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Abstract

Let G be an abelian group. L& andB be finite non-empty subsets & By A + B we
denote the set of all elemenist+ b with a € A andb € B. Forc € A + B, v.(A, B) is the
cardinality of the set of pair&, b) such that: + b = ¢. We callv.(A, B) the multiplicity of
c(in A+ B).

Leti be a positive integer. We denote hy(A, B) or briefly by u; the cardinality of the
set of the elements of + B that have multiplicity greater than or equalito

Let F be a field. Letp be the characteristic df in case of finite characteristic and if F
has characteristic 0. L&tandB be finite non-empty subsets &f

We will prove that for every = 1, ..., min{|A[, |B|} one has

U1+ -+ pe = €min{p, |A| + |B| — ¢}. (@)

This statement on the multiplicities of the elementsiof B generalizes Cauchy—Davenport
Theorem. In fact Cauchy-Davenport is exactly inequality (a)¢fer 1. WhenlF = 7, in-
equality (a) was proved in J.M. Pollard (J. London Math. Soc. 8 (1974) 460-462); see also
M.B. Nathanson (Additive number theory: Inverse problems and the geometry of sumsets,
Springer, New York, 1996).© 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let G be an abelian group. L&t andB be finite non-empty subsets &. By
A + B we denote the set of all elements- b witha € A andb € B.Forc € A + B,
v.(A, B) is the cardinality of the set of pair&, b) such thata + b = ¢. We call
ve(A, B) the multiplicity of ¢ (inA + B).

Leti be a positive integer. We denote by(A, B) or briefly by u; the cardinality
of the set of the elements df + B that have multiplicity greater than or equalito

Let X be a set. We denote by | the cardinality oX. If | X| = k, we say thaK is
ak-set.

Letpbe a prime number. & = 7, the Cauchy—-Davenport Theorem [1-3] states
that

|A + B| > min{p, |A| + |B| — 1}.

In [4] the degree of the minimal polynomial of the Kronecker sum of two lin-
ear operators is studied and an alternative proof of Cauchy—Davenport Theorem is
derived from this study.

Let [ be a field. Lep be the characteristic dfin case of finite characteristic and
oo if F has characteristic 0. Lét andB be finite non-empty subsets Bf The main
purpose of this article is to state lower bounds for the sum of the degrees of the initial
segments of the (divisibility non-decreasing) chain of the invariant polynomials of
the Kronecker sum of two linear operators and to get, from this study, new results
on the multiplicities of the elements of + B. In fact we will prove that for every
¢=1,...,min{|A|, |B|} we have

pa+-o+ e > Lminfp, |Al + |B| — €). @)
This statement on the multiplicities of the elementsiof B generalizes Cauchy—
Davenport Theorem. In fact Cauchy—Davenport is exactly inequality (19 ferl.
When[F = Z,, inequality (1) was proved in [6] (see also [5]).
We can see (check the remark at the end of Section 3) that these lower bounds are

tight and the equality, in the inequalities (1), is attained wAemdB are arithmetic
progressions of the same rate.

2. Generalized cyclic subspaces

Let F be an arbitrary field and denote byhe algebraic closure 6. Let V # {0}
be ann-dimensional vector space overLet % be a basis of/. By Iy we denote the
identity operator ofV. Letg be a linear operator ovi. We denote byP, the minimal
polynomial ofg. For everyx € V we denote by, (x) theg-cyclic space ok, i.e.
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Go(x) = (g'(x): i e NU{O}),

where (X) means the linear closure &f We useo (g) to denote the spectrum of
g, i.e.o(g) is the family of then characteristic roots af in F, andog 1, ..., 0.4,
(atg,1] - - - | n) to denote the invariant polynomials gf The following result is
well-known.

Theorem 2.1(Max—min). The maximum dimension of the g-cyclic spaceg(x),
when x runs ovev, is equal to the degree @, = oy ;.

The purpose of this section is the generalization of this theorem.

