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Abstract

Geometric properties of the numerical ranges of operators on an indefinite inner product
space are investigated. In particular, classes of matrices are presented such that the boundary
generating curves of the J-numerical range are hyperbolical. The curvature of the J-numerical
range at a boundary point is studied, generalizing results of Fiedler on the classical numerical
range.
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1. Introduction

Throughout the paper, M}, «,;, denotes the set of n x m complex matrices, simply
M, if n = m, denoting H, the set of n x n Hermitian matrices. For H € H, and
A € M, consider the subsets of the complex plane
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and the H-numerical range of A denoted and defined by
WH(A) = Vu(HA).

If H is the identity matrix I, € M,,, then Vy(A) and Wg (A) reduce to the clas-
sical numerical range, usually denoted by W (A). If H is a non-singular indefinite
Hermitian matrix, the sets Wy (A) and Vg (A) can be understood as natural gener-
alizations of the numerical range with respect to the Krein structure defined by the
indefinite inner product (x, y)y = y*Hx, x,y € C" [12].

For convenience, we consider the related sets

Vi(A) = {x*Ax: x e C", x*Hx = £1} and Wi (A) = V;(HA).
Evidently, we have
W, (A) = —W5(A), Wg(A) = WA UW,A).

If H=1,, then Vg(A) = V;IF(A) =Wg(A) = W;_I“(A) =W(A) and V,(A) =
W, (A) =0.

For any A € M,,, W(A) contains o (A), the spectrum of A. For the H-numerical
range, we have the following inclusion property: oy (A) C Wy (A), oy (A) denoting
the set of the eigenvalues of A that have H-anisotropic eigenvectors, that is, vec-
tors x for which x*Hx # 0. Compactness and convexity are basic properties of the
classical numerical range. Actually, W(A) is always a compact and convex set for
A € M, [9]. In contrast with the classical case, the set Wy (A) may not be closed and
is either unbounded or a singleton [12,13]. (For A € C, Wy (A) = {A} if and only if
HA = AH.) On the other hand, Wg (A) may not be convex. Nevertheless, Wy (A)
is pseudo-convex [12]; that is, for any pair of distinct points x, y € Wy (A), either
W (A) contains the closed line segment joining x and y, or Wy (A) contains the
line defined by x and y, except the open line segment joining x and y.

LetA=ReA+iIlmA,whereRe A = (A + A*)/2andIm A = (A — A*)/2i, be
the cartesian decomposition of A € M,,. For H € H,, the H-shell of A is the subset
of R? denoted and defined by

x*Re(HA)x x*Im(HA)x x*A*HAx
S u(A)= , ,
x*Hx x*Hx x*Hx
This concept motivated some investigation [2]. If H = [,,, then ¥’ 5 (A) reduces to
the Davis—Wiedlant shell & (A) studied by Davis [4,5]. The sets

yfl(A) = {(x* Re(HA)x, x* Im(HA)x,x*A*HAx) cxeC' x*Hx = :I:l}

):x eC”,x*Hx;éO}.

are closely related to the H-shell of A. Obviously,
It (A = =S H(A), Su(A) =LA UIT,(A).

Since Wy (A) (Wﬁ(A)) is the image of ¥y (A) (,9”?1(14)) under the projection
(x,y,r) — x + iy, more information on the matrix A can be obtained from .y (A)
(& i (A)). Moreover, there is an interesting interplay between the algebraic proper-
ties of the matrix A and the geometrical properties of % g (A).
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In this paper, we assume H non-singular. Without loss of generality, we can con-
sider in the definitions of Wy (A) and % (A), instead of H, the matrix J = P(I, &
—1I,_,)PT, where P is a permutation matrix. In fact, using Sylvester’s law of inertia
[8], we can easily check that Wy (A) = W;(R™'AR) and ¥ (A) = ¥ ;(R"'AR),
R being a non-singular matrix such that R* H R = J is the inertia matrix of H.

We recall that a matrix U € M,, is pseudo-unitary of signature (r,n —r), 0 <
r < n,if and only if U*JU = J. This matrix is also called J-unitary. The pseudo-
unitary matrices of signature (r,n — r) form a group denoted by U, ,_,. For any
UeU,—r, Vi(A) =Vi(U*AU).

For simplicity of notation, we consider throughout

H =Re(JA) and H; =Im(JA).

Let k € W;(A) be a boundary point of W;(A). A line containing « and defining
two half planes, such that one of them does not contain W;F(A) (=W; (A)) but it
contains —WJ_(A)(W;F(A)) will be called a supporting line of Wj;(A). Supporting
lines may not exist, and they may not be unique. As proved in [1, Theorem 2.2], if
ux + vy + w = 0 is the equation of a supporting line L of W;(A), then

detwH; +vHy +wJ) =0, (D

and —w is the maximum or the minimum eigenvalue of the matrix uJ Hy + vJ H3,
according to ux + vy + w < 0, for all points in W}"(A) (W, (A)), or ux + vy +
w > 0, for these points. Conversely, the intersection L N W;*L(A) consists of all
points (Az, z); for which z is an eigenvector of uJ Hy + vJ H, corresponding to —w
such that z*Jz = £1. Since det(uH; + vH> + wJ) is a homogeneous polynomial
of degree n, (1) can be considered the dual (line) equation of an algebraic curve
(for details on algebraic curves, see e.g. [16,18]). Its real part, throughout denoted by
Cy(A) (simply C(A),if J = I,), is called the boundary generating curve of Wy (A).
Kippenhahn [10] proved that the curve C(A) generates W (A) as its convex hull. The
algebraic curve Cj(A) generates W, (A) as its pseudo-convex hull, which is obtained
in the following way: for any two points x1, x> in the boundary generating curve, let
z; € C" be such that

77 JAz;
7 Jzi

=x;, i=1,2;

take the closed line segment defined by x1, x2, if (z]Jz1)(z5Jz2) > 0; and take the
two rays {ax] + (1 —a)xz o < Oora > 1},if (2] J21)(z5Jz2) < 0. The boundary
generating curve C; (A) has class n, that is, through a general point in the plane there
are n lines (may be complex) tangent to C;(A), and it has the eigenvalues of A as
its real foci.

