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Correlation of the neutron star crust-core properties with the slope of the symmetry
energy and the lead skin thickness
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The correlations of the crust-core transition density and pressure in neutron stars with the slope of the
symmetry energy and the neutron skin thickness are investigated, using different families of relativistic mean-field
parametrizations with constant couplings and nonlinear terms mixing the σ -, ω-, and ρ-meson fields. It is shown
that the modification of the density dependence of the symmetry energy, involving the σ or the ω meson, gives rise
to different behaviors: the effect of the ω meson may also be reproduced within nonrelativistic phenomenological
models, while the effect of the σ meson is essentially relativistic. Depending on the parametrization with σ -ρ
or ω-ρ mixing terms, different values of the slope of the symmetry energy at saturation must be considered
in order to obtain a neutron matter equation of state compatible with results from chiral effective field theory.
This difference leads to different pressures at the crust-core transition density. A linear correlation between the
transition density and the symmetry energy slope or the neutron skin thickness of the 208Pb nucleus is obtained,
only when the ω meson is used to describe the density dependence of the symmetry energy. A comparison is made
between the crust-core transition properties of neutron stars obtained by three different methods, the relativistic
random phase approximation (RRPA), the Vlasov equation, and thermodynamical method. It is shown that the
RRPA and the Vlasov methods predict similar transition densities for pne β-equilibrium stellar matter.
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I. INTRODUCTION

Neutron stars (NSs), with their extreme properties like
very high densities and pressures, are an obvious laboratory
to study nuclear physics, as they are a window into the
microscopic properties of nuclear matter at extreme isospin
asymmetries [1]. The properties of asymmetric nuclear sys-
tems have also been studied in terrestrial laboratories in past
years [2,3], but many aspects still rely on theoretical models.
Constraints on the behavior of the symmetry energy above
nuclear saturation density have been coming from experiments
with new neutron-rich radioactive beams, and in relativistic
heavy-ion collisions, giant monopole resonances [4], isobaric
analog states [5], or meson production (pions [6] and kaons [7])
in heavy-ion collisions.

Correlations between different quantities in the bulk matter
and finite nuclei were established, like the correlation between
the pressure of neutron matter at ρ = 0.1 fm−3 and the neutron
skin thickness of 208Pb [8,9], the correlation between the
crust-core transition density and the neutron skin thickness
of 208Pb [10], and the correlation between the slope L

and the curvature Ksym of the symmetry energy with the
neutron skin thickness and the crust-core transition density in
compact stars [11]. These correlations, together with terrestrial
and observational constraints, will allow the construction of
appropriate equations of state (EOS).

In Ref. [12], it was shown that the glitches of Vela, which are
thought to occur due to angular momentum transfer between
the crust and the core, could be explained if at least 1.4%
of the total moment of inertia of the star resides in the
inner crust. Moreover, the same authors also showed that
the crustal moment of inertia is sensitive to the pressure at

the crust-core interface. Later, this mechanism was questioned
because neutron entrainment would require that the inner crust
contributes at least 7% of the total star moment of inertia [13].
Entrainment seems to indicate that the crust is not enough to
account for the observed glitches [14]. Recently, however, it
was argued that uncertainties on the crust EOS are still large
and the mechanism of glitches may be totally explained by
the crust if an appropriate EOS is considered, e.g., an EOS
that predicts a large transition pressure [15]. This was possible
by employing a family of EOS where the density dependence
of the symmetry energy was accounted for, including in the
Lagrangian density a term that mixes the ρ and the ω mesons.

Nonlinear meson terms have been included in the La-
grangian formulation of relativistic mean-field (RMF) models
in order to modify the density dependence of the EOS, both
isoscalar and isovector channels [10,16]. A different approach
was considered in Ref. [17], where nonlinear terms were
avoided at the expense of the inclusion of density dependent
couplings in the Lagrangian density. In Ref. [18], the density
dependence of the symmetry energy was described within
an extended RMF model, including both self-interaction and
mixed interaction terms involving the scalar-isoscalar, vector-
isoscalar, and vector-isovector mesons up to the quartic order.
The parameters of the models were fitted to nuclear properties
and the neutron thickness of the 208Pb was allowed to vary in
the range ∼0.20–0.24 fm.

An expansion of the energy density of a system of
nucleons described within RMF models in powers of the Fermi
momentum shows that the σ meson plays a special role in RMF
models, giving rise to terms similar to many-body repulsive
terms in nonrelativistic models [19,20]. In fact, saturation
is attained in RMF models due to the quenching of the σ
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meson with density, whereas nonrelativistic models have to
introduce three-body repulsive interactions in order to describe
saturation correctly. In Ref. [21], the high density EOS of
nuclear matter was modified using a mixed σ -ω term, and it has
been shown that improvements were attained in the description
of the binding energy systematics and the EOS for the dilute
neutron matter, with respect to a simple quartic ω term. In
the present study, we investigate the effect of modifying the
density dependence of the symmetry energy using a mixed
σ -ρ term, instead of a ω-ρ term as in Ref. [15]. σ -ρ mixed
terms were first included in Ref. [10], where a quartic term was
introduced in the Lagrangian density. In our study we consider
instead a third order term, ∼σρ2.

