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Abstract

In this paper it is studied the role of the axiom of choice in some theorems in which the concepts
of first and second coualbility are used. Results such as flellowing are established:

(1) InZF (Zermelo—Fraenkel set theory without the axiom of choice), equivalent are:
(i) every base of a second countable space has a countable subfamily which is a base;
(i) the axiom of countable choice for sets of real numbers.
(2) InZF, equivalent are:
(i) every local base at a point in a first countable space, contains a countable base at
(i) the axiom of countable choice&C).
(3) InZF, equivalent are:
(i) for every local base systelfB(x))cx Of a first countable spack, there is a local base
system(V(x))cx such that, for each € X, V(x) is countable an®(x) € B(x);
(i) for every family (X;);<; of non-empty sets there is a family\;);<; of non-empty, at most
countable sets, such that C X; for everyi € I (w-MC) andCC.
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1. Introduction

The idea that triggered the investigations on this paper was to find out the set theoretic
status of the following Theorem &FC, i.e.,Zermelo—Fraenkel set theory including the
axiom of choice

Theorem 1.1. (ZFC) Every base of a second countable space has a countable subfamily
which is a base.

We will see that this theorem is not provabl&iR, Zermelo—Fraenkel set theory without
the axiom of choiceby proving its equivalence to the axiom of countable choice for sets
of reals.

It is clear that Theorem 1.1 provides alteanative definition of second countability
that, in the absence of the axiom of choicentiout to be non-equivalent to the familiar
definition. Starting from these two defirgtis of second @untability, we will discuss the
consequences of replacing one by another in some well-known theorems. Namely, we will
study the relations between this “new” class of second countable spaces, and the classes of
separable, Lindelof spaces.

In the literature it may be found a discussion of the equivalencét-irof different ways
of defining some well-known topological notions. As interesting examples of this kind of
study, we have that the relations between different notions of compactness (e.g., [9,3]) or
of Lindel6fness [18,10] were studied.

We also present two different attempts to generalize Theorem 1.1 to the class of first
countable spaces, as well as thelati®ns with the axiom of choice.

The following forms of choice will be useithroughout this paper. Their definitions, as
everything else in this work, take place in the setting bf

Definition 1.2. The axiom of countable choicCC) states that every countable family of
non-empty sets has a choice function.

Definition 1.3. CC(R) is the axiom of countable choice restricted to families of sets of real
numbers.

Proposition 1.4 ([6, p. 76], [11]).Equivalent are

(i) CC (respectivelyCC(R));
(i) every countable family of non-empty séesspectively subsets &) has an infinite
subfamily with a choice functign
(iif) for every countable familygX,), of non-empty set§espectively subsets &), there
is a sequence that meets infinitely many ofXhés.

Lemma 1.5.

(a) If (X, T) is a second countable space, theh < |R| = 280,
(b) If (X, T) is a second countabl&-space, themX| < |R| = 2%,
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2. Second countable spaces
We start this section recalling some definitions.

Definitions 2.1.

(a) Atopological space iseparabléf it contains an at most countable dense subset.
(b) A topological spac« is Lindelof if every open cover oX has an at most countable
subcover.

The next lemma will play an important role in the proof the main result of the section,
Theorem 2.3.

Lemma 2.2. Equivalent are

(i) CCR);

(i) the axiom of countableéhoice holds for families of dense subspaceR of
(iii) every subspace @ is separable
(iv) every dense subspacelis separable.

Proof. The equivalence between (i) and (iii) was proved by Diener—cited in [5, p. 128]
(see also [12]). That (i) implies (ii) and that (i) implies (iv) is clear.

We consider the base @ consisting of open intervalé(g,, r:)).eny With rational
endpoints. For each € N, one can define a bijectiofj, : R — (g, r,) betweenR and
(Gn,1n).

