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We investigate the possible existence of spin polarization and color superconductivity in the Nambu–
Jona-Lasinio model with a tensor-type interaction at finite density and temperature. The thermodynamic
potential is calculated by the functional integral method. Numerical results indicate that at low temperature
and quark chemical potential the chiral condensed phase exists, and at intermediate chemical potential the
color superconducting phase appears. In addition, depending on the magnitude of the tensor coupling, at
large chemical potential and low temperature, a color superconducting phase and a spin polarized phase
may coexist while at intermediate temperatures only the spin polarized phase occurs.
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I. INTRODUCTION

One of the most interesting topics in high energy physics
is to clarify the phase structure of quantum chromodynam-
ics (QCD). The phase where we live is called hadronic
phase. A remarkable feature in this phase is that quarks and
gluons are confined. At high temperature, the quark-gluon
plasma (QGP) phase is realized. Quarks and gluons are not
confined in the QGP phase. This phase has been confirmed
by high energy accelerator experiments, for example, the
relativistic heavy ion collider experiment. Moreover, more
powerful experiments have been conducted by the large
hadron collider.
On the other hand, the phase structure at low temperature

and large chemical potential has not been understood very
well. Since presently, it is still not possible to test the low
temperature and large chemical potential regime in the
laboratory, and we cannot use the lattice simulation method
because of the “sign problem,” the features of this region of
the QCD phase diagram are still uncertain. In order to
investigate the nature at such conditions the Nambu–Jona-
Lasinio (NJL) model [1–4] has been used. It has been
considered that a color superconducting phase [5–7], which
may occur in different forms such as the two-flavor color
superconducting (2SC) phase or the color flavor-locked

(CFL) phase, may be realized under these conditions. This
phase may appear inside compact stars, such as neutron
stars. Compact stars are very dense astrophysical objects
which may have very strong magnetic fields [8]. However,
the mechanism that explains the generation of such strong
magnetic fields is still not completely understood. In
particular, the phase structure at large chemical potential
and the possible existence of a spin polarized phase should
be investigated.
The possible existence of a quark ferromagnetic phase

has been discussed with one-gluon-exchange interaction in
Ref. [9]. Moreover, the possibility that spins of quarks may
polarize at large chemical potential has been studied with
axial vector-type interaction in Refs. [10–12]. In Ref. [13],
a vector-type interaction which respects chiral symmetry
has been introduced in the NJL model and it has been
shown that spin polarization could occur if the chemical
potential is within a narrow range of values. The relation-
ship between the vector-type interaction and the 2SC has
been discussed and it has been indicated that chiral
condensed phase and 2SC phase may coexist if the
contribution from the vector-type interactions considered
in Ref. [14].
Although a term for spin polarization can be derived from

the vector-type interaction, we pay attention to a tensor-type
interaction, which, of course, respects chiral symmetry. The
interaction has been introduced in Refs. [15,16] and a spin
polarization term can be derived from it. Note that the spin
polarization term from the tensor-type interaction is not
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identical to that from the vector-type interaction, and the
term from the tensor-type interaction can be interpreted as an
anomalous magnetic moment induced dynamically accord-
ing toRef. [17]. InRefs. [18,19] the relationship between the
spin polarization and the color superconductivity has been
investigated at zero temperature, and in our preceding paper
[20] the discussion has been extended to finite temperature.
According to our precedingpaper, the chiral condensed phase
and the spin polarized phase do not coexist, and the order of
the phase transition from the spin not-polarized phase to the
spin polarized phase is second order. The effect from an
external magnetic field on the spin polarization has been
studied in Ref. [21], and it has been shown that ferromag-
netism may occur if we assume an anomalous magnetic
moment for thequarks. In the presentwork,we investigate the
possible existence of spin polarization and color super-
conductivity in the Nambu–Jona-Lasinio model with a
tensor-type interaction at finite density and temperature.
In the following section we introduce the NJL model

with the tensor-type interaction and calculate the thermo-
dynamic potential by the functional integral method. In
Sec. III we evaluate the thermodynamic potential numeri-
cally. The last section is devoted to the conclusions and
remarks. The tensor-type interaction can be derived from
the scalar-interaction channel in the NJL model, however,
we treat the coupling constant for the tensor-type inter-
action as a free parameter. We use the gamma matrices in
the Dirac representation, and adopt the metric ten-
sor: gμν ¼ diagð1;−1;−1;−1Þ.

