
Linear Algebra and its Applications 330 (2001) 31–42
www.elsevier.com/locate/laa

Theoretical and numerical considerations about
Padé approximants for the matrix logarithm�

J.R. Cardosoa,∗, F. Silva Leiteb,1

aInstituto Superior de Engenharia de Coimbra, Quinta da Nora, 3030 Coimbra, Portugal
bDepartamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal

Received 22 July 1999; accepted 14 November 2000

Submitted by G. de Oliveira

Abstract

We show that for a vast class of matrix Lie groups, which includes the orthogonal and
the symplectic, diagonal Padé approximants of log((1 + x)/(1 − x)) are structure preserving.
The conditioning of these approximants is analyzed. We also present a new algorithm for
the Briggs–Padé method, based on a strategy for reducing the number of square roots in the
inverse scaling and squaring procedure. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

In recent years there has been an increasing interest in computing real logarithms
of real matrices. The most significant papers in this area include [3,6,8,9,13–15].

The need to find logarithms of matrices arises in many areas of engineering and
control theory. The above-cited references list a number of possible applications. In
addition to these, we mention a geometric scheme for generalizing Bézier curves
to non-Euclidean spaces, which was the main reason for our interest in this area.
Crouch et al. [4,5] presented a generalized De Casteljau algorithm to find polynomial
splines on Riemannian manifolds. For the particular situation when this manifold is
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a Lie group of matrices, the implementation of this algorithm requires successive
computations of matrix exponentials and logarithms. In turn, the theory of splines on
Lie groups finds applications in robotics path planning and in air traffic control.

It is well known that the exponential mapping on a Lie groupG is a homeomor-
phism from a neighborhood of 0∈ L (the Lie algebra ofG) into a neighborhood of
the identity inG. So, if we are restricted to this neighborhood, any matrix inG has a
logarithm that belongs toL.

One important aspect of the problem of computing logarithms of matrices belong-
ing to G is to consider algorithms which are structure preserving. Dieci [6] showed
that the diagonal Padé approximants method for computing the logarithm of orthogo-
nal and symplectic matrices preserves the structure. Inspired by this work, we extend
some of his results to a vaster class of Lie groups that includes the orthogonal and
the symplectic as particular cases.

The Briggs–Padé method, which is a combination of the Padé approximants meth-
od with an inverse scaling and squaring procedure, computes the principal logarithm
of an invertible matrix with no eigenvalues on the negative real axis, by taking
successive square roots until the resulting matrix is so close to the identity that
the Padé approximants of the logarithmic funtions become accurate (see [14,15]
and also [6,8]). The logarithm of the original matrix is then recovered using the
identity log(T ) = 2k log(T 1/2k ). Usually, the Padé approximants method used to
approximate the logarithm is related to the function log(1 − x). In this paper we use
instead Padé approximants associated with log((1 + x)/(1 − x)), due to the advan-
tages which result from simpler expression and smaller condition numbers for the
latter.

It is well known that taking a great number of square roots may lead to a loss
of precision in the computed result (see [8,15]). Although in theory the precision
of the result increases with the number of square roots, this may not happen when
working on finite precision. In this paper we also present a strategy that guarantees
some desired precision but avoids taking unnecessary square roots.

The organization of the paper is as follows. In Section 2 we make some consider-
ations about the real matrix logarithm and present the class ofP-orthogonal matrix
Lie groups that will be used in the first part of the paper. In Section 3 we prove that
the Briggs–Padé method, to approximate the principal logarithm of aP-orthogonal
matrix, is structure preserving if using diagonal Padé approximants. We also com-
ment on difficulties with the numerical implementation of this method. While these
two sections refer to a particular class of matrix Lie groups, the results in the rest
of the paper are valid for general invertible matrices without negative eigenvalues.
In Section 4, we compare the condition numbers of diagonal Padé approximants
of the functions log((1 + x)/(1 − x)) and log(1 − x), to conclude that the former
has advantages over the latter. We consider only diagonal Padé approximants with
even degree, but the results can be easily adapted to the odd case. Finally, in Section
5, we improve the usual upper bound for the absolute error estimate of the Padé
approximants for the logarithm. This is then used to reduce the number of square
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roots in the Briggs–Padé method. As a consequence, we propose a new algorithm for
this method and make comments on the implementation based on some numerical
examples.