(iv) = (i) Let (A,), be a countable family of non-empty subsetsfofand define
the setsB, := f,(A,) and B := J, B,. The spaceB is dense inR. By (iv), there is
C :={x,: n € N} countable and dense B, which implies that it is also dense &

Infinitely many of the sets3, N C are not empty, otherwis€ would be bounded
and then not dense iR. For each element dil := {n € N: B, N C # ¢}, we define
¢(m) :=min{k € N: x; € B,,}. The Set{f,;l(x¢(m)): m € M} induces a choice function
in the infinite subfamily(A,,),em Of (Ay)nen. IN view of Proposition 1.4, the proof is
complete.

(i) = (iv) Let A be a dense subspaceRfFor everyr € N, £ 1(AN (gy, 7)) is dense
in R. A choice function in this family gives us a countable dense subspate of

Theorem 2.3. Equivalent are

(i) CC(R);
(i) every base of a second countable space has a countable subfamily which is a base
(iii) every base for the open sets®has a countable subfamily which is a base.

Proof. (i) = (ii) Following the usual proof of (i) (e.g., [2, 2.4.17], [8, 1.1.20]), we easily
see that the only use of the axiom of choice is a countable choice in a family of subsets
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of the topologyJ of the second countable space. Lemma 1.5 saygThat |R|, and then
CC(R) is enough to prove (ii).

(i) = (iii) Clear.

(i) = (ii) Let A be a dense subset Bf By Lemma 2.2, it suffices to prove thatis
separable. The fact thdtis dense iR implies thatC := {(a, b): a <b anda,b e A}isa
base for the open sets Bf By (iii), there is a countable bagéu,, b,): n € N} contained
in C. The set{a,: n € N} is countable and denseih O

It is well known that, inZFC, for (pseudo)metric spaces the notions of second
countability, separability and hdel6fness are equivalent. Good and Tree [7] asked under
which conditions these equivalences or implications remain valgFnThese questions
are almost all answered (see [12,1,17]).

Motivated by condition (ii) of Theorem.3, we will introduce a definition of second
countable space that is stronger than the usual oA€& jibut equivalent irz FC.

We will look into the relations betweenith“new” class of topological spaces and the
classes of separable, Lindel6f spaces.

Definition 2.4. A topological space is callesuper second countab(8SC) if every base
has a countable subfamily which is a base.

Corollary 2.5. Equivalent are

(i) CCR);
(i) RisSSC
(iii) every separablépseuddmetric space is SSC.

Note that, inZF, every separable pseudometric space is second countable (see, e.g., [19,
16.11)).

The statement Every SSC topologicafor pseudometric space is separableis
equivalent toCC. The proof remains the same as the one for second countable spaces
[1]. It may seem surprising that, for subsetdiyfthis implication is provable iZF.

Theorem 2.6. Every SSC subspacelRfis separable.

Proof. Let A C R be a SSC space. Without loss of generality, we consider that every point
of A is an accumulation point of. If a € A is not an accumulation point of, {a} must
be in each base for the open setstof

TheseB :={(a,b)NA:a,be A}U{[c,d)NA:c,de Aand(F6 > 0) (c—8,c)NA =
drU{(e, fINA: e, f e Aand(3é > 0) (f, f +8)NA =@} is a base for the open setsAf
Since A is SSC, there is a countable bags,),, contained inB. Fors, := inf B, the set
{sn: n € N} is countable and denseih O

Since R is second countable and second-countability is hereditary, every second
countable subspace Bfis separable if and only if every subspacé&ak separable, which
turns out to be equivalent ©C(R)—Lemma 2.2.
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This last fact, together with Lemma 1.5, implies ti@&E(R) is equivalent to: Every
second countable metr{or Tp) space is separabl€see also [17]).

In view of Theorem 2.6, the proof of this latter result cannot be adapted for SSC spaces.

After these considerations, one can ask the following questions:

(1) Is SSC hereditary?
(2) Are there non-separable SSC metric spaces? Are there uncountable-Sgares?

The set theoretic status of the conditioBvery Lindel6f metric space is second
countablé is, to my knowledge, still unknown. It is known, however, that this condition
implies the axiom of countable choice for finite sets [7,1,17]).

For SSC spaces, we can go further.

Theorem 2.7. Every Lindel6f subspace & is SSC if and only i€EC(R) holds.

Proof. If CC(R) holds, trivially, every subspace & is SSC (Theorem 2.3).