II. NJL MODEL WITH TENSOR-TYPE
INTERACTION AND QUARK PAIRING

INTERACTION

We start from the NJL model with the tensor-type
interaction and quark pairing interaction at finite quark
chemical potential μ. The Lagrangian density with flavor
SUð2Þ and color SUð3Þ symmetry at chiral limit can be
expressed as

Ltotal ¼ LNJL þ LT þ LC þ μψ̄γ0ψ ;

LNJL ¼ ψ̄iγμ∂μψ þGSfðψ̄ψÞ2 þ ðψ̄ iγ5~τψÞ2g;

LT ¼ −
GT

4
fðψ̄γμγν~τψÞ · ðψ̄γμγν~τψÞ

þ ðψ̄iγ5γμγνψÞðψ̄iγ5γμγνψÞg;

LC ¼ GC

2

X
A¼2;5;7

fðψ̄iγ5τyλAψCÞðψ̄Ciγ5τyλAψÞ

þ ðψ̄τyλAψCÞðψ̄CτyλAψÞg;
where τiði ¼ x; y; zÞ is Pauli matrix for flavor space and
λAðA ¼ 2; 5; 7Þ is Gell-Mann matrix for color space. The
superscriptCmeans charge conjugate. Note thatLT andLC
are the tensor-type interaction term and the quark pairing
interaction term, respectively. In order to study the system at

finite density, we introduce quark chemical potential μ. Here
we use the same value for the quark chemical potential for
up- and down-quarks. The spin polarization term appears
from LT when μ ¼ 1, ν ¼ 2 or μ ¼ 2, ν ¼ 1 as follows:

Σz ¼ −iγ1γ2 ¼
�
σz 0

0 σz

�
;

where σz is the third component of Pauli matrices.
Since we ignore the collective excitations on the realized

vacuum in this paper, the Lagrangian density that we
consider here is as follows:

L ¼ ψ̄iγμ∂μψ þGSðψ̄ψÞ2 þ
GT

2
ðψ̄ΣzτzψÞ2

−
GC

2
ðψ̄γ5τyλ2ψCÞðψ̄Cγ5τyλ2ψÞ þ μψ̄γ0ψ : ð1Þ

We will calculate the thermodynamic potential by the
functional integral method. Let us introduce the generating
functional Z:

Z ∝
Z

Dψ̄Dψ exp

�
i
Z

d4x

�
ψ̄iγμ∂μψ þ GSðψ̄ψÞ2

þGT

2
ðψ̄ΣzτzψÞ2 −

GC

2
ðψ̄γ5τyλ2ψCÞðψ̄Cγ5τyλ2ψÞ

þ μψ̄γ0ψ

��
: ð2Þ

We introduce auxiliary fields in order to perform the
functional integral with respect to quark fields. The
auxiliary fields that we introduce here are as follows:

1 ¼
Z

DM exp

�
−i

Z
d4xfM=2þGSðψ̄ψÞg

×G−1
S fM=2þ GSðψ̄ψÞg

�
;

1 ¼
Z

DF exp
�
−
i
2

Z
d4xfF þGTðψ̄ΣzτzψÞg

×G−1
T fF þGTðψ̄ΣzτzψÞg

�
;

