
1, and note that, by Proposition 3.12, since o[m] = Ji, we may write

Ay Paay(I + pE14) Dy Dimy) = diag,(a + x”") Paay(I + E14) Djmy  (40)
and

AqPaay(I + E12) Dy, Dimy) = diag,(a + X" Paay(I + E12) Dy (41)
Now, Theorem 3.15 and Lemma 3.6 give

(40) ~ diag, (@ + x /") P14 P14y Dimy) = diag, (a + x ' + x7)
and

(41) ~, diag,(a + x ") P14y P(12) Dimy ~ diag, (@ + x 7' + x 7).
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Therefore, both matrices U and U’ realize 7. On the other hand, applying the
procedure used above, we may show that AU Dy, Dy} ~ diag,(a + xf+x™)
and AU’ Dy, Dimy) ~ diag, (a + x 1 + x'2), where Fi = {3}, F, = {4,2, 1}, and
F| = {2}, F; = {4, 3, 1}. That is, matrix U gives rise to the set {(J1, J2), (F1, F2)}
generated by (J1, J2), while matrix U’ gives rise to the set {(J1, J2), (F|, F})} gen-
erated by (J1, J2) as well, with F{ = miny, J; and F; = J, U (J;\ F{). This is con-
sistent with Definition 4.1, given sets J; > J;, there is, in general, more that one set
generated by the sequence (J1, J).

5.2. Thecaset =3

Proof of Theorem 4.7. The “only if ” part. Let 0 € &3, and suppose there exists an
unimodular matrix U such that A,U Dy, realizes (7 ,, # ), where the tableau 7
has indexing sets F{, Fy, F3 . For simplicity, we shall often say that F{, Fy, Fy are
the indexing sets of A,U Dy,,. We observe, as we shall see through the proof, that in
proving that F = {(F, Fy, Fy) : 0 € 3} is generated by the sequence (Fixo)le,
we also prove that (a) = (b) in Theorem 4.1.

By Theorem 5.2, the indexing sets of AyU Dy, my.my) satisfy Ffo > F;O > F;O,
and the indexing sets of AqU Dy m,,my) satisfy Fls1 Zop F;l > sz‘, with F;O =
fgll.'Apﬁ)gsi;l'g Theorem 4.5 to the set {Ay U D, my)» DaUDany.my)}, we find that

=120

F'CF" F°nNF°CF' F'>F'" and
Fy' = Fy' U(F°\F}"). (42)

There exists ann x n unimodular matrix V such that A,U Dy, ~1 AyV, where
Ay = diagp (a + XFiO). Recalling Theorem 5.2, the indexing sets of Ay'V Dy, ms)
and AqUD gy my are Fy’ > F;° and F,? >, F3*, respectively. Thus, applying
again Theorem 4.5, it follows that |F232| = |F§°|,

N S0 S0 S0 N N S0
F>CF°’, F'NF°CF?’ Fy>F" and
Fy? = F3° U (Fy°\Fy). (43)

We have A U Dyyy) ~1 Ayr V', for some unimodular matrix V', with A, =
diag ,(a + XFISI ). Since the indexing sets of AyU Dgny my,ms) and AqU Duy s my)
are Ff‘, F;l, Fgo and Ffl, Fzszsl, ngsl, respectively, recalling Theorem 5.2, we find
that Ay V Dy my) has indexing sets Fy' > F3° and AyV Dy ) has indexing sets
Fy?" 2o, F3*''. Again by Theorem 4.5, it follows that |, | = | F3°|,

K™ CF', E'NF'CkR™, F>F" ad
B2 = F U (Fy'\Fy™™). (44)
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By (42) and (44), we have F,*"' C F,' = F," U (F\"\F}"), so we may write

F? = Aj U A}, (45)
where A3 € F,' and A? € F)°\F}". Let A] := (F}"\F,")\A%.
From (45), and since F,*"" > F3" and | F,>"'| = | F;°|, we can factorize F;° as

