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We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy,
and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The
neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective
forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2M� neutron
stars. Unified EoSs for the inner-crust–core region have been built for all the phenomenological models, both
relativistic and nonrelativistic. Our investigation shows the existence of a strong correlation of the neutron star
radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy
coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star
mass in the range 0.6–1.8 M�. This correlation can be linked to the empirical relation existing between the star
radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence
of the pressure on the nuclear matter incompressibility, its slope, and the symmetry energy slope. The slopes
of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei
data yield the radius of a 1.4M� neutron star in the range 11.09–12.86 km.
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The bulk properties of neutron stars are mainly governed
by the behavior of the equation of state (EoS) of highly
asymmetric dense matter. The correlations of the various EoS
parameters of asymmetric nuclear matter with the different
properties of a neutron star, such as the crust-core transition
density and pressure, radii, maximum mass, and cooling
rate, have been studied [1–15]. The crust-core transition
density is strongly correlated with the slope of the symmetry
energy, L0, at saturation density (ρ0 ∼ 0.16 fm−3) [5,6,11].
However, the transition pressure is found to be strongly
correlated with a linear combination of the slope and curvature
of the symmetry energy at the subsaturation density (ρ =
0.1 fm−3) [7,11,12]. The simultaneous determination of mass
and radius of low-mass neutron stars can better constrain the
product of nuclear matter incompressibility and symmetry
energy slope parameter [13].

The correlations of the neutron star radii of different masses
with the EoS parameters have been investigated extensively.
The covariance analysis, based on a single model, suggests
the existence of strong correlations of the radii of low-mass
neutron stars (MNS ∼ 0.6–1.2 M�) with the symmetry energy
slope parameter L0 [10], the correlations becoming weaker
with the increase of the neutron star mass. A similar analysis
for the correlations of the radii with the symmetry energy
slope over a wider range of densities was performed for two
different models, having different behaviors on the density
dependence of the symmetry energy, and such correlations
were found to be model dependent [12]. Recently, correlations
of neutron star radii with the symmetry energy slope parameter
and the nuclear matter incompressibility coefficient have
been examined using a large set of unified EoSs, based on

Skyrme-type effective forces and relativistic mean field (RMF)
models [14]. The dependence of correlations on the neutron
star mass is qualitatively similar to those obtained within
the covariance analysis, but the correlations are in general
somewhat weaker due to the interference of the other EoS
parameters, which were kept fixed in the latter case. Since
the EoS for asymmetric nuclear matter is mainly governed
by the nuclear matter incompressibility, symmetry energy,
and their slopes at saturation density, the neutron star radii
may be correlated with the linear combination of these EoS
parameters, rather than each parameter individually, analogous
to those found in the case of the correlation between the
transition pressure and the linear combination of the slope
and the curvature of the symmetry energy [7].

In this Rapid Communication, we examine the correlations
of the neutron star radii with the key parameters governing
the EoS of asymmetric nuclear matter. These EoS param-
eters are evaluated at the nuclear saturation density using
a representative set of RMF models, a set of Skyrme-type
models, one microscopic calculation using the Brueckner-
Hartree-Fock (BHF) approach with the Argonne V18 force
supplemented with a three-body force of Urbana type [16], and
a variational approach, specifically the Akmal-Pandharipande-
Ravenhall (APR) EoS [17]. All models describe 2M� stars.
We demonstrate that the neutron star radii over a wide range
of masses (0.6–1.8 M�) are strongly correlated with the linear
combination of the slopes of nuclear matter incompressibility
and symmetry energy coefficients.

The EoS at a given density ρ and asymmetry δ can be
decomposed, to a good approximation, into the EoS for
symmetric nuclear matter e(ρ,0) and the density dependent
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symmetry energy coefficient S(ρ) as

e(ρ,δ) = e(ρ,0) + S(ρ)δ2, (1)

where e(ρ,δ) is the energy per nucleon at density ρ = ρn + ρp,
and δ = (ρn − ρp)/ρ the asymmetry parameter, with ρn and
ρp the neutron and proton densities, respectively.