Definition 2.2. Let x1, ..., x¢ be linearly independent vectors ¥fandg a linear
operator onV. We callgeneralized g-cyclic subspace associated4o. .., x; the
subspace

Cox1,...,x0) = (g'(xj)): i e NU{O}, j=1,...,¢).
The subspacefy(x1,...,x¢) is the smallestg-invariant subspace containing
X1,...,X¢.
We say that the paii(xy, . . ., x¢), g) or the generalized-cyclic subspac&, (x1,
..., x¢) arecompletely controllabléf

(X1, X2, . X0, €(X1),s -+, 8(xX0), 82(x1), -+, 82(xe), .. ) = V. )

Definition 2.3. Let g be a linear operator oviandxy, .. ., x; linearly independent
vectors ofV. A basis #, of €, (x1, ..., x¢) selected from the vectors of the sequence

X1, X2,y X, (X1, - g(x0), 82X, -, 20D, - -
is niceif, for 0 <i <k — 1, g'(x;) € % provided thatg* (x,) € 4.
Let

B={x1,g(x1). ..., " x1), x2. g(x2), . . .,
g2 ), xe, g(xe)s L 87T 0

be a nice basis 0f,(x1, ..., x¢). The non-negative integers, i =1,...,¢, are
calledindices of#.
Let{x1,...,x/} be alinearly independe#tset of vectors oV. If

¢
I =i, g, 820, - g5 M)
i=1
is alinearly independeiat + - - - + s¢)-set, we say tha¥ isa((x1, ..., x¢), g)-nice
independent setnd we call the non-negative integeis. . ., s, indices of#.

Definition 2.4. Leta = (a1, ...,a,) andb = (b1, ..., by) be sequences of non-
negative integers. Denote ki1, ...,a,) and (b1, ..., b,) the reordering, in a
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non-increasing way, cd andb, respectively. We say thatweakly-dominates and
we write

adb

Ifalsod") ;a; =Y ;4 bi, we say thaa dominates fand we writez > b.
In [7], the following result is proved.

Propositon 2.5. Letn =t + ¢. Letas|az| - - - |o; be the invariant polynomials of
ther x t matrix A. Letyy, . . ., y, be monic polynomials such thédeégy1 - - - y,,) = n
andyi| - - - |y,. Then there exist € F?*" and D € F9*7 such that the: x n matrix

A 0
C D
has invariant polynomialgs, . . ., y,, if and only if

vilailyieq, i=1,...,1.

The following result is proved in [9, Corollary 2.2] and states, for a fixed linear
operatoig onV and linearly independent vectors, . . . x, such thaté, (x1, ..., x¢)
is completely controllable, a necessary and sufficient condition for the existence of a
nice basis o6, (x1, . .., x¢) with prescribed indices.

Theorem 2.6. Let g be a linear operator on V. Let, ..., r; be positive inte-
gers. Then there exist linearly independent vectqrs . ., x, and a nice basis?,
of @4 (x1,...,x¢), with indicesry, ..., r¢ such that@,(x1, ..., x¢) is completely
controllable if and only if the following conditions hold

agi=1 i=1...,n—¢,
and
(ry, ..., re) < (dego{g,n)v ey degag,nféJrl))-

The next theorem states a necessary condition for the existence of nice bases with
prescribed indices, where the constraint of complete controllability is skipped.

Theorem 2.7. Let g be a linear operator on V. Let, ..., r; be positive inte-
gers. If there exist linearly independent vectais. . ., x, and a nice basis®, of
@o(x1, ..., x¢), with indicesry, .. ., r¢, then the following condition holds

(re, ..., re) & (degag,n)v cees degag,nféJrl))-
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Proof. LetU = %4 (x1,...,x¢). By definitionfégw(xl, ..., x¢) is completely con-
trollable. Assume that di%, (x1, ..., x¢)) = dim(U) = ¢ and thaly = n —¢. Then
Theorem 2.6 guarantees that

(V]_, cees }’[) =< (degag\u,l‘)s e degagu/,thJrl))' (3)