S 5 2
F’ = A3 U A3,
where A3 > A3, A7 > A3 are such that |A3| = |A3], |A}| = |A}], ;' N A3 € A3,
and F,' N A3 C A%,
Recall again Theorem 5.2, and consider AyU Dy, m3,my) and AqU Dy my,my) s
which have indexing sets

Ffl > F;ZSI >Op F;ZSI and Figlszsl 201:) F§'152Sl >0p F§231’ (46)
respectively. The application of Theorem 4.5 to the set {A,U D, my), AdU
D(ny,my)) gives

152851 S1 S1 5251 515251 S152851 5251
Fy CF', F'NE*CFY, R > F, and
F2515251 — F;ZSI U (FiYI\FinSZSl)‘ (47)

Since Flslszsl > Fzszsl = Ag U A%, and |Ff1szs1| = |F;2s1 |, define
A :=min{X C F"**" : |X| = |A]|and X > A3},
and
Al = F" A7
Since F}""*"' € F}', let A? := F}'\F;""?"". Then we obtain F}"*"*"! = A? U A? and
Fy""2'! = A3 U A2 U A3. From the inequality F;'***! > F;>*! and the definition of
A?, it follows that
At > A2> A2 and A > A) > AL
Also, from (42), (44) and (47), we obtain F; N A3 C A3.
Observe that A,UDgy, m;) has indexing sets F fo > F;z, and from (46),

AyU Dy, my) has indexing sets Ff‘ > Fzszsl. Then, by Corollary 3.23(i), we must
have

Fy? > ) (48)
Since the tableaux A,U Dy, my,my) and AqU Dy my,my) have indexing sets
F?=F° F* F? and F'2, F'"™ F?

Theorem 4.5 applied to {A,U D, ,m3)> AaU Dny,my)} gives

F'"™CcF" F°'NFE'CF"™, F">F ad
F" = F)° U (F°\F""). (49)

Observe that AU Dy m,) has indexing sets Ff'”‘2 Zop szlsz, and AqU Dy m))
has indexing sets F ls ! Zop Fg '. Then, by Corollary 3.23(ii), we must have
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"= F. (50)
Finally, consider the tableaux A, U D15, ;,my) and AgU D5 ms.m,)» Which have,
respectively, indexing sets
51852 5152 52 15281 518528 52851
F"2 F)2 F2 and  FYUR R RS

with F}'*? = F}""*"! There exists an unimodular matrix V" such that AU Dpy,) ~1
Ay»V". Then, the application of Theorem 4.5 to the set {A,# V" Dan, .my)s Dy V"
D(ny.my)) gives

5152851 5152 51852 ) 5152851 5185281 )
BN C B R AFR C R, R > FP and
B2 = F2 U (B 2\ Fy"™). (51)

From (43) and the inclusion A3 U A3 U A3 = F;'" € F;' = F;2U Al U AU
A3, it follows that
5 ! 1
Ay C F2 U A,
But the sets A3 and A! are disjoint. Therefore A5 C F,2. Let A3 := F,?\A3 and
A3 := F)°\F,*. Since |Fy*| = |F;""?|, we also have |A}| =|A3|, |A}] = |A3],
(FISO\A?) NA%c A‘l1 and (Fls‘)\(A? U A‘l‘)) N A% - A?. Moreover, from the inequal-
ity F'*? > F5?, we obtain AT > A%. From the inequalities (48) and (50), we find that
A3 > A2 and A > A3
Thus, the sequence (F|°, F,°, F3°) satisfy (b) of Theorem 4.1, and, therefore, F
is generated by F|° > F," > F3°.
The “if” part. Suppose the set F' = {(Fi")?=1 10 € Y3} 1is generated by (Ffo)le.
Then, there exists a decomposition of (Fiso)? | satisfying (b) of Theorem 4.1. We