This paper is organized as follows. In Section 2, W;(A) is described for A a
J-normal matrix and A a J-unitary matrix with simple eigenvalues, answering affir-
matively questions posed by Li et al. in [12]. It is also proved that if A is a J-normal
matrix and J H; has simple eigenvalues, then 9"; (A) is a polyhedron, proving, in
a particular case, a conjecture formulated in [2]. In Section 3, classes of matrices
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are presented such that the boundary generating curves of W;(A) are hyperbolical.
In Section 4, a formula for the curvature of W;(A) at a boundary point is obtained,
and the connection between the curvature of the boundary of W;(A) at Amax(H1)
and of the local J-generalized Levinger curve at 1/2 is investigated. These results
generalize results of Fiedler [6,7] on the classical numerical range.

2. Results for J-Hermitian, J-normal and J-unitary matrices

It is known that W;(A) C R if and only if A is J-Hermitian, that is, JA € H,.
Now, we prove the following.

Proposition 2.1. [f A is a J-Hermitian matrix such that the eigenvalues of A are
not all real, then Wy (A) is the whole real line.

Proof. Since JA € H,, then itis obvious that W;(A) € R. Suppose that the eigen-

values Af, Ay v ey Aps Ay, A2r41, ..., Ay Of A are all distinct, and suppose that only
Aor41, -« -5 Ay are real. It is clear that the corresponding eigenvectors uy, vy, ..., U,
Vp, Ur41, - .., Uy are linearly independent. Clearly, u} Ju; =v;Jv; =0,i=1,...,7.

Let D € M, be the matrix whose columns are the vectors of this eigenbasis. The
matrix D*J D is a block diagonal matrix with 2x2 and 1x1 blocks, corresponding
to complex and to real eigenvalues, respectively. Moreover, the 2x2 blocks have
zero diagonal entries and the off diagonal entries non-zero. Hence, det(D*J D) # 0,
which implies u} Jv; = y; # 0, and so u] J Av; = Nivii=1,...,r.

Consider the subset Ry; ,, (A) of W;(A) defined by

(i +av))*JA(u; + av;)
(u; +avi)*J (u; + av;)

Ru,-,v,-(A)={ raeC, (”i+avi)*-](ui+avi)7é0}-

Since A; # A;, by straightforward computation, we can prove that

Re(al;y;) .
— - = |kil(cosg; —sing; tan ;)

Re(ay:)
are elements of Ry, ,;(A), for ¢; = —arg); and & = arga + argy;. Therefore,
Ry, v; (A) is the whole real line, as well as W;(A). By a perturbation, we can take
the eigenvalues of A simple, and the result follows by a continuity argument, as it
can be easily seen, for instance, by a contradiction argument. [

Remark 2.1. The set W;(A) may be the whole real line even if the eigenvalues of
A are all real. Indeed, consider A = diag(1, 2, 3) and J = diag(1, —1, 1). It can be
easily shown that W;(A) is the real line.
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A matrix A € M,, is called essentially J-Hermitian if uA + v, is J-Hermitian,
forsome 0 = n € Cand v € C.

Corollary 2.1. If A is essentially J-Hermitian and the eigenvalues of the J-Hermi-
tian matrix B = uA +vl,, 0 # u € C,v € C, are not all real, then Wj(A) is the
whole straight line passing through —v /i and with direction —arg (.

Proof. By the hypothesis and using the previous theorem, we can conclude that
W;(B) = R. Since Wj(uA + vl,) = uW;(A) + v, the result easily follows. [J

Let A € M,,. In [14], it was proved that if a boundary point w in W;(A) is a
corner of Wj(A), that is, it is on more than one supporting line of W;(A), then w
is an eigenvalue of A and there exists an eigenvector x associated to w, such that
Ax = wx, Ay = wx, x*Jx = 1.

Clearly, Re W;(A) = W;(JHp) and Im W;(A) = W;(J Hy).

Lemma 2.1. Let A € M,, and x € C" such that x*Jx = +1. If Wf(JH]) is a
closed half line then the following conditions are equivalent:

(a) Re(x*J Ax) is the extreme point of £Re WJi (A);

(b) x*H\x is the extreme point in :I:Wf(JHl);

(¢) JHix = Ayx, where Ly is the maximum or the minimum eigenvalue in
gy (J Hl).

Proof. The equivalence of (a) and (b) is obvious. Suppose that w is the extreme
point of the closed half-line Wf(JHl). Then w is a corner of Wj[(JHl), and so it
is the maximum or the minimum eigenvalue in o (J Hy), thatis, w = Ay;.

(¢) = (b) If x is an eigenvector of J H; associated with A 7, then +(x*Hyx) = Ay
is the extremum of Wf(] Hy).