1 ¼
Z

DΔ†DΔ exp

�
−
i
2

Z
d4xfΔ† þ GCðψ̄Cγ5τyλ2ψÞ†g

×G−1
C fΔþGCðψ̄Cγ5τyλ2ψÞg

�

¼
Z

DΔ†DΔ exp

�
−
i
2

Z
d4xfΔ† − GCðψ̄γ5τyλ2ψCÞg

×G−1
C fΔþGCðψ̄Cγ5τyλ2ψÞg

�
:

Inserting the above auxiliary fields into the generating
functional, we obtain
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Z ∝
Z

Dψ̄DψDMDFDΔ†DΔ

× exp

�
i
Z

d4x

�
ψ̄ðiγμ∂μ −MÞψ − ψ̄FΣzτzψ

−
1

2
Δ†ψ̄Cγ5τyλ2ψ þ 1

2
Δψ̄γ5τyλ2ψC þ μψ̄γ0ψ

−
M2

4GS
−

F2

2GT
−
jΔj2
2GC

��
: ð3Þ

In order to transform the above expression into bilinear
form for quark fields, we decompose it into

Z ∝
Z

Dψ̄DψDMDFDΔ†DΔ

× exp

�
i
2

Z
d4xfψ̄ðiγμ∂μ −MÞψ − ψ̄Cðiγμ∂⃖μ −MÞψC

− ψ̄FΣzτzψ þ ψ̄CFΣzτzψ
C

− Δ†ψ̄Cγ5τyλ2ψ þ Δψ̄γ5τyλ2ψC

þ μψ̄γ0ψ − μψ̄Cγ0ψCg
�

× exp

�
−i

Z
d4x

�
M2

4GS
þ F2

2GT
þ jΔj2
2GC

��
:

Let us define the Nambu spinors:

ΨðxÞ≔ 1ffiffiffi
2

p
�

ψðxÞ
ψCðxÞ

�
; Ψ̄ðxÞ≔ 1ffiffiffi

2
p ðψ̄ðxÞ ψ̄CðxÞÞ: ð4Þ

Using these spinors, we can rewrite the generating func-
tional into bilinear form of quarks as follows:

Z∝
Z

Dψ̄DψDMDFDΔ†DΔ

×exp

�
i
Z

d4x

�
Ψ̄ðxÞS−1ðxÞΨðxÞ− M2

4GS
−

F2

2GT
−
jΔj2
2GC

��
:

ð5Þ
Here we define the inverse propagator in position space:

S−1ðxÞ ≔
�
s11 s12
s21 s22

�
; ð6Þ

and

s11 ≔ ðiγμ∂μ −M þ μγ0Þ1F1C − FΣzτz1C;

s12 ≔ Δγ5τyλ2;

s21 ≔ −Δ†γ5τyλ2;

s22 ≔ ð−iγμ∂⃖μ −M − μγ0Þ1F1C þ FΣzτz1C;

where 1F and 1C are the unit matrices for flavor space and
color space, respectively. We can integrate Z with respect to
ψ̄ and ψ , then we obtain

Z∝
Z

DMDFDΔ†DΔ

×exp

�
1

2
logDetS−1ðxÞ− i

Z
d4x

�
M2

4GS
þ F2

2GT
þ jΔj2
2GC

��
;

where Det means functional determinant over position
space, the Nambu space, gamma matrices, flavor and color
space. To computeDetS−1ðxÞwemove tomomentum space.
The generating functional in momentum space becomes

Z ∝
Z

DMDFDΔ†DΔ

× exp

�
1

2

Z
d4x

Z
d4p
ð2πÞ4 log det

~S−1ðpÞ

− i
Z

d4x

�
M2

4GS
þ F2

2GT
þ jΔj2
2GC

��
; ð7Þ

where det is for the Nambu space, gamma matrices, flavor
space and color space, and we introduce the inverse
propagator in momentum space as follows:

~S−1ðpÞ ≔
�
~s11 ~s12
~s21 ~s22

�
; ð8Þ

where

~s11 ≔ ðp −M þ μγ0Þ1F1C − FΣzτz1C;