In this work, we investigate the correlation between the
transition density and pressure from the inner crust to the core
of neutron stars. We use three different methods, the RRPA
method [22], the Vlasov formalism [23], and the thermo-
dynamical method [21,24–26], at zero temperature and for
β-equilibrium matter. We also investigate the effect of the
contribution of the electrons, the Coulomb interaction, and
the nonlinear ω-ρ coupling term. The paper is organized
as follows. In Secs. II and III, we introduce the formalism
used in this study; in Sec. IV, we present and discuss the
results obtained; and finally, in Sec. V, some conclusions are
drawn.

II. MODEL FOR NEUTRON STAR MATTER

We use the relativistic nonlinear Walecka model
(NLWM) [27] in the mean-field approximation to study
asymmetric nuclear and stellar matter at zero temperature.
We consider a system of baryons with mass M , interacting
with and through an isoscalar-scalar field σ with mass mσ ,
an isoscalar-vector field ωμ with mass mω, and an isovector-
vector field ρμ with mass mρ . When describing npe matter,
we also include a system of electrons with mass me. Protons
and electrons interact through the electromagnetic field Aμ.
The Lagrangian density reads [21]

L = LNM + Le + Lσ + Lω + Lρ + Lσωρ + LA. (1)

Here, the Lagrangian LNM describes the linear interactions of
the nucleons through the mesons exchange. The explicit form
of LNM is

LNM =
∑

N=n,p

�N

[
iγ μ∂μ − (M − gσσ )

−
(

gωγ μωμ + 1

2
gργ

μτ · ρμ

)]
�N,

where the sum is taken over the neutrons and protons,
and τ are the Pauli matrices. The electron Lagrangian is
given by

Le = ψ̄e[γμ(i∂μ + eAμ) − me]ψe, (2)

and

LA = − 1
4FμνF

μν (3)

with Fμν = ∂μAν − ∂νAμ. The Lagrangian densities describ-
ing the free mesons and self-interactions for σ , ω, and ρ

mesons, respectively, can be written as

Lσ = 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − κ3

6M
gσm2

σ σ 3 − κ4

24M2
g2

σm2
σ σ 4,

(4)

Lω = −1

4
ωμνω

μν + 1

2
m2

ωωμωμ + 1

24
ζ0g

2
ω(ωμωμ)2, (5)

Lρ = −1

4
ρμν · ρμν + 1

2
m2

ρρμ · ρμ. (6)

The ωμν and ρμν are antisymmetric field tensors corresponding
to the ω and ρ mesons. They are defined as ωμν = ∂μων −
∂νωμ and ρμν = ∂μρν − ∂νρμ − gρ(ρμ × ρν). The mixing
nonlinear σ , ω, and ρ mesons are described by Lσωρ :

Lσωρ = η1

2M
gσm2

ωσωμωμ + η2

4M2
g2

σm2
ωσ 2ωμωμ

+ ηρ

2M
gσm2

ρσρμ · ρμ + η1ρ

4M2
g2

σm2
ρσ

2ρμ · ρμ

+ η2ρ

4M2
g2

ωm2
ρωμωμρμ · ρμ. (7)

Of particular interest in the present work are the cross-
coupling terms involving the ρ-meson field, which contributes
to the isovector part of the effective Lagrangian density, in
addition to the usual linear couplings of the ρ meson to the
nucleons. We mainly focus on the lowest order σ -ρ and ω-ρ
cross couplings whose strengths are determined by the values
of ηρ and η2ρ . The quartic order σ -ρ cross-coupling strength
η1ρ is set to zero. The values of ηρ or η2ρ can be appropriately
adjusted to yield wide variations in the density dependence of
the symmetry energy coefficient and the neutron skin thickness
in heavy nuclei without affecting the other properties of finite
nuclei [28–30].

To study the role of the σ -ρ and ω-ρ mixing terms on
the crust-core transition properties in neutron stars, we use
two different families of RMF model, Fρ and F2ρ [18,31].
The isovector part of the Lagrangian density for the Fρ (F2ρ)
family is governed by the couplings gρ and ηρ (η2ρ). The
coupling η1ρ is set to zero for both the families. The different
parametrizations of Fρ (F2ρ) families are obtained by varying
appropriately the values of gρ and ηρ (η2ρ). For a given value of
ηρ (η2ρ), the value of gρ is always adjusted to yield appropriate
binding energy for the 208Pb nucleus. Once the values of gρ

and ηρ or η2ρ are known, the properties of the nuclear matter
and the finite nuclei can be computed. The values of ηρ and
η2ρ are varied in the ranges 0–12 and 0–60, respectively.