(b) = (c¢) (By contradiction.) Suppose that x is not an eigenvector of J H; associ-
ated with the eigenvalue Ay, thatis, Hjx # Ay Jx. Then £(x*Hjx) # Ay, and Ay
would not be the extreme point of Wj[ (J Hy), a contradiction. [

In [1], an algorithm to describe the boundary generating curve of V;(A) was
presented. In this spirit, we prove the following proposition.

Proposition 2.2. Let A € M, and let 0 belong to a subset Q of [0, 2m) such that
the n eigenvalues 11(0), ..., 2y (0) of J Re(e™ J A) are real and simple. Let uy(0)
be an eigenvector of J Re(ef‘gJA) associated with A (0), k =1, ...,n. Then the
boundary generating curve Cj(A) of Wj(A) is given by

up(0)J Aug(9)
%) =0 k=1,...,n
up(0)Jur(0)
and Wy (A) is the pseudo-convex hull of Cj(A).
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Proof. Let pa(u, v, w) =detuH; + vHy + wJ). The curve C;(A) is the dual
curve to the algebraic curve determined by pa(u, v, w) = 0 in the complex pro-
jective plane CPZ, that is, consists of all points [x, y, z] in CP? such that ux + vy +
wz = 0is a tangent line to p4 («, v, w) = 0. As usual, we identify the point (x, y) in
C? with [x, y, 17in CP?, and identify any point [x, y, z] in CP? such that z # 0 with
(x/z, y/z) in C?. Hence, in particular, the plane R? (identified with C) sits in CP?
by the way of the identification of the point (a, b) of R? with [a, b, 1]in CP?. In [1,
Theorem 2.2], it was proved that if ux + vy + w = 0 is the equation of a supporting
line of W;(A), then ps(u, v, w) = 0. Since the dual curve of C;(A) is the original
curve pa(u, v, w) = 0, we infer, in particular, that every supporting line of W;(A)
is tangent to Cj(A). Consider the real direction (cos 6, sin ), 6 € [0, 2r), for which
(1) provides n real eigenvalues for J Re(e_ig JA) = cos0J Hy + sin6J Hy, namely,
A1(0), ..., An(0). Let ux(0) be an eigenvector of J Re(e_iQJA) associated with
Ak(0), k=1, ..., n. If the eigenvalues corresponding to eigenvectors with positive
J-norm are all smaller (or larger) than all the eigenvalues corresponding to eigenvec-
tors with negative J-norm, then supporting lines of W;(A) exist. Let —w(0) be the
maximum (or the minimum) eigenvalue of J Re(e ™ J A), so that cos Ox + sinfy =
w(#) is a supporting line L of W;(A). Since A1(0), ..., A,(0) are distinct, then
u(0), ..., u,(0) form an eigenbasis and uj (6) Jur(0) # 0,k =1, ..., n. Applying
Lemma 2.1 to the matrix e '’ JA, we conclude that the intersection L N W;*L(A)
consists of all points (Az, z)y for which z is an eigenvector of cos 8 J Hy + sin6J H
corresponding to —w () such that z*Jz = +1. These points belong to C;(A) which
is given by

ug(6)*J Aur(9)

= 0), 0eQ k=1,...,n.
@ Ty - *<® "

By the pseudo-convexity of W;(A), we conclude the result.

If there does not exist supporting lines of W;(A), then in any real direction in
R2, say (cos6,sinf), 6 € [0, 2r), there are n real lines tangent to C;(A) with this
direction, namely the n real eigenvalues A1(6), ..., A,(0) of J Re(e™? J A) and the
result easily follows. [

Remark 2.2. The hypothesis on the simplicity of the eigenvalues in Proposition
2.2 ensures that all eigenvectors are anisotropic. If Ax(0), k =1, ..., n, are not all
simple, but have anisotropic associated eigenvectors uy(6), k = 1, ..., n, the result
is still valid.

The J-adjoint of A € M,,, denoted by A*], is defined by (Ax, y); = (x, A¥ly);,
x,y € C", and it can be expressed explicitly in terms of A and J by AUl = JA*J,

A matrix A € M, is said to be J-normal if and only if AA¥ = A¥IA Tt is well-
known that if A € M,, is normal, then W (A) is the convex hull of the spectrum of A.
An analogous result for W;j(A) and a J-normal matrix A, with simple eigenvalues,
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is obtained in the next proposition. This answers, in a particular case, a question
proposed in [12].

Proposition 2.3. Letr A € M,, be a J-normal matrix with simple eigenvalues. If the
eigenvalues of A + A™ are all real, then W;(A) is the pseudo-convex hull of these
eigenvalues.

Proof. Denote by A, ..., A, the distinct eigenvalues of A. For k = 1,...,n, let
v be an eigenvector of A associated with the eigenvalue A;. Since by hypothesis A
is J-normal, then Awy = Apwg, for wy = A*lv,. Because the eigenvalues of A are
all distinct, the corresponding eigenvectors are linearly independent. Hence, there
exist complex numbers c¢; such that wy = crvi. Moreover, (A + Ay = O +
ck)Vk, and since the eigenvalues of A + A are all real, we have ¢; = Aj. There-
fore, Ay = Apuy. Easy calculations show that J Re(e_ieJA)vk = Re(e_iekk)vk,
[0, 21]. We notice that the eigenvector vy does not depend on 6 and vy is an eigen-
vector of A associated with the eigenvalue Ax, k = 1, ..., n. By Proposition 2.2,
(i JAvw) /(i Ju) = A, k=1,...,n, give the boundary generating curve of
W;(A). It is straightforward to show that W;(A) is the pseudo-convex hull of the
eigenvaluesof A. O

Remark 2.3. If J = I,, then A"l = A* and A + A*] is Hermitian, and so its
eigenvalues are all real. Hence, in the particular case J = I,, Proposition 2.3 yields
the well-known property that W (A) is the convex hull of the spectrum of A, when A
is a normal matrix (valid even if the eigenvalues of A are not all simple).

