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Abstract

Let G be an abelian group. LetA andB be finite non-empty subsets ofG. By A+ B we
denote the set of all elementsa + b with a ∈ A andb ∈ B. For c ∈ A+ B, νc(A,B) is the
cardinality of the set of pairs(a, b) such thata + b = c. We callνc(A,B) the multiplicity of
c (in A+ B).

Let i be a positive integer. We denote byµi(A,B) or briefly byµi the cardinality of the
set of the elements ofA+ B that have multiplicity greater than or equal toi.

Let F be a field. Letp be the characteristic ofF in case of finite characteristic and∞ if F

has characteristic 0. LetA andB be finite non-empty subsets ofF.
We will prove that for everỳ = 1, . . . ,min{|A|, |B|} one has

µ1 + · · · + µ` > `min{p, |A| + |B| − `}. (a)

This statement on the multiplicities of the elements ofA+ B generalizes Cauchy–Davenport
Theorem. In fact Cauchy–Davenport is exactly inequality (a) for` = 1. WhenF = Zp in-
equality (a) was proved in J.M. Pollard (J. London Math. Soc. 8 (1974) 460–462); see also
M.B. Nathanson (Additive number theory: Inverse problems and the geometry of sumsets,
Springer, New York, 1996).© 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let G be an abelian group. LetA andB be finite non-empty subsets ofG. By
A+ B we denote the set of all elementsa + bwith a ∈ A andb ∈ B. Forc ∈ A+ B,
νc(A,B) is the cardinality of the set of pairs(a, b) such thata + b = c. We call
νc(A,B) the multiplicity of c (inA+ B).

Let i be a positive integer. We denote byµi(A,B) or briefly byµi the cardinality
of the set of the elements ofA+ B that have multiplicity greater than or equal toi.

Let X be a set. We denote by|X| the cardinality ofX. If |X| = k, we say thatX is
ak-set.

Letp be a prime number. IfG = Zp, the Cauchy–Davenport Theorem [1–3] states
that

|A+ B| > min{p, |A| + |B| − 1}.
In [4] the degree of the minimal polynomial of the Kronecker sum of two lin-

ear operators is studied and an alternative proof of Cauchy–Davenport Theorem is
derived from this study.

Let F be a field. Letp be the characteristic ofF in case of finite characteristic and
∞ if F has characteristic 0. LetA andB be finite non-empty subsets ofF. The main
purpose of this article is to state lower bounds for the sum of the degrees of the initial
segments of the (divisibility non-decreasing) chain of the invariant polynomials of
the Kronecker sum of two linear operators and to get, from this study, new results
on the multiplicities of the elements ofA+ B. In fact we will prove that for every
` = 1, . . . ,min{|A|, |B|} we have

µ1 + · · · + µ` > `min{p, |A| + |B| − `}. (1)

This statement on the multiplicities of the elements ofA+ B generalizes Cauchy–
Davenport Theorem. In fact Cauchy–Davenport is exactly inequality (1) for` = 1.
WhenF = Zp, inequality (1) was proved in [6] (see also [5]).

We can see (check the remark at the end of Section 3) that these lower bounds are
tight and the equality, in the inequalities (1), is attained whenA andB are arithmetic
progressions of the same rate.

2. Generalized cyclic subspaces

Let F be an arbitrary field and denote byF the algebraic closure ofF. LetV /= {0}
be ann-dimensional vector space overF. LetB be a basis ofV. By IV we denote the
identity operator onV. Let g be a linear operator onV. We denote byPg the minimal
polynomial ofg. For everyx ∈ V we denote byCg(x) theg-cyclic space ofx, i.e.
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Cg(x) = 〈gi (x) : i ∈ N ∪ {0}〉,
where〈X〉 means the linear closure ofX. We useσ(g) to denote the spectrum of
g, i.e. σ(g) is the family of then characteristic roots ofg in F, andαg,1, . . . , αg,n,
(αg,1| · · · |αg,n) to denote the invariant polynomials ofg. The following result is
well-known.