~s12 ≔ Δγ5τyλ2;

~s21 ≔ −Δ†γ5τyλ2;

~s22 ≔ ðp −M − μγ0Þ1F1C þ FΣzτz1C:

Calculating det ~S−1ðpÞ ¼ 0 for p0 gives us single-
particle energies for quasiparticles. Thus, for simplicity,
we introduce two kinds of single-particle energies:

εðα;βÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y þM2

q
þ αFÞ2

r
þ βμ ð9Þ

Eðα;βÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεðα;βÞÞ2 þ jΔj2

q
; ð10Þ

where α ¼ � and β ¼ �.
After calculating det ~S−1ðpÞ, we get

logdet ~S−1ðpÞ¼ log

�� Y
α;β¼�

ðp0−εðα;βÞÞðp0þεðα;βÞÞ
�

NF

×

� Y
α;β¼�

ðp0−Eðα;βÞÞðp0þEðα;βÞÞ
�

2NF
�
;

where NF means the number of flavor (in this case
NF ¼ 2). In order to calculate the Matsubara summation
later, we differentiate and integrate the above expression
with respect to single-particle energies:
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logdet ~S−1ðpÞ¼NF

X
α;β¼�

�Z
dεðα;βÞ

�
1

p0þεðα;βÞ
−

1

p0−εðα;βÞ

�

þ2

Z
dEðα;βÞ

�
1

p0þEðα;βÞ−
1

p0−Eðα;βÞ

��
:

To discuss the system at finite temperature, we use the
following substitution:Z

d4p
ið2πÞ4 fðp0; ~pÞ → T

X∞
n¼−∞

Z
d3p
ð2πÞ3 fðiωn; ~pÞ;

where T is temperature and ωn ≔ ð2nþ 1ÞπT; ðn ∈ ZÞ is
the Matsubara frequency for fermion. Using this substitu-
tion, the component of the generating functional becomes

1

2

Z
d4p
ð2πÞ4 log det

~S−1ðpÞ → iT
2
NF

X∞
n¼−∞

Z
d3p
ð2πÞ3

X
α;β¼�

×

�Z
dεðα;βÞ

�
1

iωn þ εðα;βÞ
−

1

iωn − εðα;βÞ

�

þ 2

Z
dEðα;βÞ

�
1

iωn þ Eðα;βÞ −
1

iωn − Eðα;βÞ

��
:

We can calculate the Matsubara summation with the
following formula:

lim
η→þ0

T
X∞
n¼−∞

eiωnη

iωn − x
¼ lim

η→þ0

eiωnη

1þ ex=T
¼ 1

1þ ex=T
:

Using the above formula and integrating with respect to
energies, the above expression becomes

i
2
NF

Z
d3p
ð2πÞ3

X
α;β

½εðα;βÞ þ 2T logð1þ exp½−εðα;βÞ=T�Þ

þ 2fEðα;βÞ þ 2T logð1þ exp½−Eðα;βÞ=T�Þg� þ const;

where “const” is a constant of integration.1 Since constant
terms do not contribute to thermodynamics, we ignore
them. Substituting the result into the generating functional,
Z becomes

Z ∝
Z

DMDFDΔ†DΔ

× exp

�
iNF

Z
d4x

Z
d3p
ð2πÞ3

X
α;β

�
εðα;βÞ

2
þ Eðα;βÞ

þ T logð1þ exp½−εðα;βÞ=T�Þð1þ exp½−Eðα;βÞ=T�Þ2
��

× exp

�
−i

Z
d4x

�
M2

4GS
þ F2

2GT
þ jΔj2
2GC

��
: ð11Þ

In one-loop approximation we obtain the thermodynamic
potential as follows:

VðM;F; jΔj; μ; TÞ

¼ −NF

Z
d3p
ð2πÞ3

X
α;β

�
εðα;βÞ

2
þ Eðα;βÞ

þ T logð1þ exp½−εðα;βÞ=T�Þð1þ exp½−Eðα;βÞ=T�Þ2
�

þ M2

4GS
þ F2

2GT
þ jΔj2
2GC

: ð12Þ

III. NUMERICAL RESULTS

In this section we calculate the thermodynamic potential
numerically. To do this we use parameters in Table I. Since
the NJL model is not a renormalizable theory, we adopt a
three-momentum cutoff parameter,Λ. The values ofGS and
Λ are determined to reproduce the chiral condensate or
dynamical quark mass and the pion decay constant in the
vacuum.
We consider that the tensor-type interaction should be

derived from a two-gluon exchange interaction in QCD
[20]. However, since the NJL model cannot be derived from
the QCD Lagrangian directly, we therefore adopt GT as a
free parameter in this model. If we assume that the tensor-
type interaction term is derived by the Fierz transformation
of the scalar and pseudoscalar channels in the NJL model,
as in [2] or [23], the tensor coupling satisfies the relation
GT ¼ −2=13GS. On the other hand, the value ofGT andGS
may be considered independently as in [24,25] or [26] and
determined from the vacuum mesonic properties. In
[24,25], the scalar and tensor terms and three-dimensional
cutoff were used to describe the pion and ρ-meson, and the
relation GS ∼ −1.2GS was obtained. Recently the authors
of [26] have calculated within an extended SUð2Þ NJL
model including vector, axial vector and tensor interactions
several meson masses, meson-quark coupling constants
and corresponding decay constants within a Hartree plus
random phase approximation. They have considered both
positive and negative tensor couplings, and in both cases
could describe the mesonic phenomenology. Although their
model is different from ours because of the regularization
procedure used and the inclusion of a vector contribution
besides the scalar and the tensor ones, they obtained a GT 4
times larger than GS when the same sign of GS, as in our
work, is considered. We must take a positive coupling

TABLE I. Parameter sets used in the present study.

Model Λ=GeV GS=GeV−2 GT GC=GeV−2

GT0 0.631 5.5 0 6.6
GT2 0.631 5.5 2GS 6.6
GT2.6 0.631 5.5 2.6GS 6.6

1Here we interchange
P∞

n¼−∞ and
R
d3p to calculate the

Matsubara summation. This interchange is not correct math-
ematically, however, the resulting generating functional is cor-
rect. This technique has been used in Ref. [22].
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constant in order to get a spin condensate. However, we
should point out that since we discuss the system at finite
density, taking the couplings that have been obtained from
the vacuum properties may not be adequate. Thus, we treat
GT as a free parameter.
Further, the value of GC has been used in Ref. [14]. The

value has been taken in order to reproduce the phase
diagram in Ref. [27].

A. Chiral condensate versus color superconducting gap

First we discuss the relationship between the chiral
condensed phase and the color superconducting phase
by using model GT0 in Table I, putting to zero the tensor
term. We show numerical results of the thermodynamic
potential in Fig. 1. The horizontal and vertical axes
represent the order parameters for the chiral condensate,
M, and the color superconducting gap, Δ, respectively. The

FIG. 1. The figures show the contour maps of the thermodynamic potential for model GT0 with several values of the chemical
potential, μ, and temperature, T. The horizontal and vertical axes represent the order parameters M and Δ for the chiral condensate and
the color superconducting gap, respectively. The darker color represents lower values of the thermodynamic potential.