By the transposed version of Proposition 2.5, we know that

ag,ilagw,”ag,i-i-q’ i=1...,1t.
Therefore,
gy, 1Oy t—1" " Ogy i—jlOgngn—1-"tgn—j, J=0,...,0—1 4)

Taking degrees in (4) and bearing in mind (3) we get
(rla LIRS r[) E (degag,n), ) degag,n—2+l)) |:|

Corollary 2.8. Let g be a linear operator on V. Let, ..., s, be positive integers.
If there exist linearly independent vectars . . ., vy such that

14
Ui, g, g2, ..., g5 i)

i=1
is a linearly independents1 + - - - + s¢)-set then the following condition holds
(51, ...,5¢) E (degg,p), ..., dedog n—e+1)).

Proof. Complete the set

¢
Ui, g, 2. ... g i)
i=1

to a nice basis 0¥, (v1, . .., v¢). This completion is always possible as can be easily

seen. In fact, foy € {1, ..., £}, letz, be the positive integer such that

q 12
Ui, ewp), ... e Fepy Jul | (v g, 2@, ... ¢ Hwi)
j=1

i=g+1

is a linearly independertty + - - - + 1, + 5441 + - - - + s¢)-setand

q
gtq(vq)€<( U{Uj, g;), ...,gtf_l(vj)})

j=1

a
u( {v,-,g<v,»),g2(vi>,...,g“1(v,-)})>.
i=q+1
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It is obvious, from the definitions, that

14 12
g (<U{v,-, . g’fl(v,-)}>> < <U{v,~, . g‘fl(v,->}>. (5)
i=1 i=1

We are going to show that

¢
[ L ()
i=1

is a maximal linear independent set containedgh(v;)|i =1,...,¢, j e NU
{0}). Assume, in order to get a contradiction, that for sanee{(1, ..., ¢} and some
reN, g (v) ¢ (Ule{v,-, ..., 8" Y(v)}). Wlog we can suppose thiais the small-

est integer with this property. Then

14
g ) e <U{v,-, s g’f‘1<vi)}>.

i=1
Therefore,

¢
g'(i)eg <<U{Uz’, e gtil(vi)}>> -
i=1

Using (5) we get

4
g () € <U{vi, o g’fl(vl-)}>.

i=1
Contradiction.
By Theorem 2.7 we can conclude that

(tf1, ..., 1) E (degag,n), . .., dedog n—e41)).
But, since by construction, we have< 1, i =1,..., ¢, we get from the former
inequalities

(Sla LIRS SZ) E (degag,n), ) degag,n—2+l)) |:|

3. Main results

Notation. Let A andB be subsets of the fielel Recall that, ifi is a positive integer,
ui (A, B) (or u;) is the cardinality of the s€ix € A + B: v, (A, B) > i}.

Theorem 3.1. Let V and W be non-zero finite-dimensional vector spaces over the
field F with dimensions n and:, respectively. Let p be the characteristic bin

the case of finite characteristic ang if F has characteristi®. Assume that is a
positive integer satisfying
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¢ < min{ded Py), deg P,)}.

Then we have
¢

Zdegaf®1w+lv®g,mn—i+1) > £min{p, deg Py) + deg Py) — £}.
i=1

Theorem 3.2. Let A and B be finite non-empty subset§.ofhenfor¢ =1,2,...,
min{|A[, | B[},

L
Y wi = tmin{p, |Al + |B] — ).
i=1

4. Proofs

Let V #£ {0} be ann-dimensional vector space over the fidldand leth be a
linear operator ov. Leti be a positive integer. Denote loy; (k) the cardinality of
the elements of (k) whose algebraic multiplicity is greater than or equall.t®he
following proposition is an easy consequence of basic results on Linear Algebra.

Propositon 4.1. Let h be a diagonalizable linear operator on the n-dimensional
vector space V. Theiif j < n, we have

J
ma(h) + -+ +mji(h) =) degann—it1).
i=1

Propositon 4.2. Given non-empty finite subsetdofA andB, let V and W be vector
spaces oveF of dimension$A| and|B|, respectively. Let f be a linear operator on V
with spectrunv () = A and g be a linear operator on W with spectrunyg) = B.
Then

mi(f®Iw+1v®g = ui(A, B), i=1....min{Al],|Bl}.