In Table I, we present the parameters that differ among
the models as considered in the present work. The remaining
parameters, which correspond to the isoscalar part of the
Lagrangian density, and the masses of the σ , ω, and ρ mesons
are kept fixed to those for the BKA22 model [18]. The values of
these parameters are gσ /(4π ) = 0.8462, gω/(4π ) = 1.1089,
k3 = 1.55, k4 = 2.13451, ζ0 = 5.8253, η1 = 0.1555, η2 =
0.0697, and η1ρ = 0. The masses for the ω, ρ, and σ mesons are
mω = 782.5 MeV, mρ = 770 MeV, and mσ = 497.8578 MeV.
The nucleon mass is set to 939 MeV. Table I also shows
the saturation properties, the neutron skin thickness of 208Pb,
and the crust-core transition densities, ρtrans, calculated within
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TABLE I. The coupling parameters gρ and ηρ (η2ρ) for the
Fρ (F2ρ) families, and the corresponding values for the symmetry
energy coefficient, Esym, and the symmetry energy slope parameter
L (in MeV), evaluated at the saturation density, ρ0 = 0.148 fm−3.
The values of the neutron skin thickness, �rnp (in fm), for the
208Pb nucleus, and the crust-core transition densities, ρtrans (in fm−3),
calculated within the Vlasov formalism, for β-equilibrium pne matter
at T = 0 MeV, for all the models are also listed. The binding energy,
E/A, is −16.08 MeV, the incompressibility K is 228.63 MeV, and
the skewness coefficient Q0 is −285.03 MeV.

Model gρ ηρ Esym L �rnp ρtrans

Fρ-1 8.8614 0 36.4 108.9 0.280 0.0489
Fρ-2 11.1799 2.0 34.3 86.9 0.241 0.0570
Fρ-3 13.0335 4.0 33.4 79.1 0.219 0.0589
Fρ-4 14.6294 6.0 32.8 75.2 0.206 0.0591
Fρ-5 16.0494 8.0 32.4 72.8 0.194 0.0588
Fρ-6 17.3450 10.0 32.1 71.3 0.185 0.0585
Fρ-7 18.5388 12.0 31.9 70.1 0.179 0.0582

Model gρ η2ρ Esym L �rnp ρtrans

F2ρ-1 9.2225 2.5 35.6 97.3 0.269 0.0525
F2ρ-2 9.5656 5.0 35.0 88.5 0.259 0.0566
F2ρ-3 9.8898 7.5 34.5 81.7 0.250 0.0610
F2ρ-4 10.1964 10.0 34.1 76.2 0.242 0.0652
F2ρ-5 11.3135 20.0 32.8 62.5 0.215 0.0759
F2ρ-6 13.1771 40.0 31.3 50.9 0.178 0.0807
F2ρ-7 14.7328 60.0 30.4 46.0 0.152 0.0805

the Vlasov formalism, for β-equilibrium pne matter at T =
0 MeV, for all the models considered in the present work.

III. METHODS TO CALCULATE NS
CRUST-CORE PROPERTIES

In the present section, we review the three methods that
are used to determine the crust-core transition density: the
thermodynamical method, the dynamical spinodal from the
Vlasov equation, and the relativistic random phase approxi-
mation (RRPA) formalism.

A. Thermodynamical method

For a system to be stable against small density
fluctuations, the thermodynamical method requires that
the conditions of mechanical and chemical stabilities should
be satisfied [32–34]; i.e.,

−
(

∂P

∂v

)
μ̂

> 0, (8)

−
(

∂μ̂

∂qc

)
v

> 0. (9)

Here P = Pb + Pe is the total pressure of the neutron, proton,
and electron system, with the contributions Pb and Pe from
baryons and electrons, respectively. The v and qc are the
volume and charge per baryon number. The μ̂ is the chemical
potential defined as μ̂ = μn − μp. Since the system under

consideration is in β equilibrium, which implies μ̂ = μe, the
electron pressure Pe is a function of μ̂. Equation (8) becomes

−
(

∂Pb

∂v

)
μ̂

> 0. (10)

Equations (9) and (10) can be expressed in terms of the
energy per nucleon, Eb(ρ,xp), at a given density ρ and proton
fraction xp as

−
(

∂qc

∂μ̂

)
v

=
(

∂2Eb(ρ,xp)

∂x2
p

)−1

+ μ2
e

π2�3ρ
, (11)

−
(

∂Pb

∂v

)
μ̂

= ρ2

⎡
⎣2ρ

∂Eb(ρ,xp)

∂ρ
+ ρ2 ∂2Eb(ρ,xp)

∂2ρ

−
∂2Eb(ρ,xp)ρ2

∂ρ∂xp

∂2Eb(ρ,xp)
∂x2

p

⎤
⎦ > 0. (12)

Equation (11) is usually valid; thus, the crust-core transition
density is determined by using the inequality of Eq. (12).

B. Vlasov method

In Refs. [35,36], the collective modes in cold nuclear matter
were determined within the Vlasov equation, based on the
Walecka model [27], and later also used in Refs. [20,37]. We
extended this formalism to include the mixing nonlinear self-
interactions of the mesons σ , ω, and ρ in Ref. [38].