Remark 2.4. The hypothesis on the simplicity of the eigenvalues in Proposition
2.3 ensures that all eigenvectors are anisotropic. The existence of multiple eigen-
values may lead to the existence of isotropic eigenvectors, that is, vectors x for which
x*Jx =0.Let J = —I; @ I; and consider the J-Hermitian matrix

A:[f —11].

The double eigenvalue of A is 2, the eigenvectors associated with 2 are isotropic and
Wy (A) is R\{2}. In this example, the concept of pseudo-convex hull is meaningless.

We say that Wsi(A) is polygonal if it is the intersection of a finite number of
closed half-planes or the whole complex plane. The set Wg(A) is said to be polygonal
if the closures of the both convex components Wgt(A) are polygonal. In [17], it was
proved that if A is a J-normal matrix, then W;(A) is polygonal, the converse not
being true in general.

It is well-known that A € M, is unitary if and only if W(A) is a polygon in-
scribed in the unit disc Z and 0 (A) C 0¥, the boundary of &, that is, the unit circle.
Whether an analogous result is valid for W; (U), when U is a pseudo-unitary matrix,
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is a question proposed in [12]. In this vein, we have the following result. We observe
that U € U,,_, if and only if U¥U = I,.

Corollary 2.2. If the eigenvalues of U € U, ,—, are all simple, then W (U) is the
pseudo-convex hull of these eigenvalues.

Proof. Letv; be an eigenvector of U associated with the eigenvalue Ag, k = 1, ..., n.
Hence (Uvg)* = Axvy, and it can be easily seen that

ViU Jug :):kv,fjvk. 2)
Since UMU = I, and Uy = A, we easily get A, U™ vg = vy, and so

v vk = Ao U J g 3)
From (2) and (3), we can conclude that [A;| =1, k=1,...,n, thag is, the spec-
trum of U is on the unit circle. We may also conclude that U ely, = AUk, and vy 18
an eigenvector of U + U] corresponding to the eigenvalue Ay + A, k=1, ..., n.

Since the eigenvalues of U + U™! are all real, applying Proposition 2.3 to the J-
normal matrix U, the result follows. [

A polyhedral set is the intersection of finitely many closed half-planes or the
whole R3. The Davis—Wiedlant shell % (A) is a polyhedron, that is, the convex hull of
a finite number of points in R, if and only if A is a normal matrix [4]. A polyhedron
is clearly a bounded polyhedral set.

In [2], it was conjectured that, for H-normal operators, .% ';, (A) is convex and
its closure is a polyhedral set. The conjecture was proved for indefinite inner prod-
uct spaces of dimension at most three, and for H invertible with only one positive
eigenvalue. In this vein we have the following result.

Proposition 2.4. If A € M,, is a J-normal matrix and the eigenvalues of J H are
all simple, then V?(A) (75 (A)) is a polyhedron.

Proof. Let H = Re(JA) and H, = Im(J A). By the hypothesis, A is J-normal,
thatis, AJA*J = JA*J A. This implies that

HiJH, = H,J H; 4)
and so
AYA = HiJH| + HyJ H>. (5)

If o, ..., a, are the distinct eigenvalues of J Hy, then J Hjv;r = o v, where the
eigenvectors vx of JHj associated with oy are linearly independent vectors such
that v,f]vk =1, k=1,...,n. We show that the eigenvectors vy of JH; are also
eigenvectors of J Hp and of A™ A Indeed, from J Hyv; = o vy and using (4), we
have J HyJ Hyvy = J HyJ Hyvi = o J Hyvg. It follows that J Havy is an eigenvector
of J Hp associated with ay. Thus, there exist non-zero real numbers S such that
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J Hyvy = Brvg. In fact, since By = v,j‘ H>vy, it is a real number. Moreover, from (5),
we have AU Ay, = J(H | JH| + HyJ Hy) vy = (a,% + ,B,?)vk, that is, v is an eigen-
vector of A1 A associated with the eigenvalue Ol]%—i- ,3,3. Now, let z=(x"Hx, x* Hrx,
x*A*J Ax) be an arbitrary element in ,Vj(A). Writing x = >/ ckvk, ¢k € C, we
getz =1 ;_; lck 1% (o, B, (x,% + ,8,%). An analogous result holds for &7 (A). [

Remark 2.5. The present approach does not allow to relax the condition on the
simplicity of the eigenvalues of J H.

A matrix A € M, is called J-decomposable if there exists a pseudo-unitary mat-
rix U € M, such that U*JAU = A @ A,, where A, A are square matrices. Oth-
erwise, A is called J-indecomposable. We notice that the next result was previously
obtained by Li and Rodman in [14]. Here we present an alternative proof.

Theorem 2.1. Let A € M,, be J-indecomposable. If 7 € aj(A), then 7 is in the
interior of Wj(A).