Theorem 2.1(Max–min). The maximum dimension of the g-cyclic spaces, Cg(x),
when x runs overV, is equal to the degree ofPg = αg,n.

The purpose of this section is the generalization of this theorem.

Definition 2.2. Let x1, . . . , x` be linearly independent vectors ofV andg a linear
operator onV. We call generalized g-cyclic subspace associated tox1, . . . , x` the
subspace

Cg(x1, . . . , x`) = 〈gi(xj ) : i ∈ N ∪ {0}, j = 1, . . . , `〉.
The subspaceCg(x1, . . . , x`) is the smallestg-invariant subspace containing
x1,. . . ,x`.

We say that the pair((x1, . . . , x`), g) or the generalizedg-cyclic subspaceCg(x1,

. . . , x`) arecompletely controllableif

〈x1, x2, . . . , x`, g(x1), . . . , g(x`), g
2(x1), . . . , g

2(x`), . . .〉 = V. (2)

Definition 2.3. Let g be a linear operator onV andx1, . . . , x` linearly independent
vectors ofV. A basis,B, ofCg(x1, . . . , x`) selected from the vectors of the sequence

x1, x2, . . . , x`, g(x1), . . . , g(x`), g
2(x1), . . . , g

2(x`), . . .

is nice if, for 0 6 i 6 k − 1, gi(xj ) ∈ B provided thatgk(xj ) ∈ B.
Let

B={x1, g(x1), . . . , g
r1−1(x1), x2, g(x2), . . . ,

gr2−1(x2), . . . , x`, g(x`), . . . , g
r`−1(x`)}

be a nice basis ofCg(x1, . . . , x`). The non-negative integersri, i = 1, . . . , `, are
calledindices ofB.

Let {x1, . . . , x`} be a linearly independent`-set of vectors ofV. If

I =
⋃̀
i=1

{xi, g(xi), g2(xi), . . . , g
si−1(xi)}

is a linearly independent(s1 + · · · + s`)-set, we say thatI is a((x1, . . . , x`), g)-nice
independent setand we call the non-negative integerss1, . . . , s` indices ofI.

Definition 2.4. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be sequences of non-
negative integers. Denote by(a1, . . . , an) and (b1, . . . , bn) the reordering, in a
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non-increasing way, ofa andb, respectively. We say thata weakly-dominates band
we write

a w b

if
k∑
i=1

ai >
k∑
i=1

bi, k = 1, . . . , n.

If also
∑n
i=1 ai = ∑n

i=1 bi , we say thata dominates band we writea � b.

In [7], the following result is proved.

Propositon 2.5. Let n = t + q. Let α1|α2| · · · |αt be the invariant polynomials of
thet × t matrix A. Letγ1, . . . , γn be monic polynomials such thatdeg(γ1 · · · γn) = n

andγ1| · · · |γn. Then there existC ∈ Fq×t andD ∈ Fq×q such that then× n matrix[
A 0
C D

]
has invariant polynomialsγ1, . . . , γn, if and only if

γi |αi |γi+q, i = 1, . . . , t.

The following result is proved in [9, Corollary 2.2] and states, for a fixed linear
operatorg onV and linearly independent vectorsx1, . . . x` such thatCg(x1, . . . , x`)

is completely controllable, a necessary and sufficient condition for the existence of a
nice basis ofCg(x1, . . . , x`) with prescribed indices.

Theorem 2.6. Let g be a linear operator on V. Letr1, . . . , r` be positive inte-
gers. Then there exist linearly independent vectorsx1, . . . , x` and a nice basisB,
of Cg(x1, . . . , x`), with indicesr1, . . . , r` such thatCg(x1, . . . , x`) is completely
controllable if and only if the following conditions hold:

αg,i = 1, i = 1, . . . , n− `,

and

(r1, . . . , r`) � (deg(αg,n), . . . ,deg(αg,n−`+1)).

The next theorem states a necessary condition for the existence of nice bases with
prescribed indices, where the constraint of complete controllability is skipped.