Proof. It could be easily derived from the definitions that the spectrurh ef Iy +
Iy ® g is the family

(@ +b)a,pycAxB-
Then, for 1< i < min{|A|, |B|}, we have

mi(fQIw+Ily®g)=|{xeA+B: |{(a,b) e Ax B: a+b=x}| >i}|
=ui(A, B). 0
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Lemma 4.3. Letey, ..., e, be linearly independent vectors of the vector space V.
Letvy,..., v € {e1,...,ey). Letk e {1,...,n} andr € {1, ...,t} and denote by
7 the projection ofeeq, ..., e,) onto{ex11, ..., e,) alongfe1, ..., ex). If vy, ..., v
satisfy the following conditions
1) vi,..., v €{e1,...,ex),
(2) w(vp41), - .., w(vy) are linearly independent
then
(V1 ..o ) = (U1, oo V) DB (Vpg1, .-, Ur).
Proof. Letx € (v1,...,v,) N {vp41,..., ). Then

X =21+ + AV = Vrp1Urg1 + -+ Yevyre

Then

O0=7(x)=yram(Vr41) + -+ vew (V).
Therefore,

Vigr ==y =0,

andthex =0. O

Lemma 4.4. Let p be the characteristic df in the case of finite characteristic and
oo if [ has characteristi®. Letu, v, ¢, g be positive integers satisfying
() v+q<u,
(i) + < u,
(i) 1 <qg+1,
(iv) u < p.
Then the matrix ovef

| fu—-i+1
Byig = |:<v —i+j>:| =l
=1.q

has rank t. We use the conventigh) = 0if m < 0.

Proof. Lety andy be maps fron? into N U {0} defined in the following way:
1 ift >0,
‘/’(t)z{o itr <0, €%

t ifr>0,
W(t)z{l if 1 <0, te?.

Itis easy to check thak, , ; , iS equivalent to

. . 1
P“"*”w_v—j+bww—i+DJ;f" ----- Y
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Multiplying the column of matrix (6) by(v + j — D)!(u — v — j + 1)! we can show
that the former matrix (and then matrb, , ;,) iS equivalent to

Y(w—i+ )] =t

j=Ll..q+1
We are going to prove, by induction anthatC, ; , has rank. If r = 1, the result
is obviously true. On the other hand, letlenote thég + 1) x (¢ + 1)-matrix, with
the entrieqi,i + 1) equal to 1; = 1, ..., ¢, and the remaining entries equal to 0.
We have

1 0
Cv,t,q(1q+l -J)= |:* A/:| s

whereA’ is equivalent to the matrix
v+j—-D! }
i=1
j=

Cv,t,q = I:‘P(U —i+j)

Coi-14-1= [(ﬂ(v —i+J) L
I

v—i+ !

Using, now, the induction hypothesis has rank equal to— 1. ThenC, ; , (which
is equivalent taB(u, v, t, ¢)) hasrank equal to [

4.1. Proof of main theorems

Letv € V andw € W. Let f be alinear operator ovi andg a linear operator on
W. Suppose thaw, f (v), ..., f*~1(v)} is a basis of ;(v) and{w, g(w), ..., g 1
(w)} is a basis of¢, (w). Then, it is well known that

B={f()®g/w): 0<i<k-10<j<r-1
is a basis of6 ¢ (v) ® ¢, (w). Letzbe a vector of6 s (v) @ €4 (w),
k—1r-1

=3 > vl edw.

i=0 j=0
We say that € 4 r(v) ® €, (w) has weight if
t=maxi+j: 0<i<k—1 0<j<r—1andy; #0)}.
Proof of Theorem 3.1. Letv € V, w € W be such that = dim% (v) = deq Py)
andr = dim%,(w) = deg Py). Lets = k+r — 1. We are going to prove that we

can extract a WQw, fWQw,..., W) Qw, f® Iw + Iy ® g)-nice
independent set,

M={(fRIy+1Iy ®"(f"(W)@w): 0<m<L—1,
o<b<min{p—1,s—1¢}}

with all indices equal to mifp, s — ¢ + 1}, from the family
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(f@Iw+1Iv @) (f" (1) ® w)) 1=0...e-1. @)