2. Preliminaries

Let gl(n,R) be the set of alln× n matrices with real entries andGL(n,R) the
general linear Lie group, consisting of all invertible matrices ingl(n,R).

Given a matrixT ∈ GL(n,R), all solutions (not necessarily real) of the matrix
equationeX = T are calledlogarithmsof T. However, if the spectrum ofT, denoted
by σ(T ), does not intersectR−

0 , thenT has a unique real logarithm whose spectrum
lies in the strip{z ∈ C : −π < Im(z) < π}. This logarithm is called theprincipal
logarithmof T and will be denoted by log(T ). See, for instance, [12] for details and
properties of the principal logarithm, including those listed below. Hereafter the word
principal will be sometimes omitted, since this is the only logarithm to be considered
in this paper.

WhenT satisfiesσ(T ) ∩ R−
0 = ∅, the principal logarithm ofT is a primary matrix

function and so enjoys some nice properties. See [12] for details. Among the proper-
ties of the principal logarithm, which result from the fact that it is a primary matrix
function, we emphasize the following:

log(T T) = (log(T ))T,

log(T −1) = − log(T ) (1)

and

log(ST S−1) = S log(T )S−1 ∀S ∈ GL(n,R).
(The superscript T denotes the matrix transpose.)

For anyn× n orthogonal matrixP (i.e.P T = P−1) define the following Lie sub-
group ofGL(n,R),

G = {
T ∈ GL(n,R) : T TPT = P}

,

whose Lie algebra, equipped with the commutator as Lie bracket is:

L = {
X ∈ gl(n,R) : XTP = −PX}

.

From now on we will refer the matrices inG asP-orthogonaland the matrices inL
asP-skew-symmetric.

The particular cases when

P = In and P =
[

0 Ik
−Ik 0

]
,

with 2k = n, correspond to the orthogonal/skew-symmetric and symplectic/Hamil-
tonian cases, respectively, studied in [6,7]. Among the infinitely manyP-orthogonal
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Lie groups, obtained by lettingP run over the set of orthogonal matrices, we also
point out the caseG = O(p, q), p + q = n, corresponding to the choice

P =
[
Ip 0
0 −Iq

]
.

The Lorentz group of all coordinate transformations in Minkowski space-time,
denoted byO(1,3), is a particular case of the above and plays a very important role
in physics.

While the exponential of aP-skew-symmetric matrix isP-orthogonal, a real log-
arithm of aP-orthogonal matrix may not beP-skew-symmetric. However, providing
thatσ(T ) ∩ R−

0 = ∅, the principal logarithm is alwaysP-skew-symmetric. In fact,
sinceT is P-orthogonal, thenT −1 = P−1T TP and using (1), it follows immediately
that

− log(T ) = P−1(log(T ))TP,

which implies that log(T ) is P-skew-symmetric.

3. Structure preserving Padé approximants for the logarithm of P-orthogonal
matrices

We refer to [1,2] for more details concerning the general theory of Padé approxi-
mants.

It is well known that diagonal Padé approximantsRmm(A) of the matrix func-
tion f (A) = log(I − A) may be used to approximate the principal logarithm of any
matrixT := I − A, with ‖I − T ‖ < 1 (see, for instance, [13]).

According to Theorem 1.5.2 in [2],

Rmm(A) = Smm(B), (2)

whereSmm(B) denotes the Padé approximant ofg(B) = log [(I + B)(I − B)−1],
with B = A(A− 2I)−1.