will prove the existence of a unimodular matrix U such that {7, : 0 € 93} =
Tia,m5)(U).
Let m} := |A?| and m) = |F1S°\A{ |. Let o1 be a permutation in &, such that
o1(m}]) = A3,
o1([m3\[m5]) = Af,
o1 ([ma]\[m3]) = A3,
o1 (Im|\[m2]) = A3,
o1 ([mi\[m}]) = A},
and consider the following permutations:
025 = Aps a3 635 = Ap343
Ou=rptap O2=hg
623 Z)‘A?,Ag’ 012 Z)‘Ag,Af‘
Let 0y := 0236246501 and o3 := 0320350120>. Note that since (A% @] A;) N (A{’ U
A%) = (), the permutations 6,3 and 61> commute. Consider the following matrices:
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Sas = S(A7, A3, 01), Si2 = S(A3, A2, o),
Sra = S(A}, A3, 0r501), S35 = S(A3, A3, 01202),
Sa3 = S(A}, A3, 02462501), Sz = S(A1, A3, 03501202).

Notice that by Lemma 5.1(II), the entry (i, j) of S12 is nonnull only if i € [mg]\[mg]
and j € [m’l]\[mz]. Again, by Lemma 5.1(I), we have

I+ Sps, I + S35 € A ([m3], [m1]),
I+ Soq, I + S32 € A ([m3]\[m3], [m1]), (52)
I+ So3 € A (Ima)\[m3], [m1]).
Let Sij := (I + S;;))(I — SiTj), and consider the following product of matrices:
A4 Py, Dy 1825524523 Dimy1 12535532 Dis).- (53)

Recall (52). Since D({m,]\[m,]) commute with S»5S24573, we may write

(53) = Au Po, Dy S25524823 Dy \ima]) Pim1 512535532 Dims]
= A4 Py Diny1 S25524523 Din 112535532 Dps .- (54)

Matrices Dy} and D, |\ms)) commute with S12 and S3553), respectively. Thus,
we have

(54) = A4 Py, Diiy1 525524523812 Diiny 1 S35532 Dim - (55)
Note that §12§23 = 523§12, and the diagonal matrices D ([, ]\[ms]) and Dy, com-
mute with S»55245 1> and S»3, respectively. So,

(55) = Aa P, Dimy1S25524812 Diiny 1523535532 Diny .- (56)
Consider again (53), and observe that the diagonal matrices D [n,)\[m3]) and D)
commute with S1253553; and S»3, respectively. So, we get

(53) = Au Py Dimy1525524 Djiny1 823812535532 Diny .- (57)
Finally, note that D((m, \[my]) commute with S»5S4. Therefore,
(57) = AaPs, Dimy) 525524 Dim, 1523512535532 Dimy) - (58)

We will show that (53), (54), (55), (56), (57) and (58) are, respectively, matrix real-
izations of the pair of Young tableaux (J ,, # ), for o = 50, 51, 5251, S15251, 52,
s152. Consider the sequence (53). Recalling Lemma 3.14, we may write

A4 Poy Dimy) = AaDoyimi) Poy ~R AaDogyjm)],

Ay Py Dy, 1825524523 Diyy) = Ay Doy Po, 525824523 Dy,
~L AaDgymy1Po, Dim)
= AaDoym11Doyimy) Poy
~R 8aDoymy1Doylmy)



O. Azenhas, R. Mamede / Linear Algebra and its Applications 401 (2005) 221-275 265
and
(53) = Aa D01 [ml]Daz[mz] P02§12§35§32D[m3]

~L AaDoy[m1Dormy) Pos Dims)

~R AaDoy[m1Dos[my1 Do [m3)-
Since o;[m;] = Fiso fori =1, 2, 3, we obtain (53) ~ A, D psoDpso D pso. By a sim-

1 2 3

ilar process, we find that

(54 ~ A4 Do\ (my) Doyimy) Posims) = AaDFf‘ DF;‘ DF;‘ ’

(55) ~ A4 Doy(my1 D103 [m3) Dosimi] = Aa DFI’?S1 Dngsl DF§2S1 ’

(56) ~ Ag Do\ [m31D0,5600465501 ma1 PDosim 1 = AaDFf”Z” DF;SZ‘” DF;HQH,
(57) ~ AaDoy(m11D646501[m31 Do3ma) = Aa DFfz DF;? DF352’

(58) ~ Aa Doy im31 Dorbssorim) Dasima) = AaDprisa Dpsisa Dpsisa.