0,....0—-1

SinceforO< m < £—1and 0< b < min{p — 1, s — ¢} the tensor

= (f @Iy +1Iy ® 9" (f"(v) ® w)
has weight + m, the maximum weight of the tensors.af is

My =min{p+¢—2,5 —1}.
Foru =0, ..., M, denote by¥, the index set of the subset of the elements/of
of weightu, i.e.

SLu={(b,m): zpm € A andb + m = u}

={(b,m) e (NU{0}H) x (NU{O}): O<b<min{p—1,5—¢},
O<m<e—1andb+m = u}.

Let

by=max{0,u —p+1,u—s++¢ and d, =min{u, ¢ — 1}.
Then we get from the former equalities,

FLu={u—m,m) e (NU{O}) x (NU{O}: b, <m < dy}.
Let x, be the cardinality of#,, i.e.x, = d, — b, + 1.

It is easy to see tha# is the disjoint union of the subsets indexed by #g's,
i.e.
M,

M=\ zpm: (b.m) € L} (8)
u=0

Claim 1. Thesef{zp ,: (b, m) € &,}is linearly independent.

Let 2, be the set of tensors of weighof the basis
{(FfvVg/(w: 0<i<k—10<j<r—1}.

Let, be the projection of ¢ (v) ® %, (w) onto(%4,) anng@;;lo’y#uwy). If we
define

Zy =max0,u —r +1}
and
7, = min{k — 1, u},
thens, is a projection onto the subspace spanned by
Bu={f)®g/(w): 0<i<k-10<j<r—Li+j=u)
=g w: &u<i <)
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By expanding f ® Iy + Iy ® g)” we can easily see that fare {0, ..., M}, and
(ba m) € eyju

u—m

YEDY (“ ;’") £ ) @ g (w).

=0
Then, since fom 4+t > k or foru —m — t > r the tensor
") @ g " (w)
has weight less than or equalito- 1, we have
(") @™  (w) =0 fr>k—mort<u—m-—r.
Then

min{u—m,k—1—m}

@)= > <” B ’")f’”“(u) ®5" " (w).

t=max0,u—m—r+1}

Let us order the projection on{@,) of the elements indexed I3y, following the
values of the second coordinate,

Vi = TuZu—j—b+1,j+b—1)s  J =1, ... Xy

Claim 1 can be reformulated in the following way.
Claim 1’. Thetensorss, ..., yy, are linearly independent.

Proofof Claim 1’. Let {6;: ¢, <i < 7,} be the dual basis of the basig,, of
(Bu), 1.€.0;(f/ (v) ® g" 7/ (w)) = &, tu <i,j < T, Whered;; is the Kronecker
symbol.

We are going to split the proof of Claini ih two cases.

Casel: ¢, < by. LetX; =6;1p,—1, i =1,...,x,. Observe now that the matrix
(Xi(yj))i,j=1....x, iS alower triangular matrix with principal elements equal to 1. In
fact, we have

Xi(yj)=0i+b,~ 10 (Zu—j—b,+1, j+b,—1))

u—j—bu+1 .

—p0. " u_J_bu+1 t+j+b,—1

_01+bu—1 Z t f (U)
t=0

®g”_’_j_h”+1(w)>

Ty —j—by+1 .
_ Z (u —J—bu+ 1)9i+b . (ft+j+hu—l(v)

t
t=0
®gu—t—j—bu+l(w)) .
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Denoten, the upper bound of the value allowed tdan the previous sum, i.e.