Proof. (By contradiction.) Suppose that z = a +ib € o;(A) is in the boundary of
W (A). Then there exists a supporting line passing through z and there exists ¢g € R
such that a cos ¢ + b sin g = Ay (e J A), where Ay (e 7190 J A) is the maximum
(or minimum) eigenvalue of J Re(e_i‘f"’ JA). Let x be an eigenvector of A associated
with the eigenvalue z, such that x*Jx = +1. From e7i%0 J Ax = e~i%0 (a +ib)Jx,
we easily get

x*Re(e %0 J A)x
x*Jx

Clearly Re(e %0 J A) = H| cos ¢ + Ha sin ¢, and so it follows from (6) that

= a cos ¢g + b sin ¢y. (6)

(H{ cos ¢o + Ha singg)x = (acosgg + bsingg)Jx.
This in conjunction with the condition Ax = zx gives
(H; sin¢gg — Hr cos ¢pg)x = (asingg — bcos¢g)J x.

Hence, Hix = aJx and Hyx = bJx. Now, it can be easily shown that x*JA =
zx*J. Taking the pseudo-unitary matrix U whose first column is x, we have
U*JAU = [z] ® Ay, a contradiction. [

3. Hyperbolical boundary generating curves
The classical numerical range of a 2x2 matrix A is an elliptical disc, possi-

bly degenerate, with the eigenvalues A; and Ay of A as foci and minor axis of
length \/Tr(A*A) — [A1]2 — |A2]2. For A € M, and J = I} & —I, the Hyperbolical




26 N. Bebiano et al. / Linear Algebra and its Applications 399 (2005) 17-34

Range Theorem [1] asserts that W;(A) is bounded by a non-degenerate
hyperbola, with the eigenvalues A; and A, of A as foci and non-transverse axis
of length /|A1|2 + |A2|2 — Tr(Al¥1A), if 2Re(A1A2) < Tr(AHA) < [A1]% + A1)
For the degenerate cases, W;(A) is a singleton, a line, a subset of a line, the whole
complex plane, or the complex plane except a line. In this section, we present a
hyperbolical range theorem for a wide class of matrices.

Consider the block matrix

_aly X
A_[Y bln—r:|’ a,beC, @)

where X, Y* are r x (n — r) complex matrices, such that XY and Y X are normal
matrices, and let p = min(r, n — r). In [3], it was proved that the numerical range
of A is the convex hull of at most p ellipses, all of which centered at (a + b) /2. We
prove that, for A of type (7) and J = I, & —1I,,—,, 0 < r < n, the set W;(A) is the
pseudo-convex hull of at most p hyperbolas, all centered at (a + b)/2.

Lemma3.l. Let J =1, & —1,—,,0<r <n,and p=min(r,n —r). Let A be a

block matrix of type (7), such that XY and Y X are normal matrices, o1, ..., o, and
81, ...,0p being the singular values of X and Y, respectively. Then, there exists a
pseudo-unitary matrix U such that

" _al, »)

U*JAU = |: p _blnri|’ )
wh(;re 2. A% e _M,,,,_,, the diagonal entries of X and A are aleid’l, e, Upei¢P and
S, ., 8pel‘7’l’, respectively, for some ¢1, . .., ¢, € R, all the other entries being
zero.

Proof. By the singular value decomposition, there exist unitary matrices U; € M,.,
U, € M,,_, such that the diagonal entries of U f XU, are the singular values o1, . . .,
o, of X, all the other entries being zero. If XY and Y X are normal matrices, then
the diagonal entries of U;Y*U, are —81e%?1, ..., —§,e%% with §;,...,8, the
singular values of Y, and ¢1,..., ¢, € R, all the other entries b;:ing zero [8, p.
426]. Moreover, let Dy = diag(e'', ...,e"?) ® I,_,, D, = diag(e'!, ..., e"r) ®
Iy—y—p such that wu; —m =¢;, I=1,...,p. It can be easily seen that the
block matrix U = (U1 D) @ (U D) satisfies U*JU = J and has the asserted
property. [

Before the main result of this section, we recall that if T € M,, is a block matrix
X Y
=7 W)
such that X, Y, Z, W are square matrices and all commute, then det(7) = det(XW —
ZY) (see, e.g. [11]).



N. Bebiano et al. / Linear Algebra and its Applications 399 (2005) 17-34 27

Theorem 3.1. Let A and J be matrices under the conditions of Lemma 3.1, and let

28 =a+bE(a—b)2—4do8edt, [ =1,...,p. )

If

2Re(BiBi) < lal* + |1b1* —of =8 < |Bsl* + 181>, 1=1,...,p,
(10)

then the boundary generating curve of Wy (A) is given by the p hyperbolas (some
possibly coincident), all centered at (a + b) /2, with foci at B+, with non-transverse
axis of length \/|,31+|2 + 18— —la|> — |b> + 0} + 8}.1 =1, ..., p, and possibly
a point, a if n < 2r, and b if n > 2r. The set Wj(A) is the pseudo-convex hull of
these p hyperbolas.

Proof. Since W;(A) = V,;(U*JAU), without loss of generality, we may concen-
trate on the study of V;(B), where B = U*JAU is given by (8). The characteristic
polynomial of the matrix J Re(e'? B) is

Py(t) = (t — cap)" P (1 — cp)" " 7P det ((t — can) (t — co)1p + Do),
where c,g = |a| cos(0 + arga), cpg = |b| cos(6 + arg b) and Dy is the diagonal mat-
rix whose /th diagonal entry is
o) of 87
) = cos@0+ 29+ L+ L 1=1,....p.
2 4 4
The roots of P, (¢) satisfy
p

(t = cap) Pt = )"~ P T (% = (can + coo)t + cancrs + di(0)) =0,
=1

and so the eigenvalues of J Re(e'? B) are

Ma®) = L (Can + 0m) £ 1y (can — i) — 410, 1=1,....p, (1)
and cug (cpg), if n < 2r (n > 2r). Since (10) holds, there exist directions for which
all the characteristic roots of J Re(e!” B) are non-zero real numbers. We observe that
o1, &; are not simultaneously zero, otherwise the second inequality in (10) would not
hold. The eigenvectors of J Re(e'? B) associated with the eigenvalue A4 (0) are the
vectors u;+ (0) whose [th entry is