Theorem 2.7. Let g be a linear operator on V. Letr1, . . . , r` be positive inte-
gers. If there exist linearly independent vectorsx1, . . . , x` and a nice basisB, of
Cg(x1, . . . , x`), with indicesr1, . . . , r`, then the following condition holds:

(r1, . . . , r`) v (deg(αg,n), . . . ,deg(αg,n−`+1)).



C. Caldeira, J.A. Dias da Silva / Linear Algebra and its Applications 315 (2000) 125–138129

Proof. LetU = Cg(x1, . . . , x`). By definitionCg|U (x1, . . . , x`) is completely con-
trollable. Assume that dim(Cg(x1, ..., x`)) = dim(U) = t and thatq = n− t . Then
Theorem 2.6 guarantees that

(r1, . . . , r`) � (deg(αg|U ,t ), . . . ,deg(αg|U ,t−`+1)). (3)

By the transposed version of Proposition 2.5, we know that

αg,i |αg|U ,i |αg,i+q, i = 1, . . . , t.

Therefore,

αg|U ,tαg|U ,t−1 · · ·αg|U ,t−j |αg,nαg,n−1 · · ·αg,n−j , j = 0, . . . , t − 1. (4)

Taking degrees in (4) and bearing in mind (3) we get

(r1, . . . , r`) v (deg(αg,n), . . . ,deg(αg,n−`+1)). �

Corollary 2.8. Let g be a linear operator on V. Lets1, . . . , s` be positive integers.
If there exist linearly independent vectorsv1, . . . , v` such that

⋃̀
i=1

{vi, g(vi ), g2(vi), . . . , g
si−1(vi)}

is a linearly independent(s1 + · · · + s`)-set, then the following condition holds:
(s1, . . . , s`) v (deg(αg,n), . . . ,deg(αg,n−`+1)).

Proof. Complete the set

⋃̀
i=1

{vi, g(vi ), g2(vi), . . . , g
si−1(vi)}

to a nice basis ofCg(v1, . . . , v`). This completion is always possible as can be easily
seen. In fact, forq ∈ {1, . . . , `}, let tq be the positive integer such that

 q⋃
j=1

{vj , g(vj ), . . . , gtj−1(vj )}

∪


 ⋃̀
i=q+1

{vi, g(vi), g2(vi), . . . , g
si−1(vi)}




is a linearly independent(t1 + · · · + tq + sq+1 + · · · + s`)-set and

gtq (vq)∈
〈(

q⋃
j=1

{vj , g(vj ), . . . , gtj−1(vj )}
)

∪
( ⋃̀
i=q+1

{vi, g(vi ), g2(vi), . . . , g
si−1(vi)}

)〉
.
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It is obvious, from the definitions, that

g

(〈⋃̀
i=1

{vi, . . . , gti−1(vi)}
〉)

⊆
〈⋃̀
i=1

{vi, . . . , gti−1(vi)}
〉
. (5)

We are going to show that

⋃̀
i=1

{vi, . . . , gti−1(vi)}

is a maximal linear independent set contained in〈gj (vi) | i = 1, . . . , `, j ∈ N ∪
{0}〉. Assume, in order to get a contradiction, that for somei ∈ {1, . . . , `} and some
r ∈ N, gr (vi) 6∈ 〈⋃`

i=1{vi, . . . , gti−1(vi)}〉. Wlog we can suppose thatr is the small-
est integer with this property. Then

gr−1(vi) ∈
〈⋃̀
i=1

{vi, . . . , gti−1(vi)}
〉
.

Therefore,

gr(vi) ∈ g
(〈⋃̀

i=1

{vi, . . . , gti−1(vi)}
〉)

.

Using (5) we get

gr(vi) ∈
〈⋃̀
i=1

{vi, . . . , gti−1(vi)}
〉
.

Contradiction.
By Theorem 2.7 we can conclude that

(t1, . . . , t`) v (deg(αg,n), . . . ,deg(αg,n−`+1)).

But, since by construction, we havesi 6 ti , i = 1, . . . , `, we get from the former
inequalities

(s1, . . . , s`) v (deg(αg,n), . . . ,deg(αg,n−`+1)). �

3. Main results

Notation. Let A andB be subsets of the fieldF. Recall that, ifi is a positive integer,
µi(A,B) (orµi) is the cardinality of the set{x ∈ A+ B : νx(A,B) > i}.