It turns out that some important simplifications take place if one usesSmm(B)

instead ofRmm(A), to approximate the principal logarithm ofT = I − A. For this
reason we proceed our work with the former. One particular aspect of this simplifica-
tion, which becomes clearer from expressing log((1 + x)/(1 − x)) as the continued
fraction expansion:

g(x) = log

(
1 + x
1 − x

)
= 2x

1 − x2

3− 4x2

5−··· k2x2
2k+1−···

, (3)

is that the numerator ofSmm has only odd powers inx, while the denominator has
only even powers.
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Some analysis (see [2, Chapter 4]) shows that the sequence(Smm(B))m∈N con-
verges tog(B), for all matricesB whose spectrum does not intersect the set{λ ∈ R :
|λ| � 1}, that is, when the matrixT satisfiesσ(T ) ∩ R−

0 = ∅.
In the next theorem, we show that diagonal Padé approximants of any order, to

approximate the logarithm of a matrix in the Lie group ofP-orthogonal matrices are
structure preserving, in the sense that they always produce a matrix belonging to the
corresponding Lie algebra.

Theorem 3.1. If T is P-orthogonal andσ(T ) ∩ R−
0 = ∅, thenSmm(B), whereB =

(T − I)(T + I)−1, is P-skew-symmetric.

Proof. We first show that ifT is P-orthogonal, that is,T T = PT −1P−1, thenB is
P-skew-symmetric. Indeed,

BT =(T T − I)(T T + I)−1 = (PT −1P−1 − I)(PT −1P−1 + I)−1

=P(T −1 − I)(T −1 + I)−1P−1

=P(T −1 − I)T T −1(T −1 + I)−1P−1

=−P(T − I)(T + I)−1P−1 = −PBP−1.

To conclude the proof it is enough to observe thatSmm(B) is a primary matrix
function andSmm(B) = −Smm(−B). �

Due to relationship (2), this result generalizes Theorem 2.2 in [6], which is valid
for the orthogonal and the symplectic groups only.

Although the previous theorem solves, in theory, the problem of approximating
the matrix logarithm ofP-orthogonal matrices, in practice it does not. In fact, if a
matrix is too far from the identity, it is known that one needs to use high-order Padé
approximants to compute the matrix logarithm, which is not an efficient procedure.
In such a case, one possible alternative is to use the Briggs–Padé method, which
consists in combining an inverse scaling and squaring process with the Padé approx-
imants method. Basically one takes sucessive square roots of the given matrixT, until
the resulting matrix is in a small neighborhood of the identity, and then recovers the
logarithm of the original matrix through the identity

log(T ) = 2k log(T 1/2k ).

It is also true, and easy to prove, that ifT is P-orthogonal andσ(T ) ∩ R−
0 = ∅, then

T 1/2 is alsoP-orthogonal, whereT 1/2 is the unique square root whose eigenvalues
satisfy

−π/2< arg(λ) < π/2,

So, according to these observations, it seems that the Briggs–Padé method is the key
to approximate the principal logarithm of aP-orthogonal matrix. Unfortunately, this
is only true from a theoretical point of view, since no numerical methods to compute
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matrix square roots are known to be structure preserving. In order to minimize this
difficulty, we propose, in Section 5, a procedure to reduce the number of square roots
in the Briggs–Padé method.

In Section 4, we compare the conditioning ofSmm with that ofRmm, in order to
emphasize another advantage in using the former Padé approximant instead of the
classical one.

4. Conditioning of Smm

It is well known that the conditioning of a Padé approximant depends on the
conditioning of its denominator (see [8,13]).

In this section, we give an upper bound for the condition number of the denomi-
nator ofSmm(B), which is much better than the one presented in [13] for the classical
Padé approximantsRmm(A), at least for the values ofmpertinent to the present work.
For the sake of simplicity, we consider Padé approximants of even order only. We
first recall that the condition number for any invertible matrixM is defined by

cond(M) = ‖M‖ ‖M−1‖.

Theorem 4.1. Let l be a positive integer. IfQ2l is the denominator ofS2l,2l and B
is a matrix satisfying‖B2‖ < 1, then

cond(Q2l (B)) � ql(−‖B2‖)
ql(‖B2‖) ,

whereql is a polynomial of degree l which satisfiesql(x2) = Q2l (x).