The time evolution of the distribution functions fi is de-
scribed by the Vlasov equation, which expresses the conserva-
tion of the number of particles in phase space and is, therefore,
covariant. At zero temperature, the state that minimizes the
energy of asymmetric nuclear matter is characterized by the
Fermi momenta PFi , i = p,n, PFe = PFp, and is described by
the distribution function

f0(r, p) = diag
[
�

(
P 2

Fp − p2
)
,�

(
P 2

Fn − p2
)
,�

(
P 2

Fe − p2
)]

(13)

and by the constant mesonic fields.
Collective modes in the present approach correspond to

small oscillations around the equilibrium state. These small
deviations are described by the linearized equations of motion
and collective modes are given as solutions of those equations.

The linearized Vlasov equations for δfi ,

dδfi

dt
+ {δfi,h0i} + {f0i ,δhi} = 0,

are equivalent to the following time-evolution equations:

∂Si

∂t
+ {Si,h0i} = δhi = −gσ

M∗

ε0
δφ − p · δV i

ε0
+ δV0i ,

i = p,n, (14)

∂Se

∂t
+ {Se,h0e} = δhe = −e

[
δA0 − p · δA

ε0e

]
, (15)
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PAIS, SULAKSONO, AGRAWAL, AND PROVIDÊNCIA PHYSICAL REVIEW C 93, 045802 (2016)

where

δfi = {Si,f0i},
δV0i = gωδω0 + τi

gρ

2
δρ0 + e

1 + τi

2
δA0,

δV i = gωδω + τi

gρ

2
δρ + e

1 + τi

2
δA,

h0i = ε0 + V (0)
0i =

√
p2 + M∗2 + V (0)

0i ,

h0e = ε0e =
√

p2 + m2
e,

which has only to be satisfied for p = PFi .
We are interested in the longitudinal modes, with wave

vector k and frequency ω, which are described by the ansatz⎛
⎜⎜⎝

Sj (r,p,t)
δφ

δζ0

δζi

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
Sj

ω(cos θ )
δφω

δζ 0
ω

δζ i
ω

⎞
⎟⎟⎟⎠ei(ωt−k·r) , (16)

where j = p, n, e; ζ = ω, ρ,A represent the vector-meson
fields, and θ is the angle between p and k. The wave vector
of the excitation mode, k, is identified with the momentum
transferred to the system through the process which gives rise
to the excitation.

Replacing the ansatz (16) in Eqs. (14) and (15), we get a set
of equations for the fields and for the generating functions. The
solutions of these equations form a complete set of eigenmodes
that may be used to construct a general solution for an arbitrary
longitudinal perturbation. They lead to the following matrix
equation:⎛

⎜⎜⎝
1 + FppLp FpnLp C

pe
A Lp

F npLn 1 + FnnLn 0
C

ep
A Le 0 1 − Cee

A Le

⎞
⎟⎟⎠

⎛
⎝Aωp

Aωn

Aωe

⎞
⎠ = 0,

(17)

with Aωi = ∫ 1
−1 xSωi(x)dx, Li = L(si) = 2 − si ln((si +

1)/(si − 1)), where si = ω/ω0i , and F ij = C
ij
s − C

ij
v −

C
ij
ρ − C

ij
A δipδij . The coefficients C

ij
s ,C

ij
v , C

ij
ρ , and C

ij
A are

given in Ref. [38].

At subsaturation densities, there are unstable modes iden-
tified by imaginary frequencies. For these modes we define
the growth rate � = −iω. The region in (ρp,ρn) space for
a given wave vector k and temperature T , limited by the
surface ω = 0, defines the dynamical spinodal surface. In the
k = 0 MeV limit, we recover the thermodynamic spinodal,
which is defined by the surface in the (ρp, ρn, T ) space for
which the curvature matrix of the free energy density is zero,
i.e., has a zero eigenvalue. This relation was discussed in
Ref. [39].

C. RRPA method

The longitudinal dielectric function can be written as [40]

εL = det[1 − DL(q)�L(q,q0 = 0)]. (18)

The uniform ground state system becomes unstable to small-
amplitude density fluctuations with momentum transfer q
when εL � 0. Note that in Eq. (18), q0 is the time component
of the four-momentum transfer qμ = (q0,�q ) and q = |�q |. The
transition density, ρt , is the largest density for which the above
condition has a solution. For matter that in general consists
of protons, neutrons, electrons, and muons, the longitudinal
meson propagator is given by

DL =

⎛
⎜⎜⎜⎜⎜⎜⎝

dg dg 0 −dg 0

dg dg 0 −dg 0

0 0 −ds d+
svρ d−

svρ

−dg −dg d+
svρ d33 d−

vρ

0 0 d−
svρ d−

vρ d44

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)

where d+
svρ = −(dsv + dsρ), d−

svρ = −(dsv − dsρ), d−
vρ = dv −

dρ , d33 = dg + dv + dρ + 2dvρ , and d44 = dv + dρ − 2dvρ . In
this form, mixing propagators between isoscalar-scalar and
isoscalar-vector (dsv), isoscalar-vector and isovector-vector
(dvρ), isoscalar-scalar and isovector-vector (dsρ) are present
due to the mixing self-interaction nonlinear terms in the RMF
model, in addition to the standard γ , ω, σ , and ρ propagators
(dg , dv , ds , and dρ). These propagators are determined from
the quadratic fluctuations around the static solutions which
are generated by the second derivatives of energy density
(∂2ε/∂φi∂φj ), where φi and φj are the involved meson fields.
The explicit forms of the σ , ω, and ρ propagators are