By Theorem 3.10, it remains to prove the existence of an unimodular matrix U
such that
Poy Dy 1825524523 Dimy1S12535832 Dims) ~R U Dy 1 Dimy) Dims) -

We start by noticing that, attending to (52) and to Lemma 3.3(iv), we may write

3
HEZ" = AB, and 1_[ 33/( = A3 B3,
k=5 k=5,2

where A; € %(Im;]).4(Im;], [m1]) and B; € .4#(m;], m1)), i =2,3. Thus, by
Lemma 3.2(ii), we have
(53) = Ay Py, Dimy1A2Ba Dy (I + S12)(I — S5) A3 B3 Djy
~R DaPoy Ay Dim 1 Dimy1 By(I + S12)(I — S1,) A3 Dppsy). (59)

where A} € U(Imal).# p(Im2), [m1])  and B} e .M p(Imal,  [mi]) <

w([mD)A p([m1]).
Next, note that

I + S12 € U([m3)).A4 ([m3]).

Then, by Lemma 3.3(iii), there exist C,C’ e %([m3]).#([m3]) and B} €
U([m11)-# ,([m1]) such that

Dy 1Dy By (I + S12) = Dy Dimy)C By = C' Dy 1 Dy B

Attending to the structure of Ssz’ we have [ — Ssz e .M ([m’l]\[mz]). Thus, by Lem-
mas 3.3(ii) and 3.2(i), we may write
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(59) = Ay Py A5C' Dy Dimy1 By A5 F Dips, (60)

for some matrices F € .4 ([m}]\[m2]) and A% € U([m3)).4([m3], [m1]) S
U ([m3]). 4 ([m3]). Finally, again by Lemmas 3.3(iii) and 3.2(ii), we obtain

(60) ~r Ay Py A5C' A5 Diyny) Dimy) Dims)

for some A%' € %([m3]).#([m3)). Therefore, the matrix U := Py, A,C’AY is uni-
modular and satisfy {7 : 0 € 3} = T4, m;)(U). O

6. Final remarks and examples

In this section we translate into words the action of the symmetric group .3
described in Theorems 4.1 and 4.7, and relate it with the action of the symmetric
group generated by the parentheses matching operation on words as described by
Lascoux and Schutzenberger in [11,13]. Actually, from the matrix context we get a
family of parentheses matching operations on a Yamanouchi word over the alphabet
{1, 2, 3}, compatible with the Knuth equivalence, given by shuffling the output of
the Lascoux and Schutzenberger parentheses matching operation on words 1, 21,
3121 and 321. The output of the Lascoux and Schutzenberger parentheses matching
operation on a Yamanouchi word, over the alphabet {1, 2, 3}, is itself a special shuffle
of this kind.

A parentheses matching operation 6;, 1 <i <t — 1, on a word w over the alpha-
bet [#] consists of a longest matching between letters i + 1 and letters i to their right,
by putting a left parenthesis on the left of each letter i + 1, and a right parenthesis on
the right of each letter i, such that the unmatched right and left parentheses indicate
a subword of the form (i + 1)” which will be replaced in w with i" (i + 1)*. For
eachi € {1,...,t — 1}, the nonnegative integers r and s are uniquely determined.

Lascoux and Schutzenberger have introduced involutions 91‘*’ fori=1,...,t—
1, to describe the following parentheses matching operation on words over the alpha-
bet [¢]. Let w be a word over the alphabet [#]. To compute Qi*(w), first extract from w
the subword w’ containing the letters i and i + 1 only. Second, bracket every factor
i + 1i of w’. The letters which are not bracketed constitute a subword w/ of w’.
Then bracket every factor i + 1i of w/. There remains a subword w). Continue this
procedure until it stops, giving a word w; of type i" (i + 1)°. Then, replace it with
the word i (i + 1)” and, after this, recover all the removed letters of w, including the
ones different from i and i + 1.

The operations 6" are compatible with the plactic or Knuth equivalence = [11,13].