The isoscalar part e(ρ,0) can be expanded as

e(ρ,0) = e(ρ0) + K0

2

(
ρ − ρ0

3ρ0

)2

+ Q0

6

(
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3ρ0

)3

+ O(4)

(2)
and the isovector part S(ρ) as

S(ρ) = J0 + L0

(
ρ − ρ0

3ρ0

)
+ Ksym,0

2

(
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3ρ0

)2

+ O(3),

(3)
where J0 = S(ρ0) is the symmetry energy coefficient. The
incompressibility K0, the skewness coefficient Q0, the slope
L0, and the curvature Ksym,0 of the symmetry energy are
defined in, e.g., Ref. [5].

The slope of the incompressibility, M0, at saturation density,
and Kτ,0 are defined as [18]

M0 = Q0 + 12K0, (4)

Kτ,0 = Ksym,0 − 6L0 − Q0

K0
L0. (5)

We use a representative set of RMF models, a set of
Skyrme-type models, and two microscopic calculations for
our correlation study. The RMF models can be classified
broadly into two categories: (1) models with nonlinear self
and/or mixed interaction terms and constant coupling strengths
and (2) models with only linear interaction terms but density-
dependent coupling strengths. The type I models used in
the present calculations are BSR2, BSR3, BSR6 [19,20],
FSU2 [21], GM1 [22], NL3 [23], NL3σρ4, NL3σρ6 [24],
NL3ωρ02 [2], NL3ωρ03 [25], TM1 [26], and TM1-2 [27].
The type II models are DD2 [28], DDHδ [29], DDHδMod [7],
DDME1 [30], DDME2 [31], and TW [32]. The Skyrme
models we use in this work are SKa, SKb [33], SkI2, SkI3,
SkI4, SkI5 [34], SkI6 [35], Sly2, Sly9 [36], Sly230a [37],
Sly4 [38], SkMP [39], SKOp [40], KDE0V1 [41], SK255,
SK272 [42], Rs [43], BSk20, BSk21 [44], BSk22, BSk23,
BSk24, BSk25, and BSk26 [45]. The microscopic calculations
include the BHF EoS from [16,46], and the APR EoS is
taken from [7,17,47]. The values of the EoS parameters at
saturation density show a wide variation across the models.
The symmetric nuclear matter properties for these models are
presented in Table I of the Supplemental Material [48]. We
shall mainly focus on the correlations between the neutron
star radii and the various key parameters of the EoSs: K0, Q0,
M0, J0, L0, Ksym,0, and Kτ,0, which are evaluated at saturation
density.

It was shown in Ref. [14] that nonunified EoSs may
introduce a large uncertainty on the determination of low-mass
star radii, i.e., MNS � 1.4M�, mainly if the behaviours of
the symmetry energy slope for the EoSs of the inner crust
and core are very different. For the RMF models, the EoSs
for β-equilibrated matter are built according to the following
procedure. The EoS for the outer crust region is taken from
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FIG. 1. Neutron star mass in M� as a function of the radius in
km (left) and central density in fm−3 (right) for a representative set
of RMF (blue) and Skyrme (red) models, and microscopic (green)
calculations.

the work of Baym-Pethick-Sutherland [49]. For the inner
crust region, we use the EoS including the pasta phases, if
they exist, obtained within a Thomas-Fermi calculation [50]
up to the crust-core transition density, ρt . At the crust-core
transition, the inner crust EoS is matched to the corresponding
homogeneous EoS. The fraction of the particles at a given
density is determined by imposing β-equilibrium and charge
neutrality. The model used for the outer crust is not the same as
the one used for the inner crust and the core regions. However,
the use of different EoSs for the outer crust has been shown to
barely affect the radius of a star for masses above 1M� [14].
For the Skyrme models, the same functional is used for the
crust and the core. In the crust, a compressible liquid-drop
model (CLDM) and a variational approach, detailed in [14,51],
are employed to describe the nuclei. Finally, for the BHF and
APR EoSs, the outer and inner crusts are described by the
EoSs of [52] and [53], respectively.