ds = g2
σ

(
q2 + m∗2

ω

)(
q2 + m∗2

ρ

)
(
q2 + m∗2

ω

)(
q2 + m∗2

ρ

)(
q2 + m∗2

σ

) + (
�0

σω

)2(
q2 + m∗2

ρ

) + (
�0

σρ

)2(
q2 + m∗2

ω

) ,

dv = g2
ω

(
q2 + m∗2

σ

)(
q2 + m∗2

ρ

)
(
q2 + m∗2

ω

)(
q2 + m∗2

ρ

)(
q2 + m∗2

σ

) + (
�0

σω

)2(
q2 + m∗2

ρ

) − (
�00

ωρ

)2(
q2 + m∗2

σ

) , (20)

dρ = 1/4g2
ρ

(
q2 + m∗2

σ

)(
q2 + m∗2

ω

)
(
q2 + m∗2

ω

)(
q2 + m∗2

ρ

)(
q2 + m∗2

σ

) + (
�0

σρ

)2(
q2 + m∗2

ω

) − (
�00

ωρ

)2(
q2 + m∗2

σ

) ,

045802-4



CORRELATION OF THE NEUTRON STAR CRUST-CORE . . . PHYSICAL REVIEW C 93, 045802 (2016)

and the meson mixing propagators take the form

dsv = gσgω�0
ωσ

(
q2 + m∗2

ρ

)
H (q,q0 = 0)

, (21)

dsρ = 1/2gρgσ�0
σρ

(
q2 + m∗2

ω

)
H (q,q0 = 0)

, (22)

dvρ = 1/2gρgω�00
ωρ

(
q2 + m∗2

σ

)
H (q,q0 = 0)

, (23)

where the explicit form of H (q,q0 = 0) can be written as

H (q,q0 = 0) = (
q2 + m∗2

ω

)(
q2 + m∗2

ρ

)(
q2 + m∗2

σ

)
+ (

�0
σω

)2(
q2 + m∗2

ρ

) + (
�0

σρ

)2(
q2 + m∗2

ω

)
− (

�00
ωρ

)2(
q2 + m∗2

σ

)
, (24)

and the meson effective masses in Eq. (24) are defined as

m∗2
σ = ∂2ε

∂2σ
= m2

σ + gσm2
σ κ3

M
σ + g2

σm2
σ κ4

2M2
σ 2

− g2
σm2

ωη2

2M2
ω2

0 − g2
σm2

ρη1ρ

2M2
ρ2

0 , (25)

m∗2
ω = − ∂2ε

∂2ω0
= m2

ω + gσm2
ωη1

M
σ + g2

σm2
ωη2

2M2
σ 2

+ ζ0g
2
ω

2
ω2

0 + g2
ωm2

ρη2ρ

2M2
ρ2

0 , (26)

m∗2
ρ = − ∂2ε

∂2ρ0
= m2

ρ + gσm2
ρηρ

M
σ + g2

σm2
ρη1ρ

2M2
σ 2

+ g2
ωm2

ρη2ρ

2M2
ω2

0, (27)

while the polarization due to mesons mixing self-interaction
nonlinear terms in Eq. (7) (mix polarizations) are

�0
σω = − ∂2ε

∂σ∂ω0
= gσm2

ωη1

M
ω0 + g2

σm2
ωη2

M2
σω0,

�0
σρ = − ∂2ε

∂σ∂ρ0
= gσm2

ρηρ

M
ρ0 + g2

σm2
ρη1ρ

M2
σρ0, (28)

�00
ωρ = ∂2ε

∂ω0∂ρ0
= −g2

ωm2
ρη2ρ

M2
ω0ρ0,

whereas the photon propagator takes a standard form, i.e.,

dg = e2

q2
. (29)

The longitudinal polarization matrix given in Eq. (18) reads

�L =

⎛
⎜⎜⎜⎝

�e
00 0 0 0 0

0 �
μ
00 0 0 0

0 0 �s �
p
m �n

m

0 0 �
p
m �

p
00 0

0 0 �n
m 0 �n

00

⎞
⎟⎟⎟⎠. (30)

The formulas for polarization elements in �L are given in,
e.g., Ref. [22].

For the families of models under study in the present article,
the �0

σω contribution is present, but for the F2ρ family, the
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FIG. 1. Crust-core transition density, ρt , for the (a) and (b) Fρ

and (c) and (d) F2ρ families as a function of L (left) and �rnp (right)
from RRPA, Vlasov, and thermodynamical methods.

contribution from �0
σρ is zero, and for the Fρ family, the �0

ωρ

contribution becomes zero. In the crust-core region, usually
the muons have not yet appeared, so �

μ
00 can be set to zero,

and if we consider the case without electrons, then �e
00 is also

set to zero.