2(cpy + M+(0))

ore—10+d) 4 §,ei@+d0)’
the (r + [)th entry is 1 and all the others are 0,/ = 1, ..., p. Hence, it can be eas-
ily seen that the boundary generating curve of V;(B) coincides with the boundary
generating curve of V, (B;), Jo = I1 & —1; and

. a olei¢’ .
Bl_|:8]ei¢l _b:|7 l—lv~"9p’ (12)
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and possibly a point. The eigenvalues of J, B; are f;+ defined in (9) and Tr(Bl[*] By =
la|*> + |b|? — 012 — 812. By the Hyperbolical Range Theorem for 2x?2 matrices, we
conclude that V, (B;) is bounded by a hyperbola, with foci at §;+ and non-transverse

axis of length \/|,81+|2 +1Bi-1? — lal*> — b2 + o} + 87. If n = 2r, the boundary
generating curve of V;(B) is given precisely by these p hyperbolas (some of them
possibly coincident). If n < 2r(n > 2r), the eigenvectors associated with the eigen-
value cq9(cpp) are the vectors e; (e,) of the standard basis of C", and e;fBe =
ae}‘f.]ej, j=n—r+1,...,r(eBey =be) Je,, m=2r+1,...,n). By Propo-

sition 2.2, the boundary generating curve of V;(B) is given by the previous p hyper-
bolas and a point, a if n < 2r,and b if n > 2r.

We observe that a € Vj;(Bl) and b € —VJ_Z(BI),I =1,..., p. Therefore, even in
the case of rectangular matrices X and Y, the set V;(B) is the pseudo-convex hull of
these p hyperbolas. [

Example 1. Let J =1, & —1» and A be a block matrix of type (7), with n = 4,
r=2,a=1,b=—1, X =diag(l/2,3/2), Y = diag(l, i). The boundary generat-
ing curve of Wj(A) is shown in Fig. 1.

Now, we consider Y* = kX in (7), for some constant k € C. In this special case,
the block matrix A has an elliptical classical numerical range [3]. In the following
corollary, we prove that W;(A) is bounded by a hyperbola. Our proof follows the
steps of the proof of Corollary 2.3 in [3].

Corollary 3.1. Let J =1, ® —1,—,0 <r <n, and let p = min(r,n —r). Let A
be a block matrix of type (1), with Y* = kX, k € C. Moreover, let 28+ = a + b £

Imaginary Axis

0 2 4
Real Axis

Fig. 1. The boundary generating curve of W (A) for the matrix A in Example 1.
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J(a—b)?+ 4k012, I=1,...,p, where 01 > ... > o, are the singular values of

X.If

2Re(Bis Bi-) < lal* + b —of (1 + k) < B P+ 18P, 1=1,....p,
then Wj(A) is bounded by a hyperbola, with foci at B1+ and with non-transverse
axis of length /|14 % + 11— — lal? — b + o2 (1 + k]?).

Proof. From the proof of Theorem 3.1, we may conclude that W;' (A) is the convex
hull of the sets ng(Bl), where J, = I} @ —I; and By are the 2x2 matrices in (12),
[=1,...,p. Since Y* = kX, then & = |k|o; and 2¢y = argk+m, [ =1,..., p.
We shall prove that

V(B CVi(B), 1=2...,p. (13)

Recalling the definition of V];(Bl), we have

Vi (B = {alxiI” — blxal* + 01 (R1x2 + [k %ax1) : 1 |* — |xof* = 1}
(14)

Taking in (14) r = |x1|%, y = argx, —argxy, y € [0, 2n), and denoting by & the
curve
{(1+ kD) cosy +i(1 — [k)siny : ¥ € [0, 2m)},

we may write

Vi) =|J{@-byr+b+0e”/rir —1s}.
r=1
Any z € V;g(Bl) lies on the curve I'; = (a — b)r + b + 0;e'? /r(r — 1)&, for a cer-
tain choice of r. Depending on the value of k, the curve & is either the boundary of
an ellipse or a line segment, in both cases centered at the origin. Since o1 > oy, then
I'; lies in the domain bounded by I'1. Since I'} C V};(Bl) and the later set is con-
vex, it follows that z € I'; C V(By) and (13) holds. Hence, W, (A) = V; (B)). An

analogous result holds for W (A) and the corollary follows directly from Theorem
3.1. O

If £ = 0 in Corollary 3.1, then we have the following result concerning matrices
of type:

A:[“éf bIX } a,beC, X e My, (15)
n—r

Corollary 3.2. LetJ =1, ® —1I,—,, 0 < r < n, and let A be a block matrix of type
(15). If 0 < o1 < |a — b|, where o1 is the largest singular value of X, then W;(A)
is bounded by a hyperbola, with a and b as foci, and with non-transverse axis of
length 0.