The mass MNS and radius R of static neutron stars are
obtained by solving the Tolman-Oppenheimer-Volkoff equa-
tions [54], using all of these 44 EoSs. The mass-radius relations
are plotted in Fig. 1 (left panel), where the horizontal strips
indicate the masses of the two heaviest neutron stars observed
so far: PSR J0348+0432 [55] and PSR J1614–2230 [56,57].
For the BSk models, the M − R relations obtained with EoSs
based on a simplified CLDM used in this work are close to
the ones calculated with a full microscopic model in [58,59];
see the discussion in [14]. To facilitate our discussion, we also
display the mass as a function of central density in the right
panel of the same figure. The EoSs give rise to different neutron
star properties. The spread in the maximum mass is ∼0.8M�,
and the spread in the radius of a neutron star with canonical
mass (1.4M�) is ∼3.1 km. In Table II of the Supplemental
Material [48], we provide the maximum masses together with
the radii for different neutron star masses, calculated for all
the models used in this study.

The values of the EoS parameters and neutron star radii,
obtained for these models, will be used to study the correlations
between these quantities. A linear correlation between any two
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FIG. 2. Radii R1.0 (left) and R1.4 (right) of 1.0M� and 1.4M�
neutron stars versus the EoS parameters K0, M0, and L0, obtained
using our sets of RMF (blue triangles) and Skyrme (red diamonds)
models, together with the BHF and the APR (green stars) calculations.

quantities, a and b, can be quantitatively studied by Pearson’s
correlation coefficient, C(a,b), given by

C(a,b) = σab√
σaaσbb

, (6)

with the covariance, σab, written as

σab = 1

Nm

∑
i

aibi −
(

1

Nm

∑
i

ai

)(
1

Nm

∑
i

bi

)
, (7)

where the index i runs over the number of models Nm [60]. In
what follows, ai and bi correspond to the neutron star radius
for a fixed mass and an EoS parameter, respectively, obtained
for the different models. A correlation coefficient equal to 1 in
absolute value indicates a perfect linear relation between the
two quantities that are considered.

In Fig. 2, we plot the radii of 1.0M� and 1.4M� stars,
R1.0 and R1.4, versus some of these EoS parameters for our
representative sets of RMF (blue triangles) and Skyrme (red
diamonds) models, together with the BHF and the APR (green
stars) calculations. The solid lines in the figures are obtained by
linear regression and the correlation coefficients are indicated
for each case considered. The correlations between the neutron
star radius and the isoscalar parameters K0 and M0 increase
with the increase of the neutron star mass; however, they are
not significantly strong to make a meaningful prediction. The
R1.4-L0 correlation is weaker than the R1.0-L0 correlation,
which is opposite to the trend observed for the cases of K0 and
M0. In Table I, we list all the correlation coefficients between
the EoS parameters K0, M0, Q0, J0, L0, Ksym,0, and Kτ,0, and
the radii of neutron stars with different masses.

The study of the correlations clearly indicates that the radius
of low-mass neutron stars is more sensitive to the isovector
EoS parameters (J0 and L0), but, as the mass of the neutron
star increases, the sensitivity to the isoscalar parameters (K0

and M0) tend to dominate. A similar conclusion was drawn
in Ref. [14], where the behavior of the radius of stars with

TABLE I. Correlation coefficients between the neutron star radii
and the different EoS parameters obtained for a representative set of
RMF, Skyrme, and microscopic calculations. The EoS parameters are
the nuclear matter incompressibility coefficient K0, its skewness Q0

and slope M0, the symmetry energy coefficient J0, its slope L0 and
curvature Ksym,0, and the parameter Kτ,0, calculated at the saturation
density. Rx denotes the neutron star radius for a given mass x in units
of M�.