One can prove similarly to the proof of Theorem 2.3, t8&(R) is equivalent to the
fact that the closed intervd0, 1] is SSC. So, ifCC(R) fails, [0, 1] is Lindelof, but not
SSC. O

Note that, ifCC(R) fails, the only Lindel6f subspaces Bfare the compact spaces, i.e.,
the closed and bounded ones (see [10]).

Corollary 2.8. If every Lindel6f metric space is SSC, tHe@(RR) holds.

CC(R) is equivalent to the conditionN is Lindel6f’, and thus also equivalent to the
condition ‘Every second countable space is Lindéfdf2]. Correspondingly, Every SSC
space is Lindeldfif and only if CC(RR) holds, sinceN is SSC.

3. First countable spaces

It is natural to ask whether the result of Theorem 2.3 can be generalized to the class of
first countable spaces.

There are two obvious ways of attempting this: a local one, considering a local base at a
point, and a global one, congirdng, at the same time, a local base for each point of a first
countable space. The next results are an attempt to answer these questions.

Theorem 3.1. Equivalent are

(i) CC;

(i) if atopological space has a countable local base at a peirihen every local base at
x contains a countable base at

(iii) every local base at a point, in a first countable space, contains a countable base
atx.
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Proof. A proof that (i) implies (ii) can be seenin [2, 2.4.12] and &) (iii) is clear.

(iif) = (i) Let (X,), be a countable family of non-empty sets. Without loss of generality,
we consider the set,, disjoint. By Proposition 1.4, it is enough to prove that there is a
sequence that meets infinitely many of ig's.

DefineY :=J, X, U{0}, withO¢ |, X,,, and foreacl e N, Y, := | ;2,11 Xk U{O}.

The topology ort’, defined by the local base system:

_ [ txn if x #0,
B = { (YaneN} ifx=0,
is first countable.

Since, for alln e N andx € X, 41, Y41 C Y41 U {x} C Y, the family C(0) :=
{Y,U{x}: x € X,,, neN}is alocal base at 0.

By (iii), there is a countable local base atld;= { D,: n € N} C €(0). Define, for every
neNlN,C, ={Y,U{x}: x € X,}.

For eactw € N, there is exactly one(n) € N such thatD, € Cy(,), because(0) is
the disjoint union of allc,’s. For everyn € N, let x,, be the element of the singleton set
D, \ Y- The sequencer,), meets infinitely many of thé(,,’s, otherwiseD would not
be a base. O

Definition 3.2 ([13], [14, Form 76]) »-MC states that, for every familgX;);<; of non-
empty sets, there is a fami(y;);; of non-empty at most countable sets such that X;
foreveryi e 1.

Theorem 3.3. If w-MC holds, then every first countable spaXehas a local base system
(D(x))xex such that, for each € X, D(x) is countable.

Proof. Let X be a first countable space and consider theé\ée} of all functionsf : N —
P(X) such thatf(N) is a local base at € X. SinceX is first countable(A(x)).ex is
a family of non-empty sets. So, y-MC, there is(C(x)),cx, With C(x) countable and
@ # C(x) C A(x) for eachx in X.

SinceC(x) is countable, one easily shows thatx) := {f(n): f € C(x), n € N} is
also countable and thefD (x)).cx is a local base system with the local base at each point
countable. O

Definition 3.4. The countable union theorenfCUT) says that countable unions of
countable sets are countable.

Theorem 3.5. Equivalent are

(i) o-MC andCC;
(i) o-MC andCUT;
(i) o-MC and the axiom of countablchoice holds for faitiles of countable sets
(CC(Ro));
(iv) for every local base systerfB(x)).cx of a first countable spac&, there is a
local base systeniV(x))xcx such that, for eachx € X, V(x) is countable and
V(x) € B(x);
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(v) if a topological spaceX has a local base systertD(x)),cx Wwith each D(x)
countable, then for every local base systéhix)),cx of X, there is a local base
system(V(x)).cx such that, for each € X, V(x) is countable an@(x) € B(x).

Proof. (i) < (ii) < (iii) Itis obvious thatCC = CUT = CC(Xp), and if o-MC holds,
thenCC is equivalenCC(Ryp).