Proof. To understand the arguments we have to recall that the function log((1 + x)/
(1 − x)) may be written in terms of a hypergeometric series in the following way:

log

(
1 + x
1 − x

)
= 2x 2F1

(
1

2
,1,

3

2
; x2

)
. (4)

Now, the denominator of the Padé approximants of a power series can be written in
terms of orthogonal polynomials [1, Chapter 7], which in turn allows us to locate the
poles of these approximants. For the particular case above, it follows from arguments
in [1, p. 87], thatQ2l (x) has real simple roots in the interval] − ∞,−1[∪]1,+∞[.
So,ql(y) has real simple roots lying in the interval]1,+∞[. But sinceql(y) is also

the denominator of the(l − 1, l) Padé approximant of2F1

(
1
2,1,

3
2; y

)
, we can apply

Lemma 3 in [13] to write the following inequality:

cond (Q2l (B)) = cond
(
ql(B

2)
)

�
ql

(−‖B2‖)
ql

(‖B2‖) ,
which completes the proof.�
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Comparing the upper bound given in the previous theorem with that given in [13]
for the conditioning of the denominator of the Padé approximantR2l,2l(A), our tests
for the casesl = 1, . . . ,5 show that the conditioning of the Padé approximant for
log((1 + x)/(1 − x)) is much better than that of log(1 − x). For the casel = 4, we
have

q4(y) = 1 − 28

15
y + 14

13
y2 − 28

143
y3 + 7

1287
y4,

which satisfiesq4(x
2) = Q8(x). Assuming‖A‖ = ‖I − T ‖ = 0.9 and since, ac-

cording to [8],‖(T + I)−1‖ � (2 − ‖A‖)−1, it follows that

‖B‖ = ‖(T − I)(T + I)−1‖ � ‖A‖
2 − ‖A‖ and ‖B2‖ � ‖B‖‖B‖ � 0.669.

Now, a few calculations show that

cond(Q8(B)) � 15.8867.

On the other hand, ifF8 denotes the denominator of the(8,8) Padé approximant of
log(1 − x), it has been proved in [13] that

cond(F8(A)) � F8(−‖A‖)
F8(‖A‖) .

So, under the above assumptions, we have

cond(F8(A)) � 11045.8.

5. A new algorithm for the Briggs–Padé method

To approximate log(I − A), the usual practice is to determine a number of square
roots ofT = I − A until the following condition is satisfied:

‖I − T 1/2k‖ � ε < 1. (5)

This, in turn, is related with the inequality

‖Rmm(A)− log(I − A)‖ � Rmm(‖A‖)− log(1 − ‖A‖), (6)

that measures the error of the Padé approximants of log(I − A), when‖A‖ < 1 [13,
Corollary 4]. However, condition (5) is not necessary to guarantee high precision of
the Padé approximants method. For instance, as pointed out in [9], the requirement
that all diagonal blocks in the real Schur form ofT 1/2k are close to the identity,
performs better than condition (5).

In this section we take a somewhat similar route and show that full accuracy
may be obtained even when‖I − T 1/2k‖ � 1. This will be a consequence of an
improvement in the error bounds given by (6).
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Theorem 5.1. Suppose that

H(y) = 2F1

(
1

2
,1,

3

2
; y

)
and tl−1,l(y)

is the associated(l − 1, l) Padé approximant. If B is a matrix such that‖B2‖ < 1,
then

‖ log[(I + B)(I − B)−1] − S2l,2l(B)‖
� 2‖B‖[H(‖B2‖)− tl−1,l(‖B2‖)]. (7)

Proof. ReplacingX byB2 in Corollary 4 of [13], it follows that

‖H(B2)− tl−1,l(B
2)‖ � H(‖B2‖)− tl−1,l(‖B2‖).