TABLE II. The values of the total binding energy (E) in MeV,
charge radii (rc), neutron radii (rn), and �rnp (in fm) for a few
asymmetric spherical nuclei obtained for selected parametrizations
of the Fρ and F2ρ families.

Expt. Fρ-3 Fρ-7 F2ρ-5 F2ρ-6

48Ca E −416.00 −415.75 −415.10 −415.71 −415.04
rc 3.477 3.468 3.478 3.466 3.473
rn 3.575 3.561 3.571 3.559

�rnp 0.201 0.178 0.199 0.179
132Sn E 1102.84 −1102.49 −1101.01 −1102.49 −1101.07

rc 4.709 4.736 4.751 4.728 4.739
rn 4.952 4.924 4.939 4.911

�rnp 0.284 0.240 0.279 0.239
208Pb E −1636.43 −1637.07 −1637.07 −1637.09 −1637.03

rc 5.501 5.545 5.559 5.537 5.547
rn 5.706 5.680 5.694 5.666

�rnp 0.219 0.178 0.215 0.178
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FIG. 2. (a) Symmetry energy Esym, (b) its slope L, and (c) curvature Ksym, at subsaturation densities for the Fρ (top) and F2ρ families
(bottom).

IV. RESULTS AND DISCUSSION

In Fig. 1, we plot the crust-core transition density, ρt , as
a function of the slope of the symmetry energy L [Figs. 1(a)
and 1(c)], and the neutron skin thickness �rnp [Figs. 1(b)
and 1(d)] for the Fρ family (top panel) and for the F2ρ family
(bottom panel). The slope of the symmetry energy is defined as
L = 3ρ0(∂Esym/∂ρ)

ρ=ρ0
; see, e.g., Ref. [11]. The values of ρt

are calculated for the three different methods: RRPA, Vlasov,
and thermodynamical. We can see that the transition densities
calculated from both the RRPA and Vlasov approaches agree

quite well with each other for both families. These results are,
therefore, compatible with previous studies executed within
Skyrme interactions [41] or RMF models [42], where RRPA
calculations and semiclassical calculations were compared.

Comparing the behavior of both families, the F2ρ family
shows, overall, higher transition densities to uniform matter
than the Fρ family. The correlation between ρt and L (or �rnp)
depends significantly on the kind of meson self-interaction
mixing terms used in the RMF model. The ρt evolution
predicted by the Fρ family shows a linear correlation with
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L and the neutron thickness in the low L (or �rnp) region.
This behavior differs from the one of the F2ρ family, where
the transition density always decreases with increasing L (or
�rnp), and from previous works [8–11,25,26].

The density dependence of the symmetry energy is achieved
through the inclusion of a mixed term of the ρ meson with
the σ meson for Fρ and the ω meson for the F2ρ families.
At subsaturation, the behavior of these two mesons, or,
correspondingly, the scalar and the nucleonic densities, are
quite different; in particular, the σ field, which is responsible
for binding the matter, is stronger and increases much faster
with density for the values close to zero and slower above
∼0.08 fm−3. The families Fρ and F2ρ were built by fitting the
binding energy for the 208Pb nucleus for different values of
the neutron skin thickness. Because of the different behavior
of the σ and ω mesons, the first one determining the
behavior of the Fρ family and the second one the behavior
of the F2ρ family, for a given neutron skin thickness, the
slope L and the gρ coupling for the parametrizations with
the σ -ρ term (Fρ family) is larger. For this same family,
the transition density is lower and almost does not change
below L = 80 MeV. As we also see, the pressure behaves
differently.

It is important to look into the bulk properties of finite
nuclei obtained for each of the families. Table II contains
the total energy, the charge radii, the neutron radii, and the
neutron skin thickness for three isospin asymmetric spherical
nuclei 48Ca, 132Sn, and 208Pb, for selected parametrizations
of the Fρ and F2ρ families. The parameter sets are so chosen
that they predict similar neutron skin thicknesses in 208Pb for
both families. The differences between the charge radii for
these nuclei obtained for the two selected models within each
family are equal to or smaller than 0.015 fm for the family Fρ

and 0.011 fm for the family F2ρ . For similar values of �rnp,
the charge radii for the Fρ family are larger by ∼0.01 fm than
the ones obtained for the F2ρ family. These differences can be
leveled off by increasing the saturation density ∼0.001 fm−3

in the case of the Fρ family. However, such fine tuning may not
explain the observed trend of the transition density that it stays
almost unchanged below �rnp = 0.22 fm for the Fρ family.
The values of charge radii for the Fρ and F2ρ families are
within the prediction of other RMF parametrizations that have
been tuned to nuclear properties [43–45] and are employed for
the study of correlations of �rnp with various bulk properties
of nuclear matter and the neutron stars [10,40].