For example, let w = 231312121 be a Yamanouchi word over the alphabet [3].
To compute 6] (w), we get w’ = (21)1(21)(21), and w} = 1 = 12°. Thus,

0F(w)=231322121, 61)
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where the underlined letter is the subword w] replaced with 2 = 192. To compute
65 (w), we get w' = 23(32)2, w| =2(32),and w) =2 = 2130, Thus,

0f(w)=331312121, (62)

where the underlined letter indicates the subword w/, replaced with 3 = 2031 There-
fore, we have

0763 (w) =332322121,
0507 (w)=331322131, (63)
076507 (w) =332322131=06;0765(w).
Let w be a Yamanouchi word over the alphabet [3] of evaluation (m1, m>, m3). The
set W* = {0%(w) : 6* € (0}, 05)} is called the set *-generated by w. In our exam-

ple above, the elements x-generated by w = 231312121 are displayed in (61)—(63).
Clearly, 5 acts on W*,

Given a group G = (x1, ..., x;—1) satisfying the Moore—Coxeter relations for
Sy, we say that x € G and o € %, have the same word if there exist iy, ..., i} €
{1,...,t —1}suchthatx =x;, ...x; ando =s;, ...5j,.

Let H = {#, : 0 € &3} be the set of o-Yamanouchi tableau words of evalua-
tion om. That is, # ', = 6" (A y,) whenever 6* and o have the same word. Recall
w = Ky, if and only if 0*(w) = H#,. Indeed, given a word w over the alphabet [¢],
foreachi =1,...,¢t — 1, we might have several parentheses matching operations
6; on w. Some of them are giving rise to the same output as 6 and others are not.
From [6], we know that for every word w and foralli = 1,...,t — 1,6; (wj;,i+1}) =
67 (wyyi,i+1))- Equivalently, 0; (w( ;1)) = 67 (u"), for some word u’ = w; ;41) with
u’ over the subalphabet {i, i + 1}. This means, that 0;(w) = Qi*(u), where u is the
word obtained from w replacing wy(; 41y with «’. For r > 2, we may have w # u,
and, henceforth, 0; (w) = 67 (u) # 6] (w). It is easy to exhibit parentheses matching
operations &;, i = 1, 2, satisfying the Moore—Coxeter relations for .%’3 on a Yama-
nouchi word over the alphabet [3] which do not preserve the Knuth equivalence class
A ». For example, given the Yamanouchi word 3211,

3211 <2 32101 <5 3212 <25 3312
3211 <5 3212 <2 3312 <5 3312,

and 3312 =3132 #6070 (3211) = 3213 = H5,5,. Although, £(322) =
9;(232) = 332, with 322 = 232, we have 3212 # 2312 and, henceforth, 9; (3212) =
3213 # 65(2312) = £(3212) = 3312.

Definition 6.1. Given a Yamanouchi word w over the alphabet [3], the parentheses
matching operations 6;, i = 1, 2, satisfying the Moore—Coxeter relations for ¥’z on
w, are said plactic if O (w) = A, whenever 6 € (01, 6») and o have the same word.
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That is, putting W = {6(w) : 6 € (01, 02)}, called the set generated by w and
(61, 62), we have 6(w) = #,, with 6 and o with the same word.

Using Theorem 4.1, we characterize a family of plactic parentheses matching oper-
ations ;,i = 1, 2, on a Yamanouchi word w over the alphabet [3]. The translation into
words of the action generated by the decomposition given in Theorem 4.1 says:

e write the Yamanouchi word w of evaluation (m1, m;, m3) as a shuffle of 0 < k <
m3 words v =3121, m3 — k words w3 =321, mp — m3 words wr, = 21, and
m1 — my — k words wi = 1, that is,

w = sh(wg”_k, wé”z_"”, u)'ln'_mz_k, vk); (64)

e compute 6*(wy), *(w2), and 6*(v), with 6* running over (0}, 65), as displayed
below:

[ 05 0F
| > 1
w=1«—2<«—>3<«—>3

2 1 2
w=1«—>1«—>2<«—>3
* * *

Wy =21 <5 21 <25 31 <> 32

05 or 05
wy) =21 <« 31 «— 32 «— 32 (65)

oF 63 oF
v=23121 «<— 3221 <= 3231 «— 3231
0F o* 0F
v =3121 <> 3121 <> 3221 <> 3231,

and note that the row word w3 = 321 is invariant under 9;“;
o for each 6* € (6}, 05), let
sh(wy? ™", @ w2)™ ", 0% w)" 7K, (67 0)) (66)
be the word obtained by replacing in sh(w§"3_k, wy 2wt 2=k kY (64), w;
with 0*w;, i = 1, 2, and v with 0*v.