30 N. Bebiano et al. / Linear Algebra and its Applications 399 (2005) 17-34

4. Curvature of W;(A) at a boundary point

We will state our results for WJ+ (A), with the understanding that analogous results
hold for W; (A), because W, (A) = —wT 7(A). Suppose that the boundary point
under consideration belongs to WJ+ (A). For any «, B € C, Wj'(al + BA) =a+
,BW;r (A). Thus, by an appropriate rotation and translation, we can assume that the
boundary point stays at the origin and the supporting line coincides with the y-axis,
Wf (A) being in the half-plane x < 0. For

Hixi=XJx;, i=0,....,n—1, (16)
this situation obviously corresponds to the case that 1o = 0,

Hixo =0, x3Hyxo=0, forsome vectorxoeC", xjJxo=1, (17)
and

rixPJxi <0, i=1,...,n—1 (18)

It is known that if a boundary point of W;(A) is a corner point of W;(A), then it
is an eigenvalue of A and there exists a pseudo-unitary matrix U € U, ,—, such that
U*JAU = A| @ A,, for square matrices A, Ay of order at least one [14]. There-
fore, if we restrict our study to the case that the curve C;(A) given by (1) is irre-
ducible and n > 2, the boundary of W;(A) is a smooth curve. As will be proved in
Theorem 4.1, this boundary can then contain a line segment only if the corresponding
line is a singular tangent to C j (A), that is, its coordinates satisfy (1) and also all the
three partial derivatives of the left-hand side with respect to #, v and w vanish. A line
is called a non-singular tangent to C;(A) if its coordinates satisfy (1) and at most
one of the partial derivatives of the left-hand side of (1) with respect to u, v and w
vanish.

The proofs in this section are inspired on the parallel results on the classical
numerical range due to Fiedler [6,7].

Lemma 4.1. Let A be a n x n complex matrix satisfying (16)—(18). Then the line
x = 0 is a non-singular tangent of Cj(A) at the origin if and only if 0 is a simple
eigenvalue of Hj.

Proof. The left-hand side of (1) may be written as
cou + i (v, w4+ (v, w), (19)

with ¢ (v, w) being homogeneous polynomials in v, w of degree k (possibly zero).
By simple algebraic-geometrical considerations, if x = 0 is a non-singular tangent of
Cj(A)thencop = 0and ¢y (v, w) = kw, k # 0. (Then w = 0 is the dual tangent at the
dual point (1, 0, 0), which means that the origin is the tangent point of the tangent
x =0.) If U is a unitary matrix for which U*H,U is diagonal with the first entry
zero, it follows that H; has to have rank n — 1, since, otherwise, the term kwu"~!
with k£ # 0 would not appear in (19). The converse is easily checked. [J
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Theorem 4.1. Let A € M,,. The boundary of Wf (A) contains a line segment only
if the corresponding supporting line is a singular tangent to Cj(A).

Proof. Without loss of generality, suppose that the supporting line referred to in the
theorem is x = 0, with Wf(A) lying in the half-plane x < 0. Let (0, y1) and (0, y2)
be the (distinct) extreme points of the line segment. It can be easily seen that

x{JAx; = yii and x3JAxy = yai, (20)

for x1, xp € C" linearly independent vectors (since y; # y;) such that xi‘J x| =
x5 Jxz = 1. From (20), we have that x] Hyx; = x5 Hix2 = 0. Since x = 0 is a sup-
porting line of W;r(A) and Wf(A) is on the half-plane x < 0, we conclude that
x]Hix; = x5 Hixp =0 are extreme points of the quadratic form x*Hyx, with x
satisfying x*Jx = 1. The boundary generating curve of W;r (A) is det J det(J Hy +
wl) = 0, therefore O is not a simple eigenvalue of JHj. By the previous Lemma,
x = 0 is a singular tangent to Cj(A). O

Through the paper, we denote by AT the Moore—Penrose generalized inverse of
A.

We state a lemma of the perturbation theory for matrices, which will be used in
the study of the curvature of W;(A) at a boundary point.

Lemma 4.2. Let 0 be a simple eigenvalue of L € H,, with a corresponding eigen-
vector u such that u™Ju = 1. Then for any K € M,, and € € C, |e| — 0, the expan-
sion of the eigenvalue A(€) of the matrix J(L + € K) in the neighborhood of 0 is

re) = en M + 2P 4 0(d),

where AV = w*Ku and 1.® = —u*(K — 2O N)LY(K — 2V J)u, and the expan-
sion of the eigenvector u(€) associated with A(€) in the same neighborhood of 0O
is

u(e) =u—eLT(K =2V Du + 0.

Proof. Let (L + €K)u(e) = A(e)Ju(e). By the simplicity of the eigenvalue 0, L(¢)
and u(e) are analytic functions of € in the neighborhood of 0. Consider the power
series for A(¢) and u(¢), respectively,

Ae) = a4 20 4 0(63) and u(e) =u + euV + 2u® + 0(63).
It can easily be seen that Ku + Lu" = A Ju and
Ku® + Lu® =20 gu® 4 2@ gy, Q1)

Thus, AV = w*Ku and uV = —L7(K — AV J)u. Multiplying (21) on the left by
u*, we get 2@ = w*(K — 2 NHu® | and the result follows. [
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Theorem 4.2. Let xo € C" and A € M, satisfying (16)—(18). If x = 0 is a non-
singular tangent of Cj(A), then Cj(A) has a positive finite curvature at the origin
and the radius of curvature at 0 is given by r = —2x HzHlT H>xo.