In Fig. 2, we plot for both families the symmetry energy and
its derivatives with respect to the density as a function of the
density at subsaturation. It is clearly seen that the constraint
imposed on the neutron skin leads to the crossing of the curves
obtained with the different parametrizations of the Fρ family
for the symmetry energy and its slope, respectively, below
0.1 fm−3 and below 0.04 fm−3, while for the F2ρ family these
crossings occur above those densities. In particular, it is seen
that Ksym is changing much slower at low densities within the
F2ρ family. These properties give rise to a different behavior
of the spinodals; see Fig. 3. While for the F2ρ family, the
spinodal regions are larger, when the slope, L, is smaller, a
behavior discussed in Ref. [26], the contrary occurs with the
Fρ family. The effect of L on the EOS of β-equilibrium matter
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FIG. 3. Spinodal sections for the (a) F2ρ and (b) Fρ families. The
EOS of β-equilibrium stellar matter are also represented.

is the same: the smaller L, the larger the proton fraction for
a given density. These two effects add up for the F2ρ family
and favor a larger transition density, while for the Fρ family,
the two effects act in opposite directions, and, as a result, the
transition density does not change much. Let us point out that
the behavior of the scalar density is purely relativistic and,
therefore, Skyrme forces behave all as the F2ρ family and not
as the Fρ one. Most of the RMF models describe their isovector
channel through the ρ meson alone, which brings a baryonic
density dependence on the energy and pressure, similar to the
one found with Skyrme interactions.

In Fig. 4, we show the transition pressure Pt as a function
of the slope of the symmetry energy, L (left-hand panels), and
as a function of the neutron skin thickness �rnp (right-hand
panels), for both families considered in this study. In general,
the predicted Pt depends significantly not only on the isovector
but also on the isoscalar mixing nonlinear terms used in the
model. As discussed previously in Refs. [25,26], the behavior
of Pt is not monotonic with L. For lower L values, the pressure
increases with L, followed by a steep decrease, for the larger
L values. For the Fρ family, the pressure increases steadily,
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FIG. 4. Crust-core transition pressures Pt for the (a) and (b) Fρ

family and (c) and (d) F2ρ family as a function of L (left) and
the neutron skin thickness �rnp (right) from RRPA and Vlasov
calculations.

almost linearly, until L = 85 MeV. This behavior is similar to
the one discussed in Ref. [46].

In Ref. [15], it was proposed that even with entrainment
the crust is large enough to explain glitches, choosing a
parametrization that predicts a large pressure at the crust-core
transition. A density dependence of the symmetry energy
similar to the one of the F2ρ family was used, and transition
pressures as large as 0.425 and 0.550 MeV/fm3 for L ∼
60 MeV and �rnp ∼ 0.20–0.22 fm, in accordance with the
results of the F2ρ family, were obtained. If, however, the
density dependence of the symmetry energy goes as the Fρ

family, a smaller maximum pressure, ∼0.25 MeV/fm3, for
L ∼ 85 MeV and �rnp ∼ 0.24 fm would have been possible.
In this case, the crust would have not been enough to explain
the glitches.

For completeness, we plot in Fig. 5 the EOS (top panel)
for neutron star matter (lines) and pure neutron matter (dotted
lines) at low densities and their corresponding binding energies
(E/A, bottom panel) for a few Fρ and F2ρ parameter sets. The
grey region in the bottom panel is the pure neutron matter result
calculated from a chiral effective field theory (see Ref. [47] for
details). The solid and open circles in the top panel correspond
to the Pt calculated from RRPA with and without Coulomb
contribution, respectively. It can be seen in the top panel of

FIG. 5. EOS for the (a) Fρ and (b) F2ρ families. The solid (dash-
dotted) and dotted (dashed) lines are the EOS for the Fρ (F2ρ) families,
corresponding to NS matter and pure neutron matter, respectively.
Open (solid) circles in (a) and (b) correspond to the transition pressure
Pt calculated with the RRPA method for the case without (with) the
Coulomb contribution. The energy per nucleon of the pure neutron
matter (c) for both families is also displayed. The grey region shown
is the pure neutron matter result from Ref. [47].

Fig. 5 that the difference in Pt appears more significantly for
relatively smaller L. The EOS and the corresponding E/A for
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NS and pure neutron matter at low densities vary significantly,
depending on the parameter sets used. In general, the binding
energies for pure neutron matter calculated with Fρ and F2ρ

families, with L around 79.32 and 62.63 MeV, respectively,
are quite compatible with the calculations from chiral effective
field theory. However, the significant difference of Pt predicted
by Fρ and F2ρ families around this range of L is due to the
role of the meson mixed- and self-interaction nonlinear terms
in the EOS.

One consequence of the different behavior of both families
could be that, contrary to what was proposed in Ref. [15],
the crust might not be enough to describe glitches due to
entrainment. For the two parametrizations compatible with
the chiral effective theories, we have obtained 0.22 and
0.49 MeV/fm3 for the transition pressure for Fρ(L = 79) and
F2ρ(L = 62), respectively. Considering for the moment of
inertia of the crust, Icr, the expression given in Refs. [15,48],
with Icr proportional to R6

t Pt/R, we get for a 1.4M� star,
Icr[Fρ(L = 79)]/Icr[F2ρ(L = 62)] ∼ 2/3, indicating that the
contribution of the crust moment of inertia may be smaller
than the prediction of Ref. [15]. The radius at the crust-
core transition was estimated by taking the Baym, Pethick,
and Sutherland EOS [49] for the outer crust and the FSU
inner crust obtained in the framework of a Thomas-Fermi
calculation [50] and matching the homogeneous matter EOS
to the inner crust EOS at the crust-core transition. We expect
the inner crust of the FSU to be a good choice because this
model has a slope L similar to the two models. We obtained
Rt [Fρ(L = 79)]/Rt [F2ρ(L = 62)] ∼ 1.03.