Considering (66), letij ...k be a word over the alphabet [2] and put
0:6; . .. Op(w) = sh(w}> 5, @ w273, (0*w )™ 27k (0*v)¥),  (67)

where 6* = 91.*9}k ---0f. Clearly, that 6;,i = 1, 2, are matching operations satisfying
the Moore—Coxeter relations for .#’3 on w. From Proposition 4.4, we have 6 (w) =
sh(wg'”_k, (O*wr)™ M3 (9% wy)™ M2k (9*v)k) = #,, o and 6 with the same
word, and thus 6; are plactic operations.

Reciprocally, let

W = [sh(wj™ ™, @ wy)™ ", @ w)™ 27k (0 v)¥) : 6* € (0F, 65)),
(68)
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be the set generated by sh(w;"3_k, wy? ", wi"lfmrk, v6) with my — ma, m3 >

k > 0, and (01, 6») defined in (67).
Fix arbitrarily indexing sets (Fy, Fp, F3) of w = sh(w'3"3_k, wglz_m,
wi’”imz*k, v¥), and let F = {(F?, F3, Fy) : o € &3} such that

w(FY, By, F§) = sh(w? ™5, (0%wa)™ ™3, (9%wy)™ 27k (6*v)),
(69)

where 0* and o have the same word. Translating to W the involution ©;,i = 1, 2,
defined on [, Corollary 4.2, we find that @(Fy, F;, F3) are indexing sets of
sh(w]> ™5, @*wy)m=m3, (0*wym 2k (6*v)¥), where the word of O e
(@1, @7) and 0* € (0}, 07) is the same. That is, for eachi =1, 2, @;(F{, Fy , Fy)
are the indexing sets of 60;(w(Fy,Fj, Fy)) = sh(w;'”_k, (0F0%wp)m>7m3,
0F0*wy)™~—m2=k (9*6*v)*). Thus we have

6(w) = sh(wy> ™, ©*w)™ "3, (*w)™M "7k, (@*v)k)
= w(F{, F§, Fy)

where 6 € (0, 6,), 6* and o have the same word.

In [6], it is shown that when *-generation is considered in Theorem 4.1, the action
of symmetric group described in that theorem coincides with the action of the sym-
metric group generated by the involutions 6,7 = 1, 2 on a Yamanouchi word w. Let
us denote by

sh*(wg“_k, w;nz—mz’ w;”‘l*mZ*k’ vk)
any shuffle of w afforded by a decomposition of the indexing sets (F1, F», F3) given

by x-generation. Then, x-generation by w corresponds to the x-generation by the
class of indexing sets of w,

W* = { 0% (w) = sh* (Wi %, @ wy)™ ™", (0*w)™ 27K, (0% v)) :
0* € (07,05} (70)

and, henceforth, the action of the symmetric group generated by the parentheses
matching operation 6; on a Yamanouchi word w is achieved. As we shall see below,
in examples 1 and 2, x-generation on indexing sets may give rise to several decom-
positions of the indexing sets and, henceforth, to several shuffles of w. Nevertheless,
all of them are giving rise to the same group action, that is 6*(w) = sh*(w;"rk,
(O*wr)™27"3 (9% wy)™ 2~k (9*v)¥) and among them there exists one that coin-
cides with the parenthesization of 6*.