Theorem 3.1. Let V and W be non-zero finite-dimensional vector spaces over the
field F with dimensions n andm, respectively. Let p be the characteristic ofF in
the case of finite characteristic and∞ if F has characteristic0. Assume that̀ is a
positive integer satisfying
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` 6 min{deg(Pf ),deg(Pg)}.
Then we have

∑̀
i=1

deg(αf⊗IW+IV⊗g,mn−i+1) > `min{p,deg(Pf )+ deg(Pg)− `}.

Theorem 3.2. Let A and B be finite non-empty subsets ofF. Then, for ` = 1,2, . . . ,
min{|A|, |B|},

∑̀
i=1

µi > `min{p, |A| + |B| − `}.

4. Proofs

Let V /= {0} be ann-dimensional vector space over the fieldF and leth be a
linear operator onV. Let i be a positive integer. Denote bymi(h) the cardinality of
the elements ofσ(h) whose algebraic multiplicity is greater than or equal toi. The
following proposition is an easy consequence of basic results on Linear Algebra.

Propositon 4.1. Let h be a diagonalizable linear operator on the n-dimensional
vector space V. Then, if j 6 n, we have

m1(h)+ · · · +mj(h) =
j∑
i=1

deg(αh,n−i+1).

Propositon 4.2. Given non-empty finite subsets ofF, A andB, let V and W be vector
spaces overF of dimensions|A| and|B|, respectively. Let f be a linear operator on V
with spectrumσ(f ) = A and g be a linear operator on W with spectrumσ(g) = B.
Then

mi(f ⊗ IW + IV ⊗ g) = µi(A,B), i = 1, . . . ,min{|A|, |B|}.

Proof. It could be easily derived from the definitions that the spectrum off ⊗ IW +
IV ⊗ g is the family

(a + b)(a,b)∈A×B.

Then, for 16 i 6 min{|A|, |B|}, we have

mi(f ⊗ IW + IV ⊗ g)=|{x ∈ A+ B : |{(a, b) ∈ A× B : a + b = x}| > i}|
=µi(A,B). �
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Lemma 4.3. Let e1, . . . , en be linearly independent vectors of the vector space V.
Let v1, . . . , vt ∈ 〈e1, . . . , en〉. Let k ∈ {1, . . . , n} and r ∈ {1, . . . , t} and denote by
π the projection of〈e1, . . . , en〉 onto〈ek+1, . . . , en〉 along〈e1, . . . , ek〉. If v1, . . . , vt
satisfy the following conditions:
(1) v1, . . . , vr ∈ 〈e1, . . . , ek〉,
(2) π(vr+1), . . . , π(vt ) are linearly independent,
then

〈v1, . . . , vt 〉 = 〈v1, . . . , vr 〉 ⊕ 〈vr+1, . . . , vt 〉.

Proof. Let x ∈ 〈v1, . . . , vr 〉 ∩ 〈vr+1, . . . , vt 〉. Then

x = λ1v1 + · · · + λkvr = γr+1vr+1 + · · · + γtvt .

Then

0 = π(x) = γr+1π(vr+1)+ · · · + γtπ(vt ).

Therefore,

γk+1 = · · · = γt = 0,

and thenx = 0. �

Lemma 4.4. Let p be the characteristic ofF in the case of finite characteristic and
∞ if F has characteristic0. Letu, v, t, q be positive integers satisfying

(i) v + q 6 u,

(ii) t 6 u,

(iii) t 6 q + 1,
(iv) u < p.
Then the matrix overF

Bu,v,t,q =
[(
u− i + 1
v − i + j

)]
i=1,...,t

j=1,...,q+1

has rank t. We use the convention
(
u
m

) = 0 if m < 0.

Proof. Let ϕ andψ be maps fromZ into N ∪ {0} defined in the following way:

ϕ(t) =
{

1 if t > 0,
0 if t < 0,

t ∈ Z,

ψ(t) =
{
t if t > 0,
1 if t 6 0,

t ∈ Z .