N =Tu—J—by+1

Then
0 ifi —j &{0,...,n.},
Xi(yj) = (”_];.:I;.”Jrl) ifi—j 0. ..l
We know from the definitions that
T =dy.
Therefore

i<xy=d,—b,+1<t,—b,+1, i=1...,x,.
Subtracting in each side of the inequalities of the former expression, we obtain
i—j<dy—b,—j+1<7 —j—b,+1

Then,fori =1, ..., x,,wehavethat — j ¢ {0, ..., n,}ifandonlyifi < j. There-
fore

0 if j >1,

Xi(yj) = u—j—>b,+1 ifi>
i—j ZJ

Since, fori =1, ..., x,
—i—b,+1
m@»=c o )=L

we have proved thatX;(y;));, j=1.....x, iS lower triangular with principal elements
equalto 1. Thusyy, ..., yy, is alinearly independent family.

Case2: ¢y > by. LetX; =0;4¢,-1, i =12, ..., 1, — & + 1. Arguing in a sim-
ilar way, we have used in casg < b,, we can prove that thé, j)-entry of the
matrix (X; (y;)) i=1, u—tuctl whose columns are the coordinate vectorsof . . , y.,

J=1.... Xu

IS
0 if i —j+ (& —by) <0,

Xiop=_ (u—i=batl\ . o
<i—j+§u—bu ifi —j+ (¢ —by) =0.

It is now easy to see that

J=1..xu

We can easily see that the conditions for application of Lemma 4.4 are fulfilled.
Then,y1, ..., yx, is a linearly independent family. (J
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Proof of Theorem 3.1( continued. Now we see from (8) that
M,

(MY =y (zpm: (b,m) € Su).
u=0
Using now Lemma 4.3 and Claim, ve get from the former equality
My
(M) =P zbm: (b.m) € L)

u=0

Then.# is linearly independent, therefore(@a®@w, f(v)®w, ..., f1v) @ w,
f ® Iy + Iy ® g)-nice independent set with all indices equal to fpins — ¢ + 1}.
We can now use Corollary 2.8 to get
¢
> deda ey +1y@gmn—it1) > Lmin{p, deg Py) +degPy) — ¢} O
i=1

We are now going to prove Theorem 3.2.

Proof of Theorem 3.2. Let |A| =n and|B| = m. Let f be a diagonalizable lin-
ear operator whose spectrumAsandg be a diagonalizable linear operator whose
spectrum iB. Thenf ® I + I ® g is diagonalizable with spectrum + B. Using
Propositions 4.1 and 4.2 we have

J
pi+tpg =y dedaseriiggmn-i1). Jj=1.....min{|Al,|BI}.
i=1
Then using Theorem 3.1 we can conclude that

L
> wizemin{p,|A|+|B|—¢}. O
i=1

Remark. If x is an integer, denote hy the element off, x1f. SupposeA and
B are arithmetic progressions of the same rate. Then |A| and p > |B|. As-
sume thatA| > |B|. Lets = |[A| + |B] — 1. LetA’ = {0,1,...,[A| - 1} andB’ =
{0,1,...,|B| —1}. Itis easy to see that

wi(A,B) = ui(A',B"), ieN.

Forx e A4+ B ={0,1,...,min{p — 1, s — 1}}, we have:

olf p<s—1,
s—p+1 ifxe{0,....,s—p—1},
;o Jx+1 ifxe{s—p,...,|B| — 1},
AL B =y it % < (1BI,..., [AT— 1),

s —X if x e {|A],..., p—1}.



138 C. Caldeira, J.A. Dias da Silva / Linear Algebra and its Applications 315 (2000) 125-138

elf p>s—1,

x+1 ifxe(0,...,[B[=1,
ve(A', B') = {|B] if x e {|Bl,...,|A| -1},
s—x ifxe{Al...,s —1}.

Then, fori = 1,..., min{|A|, |B|} = |B|, we have

(i (A, B)=pi(A’, B)
=l{x e A"+ B': ve(A', B) > i}]|
_{p ifl1<i<s—p+1,
Tls—2i4+2 ifmax{l,s—p+2}<i<|B|

Itfollows that, for¢ = 1,2,...,|B|,
XZ: _Jep ife<s—p+1,
'l““‘eu—e+b fe>s—p+2
1=

and equality holds in Theorem 3.2.
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