(iv) = (v) Apparent.

(i) = (iv) Let (B(x))xex be a local base system of a first countable space
Theorem 3.3 says tha&f has a local base systefth (x)).<x with the local base at each
point countable.

For eachx € X andU € D(x), define the setM(U, x) :={B € B(x): B C U} and
I:=U,cx D(x) x {x}.

Since eaclB(x) is a local base, itis clear th@(U, x)) v, x)e1 is a family of non-empty
sets. Therw-MC implies that there is a familyfE(U, x)) v, x)er Such that eack(U, x) is
countable and contained M(U, x). Thus, byCUT, the setsV(x) := UUGD(X) E(U, x)
are countable.

Finally, (V(x))xex is a family of countable sets withf(x) C B(x) for eachx € X,
sinceE(U, x) € M(U, x) C B(x) for every pair(U, x) € I. From the way it was defined,
(V(x))«ex is also a local base system, which concludes the proof.

(V) = (i) From Theorem 3.1 we know that condition (v) implié€.

Let (X;);e; be a family of non-empty sets. Without loss of generality, consider the
family disjoint with its union disjoint fron .

Define the set¥; := (X; x N) U {i}, Y :=J
k >n+ 1} U{i}. The local base system

Y; andD(i,n) :={(x,k): x € X; and

iel

D(x) = {{x}} ff x¢l,
{D(x,n): n EN} if xel.

defines a (first countable) topology &nlt is clear that, for each point, the given local base
is countable.

Since for eachx ¢ I, the singleton sefx} must belong to every local base Jat for
simplicity we considetB (i) := {D(i,n) U {(x,n)}: x € X;, n € N});c; as a local base
system ofY.

By (v), there exists a familyV(i));c; such that for every € I, V(i) € B(i) andV(i)
is at most countable and also nony&m) because it is a local baseiat

Finally, for eachi € I we define the set; := {x € X;: (3C € V(i)) C \ D(i,n) =
{(x,n)} for somen € N}. This process gives a familyY;);c; of non-empty at most
countable sets, witl; C X;. O

The equivalent conditions of Theorem 3.5 are properly weaker than the axiom of choice
itself (Cohen/Pincus modelM1({w1)) in [14]). In Part Il of [14] other models with these
characteristics can be found.
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4. Hausdorff spaces

This section is motivated by the questiorAré there first countable non-Hausdorff
spaces in which every sequence has at most one?lirAs we will see, the answer to
this question is affirmative.

Theorem 4.1. Equivalent are

(i) CC;
(ii) afirst countable space is Hausdorff if and only if every sequence has at most one limit.

Proof. (i) = (ii) Condition (ii) is Propositim 1.6.17 in [4]. It is not difficult to see that no
condition stronger tha@C is used in the proof.

(i) = (i) Let (X,), be a countable family of non-empty disjoint sets. In a similar way to
the proof of Theorem 3.1, we construct the séts=  J;-, Xx andY :=J, X, U {a, b},
with a # b and both notir J,, X,,. The local base system

_Jxh if x ¢ {a, b},
Bx) = { (Y, U{x}: neN} if xela,b)

defines a first countable topology &n

Clearly, the spac# is not Hausdorff. Thus, by (ii), there is a sequenc# with at least
two limit points. Such a sequence must converge tnd tob. A sequence converging,
simultaneously, to these two points meets infinitely many ofXhs.

This fact together with Proposition 1.4 concludes the proaf.

Theorem 4.2. Equivalent are

(i) CCR);
(i) a second countable space is Hausdorff if and only if every sequence has at most one
limit.

Proof. (i) = (ii) That in a Hausdorff space every sequence (net) has at most one limit is a
theorem ofZF (cf. [4, 1.6.7]).

If, in a topological spac&, every sequence has at most one limit, tieis a 71-space
(see, e.g., [4, 1.6.16]). Lemma 1.5 implies thatXifs a T1-space with a countable base,
then|X| < |R|. The usual proof (see [4, 1.6.17]) only uses a countable choice for subsets
of X.