K0 Q0 M0 J0 L0 Ksym,0 Kτ,0

R0.6 0.565 0.383 0.548 0.815 0.887 0.581 −0.809
R0.8 0.617 0.416 0.597 0.743 0.881 0.658 −0.775
R1.0 0.655 0.461 0.646 0.680 0.850 0.698 −0.743
R1.2 0.684 0.514 0.695 0.621 0.803 0.714 −0.716
R1.4 0.704 0.571 0.743 0.562 0.745 0.711 −0.689
R1.6 0.718 0.628 0.787 0.502 0.674 0.691 −0.661
R1.8 0.725 0.686 0.828 0.438 0.590 0.653 −0.630

mass MNS = 1.0, 1.4, 1.8 M� for 33 models, including 9 RMF
models and 24 Skyrme forces, were plotted as a function of
K0 and L0. The correlation coefficient C(R1.0,L0) was 0.87,
while C(R1.8,L0) was 0.64. The value of C(R1.0,K0) was 0.63,
whereas the values of C(R1.4,K0) and C(R1.8,K0) were found
to be ∼0.66. These values are in good agreement with the
values we find in this work, especially for the correlation
coefficients of the low-mass neutron star radii.

Next we look into the correlations of neutron star radii
with selected combinations of isoscalar and isovector EoS
parameters. In Fig. 3, we plot the neutron star radii for
MNS = 1.0M� (left) and 1.4 M� (right) as a function of
the linear combinations, K0 + αL0 (top), and M0 + βL0

(bottom). We can see that the neutron star radii are better
correlated with these combinations, than with the each of the
parameter separately, as seen in Fig. 2. Further, the strongest
correlations occur between the neutron star radii and the linear
combination M0 + βL0 . In Table II, we list again all the

FIG. 3. Neutron star radii R1.0 (left) and R1.4 (right) versus the
linear correlations K0 + αL0 (top) and M0 + βL0 (bottom), using a
set of RMF (blue triangles), Skyrme (red diamonds), and BHF+APR
(green stars) calculations.
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TABLE II. The correlation coefficients of neutron star radii with
K0 + αL0 and M0 + βL0, along with the values of α and β.

K0 + αL0 M0 + βL0

α Corr. coeff. β Corr. coeff.

R0.6 2.970 0.905 43.115 0.936
R0.8 2.111 0.914 35.575 0.949
R1.0 1.564 0.902 28.370 0.945
R1.2 1.177 0.879 22.189 0.935
R1.4 0.883 0.850 17.089 0.924
R1.6 0.643 0.817 12.781 0.913
R1.8 0.432 0.782 8.970 0.903

correlation coefficients of neutron star radii with K0 + αL0

and M0 + βL0, for different neutron star masses. The values
of α and β, also listed, are obtained in such a way that the
correlations of these quantities with the neutron star radii are
maximum.

In the top panel of Fig. 4, we show the variation of the
correlation coefficients of neutron star radii with K0, L0, and
K0 + αL0, as a function of the mass of the star. The correlation
of neutron star radii with K0 + αL0 is better than those with
K0 and L0 individually. However, for MNS � 1.0M�, the
correlations of neutron star radii decrease gradually with the
increase of the neutron star mass, even considering K0 + αL0.
In the bottom panel of Fig. 4, we repeat the same exercise
for M0, L0, and M0 + βL0. Again, contrary to the individual
parameters M0 and L0, the neutron star radii are strongly
correlated with M0 + βL0 over a wide range of neutron star
masses (0.6–1.8 M�).

FIG. 4. Correlation coefficients between the neutron star radii
and several EoS parameters as a function of the neutron star mass.
The EoS parameters “b” denote K0, L0, and the linear combination
K0 + αL0 in the top panel, and M0, L0, and M0 + βL0 in the bottom
panel.

In order to interpret the correlations obtained, we consider
the dependence of the pressure on the isoscalar coefficients,
K0,M0,Q0, and on the slope of the symmetry energy, L0.
Taking the expansions given in (2) and (3), the pressure is
given by

P = ρ0x
2

3

[
K0

3
(x − 1) + Q0

18
(x − 1)2 + L0δ

2

]
, (8)

with x = ρ/ρ0, or expressing Q0 in terms of M0 and K0, by

P = ρ0x
2

3

[
K0(x − 1)

(
1 − 2x

3

)
+ M0

18
(x − 1)2 + L0δ

2

]
.

(9)

These two equations and the empirical relation R ∝ P 1/4,
identified in Ref. [3,61], where R is the star radius and P
the pressure, calculated for some fiducial density, ∼1 − 2ρ0,
allow an interpretation of the above correlations of R with
K0 + αL0 and M0 + βL0.