We observe that the construction given by Theorem 4.1 does not give all plactic
parentheses matching operations on a Yamanouchi word. For instance, consider the
Knuth class [3211] = {3211, 3121, 1321}. The following diagram exhibits a

family of plactic parentheses matching operations for each Yamanouchi word in
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[3211] = {3211, 3121, 1321}. In particular, all the sets W (68) generated, according
to Theorem 4.1, by the elements of the Knuth class [3211]

3211 2L 3212 2, 3013 A 3913, 3211 <2, 3211 A 3212 2 3913

1 1

3121 <4, 3901 <%, 3231 P, 3931, 3121 <2, 3121 < 3901 2, 3031
m M
o o o o o %
1321 «— 2321 «= 3321 «— 3321, 1321 «= 1321 «— 2321 «= 3321
(71)
but

3211[= 31217 <5 3221[= 23211 <25 3321 &4 3321
3211 <25 3211 &5 3021[= 32121 25 3321[= 3231],

where w;, i = 1,2, satisfy the Moore—Coxeter relations on 3211, shows that
{m(3211) : € (1, n2)} is not generated by Theorem 4.1.

We also observe that 6* preserves the Q-tableau of a word, that is, Q(w) =
Q(0*w) (see [13]). But in general 6 € (61, 62) (67) does not. For instance, consider-
ing (01, 6>) given by

©i 03 Ch

3211 <5 3221 <25 3331 < 3231
9* * 0*

3121 <25 3211 <25 3021 <25 3231,

we have Q(3211) =431 2 # Q(3221) = 421 3.

LetH = {#, : 0 € 93} be the set of o-Yamanouchi tableau words of evaluation
om. Thatis # o = 0% (Hy,) = w;"3(Q*wz)m2’m3(0*w1)m1’m2, where the word of
0* and o is the same. Clearly, H is %-generated by 4. Let W = {sh(wg'”_k,
(0 wp)m2m3 (0w ITm2 =k (9% u)k) L 0% € (07, 05)} as in (70), generated by
(64), a shuffle of #5,. We address the question: How are the sets H and W related?

Note that from (65), 0*v = 6*(3121) = w3(0*w;) = (0*w;)ws, where 6* €
(0], 05). For each 6* € (0, 05), replace in the word sh(wg'”_k, (G*wzz"z_m-?,
O*wy)™—m2=k (@*v)k), 6*v with w30*(w;). We obtain a word sh(wg'”,
(B*wp)™273 (O*wq)™1~™2), This defines a set

W = {sh(w}™, (0 w)™ ™, (0*w1)™) : 0* € (0}, 65) )

generated by the word W obtained replacing in w, v = 3121 with w3zw; = 3211.
Now, for each 0*, we may again shuffle sh(w§"3, (BFwp) ™23 (§*wq)™M1—M2)
to get A = wy > (0*w2)™2 "3 (*w)™ "2, and, therefore, H.

6.1. Examples

Consider again the word w = 231312121 and fix indexing sets J; = {3, 5, 7, 9},
Jo = {1, 6,8} and J3 = {2, 4}. The examples below exhibit several decompositions
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of the sequence (J1, Jo, J3) satisfying (b) of Theorem 4.1. In particular, using the
procedure given in [6], Proposition 4.6, Examples 1 and 2, exhibit decompositions
of (J1, J2, J3) that give rise to the action of the symmetric group generated by the
parentheses matching operations 6 on w.

Example 1

The grid below exhibits a decomposition of the sequence (Ji, J2, J3) satisfying
(b) of Theorem 4.1,

1 2 3

© 00 ~3 O U W N

This decomposition of the indexing sets is equivalent to write the word w =
231312121 as a shuffle of the words wy = w({3}, {1}) =21, w3 = w({7}, {6}, {2}) =
321, and v = w({5, 9}, {8}, {4}) = 3121. According to this decomposition we have
the following action of ¥3:

1 2 3 1 2 3 1 2 3
1 1 1
E 0 5 0 g
9} o O & O
6 6 6
7 T 7
8 8 8
9 9 9
62 01
) !
1 2 3 1 2 3 1 2 3
1 1 1
2 2 2
3 3 3
; I 0 S 7
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9




272 O. Azenhas, R. Mamede / Linear Algebra and its Applications 401 (2005) 221-275

The translation of this action into words yields

w=23T312121 <% 2337322121 <& 337322131
0> 01
¢ ¢ ’
337312121 <% 332322121 <2 332322131
(72)

where the overlined letters define the word w; and its image under the operations
0;,i = 1, 2, the underlined letters define v and its image under 6;, i = 1, 2, and the
remaining letters define w3.