SPIN POLARIZATION AND COLOR SUPERCONDUCTIVITY … PHYSICAL REVIEW D 95, 054025 (2017)

054025-5



darker color represents lower value of the thermodynamic
potential.
At chemical potential μ ¼ 0.25 GeV and temperature

T ¼ 0.01, 0.08 GeV, only the chiral condensed phase is
realized. However, at μ ¼ 0.25 GeV and T ¼ 0.12 GeV,
both phases, the chiral condensed phase and the color
superconducting phase, disappear.
At μ ¼ 0.32 GeV and T ¼ 0.01 GeV, the chiral con-

densed phase exists and color superconducting gap does not

appear. But there are two local minima on the horizontal
and vertical axes, respectively. At μ ¼ 0.32 GeV and
T¼0.03GeV, there are also two local minima. The thermo-
dynamic potential takes about the same value at these points.
At μ¼ 0.32GeV and T ¼ 0.05 GeV, there is no condensate.
On the other hand, when μ¼ 0.35GeV and T¼0.01GeV,

the color superconducting phase appears but the chiral
condensate disappears. At μ¼0.35GeV and T¼0.02GeV,
the color superconducting phase is the only phase realized.

FIG. 2. The figures show the contour maps of the thermodynamic potential for model GT2 with several values of the chemical
potential, μ, and temperature, T. The horizontal and vertical axes represent the order parameters for the spin polarization and the color
superconductivity, respectively. The darker color represents lower values of the thermodynamic potential.

HIROAKI MATSUOKA et al. PHYSICAL REVIEW D 95, 054025 (2017)

054025-6



Like other cases, in the high temperature region
(μ ¼ 0.35 GeV and T ¼ 0.05 GeV), there is no condensate.
These contour plots indicate that the chiral condensed

phase and the color superconducting phase do not coexist
in our parameter set. In Ref. [28], however, it has been
shown that if one adopts a different parameter set, the two
phases may coexist.
It is known that there is an end point where the order of

the phase transition between the chiral condensed phase
and chiral symmetric phase changes in the phase diagram in
the T-μ plane. In the low chemical potential region, the
phase transition is of second order, on the other hand, in the
large chemical potential region, it is of the first order.
According to the numerical results, if the chiral con-

densate is realized, the thermodynamic potential always
takes the minimum value on the horizontal axes. On the
other hand, if the color superconducting gap is realized, the
thermodynamic potential always takes the minimum value
on the vertical axes. Thus, we consider that the order of the
phase transition between the chiral condensed phase and
the color superconducting phase is first order.

B. Spin polarization versus color superconductor

Next we discuss the relationship between the spin
polarization and the color superconductivity by usingmodel
GT2,withGT ¼ 2GS in Table I.We plot the thermodynamic
potential in Fig. 2. The horizontal and vertical axes represent
the order parameter for the spin polarization and the color
superconductivity, respectively. The darker color represents
lower values of the thermodynamic potential.
At chemical potential μ ¼ 0.4 GeV and temperature

T ¼ 0.01, 0.03 GeV, the thermodynamic potential takes
the minimum value at F ¼ 0 and Δ ≠ 0. Thus the color
superconducting phase is realized. At μ ¼ 0.4 GeV and
T ¼ 0.05 GeV, the thermodynamic potential takes the
minimum value at the origin. It means that the simple
quark phase is realized.
At μ ¼ 0.41 GeV and T ¼ 0.01 GeV, there is the only a

color superconducting gap. However, at μ ¼ 0.41 GeV and
T ¼ 0.03 GeV, the thermodynamic potential takes the
minimum value at F ≠ 0 and Δ ≠ 0. It indicates that two
phases may coexist. At μ ¼ 0.41 GeV and T ¼ 0.05 GeV,
both condensates disappear and the simple quark phase
is realized.
At μ ¼ 0.42 GeV and T ¼ 0.01, 0.03 GeV, the color

superconducting gap and the spin polarized condensate
coexist. Then, when μ ¼ 0.42 GeV and T ¼ 0.05 GeV, the
color superconducting gap disappears and the spin polar-
ized condensate is realized. If we set higher temperatures,
the thermodynamic potential will take the minimum at the
origin, namely, no condensate appear.
According to these contour maps, we consider that the

spin polarized phase and the color superconducting
phase can coexist in certain conditions, and the order of
the phase transition between the color superconducting

phase, the spin polarized phase and the coexisting phase is
of the second.