V. CONCLUSIONS

In the present work, the influence of the density dependence
of the symmetry energy on properties such as the density and
pressure at the crust-core transition was analyzed within two
families of RMF models. We used three different methods to
calculate the transition density: the thermodynamical spinodal,
the dynamical spinodal within the Vlasov formalism, and
the RRPA. It was shown that the last two methods give
similar results, confirming previous studies [41,42]. The
thermodynamical spinodal also gives a good estimate of the
transition density, as already shown in Ref. [26], and involves
simpler calculations. The mixed terms involving the ρ meson

and the σ or the ω mesons allow the modification of the density
dependence of the symmetry energy. The two families of the
RMF models differ in mixed nonlinear meson terms in the
isovector part of the Lagrangian density. Both families of
the RMF models have the same isoscalar properties, but the
isovector channel is modified through a σρ2 term in the Fρ

family, and a ω2ρ2 term in the F2ρ family. The parameters that
describe the isovector channel were appropriately adjusted so
that different neutron skin thicknesses were obtained for the
208Pb nucleus. Since the σ -meson field is proportional to the
scalar density and the ω-meson field to the baryonic density,
different behaviors of the crust-core transition properties were
observed.

The scalar density is a relativistic quantity, and by perform-
ing an expansion of the RMF energy density in powers of the
Fermi momentum, it was shown in Ref. [19] that relativistic
corrections coming from the Lorentz contraction factor in the
scalar density have an effect equivalent to repulsive many-body
forces. Owing to the much faster increase of the scalar density
at low densities followed by a smoothing at larger, but still
subsaturation, densities, the same neutron skin thicknesses
were obtained for the Fρ family, with larger values of the slope
L. Also the crust-core transition was affected. The values of the
pressure at the transition are lower, there is no clear decrease
of the transition density with L, and the transition pressure in-
creases with the slope L for L < 85 MeV. The F2ρ family, how-
ever, behaves as discussed in previous works [11,25,26], where
both nonrelativistic and relativistic models have been consid-
ered, giving rise to similar conclusions. The behavior of the F2ρ

family is defined by the baryonic density and, therefore, does
not contain explicit relativistic effects. If the density depen-
dence of the symmetry energy should be defined by the scalar
density, we may expect smaller pressures at the crust-core
transition. In this case, the crust would probably not be enough
to describe glitches if entrainment is taken into account.
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PAIS, SULAKSONO, AGRAWAL, AND PROVIDÊNCIA PHYSICAL REVIEW C 93, 045802 (2016)

[12] B. Link, R. I. Epstein, and J. M. Lattimer, Phys. Rev. Lett. 83,
3362 (1999).

[13] N. Chamel, Phys. Rev. Lett. 110, 011101 (2013).
[14] N. Andersson, K. Glampedakis, W. C. G. Ho, and C. M.

Espinoza, Phys. Rev. Lett. 109, 241103 (2012).
[15] J. Piekarewicz, F. J. Fattoyev, and C. J. Horowitz, Phys. Rev. C

90, 015803 (2014).
[16] H. Müller and B. D. Serot, Nucl. Phys. A 606, 508 (1996).
[17] S. Typel and H. H. Wolter, Nucl. Phys. A 656, 331 (1999).
[18] B. K. Agrawal, Phys. Rev. C 81, 034323 (2010).
[19] B. D. Serot and J. D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997).
[20] C. Providência, L. Brito, A. M. S. Santos, D. P. Menezes, and

S. S. Avancini, Phys. Rev. C 74, 045802 (2006).
[21] B. K. Agrawal, A. Sulaksono, and P. Reinhard, Nucl. Phys. A

882, 1 (2012).
[22] A. Sulaksono and T. Mart, Phys. Rev. C 74, 045806 (2006).
[23] H. Pais, A. Santos, L. Brito, and C. Providência, Phys. Rev. C

82, 025801 (2010).
[24] S. S. Avancini, S. Chiacchiera, D. P. Menezes, and C.

Providência, Phys. Rev. C 82, 055807 (2010).
[25] C. Ducoin, C. Providência, A. M. Santos, L. Brito, and P.

Chomaz, Phys. Rev. C 78, 055801 (2008).
[26] C. Ducoin, J. Margueron, C. Providência, and I. Vidaña,

Phys. Rev. C 83, 045810 (2011).
[27] J. D. Walecka, Ann. Phys. 83, 491 (1974).
[28] R. J. Furnstahl, Nucl. Phys. A 706, 85 (2002).
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