It is easy to check thatBu,v,t,q is equivalent to[
ϕ(v − i + j)

1

(u− v − j + 1)!ψ(v − i + j)!
]

i=1,...,t
j=1,...,q+1

. (6)
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Multiplying the columnj of matrix (6) by(v + j − 1)!(u− v − j + 1)! we can show
that the former matrix (and then matrixBu,v,t,q) is equivalent to

Cv,t,q =
[
ϕ(v − i + j)

(v + j − 1)!
ψ(v − i + j)!

]
i=1,...,t

j=1,...,q+1

.

We are going to prove, by induction ont, thatCv,t,q has rankt. If t = 1, the result
is obviously true. On the other hand, letJ denote the(q + 1)× (q + 1)-matrix, with
the entries(i, i + 1) equal to 1,i = 1, . . . , q, and the remaining entries equal to 0.
We have

Cv,t,q(Iq+1 − J ) =
[
1 0
* A′

]
,

whereA′ is equivalent to the matrix

Cv,t−1,q−1 =
[
ϕ(v − i + j)

(v + j − 1)!
ψ(v − i + j)!

]
i=1,...,t−1
j=1,...,q

.

Using, now, the induction hypothesisA′ has rank equal tot − 1. ThenCv,t,q (which
is equivalent toB(u, v, t, q)) has rank equal tot. �

4.1. Proof of main theorems

Let v ∈ V andw ∈ W . Let f be a linear operator onV andg a linear operator on
W. Suppose that{v, f (v), . . . , f k−1(v)} is a basis ofCf (v) and{w, g(w), . . . , gr−1

(w)} is a basis ofCg(w). Then, it is well known that

B = {f i(v)⊗ gj (w) : 0 6 i 6 k − 1, 0 6 j 6 r − 1}
is a basis ofCf (v)⊗ Cg(w). Let zbe a vector ofCf (v)⊗ Cg(w),

z =
k−1∑
i=0

r−1∑
j=0

γij f
i(v)⊗ gj (w).

We say thatz ∈ Cf (v)⊗ Cg(w) has weightt if

t = max{i + j : 0 6 i 6 k − 1, 0 6 j 6 r − 1 andγij /= 0}.

Proof of Theorem 3.1. Let v ∈ V ,w ∈ W be such thatk = dimCf (v) = deg(Pf )
andr = dimCg(w) = deg(Pg). Let s = k + r − 1. We are going to prove that we
can extract a (v ⊗ w, f (v) ⊗w, . . . , f `−1(v)⊗ w, f ⊗ IW + IV ⊗ g)-nice
independent set,

M={(f ⊗ IW + IV ⊗ g)b(f m(v)⊗ w) : 0 6 m 6 `− 1,

0 6 b 6 min{p − 1, s − `}}
with all indices equal to min{p, s − `+ 1}, from the family
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((f ⊗ IW + IV ⊗ g)b(f m(v)⊗ w)) b=0,...,s−1
m=0,...,`−1

. (7)

Since for 06 m 6 `− 1 and 06 b 6 min{p − 1, s − `} the tensor

zb,m = (f ⊗ IW + IV ⊗ g)b(f m(v)⊗ w)

has weightb +m, the maximum weight of the tensors ofM is

M` = min{p + `− 2, s − 1}.
For u = 0, . . . ,M` denote bySu the index set of the subset of the elements ofM
of weightu, i.e.

Su={(b,m) : zb,m ∈ M andb +m = u}
={(b,m) ∈ (N ∪ {0})× (N ∪ {0}) : 0 6 b 6 min{p − 1, s − `},

0 6 m 6 `− 1 andb +m = u}.
Let

bu = max{0, u− p + 1, u− s + `} and du = min{u, `− 1}.
Then we get from the former equalities,

Su = {(u−m,m) ∈ (N ∪ {0})× (N ∪ {0}) : bu 6 m 6 du}.
Let xu be the cardinality ofSu, i.e.xu = du − bu + 1.

It is easy to see thatM is the disjoint union of the subsets indexed by theSu’s,
i.e.