C. Phase diagram

Here we show the phase diagram in the T-μ plane in
Figs. 3 and 4. The horizontal and vertical axes represent
quark chemical potential and temperature, respectively.
First we show the phase diagram with the chiral con-

densate and color superconductivity, namely, modelGT0. In
Fig. 3 the region under the dotted blue and solid yellow line
is the chiral condensed phase. On the other hand, the region
under the purple dashed line is the color superconducting

FIG. 3. The phase diagram for model GT0 with GT ¼ 0: The
horizontal and vertical axes represent chemical potential and
temperature, respectively. In the figure, χC and CSC mean the
chiral condensed phase and the color superconducting phase,
respectively. “2nd order” and “1st order” mean the order of the
phase transition.

FIG. 4. The phase diagram for model GT2 withGT ¼ 2GS: The
horizontal and vertical axes represent chemical potential and
temperature, respectively. In the figure, χC, CSC and SP mean the
chiral condensed phase, the color superconducting phase and
the spin polarized phase, respectively. Also, COEX means the
coexisting phase with both the spin polarization and the color
superconducting gap. “2nd order” and “1st order”mean the order
of the phase transition.
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phase. The terms “1st order” and “2nd order”mean the order
of phase transition, respectively.
Next, using model GT2, in Fig. 4 the phase diagram with

the chiral condensate, color superconductivity and spin
polarization is shown. The left region of the blue dotted
and yellow solid lines represents the chiral condensed phase.
The blue dotted and yellow solid lines mean the second- and
first-order phase transition between the chiral condensed
phase and the chiral symmetrical phase, respectively.
The middle region below the violet dashed line is the

color superconducting phase. The color superconducting
phase can exist in the low temperature region, and, as
chemical potential increases, the critical temperature for the
phase transition between color superconducting and normal
phase increases.
The right region of the orange dotted line is the coexisting

phase where the color superconducting gap and the spin
polarized condensate coexist. The critical temperature for
the coexisting phase decreases as chemical potential
increases. Note that just above the chemical potential μ ¼
0.4 GeV and at low temperature the color superconducting
phase exists, however, if we increase temperature slightly,
we arrive at the coexisting phase. The region above the
coexisting phase, namely, below the green dash-dotted line,
is a spin polarized phase.

D. Effect of the coupling constant GT

Finally we investigate the effect of the coupling constant
GT on the thermodynamics. Here, we have used GT as a
free parameter. So we give the phase diagram with a new
coupling constant: GT ¼ 2.6GS ¼ 14.3 GeV−2, identified
as model GT2.6 in Table I. Figure 5 shows the phase
diagram for model GT2.6 in the T-μ plane. One of the
differences between the former phase diagram and the later

one is that the color superconducting phase does not appear.
Instead, the coexistence phase is realized after the chiral
condensed phase disappears. Moreover, the spin polarized
phase survives at higher temperatures, on the other hand,
the coexisting phase disappears at lower temperatures than
the former phase diagram.

IV. CONCLUSIONS AND REMARKS

We have studied the relationship between the chiral
condensation, the color superconductivity and the spin
polarization at finite density and temperature. According to
the results, in the low chemical potential and temperature
region, the chiral condensed phase exists and there is an
end point where the order of the phase transition changes.
In the intermediate chemical potential and low temperature
region, the color superconducting phase exists. The chiral
condensed and the color superconducting phases do not
coexist in our parameter set, however, if we change the
values of the coupling strengths and/or three-momentum
cutoff parameter, they may coexist. As is known well, the
first order phase transition occurs from the chiral con-
densed phase to the color superconducting phase in the low
temperature region. When we use model GT2, in the large
chemical potential and low temperature region, the color
superconducting phase and the spin polarized phase coex-
ist. However, if we increase temperature, the color super-
conductivity disappears soon and the only spin polarized
phase is realized. The order of the phase transition between
these phases is second order. At higher temperatures, there
are no condensates. The extension of the spin polarization
and color superconducting phase domains depends on the
strength of the coupling of the tensor term.
Here we refer to the effect of the coupling constant, GT ,