This inequality together with

H(B2) = (2B)−1 log[(I + B)(I − B)−1]
and

S2l,2l(B) = 2Btl−1,l(B
2),

yields

‖ log[(I + B)(I − B)−1] − S2l,2l(B)‖
= ‖2BH(B2)− 2Btl−1,l(B

2)‖
� 2‖B‖[H(‖B2‖)− tl−1,l(‖B2‖)]. �

Now, we are going to compare the upper bound given in (7) with the one in (6).
First we observe that sinceA = I − T andB = A(A− 2I)−1 = (T − I)(T +

I)−1, then

‖ log[(I + B)(I − B)−1] − S2l,2l(B)‖ = ‖R2l,2l(A)− log(I − A)‖.
We now assume that‖A‖ � 1 and setu = 2‖B‖[H(‖B2‖)− tl−1,l(‖B2‖)] and

v = R2l,2l(‖A‖)− log(1 − ‖A‖). From the positivity of the error expansion coeffi-
cients, as observed in [13], from Lemma 1 in [13], and (2), and since

‖B‖ � ‖A‖
2 − ‖A‖ ,

it follows that

u�2‖B‖ [H(‖B‖2)− tl−1,l(‖B‖2)]
� log

(
1 + ‖B‖
1 − ‖B‖

)
− S2l,2l(‖B‖)

�v.

Usingu instead ofv is clearly advantageous when‖B2‖ < 1 but‖A‖ � 1, due
to a reduction in the number of square roots.
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To summarize, we propose the following algorithm for the Briggs–Padé method.

Algorithm. T is real such thatσ(T ) ∩ R−
0 = ∅, ε is a given tolerance andl is a

positive integer. Set

Bj := (T 1/2j − I)(T 1/2j + I)−1

uj := 2‖Bj‖ [H(‖B2
j ‖)− tl−1,l(‖B2

j ‖)], j ∈ N.

1. Computek successive square roots ofT until ‖B2
k ‖ < 1 and uk < ε;

2. ComputeS2l,2l(Bk);
3. Approximate log(T ) using the relations

log(T ) = 2k log(T 1/2k ) ≈ 2kS2l,2l(Bk).

Next we compare numerically three different algorithms to compute the matrix
logarithm.

• Algorithm 1 is the one we have just presented.
• Algorithm 2 is the classical one, wherev is used instead ofu to estimate the error

andR2l,2l replacesS2l,2l .
• Algorithm 3 is Algorithm 1 withS2l,2l replaced byR2l,2l. This avoids difficulties

that may arise in the computation of(T 1/2k + I)−1 in step 2.
We next present four tests with ill-conditioned full matrices.

• Test 1 reports on the matrix

T = e
α

2

[
2 + β β

−β 2 − β
]
,

for the valuesα = 0.1, β = 106. In this case

log(T ) = 1

2

[
2α + β β

−β 2α − β
]
, T 1/2k = e

α/2k

2

[
2 + β

2k
β

2k

− β

2k
2 − β

2k

]
,

and cond(T ) ≈ 10.0 × 1011. (The matrixT results from the one in Example 2 of
[15] by an orthogonal similarity transformation.)

• Test 2 refers to a matrix obtained from the example in [8, p. 591] by orthogonal
similarity transformation. For the exact logarithm we consider the one computed
using the formula of Theorem 11.1.3 in [10] valid for upper triangular matrices,
and then recover the original logarithm through the corresponding orthogonal
similarity. The square roots in the inverse scaling and squaring procedure were
computed using a similar idea.The condition number is cond(T ) ≈ 1.1 × 1015.

• Test 3 is for the matrixA = T ÃT −1, whereT andÃ are as in Example 6 of [15],
with α = 10 andθ = 3.14159265≈ π . The exact logarithm is known and the
square roots were computed using
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A1/2k = T



eα/2

k
0 0 0

0 e−α/2k 0 0
0 0 cos( θ

2k
) − sin( θ

2k
)

0 0 sin( θ
2k
) cos( θ

2k
)


 T −1;

cond(A) ≈ 6.0 × 1011.