M =
M`·⋃
u=0

{zb,m : (b,m) ∈ Su}. (8)

Claim 1. The set{zb,m : (b,m) ∈ Su} is linearly independent.

Let Bu be the set of tensors of weightu of the basis

{f i(v)⊗ gj (w) : 0 6 i 6 k − 1, 0 6 j 6 r − 1}.
Let πu be the projection ofCf (v)⊗ Cg(w) onto〈Bu〉 along

⊕s−1
γ=0,γ 6=u〈Bγ 〉. If we

define

ζu = max{0, u− r + 1}
and

τu = min{k − 1, u},
thenπu is a projection onto the subspace spanned by

Bu={f i(v)⊗ gj (w) : 0 6 i 6 k − 1, 0 6 j 6 r − 1, i + j = u}
={f i(v)⊗ gu−i (w) : ζu 6 i 6 τu}.
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By expanding(f ⊗ IW + IV ⊗ g)b we can easily see that foru ∈ {0, . . . ,M`}, and
(b,m) ∈ Su

zb,m =
u−m∑
t=0

(
u−m

t

)
fm+t (v)⊗ gu−m−t (w).

Then, since form+ t > k or for u−m− t > r the tensor

f m+t (v) ⊗ gu−m−t (w)
has weight less than or equal tou− 1, we have

πu(f
m+t (v)⊗ gu−m−t (w)) = 0 if t > k −m or t 6 u−m− r.

Then

πu(zb,m) =
min{u−m,k−1−m}∑
t=max{0,u−m−r+1}

(
u−m

t

)
f m+t (v)⊗ gu−m−t (w).

Let us order the projection onto〈Bu〉 of the elements indexed bySu following the
values of the second coordinate,

yj = πu(zu−j−bu+1,j+bu−1), j = 1, . . . , xu.

Claim 1 can be reformulated in the following way.

Claim 1′. The tensorsy1, . . . , yxu are linearly independent.

Proof of Claim 1′. Let {θi : ζu 6 i 6 τu} be the dual basis of the basis,Bu, of
〈Bu〉, i.e. θi(f j (v)⊗ gu−j (w)) = δij , ζu 6 i, j 6 τu, whereδij is the Kronecker
symbol.

We are going to split the proof of Claim 1′ in two cases.
Case1: ζu 6 bu. LetXi = θi+bu−1, i = 1, . . . , xu. Observe now that the matrix

(Xi(yj ))i,j=1,...,xu is a lower triangular matrix with principal elements equal to 1. In
fact, we have

Xi(yj )=θi+bu−1(πu(zu−j−bu+1,j+bu−1))

=θi+bu−1

(
τu−j−bu+1∑

t=0

(
u− j − bu + 1

t

)
f t+j+bu−1(v)

⊗gu−t−j−bu+1(w)

)

=
τu−j−bu+1∑

t=0

(
u− j − bu + 1

t

)
θi+bu−1

(
f t+j+bu−1(v)

⊗gu−t−j−bu+1(w)
)
.
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Denoteηu the upper bound of the value allowed fort in the previous sum, i.e.

ηu = τu − j − bu + 1.

Then

Xi(yj ) =



0 if i − j 6∈ {0, . . . , ηu},(
u− j − bu + 1

i − j

)
if i − j ∈ {0, . . . , ηu}.

We know from the definitions that

τu > du.

Therefore

i 6 xu = du − bu + 1 6 τu − bu + 1, i = 1, . . . , xu.

Subtractingj in each side of the inequalities of the former expression, we obtain

i − j 6 du − bu − j + 1 6 τu − j − bu + 1.

Then, fori = 1, . . . , xu, we have thati − j 6∈ {0, . . . , ηu} if and only if i < j . There-
fore

Xi(yj ) =



0 if j > i,(
u− j − bu + 1

i − j

)
if i > j.

Since, fori = 1, . . . , xu

Xi(yi) =
(
u− i − bu + 1

0

)
= 1,

we have proved that(Xi(yj ))i,j=1,...,xu is lower triangular with principal elements
equal to 1. Thus,y1, . . . , yxu is a linearly independent family.