to the phase diagram. We have also examined several
values of GT : GT ¼ 1.5GS; 1.75GS; 1.8GS; 3GS and 3.5GS.
When GT ¼ 1.5GS, we obtain neither the spin polarized
phase nor the coexisting phase, namely, the phase diagram
obtained with this condition is identical to Fig. 3. Thus, if
we want these phases to be realized, the value of GT must
be larger than 1.5GS. When GT ¼ 1.75GS and 1.8GS, we
can get phase diagrams qualitatively identical to the one for
GT ¼ 2GS (see Fig. 4). When GT ¼ 3GS, we obtain a
phase diagram qualitatively identical to GT ¼ 2.6GS (see
Fig. 5). If GT ¼ 3.5GS, the spin polarized phase is realized
at μ ¼ 0, therefore, we consider that the value is too large.
In this paper we have considered the Lagrangian density

with flavor SUð2Þ and color SUð3Þ symmetry. However, at
the large chemical potential, we should not ignore contribu-
tions from strange-quark. So, our next task is to consider the
Lagrangian density with flavor SUð3Þ symmetry. In this case
a CFL phase may exist. It is also interesting to consider the
effects from an external magnetic field on the spin polariza-
tion, although effects frommagnetic fields on theQCDphase
diagram have been investigated bymany researchers [29,30].
Moreover, in order to describe compact stars, we should

FIG. 5. The phase diagram for model GT2.6 with GT ¼ 2.6GS:
The horizontal and vertical axes represent chemical potential and
temperature, respectively. In the figure, χC and SP mean the
chiral condensed phase and spin polarized phase, respectively.
Also, COEX means the coexisting phase with the spin polari-
zation and color superconducting gap. “2nd order” and “1st
order” mean the order of the phase transition.

HIROAKI MATSUOKA et al. PHYSICAL REVIEW D 95, 054025 (2017)

054025-8



consider charge neutrality and β-equilibrium. In the present
work we have considered μu ¼ μd ¼ μ, where μu and μd are
chemical potentials for up- and down-quarks, respectively,
and no charge neutrality. We expect that the spin polarized
phase may generate a strong magnetic field around neutron
stars. The effects from charge neutrality and β-equilibrium
have been discussed, for example, in Ref. [31]. This will be
considered in future works.
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APPENDIX: BRIEF NOTE FOR CHARGE
CONJUGATE MATRIX AND DIRAC MATRICES

In Sec. II we transform the Lagrangian density into
bilinear form for the quark fields. Here we show how we
can do it. We use gamma matrices represented by Dirac
representation. The charge conjugate is defined by

ψ̄C ≔ ψTC; ψC ≔ Cψ̄T; ðA1Þ

where the charge conjugate matrix is C ≔ iγ0γ2. We
enumerate properties of the C matrix and gamma matrices:

C† ¼ −C; C2 ¼ −1;

and

ðγ0ÞT ¼ γ0; ðγ1ÞT ¼ −γ1;

ðγ2ÞT ¼ γ2; ðγ3ÞT ¼ −γ3:

When the Cmatrix operates on gamma matrices, we obtain

Cγ0C ¼ γ0; Cγ1C ¼ −γ1;

Cγ2C ¼ γ2; Cγ3C ¼ −γ3:

Using these properties, we can get the following
expressions:

ψ̄CψC ¼ ψ̄ψ ; ðA2Þ
ψ̄Cγ0ψC ¼ −ψ̄γ0ψ ðA3Þ

ψ̄C∂⃖μγ
μψC ¼ −ψ̄γμ∂μψ ; ðA4Þ

ψ̄Cγ1γ2ψC ¼ −ψ̄γ1γ2ψ ; ðA5Þ

where the last line means ψ̄CΣzψ
C ¼ −ψ̄Σzψ .
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