(i) = (i) Let (X,,), be a countable family of non-empty subset®RoiVe may consider
eachX, asasubsetatl;, 1). Define the set¥ and(Y,), as in the proof of Theorem 4.1.

We define a topology ity in whichY \ {a, b} is open and has the topology of subspace
of R, and the pointa andb have the same local bases as before. With this topaloigya
second countable non-Hausdorff space. Framgbint, the proof proceeds as the proof of
Theorem4.1. O
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Itis well known that the condition (ii) of Theorem 4.1 may be generalized to the class of
topological spaces, replacingggeences by filters (or nets). This result is still validdR.

Under theUltrafilter Theorem i.e., every filter over a set can be extended to an
ultrafilter, the convergence of ultrafilters may also be used. We will see that we cannot
avoid the Ultrafilter Theorem.

The Ultrafilter Theorem is equivalent to the Boolean Prime Ideal Theorem (see [15,

p. 17)).
Theorem 4.3. Equivalent are

(i) Ultrafilter Theorem
(ii) atopological spaceX is Hausdorff if and only if, inX, every ultrafilter has at most
one limit.

Proof. (i) = (ii) In[4, 1.6.7], (ii) is proved for filters (nets). If (i) does hold, it is clear that
the proof can be done with ultrafilters.

(i) = (i) Let F be a free filter oveX, anda, b two distinct points ofX. Once again,
we define a local base system for a topologyXan

_Jxh if x ¢ {a, b},
Bx) = { [FU{x}: FeT) if xefa,b).

With this topology,X is not Hausdorff. So, by (ii) there is an ultrafilter converging for
two different points inX. These two points can only laeandb, which means that such an
ultrafilter must contait. 0O

5. Countable products

The last part of this paper is devoted to the study of the countable productivity of the
class of second countable spacasctsa property is provable iIBFC. The question was
studied by Keremedis [16] in the absence of the axiom of choice. He arrived at some
interesting results, although not definitive ones. Indeed, an equivalence to a set-theoretic
statement is missing. In Theorems 5.1 and 5.2 below, we will narrow the gap between the
(known) necessary and sufficient conditions to prove of the countable productivity of the
class of second countable spaces. We prove thisgrty, using a choicgrinciple properly
weaker tharCC.

Theorem 5.1. If countable products of second countable spaces are second countable, then
the countable union theorem does hold.

Proof. Without loss of generality, letX,), be a family of countable disjoint sets and
consider the discrete spacgs:= X, U {n}.

Clearly everyy, is second countable and then, by hypothasiss [ [, Y, is also second
countable. LeB := {Bx: k € N} be abase for. Foreach: in N, {p,(By): k € N} is abase
for Y,, since the projectiong, are open surjections. This induces the injective function
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fn: Xn — N defined byf, (x) := min{k € N: p,(Bx) = {x}}. Now, it is easy to see that
U, Xn > Nx Nwith f(x):= (n, k) if x € X, and f,,(x) = k is an injection, which
concludes the proof. O

Theorem 5.2. If the axiom of countabletmice holds for families of sets with cardinality
at most2®o (CC(L 2M)), then countable products of second countable spaces are second
countable.

Proof. Let ((X,,T»)), be a family of second countable spaces. We will prove that
[1,(X., T,) has a countable base.

By Lemma 1.5, we know thafl,| < 2%, for everyn e N. Consider the set€, :=
{((f:N— T,): f(N)is abase ofX,, T,)}. We have that, for alt € N, |C,| < |(T,)N] <
(280)Ro = 2%o By CC(< 2%0), there is( f,), with eachf, an element ot,.

The subbas€ := {pn_l(fn(k))i n,k € N} of [, X» is countable, and then the base
generated by is also countable. O

In a analogous way to the proofs of Theorems 5.1 and 5.2, one can prove the following
corollary.

Corollary 5.3. Equivalent are

(i) the axiom of countaklchoice holds for families of finite s€tSC(fin));
(ii) countable products of spaces with finite topologies are second countable.

We recall that the countable union theorem for finite sets—Form 10 A in [14]—is
equivalent toaCC(fin)—Form 10 in [14].
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