Below, we illustrate this action on a set of skew Young tableaux generated by an
LR tableau 7~ whose word is w = 231312121:

e o o o 2 e o o o 2 e o o o 3
e o | 3 o * 1 3 o ® ° 1 3
I =e e 1 3 e e 2 3 2.6 o 2 3
e 1 2 e 1 2 e 1 2
1 2 1 2 1 3
$92 ¢91
e o o o 3 e o o o 3 e o o o 3
e o 1| 3 o ® ® 2 3 o * 2 3
e o | 3 5 e o 2 3 <250 o 2 3
e 1 2 e 1 2 e 1 2
1 2 1 2 1 3
Example 2

The decomposition of (J1, J2, J3), in the previous example, gives rise to a match-
ing operation 6; which coincides with Qi*. Compare (72) with (61)—(63). The grid
below exhibits another decomposition of (J1, J2, J3), satisfying (b) of Theorem 4.1,
giving rise to the symmetric group action described by Lascoux and Schutzenberger
as well, but which corresponds to a different parentheses matching.

1 2 3

[Nl

W00~ Ut W
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The translation into words of the action of 3 on the set generated by this decom-
position of (J, J2, J3) gives

w=23T312121 <% 237322121 <% 337322131
0n 01
3 4 ,
337312121 <% 332322121 <& 333322131
(73)

where the overlined letters define the word wy = w({3}, {2}) = 21 and its image
under the operations 6;, the underlined letters define v = ({5, 9}, {8}, {2}) = 3121
and its image under 6;, i = 1, 2, and the remaining letters define w3z = w({7}, {6},
{4}) = 321. Although, the action of the symmetric group obtained by this decom-
position of (Jy, J2, J3) coincides with the one in (61)-(63), the matching between
letters 3 and letters 2 to their right, respectively, in 6;w and 6]w, and in 616w and
6507 w is not the same.

Example 3

The next grid exhibits a decomposition of the indexing sets (J1, J2, J3), satisfy-
ing (b) of Theorem 4.1, whose matching operation 6; gives rise to an action of the
symmetric group different from the one described by 6} and 65,

1 2 3

WO 00~ O Ut i LN =

According to this decomposition, we have w =23 1312121 as a shuffle of w;,
i =2, 3, and v, which, by (65), leads to the following action of .¥’3:

w=23T312121 <% 237322121 <2 337323121
(%) 01
¢ ¢
337312121 <% 332322121 <& 332323121

(74)

Below, we illustrate this action on a set of skew Young tableaux generated by the LR
tableau .7 considered previously:
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e o o o 2 e o o o 2 e o o o 3
e o 1 3 o ®® 1 3 o *® 1 3
T =e e 1 3 e o 2 3 .6 o 2 3
e 1 2 e 1 2 e 1 3
1 2 1 2 1 2
3% 3
e o o o 3 e o o o 3 e o o o 3
e o 1| 3 o ® 2 3 o * 2 3
e o 1 3 e o 2 3 2.6 o 2 3
e 1 2 e 1 2 e 1 3
1 2 1 2 1 2
Example 4

Finally, we consider a decomposition of the indexing sets (Ji, J2, J3) such that
w is a shuffle of the row words w; = w({5}) = 1, wy = w({l1, 3}) = 21, and w% =
w({7,6,2}) =321 = w% = ({9, 8,4}). According to this decomposition, we have
w=231312121 as a shuffle of w;, i = 1,2, where w; = 1, and w}, w2. Thus,
by (65), the symmetric group acts on w in the following way:

w=23T312121 &% 2373%2121 <& 337332121
(2 01
¢ ¢
337312121 <% 3323%2121 <& 332332121
(75)

This action clearly differs from the one considered in (61)—(63) but the output is still
in the same Knuth class.
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