In the following, we present some arguments that explain
the correlations: (a) If ρ = ρ0, only the L0 term survives and
this may explain why the radius of low-mass neutron stars
is well correlated with L0. (b) From Eq. (9), it is seen that,
for ρ = 1.5ρ0, the pressure depends only on M0 and L0. This
behavior explains why the correlation of M0 with the star
radius shown in Fig. 2 is better for R1.4 than for R1.0, and
also why the correlation of R with M0 + βL0 is so strong. (c)
The contribution of the K0 term in (8) is more important than
the Q0 term for x − 1 < 1, which explains the correlation
of R with K0 + αL0; Finally (d) the asymmetry parameter
δ monotonically decreases from its maximum value ∼0.95,
obtained at densities of the order of ρ0/2 to 0.65 < δ < 0.85
at 2ρ0. If the term in K0 is neglected in Eq. (9), the pressure
satisfies P ∝ M0 + 18δ2

(x−1)2 L0 = M0 + β ′L0. Taking for β ′ the
upper and lower values of β in Table II, we get, respectively,
x = 1.45 and x = 1.99, above and just below the value x =
1.5, when the relation is exact. Therefore, it seems the relation
is being applied within the valid range of density. On the other
hand, from Eq. (8) and neglecting the term in Q0, the relation
P ∝ K0 + 3δ2

(x−1)L0 = K0 + α′L0, is obtained. We now take
for α′ the upper and lower values of α from Table II, and
we get, respectively, x = 1.49 and x = 4.40. The last value is
already out of the validity of the approximation, and even for
x = 2 this approximation is not very good. This might be the
plausible reason that only the low-mass neutron star radii are
strongly correlated with K0 + αL0.

Knowledge of the slopes of nuclear matter incompressibil-
ity and symmetry energy at saturation density can constrain
the neutron star radii, as these radii are strongly correlated
with M0 + βL0. An overall variation in L0 = 20–80 MeV is
obtained from the analysis of the giant dipole resonance of
208Pb [63,64], the giant quadrupole resonance in 208Pb [65],
the pigmy dipole resonance in 68Ni and 132Sn [66], and
nuclear ground state properties, using the standard Skyrme
Hartree-Fock approach [67]. A fit of the EoS for asymmetric
nuclear matter, or pure neutron matter [38,68], or the binding
energies of large number of deformed nuclei [69,70] within
different mean field models, constrains the value of L0 in
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FIG. 5. M0 as a function of R1.4 for L0 = 40, 60, and 80 MeV, as
obtained from the multiple linear regression. The gray shaded region
indicates the constraint on M0 derived in Ref. [62].

the range of 40–70 MeV. The combined results of nuclear
structure and heavy ion collisions lead to the central value
of L0 = 70 MeV [71]. We adopt L0 = 40–80 MeV, which
has a good overlap with these investigations. The value of
M0 = 1800–2400 MeV [62] at the saturation density seems to
be consistent with its value at ρ = 0.1 fm−3, deduced from
the energies of the isoscalar giant monopole resonance in
the 132Sn and 208Pb nuclei [72,73]. In Fig. 5, we plot the
incompressibility slope parameter M0 as a function of R1.4, for
different values of the symmetry energy slope L0 = 40, 60, and
80 MeV. The gray shaded region corresponds to the constraint
on M0 as obtained in Ref. [62]. These values of M0 and L0

suggest that R1.4 should be in the range of 11.09–12.86 km,
which is consistent with the results of the Ref. [74]. Let us
remark that if we had only taken the RMF models, the above
correlations would have been slightly stronger, as expected,
because all models in the study would have had a similar

underlying framework, and larger radii would have been
obtained for a 1.4M� star, namely R1.4 would have come out
in the range of 11.82–13.25 km. Indeed Fig. 1 shows that, on
average, RMF models lead to larger radii than the other types
of calculations.