Case2: ζu > bu. LetXi = θi+ζu−1, i = 1,2, . . . , τu − ζu + 1. Arguing in a sim-
ilar way, we have used in caseζu 6 bu, we can prove that the(i, j)-entry of the
matrix(Xi(yj )) i=1,...,τu−ζu+1

j=1,...,xu
whose columns are the coordinate vectors ofy1, . . . , yxu

is

Xi(yj ) =



0 if i − j + (ζu − bu) < 0,(
u− j − bu + 1
i − j + ζu − bu

)
if i − j + (ζu − bu) > 0.

It is now easy to see that

(Xi(yj )) i=1,...,τu−ζu+1
j=1,...,xu

= (Bu−bu,ζu−bu,xu,τu−ζu)T.

We can easily see that the conditions for application of Lemma 4.4 are fulfilled.
Then,y1, . . . , yxu is a linearly independent family. �
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Proof of Theorem 3.1( continued). Now we see from (8) that

〈M〉 =
M∑̀
u=0

〈zb,m : (b,m) ∈ Su〉.

Using now Lemma 4.3 and Claim 1′, we get from the former equality

〈M〉 =
M⊕̀
u=0

〈zb,m : (b,m) ∈ Su〉.

ThenM is linearly independent, therefore a(v⊗w, f (v)⊗w, . . . , f `−1(v)⊗ w,

f ⊗ IW + IV ⊗ g)-nice independent set with all indices equal to min{p, s − `+ 1}.
We can now use Corollary 2.8 to get

∑̀
i=1

deg(αf⊗IW+IV⊗g,mn−i+1) > `min{p,deg(Pf )+ deg(Pg)− `}. �

We are now going to prove Theorem 3.2.

Proof of Theorem 3.2. Let |A| = n and |B| = m. Let f be a diagonalizable lin-
ear operator whose spectrum isA andg be a diagonalizable linear operator whose
spectrum isB. Thenf ⊗ I + I ⊗ g is diagonalizable with spectrumA+ B. Using
Propositions 4.1 and 4.2 we have

µ1 + · · · + µj =
j∑
i=1

deg(αf⊗I+I⊗g,mn−i+1), j = 1, . . . ,min{|A|, |B|}.

Then using Theorem 3.1 we can conclude that

∑̀
i=1

µi > `min{p, |A| + |B| − `}. �

Remark. If x is an integer, denote byx the element ofF, x1F. SupposeA and
B are arithmetic progressions of the same rate. Thenp > |A| and p > |B|. As-
sume that|A| > |B|. Let s = |A| + |B| − 1. LetA′ = {0,1, . . . , |A| − 1} andB ′ =
{0,1, . . . , |B| − 1}. It is easy to see that

µi(A,B) = µi(A
′, B ′), i ∈ N.

Forx ∈ A′ + B ′ = {0,1, . . . ,min{p − 1, s − 1}}, we have:
• If p 6 s − 1,

νx(A
′, B ′) =



s − p + 1 if x ∈ {0, . . . , s − p − 1},
x + 1 if x ∈ {s − p, . . . , |B| − 1},
|B| if x ∈ {|B|, . . . , |A| − 1},
s − x if x ∈ {|A|, . . . , p − 1}.
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• If p > s − 1,

νx(A
′, B ′) =



x + 1 if x ∈ {0, . . . , |B| − 1},
|B| if x ∈ {|B|, . . . , |A| − 1},
s − x if x ∈ {|A|, . . . , s − 1}.

Then, fori = 1, . . . ,min{|A|, |B|} = |B|, we have

µi(A,B)=µi(A′, B ′)
=|{x ∈ A′ + B ′ : νx(A′, B ′) > i}|
=
{
p if 1 6 i 6 s − p + 1,
s − 2i + 2 if max{1, s − p + 2} 6 i 6 |B|.

It follows that, for` = 1,2, . . . , |B|,
∑̀
i=1

µi =
{
`p if ` 6 s − p + 1,
`(s − `+ 1) if ` > s − p + 2.

and equality holds in Theorem 3.2.
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