Proof. To evaluate the radius r of curvature at 0, we determine the coordinates x (v)
and y(v) of the intersection of the supporting line x + vy + w = 0 (in the “neighbor-
hood” of x = 0) with C;(A). We can conclude that det(J H; + vJ Hy + wl) = 0,
and so —w is an eigenvalue of the matrix J(H; + vH3). Since x = 0 is a non-singu-
lar tangent of Cj(A), by Lemma 4.1, w = 0 is a simple eigenvalue of H;. Therefore,
we can apply Lemma 4.2 to the left-hand side of (1), for Hy as L, H, as K, x¢ as u,
and v as €. Since x; Haxo = 0, we obtain

w = w(v) = —v’xi HaH| Haxg + O(0°). (22)

An eigenvector v(v) associated with the eigenvalue —w(v) of J(H; + vH3) has
the following expansion v(v) = xo + vH IT Hoxg + O(v?). The parametric equations
of C;(A) in the “neighborhood” of x = 0 are
V¥ (v) Hiv(v) v*(v) Hyv(v)

v¥()Jv(v) y) = v¥()Jv(v)
with |v| < € sufficiently small. From (22), it follows that

x(v) =

x(v) = v2x} HaH, Haxo + O(v%),  y(v) = 2uxi HoH| Haxg + O(0?).

Since r = —limy_ yz(v)/(2x(v)) and x(0) = y(0) = x’(0) = 0, the theorem is
proved. [

Considering J = [, in Lemma 4.1 and in Theorem 4.2, we obtain Theorem 3.3
of Fiedler in [6].
The J-generalized Levinger transformation of A € M,, is defined by

LrAa)=(1—a)A+aA® «e]0,1]
(denoted simply by (A, «), if J = I,). Obviously,
Li(A,a) =JH +i(1 —2a)J H (23)

and (A" o) = Z;(A, 1 —a),a €0, 1].

There is a relation between W, (A) and W; (< j (A, )), in case the sets are hyper-
bolical. A parallel result for the classical case (J = I,) was presented by Maroulas
et al. [15]. In fact, due to (23), we may write

Wi (&j(A a)) = {x +i(l —2a)y:x,ye R, x +1iy € WJ(A)}.

Supposing that the boundary of W;(A) in the plane (u, v) has equation

u 2

W—mzl, M,N>0,
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via the change of variables x =u and y = (1 — 2«)v, then the boundary of
W (£ j(A, @)) has equation

x2 y2

M? (1 —2a)2N2

If « # 1/2, then W;(A) is bounded by a non-degenerate hyperbola with transverse
and non-transverse axis of length M and N, respectively, if and only if W;(Z j (A, )
is bounded by a non-degenerate hyperbola with transverse and non-transverse axis of
length M and |1 — 2«| N, respectively. If « = 1/2, then W; (£ j(A, «)) = Re W (A)
is a subset of a line.

In [7], Fiedler investigated the connection between the curvature of the boundary
of W(A), A € M,,, and the curvature of the generalized Levinger curve, which is the
graph of the function ¢4 : [0, 1] — R such that

dala) = maX{ReA reo(Z(A, a))}.
Now, we consider the J-generalized Levinger function ¢4 j : [0, 1] — R defined by
$a.s(@) =max{Rer: 1 €0 (L (A )}

The following theorem reduces to [7, Theorem 3.2], considering J = I,.

Theorem 4.3. Let xo € C" and A € My, satisfy (16)—(18), and let the maximum
eigenvalue 0 of Hy be simple.

(1) If xo is not an eigenvector of A associated with O, then there is an open inter-
val % with midpoint 1/2, such that the J-generalized Levinger function ¢4, j
is increasing in the left half of .7, has zero derivative at the point 1/2 and is
concave in J. Moreover, the radius of curvature R of ¢pa.j at the point 1/2 is
related to the radius of curvature r of the boundary of W}L (A) at the point 0 by
Rr = 1/4.

(i) If xo is an eigenvector of A associated with O, then ¢4 j is constant.

Proof. (i) Since 0 is a simple eigenvalue of Hj, there is a unique eigenvalue X (€)
of Z;(A,1/2 +¢€) = J(H; —i2€ Hy), in some neighborhood of 0. By Lemma 4.2,
we have A(€) = eA) +€20@ 4+ O(e?), where AV = x}Hoxo =0 and A? =
4x§ HzHlT Hyxg. For € real, Re A(€) = €2 Re . + O(e?). So, there is an open inter-
val .# containing 0 in which ¢4 _j(1/2 4+ €) = Re A(¢). For the derivatives, we have
¢y ;(1/2) =0, ¢4 ;(1/2) =2Re 2@ = 8xgH2Hj'H2x0. Since xq is not an eigen-
vector of A, and therefore of J A, associated to 0, Hyx( is not a multiple of xy. By
the hypothesis, 0 is the maximum eigenvalue of the matrix Hj, therefore —H; is
positive semidefinite. Under our assumptions, the eigenspace associated with 0 is
one-dimensional and H; has only multiples of x( as annihilating vectors, and the
same holds for its Moore-Penrose inverse. We can conclude that the second deriva-
tive of the J-generalized Levinger function at the point 1/2 is positive and remains
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positive in some neighborhood of 1/2. Hence, the J-generalized Levinger function is
concave in .# and the radius of curvature R of the J-generalized Levinger function at
the point 1/2is R = —1/ (])X, ;(1/2). By Theorem 4.2, the radius of the curvature r of

the boundary of W;r(A) at the originis r = —2x6" H2H1T H>x¢. Therefore, Rr = 1/4.
(i) If Axp = 0, then JAxg = 0. Thus, 0 is a common eigenvalue of all matrices
LA a),x €[0,1]. O

Remark 4.1. In Theorem 4.3, if x( is an eigenvector of A, then O is a corner of
W;(A), so that the radius of curvature r can be considered as 0 and R as infinity.
Moreover, W;(A) has a flat point at O if the maximum eigenvalue of H; is multiple.
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