In conclusion, we have studied the possible existing corre-
lations between neutron star radii at different masses and the
nuclear coefficients of the nuclear matter EoSs, calculated at
the saturation density. The neutron star radii are obtained using
unified EoSs, fully for the Skyrme models and partially for
inner-crust–core EoSs for the RMF models, except for the two
microscopic EoSs. All EoSs are consistent with the existence
of 2M� neutron stars. The radii of the low-mass neutron stars
are better correlated with the symmetry energy coefficient
J0 and its slope L0. As the neutron star mass increases, the
correlations of the radii with the nuclear matter incompress-
ibility K0 and its slope M0 grow stronger. Our investigation
reveals that the neutron star radii are better correlated with the
linear combinations K0 + αL0 and M0 + βL0 than with the
individual EoS parameters. In particular, noticeable improve-
ment is seen in the correlations of the radii with these linear
combinations, for 1.4M� neutron stars. The correlations of the
radii with M0 + βL0 are stronger, and almost independent of
the neutron star mass, in the range 0.6–1.8 M�. A plausible
interpretation for the existence of such correlations is traced
back to the correlations between the pressure and similar linear
combinations of the EoS parameters in the relevant density
range. The values of M0 and L0, as currently deduced from
finite nuclei data, constrain R1.4 in the range 11.09–12.86 km.
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[31] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
[32] S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).
[33] H. Kohler, Nucl. Phys. A 258, 301 (1976).
[34] P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).
[35] W. Nazarewicz, J. Dobaczewski, T. R. Werner, J. A. Maruhn,

P.-G. Reinhard, K. Rutz, C. R. Chinn, A. S. Umar, and M. R.
Strayer, Phys. Rev. C 53, 740 (1996).

[36] E. Chabanat, Ph.D. thesis, University Claude Bernard Lyon-1,
Lyon, France, 1995 (unpublished).

[37] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
Nucl. Phys. A 627, 710 (1997).

[38] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,
Nucl. Phys. A 635, 231 (1998).

[39] L. Bennour, P.-H. Heenen, P. Bonche, J. Dobaczewski, and H.
Flocard, Phys. Rev. C 40, 2834 (1989).

[40] P. G. Reinhard, Nucl. Phys. A 649, 305 (1999).
[41] B. K. Agrawal, S. Shlomo, and V. K. Au, Phys. Rev. C 72,

014310 (2005).
[42] B. K. Agrawal, S. Shlomo, and V. Kim Au, Phys. Rev. C 68,

031304 (2003).
[43] J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
[44] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82,

035804 (2010).
[45] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 88,

024308 (2013).
[46] D. Davesne, A. Pastore, and J. Navarro, Astron. Astrophys. 585,

A83 (2016).
[47] A. W. Steiner, M. Prakash, J. M. Lattimer, and P. J. Ellis, Phys.

Rep. 411, 325 (2005).

[48] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.94.052801 for nuclear matter characteristics
of various models and resulting properties of neutron stars.

[49] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299
(1971).

[50] F. Grill, H. Pais, C. Providência, I. Vidaña, and S. S. Avancini,
Phys. Rev. C 90, 045803 (2014).

[51] F. Gulminelli and A. R. Raduta, Phys. Rev. C 92, 055803 (2015).
[52] P. Haensel, J. L. Zdunik, and J. Dobaczewski, Astron. Astrophys.

222, 353 (1989).
[53] J. W. Negele and D. Vautherin, Nucl. Phys. A 207, 298 (1973).
[54] S. Weinberg, Gravitation and Cosmology (Wiley, New York,

1972).
[55] J. Antoniadis et al., Science 340, 448 (2013).
[56] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature 467, 1081 (2010).
[57] E. Fonseca et al., arXiv:1603.00545.
[58] A. F. Fantina, N. Chamel, J. M. Pearson, and S. Goriely, EPJ

Web Conf. 66, 07005 (2014).
[59] J. M. Pearson, N. Chamel, A. F. Fantina, and S. Goriely, Eur.

Phys. J. A 50, 43 (2014).
[60] S. Brandt, Statistical and Computational Methods in Data

Analysis, 3rd ed. (Springer, New York, 1997).
[61] J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).
[62] J. N. De, S. K. Samaddar, and B. K. Agrawal, Phys. Rev. C 92,

014304 (2015).
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