• Test 4 is for the matrix ingallery (3) of Matlab, for which the exact value of the
logarithm is unknown and the square roots were computed using the algorithm
proposed in [11]; cond(T ) ≈ 2.8 × 105.

These tests were performed in Matlab (with relative machine epsilonε ≈ 2.2 ×
10−16) on a Pentium II. We used the Frobenius norm and(8,8) Padé approximants.
We considered in all cases the toleranceε = ‖T ‖ × 10−16, which seemed to be a
good choice in order to obtain maximum accuracy in the final result.

For Algorithm 1,

S88(x) = −2x(15 159x6 − 147 455x4 + 345 345x2 − 225 225)

35(35x8 − 1260x6 + 6930x4 − 12 012x2 + 6435)

andu = 2‖B‖ [H(‖B2‖)− t34(‖B2‖)], where

H(x) = 1

2
√
x

log

(
1 + √

x

1 − √
x

)
and t34(x) = 1

2
√
x
S88(

√
x).

For Algorithm 2,v = R88(‖A‖)− log(1 − ‖A‖) and the expression ofR88 may
be found in [13] or [14].

In Table 1,k denotes the minimum number of necessary square roots in step 1,
n = ‖I − T 1/2k‖ andemeasures the relative error. In tests 1–3,

e = ‖X̄ − logT ‖
‖ logT ‖ ,

whereX̄ is the approximation obtained for the logarithm and log(T ) is the exact
value given as above. For test 4, since the exact value for the logarithm is unknown,
the error was estimated using

e = ‖eX̄ − T ‖
‖T ‖ .

Based on the information presented in Table 1, we observe that the result for test
1 in Algorithm 1 is somewhat surprising when compared with Algorithm 2. After
10 square roots we have gotu10 ≈ 10−13. And u11 was already the machine zero,
which means that, at least theoretically, no more square roots are needed in the in-
verse scaling and squaring procedure. However, in practice, we observed that taking
more square roots increases the accuracy. In our computer full accuracy was obtained
whenk = 20, and started decreasing fork > 20. It is unclear why this situation has
occurred. We think that this problem is due to the computation of the inverse of
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Table 1

Algorithm 1 Algorithm 2 Algorithm 3
k n e k n e e

Test 1 10 976.7 2.1 × 10−12 21 0.48 3.0 × 10−16 4.6 × 10−7

Test 2 20 4.8 × 103 3.8 × 10−11 34 0.29 5.3 × 10−11 4.0 × 10−6

Test 3 6 12.2 5.3 × 10−15 11 0.38 3.8 × 10−14 5.4 × 10−14

Test 4 6 7.9 4.2 × 10−12 11 0.25 7.3 × 10−11 7.3 × 10−13

T 1/2k + I , which has a condition number of about 2.4 × 105. When‖I − T 1/2k‖ �
1, like in test 1, we have no guarantee thatT 1/2k + I is well conditioned. Taking
more square roots to bringT near the identity may be advantageous sinceT 1/2k + I
becomes a well-conditioned matrix. We note that in all the other tests 2–4, this sit-
uation has not occurred, even though the matrixT 1/2k + I has a large condition
number.

Comparing Algorithm 1 with Algorithm 3, which involves the same number of
square roots, our tests showed that Algorithm 1 is slightly more accurate. The com-
putation of(T 1/2k + I)−1 is not necessary but, in contrast, when‖I − T 1/2k‖ � 1,
the condition number of the denominator ofR2l,2l, which needs to be inverted, is
usually very large.

We have also tested several triangular matrices, including ill-conditioned cases
such as the matrix in [15, Example 2] withα = 0.1 andβ = 106, and the matrix in
[8, p. 591]. For these cases our numerical experiments showed that Algorithm 1 is
more accurate than Algorithm 2, especially in ill-conditioned problems. This is due
to a reduction in the number of square roots in our algorithm. For well-conditioned
matrices, both algorithms revealed a similar accuracy. However, we note that for
triangular matrices the strategy presented in [9] performs better than the algorithms
tested here.
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