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Effects of the symmetry energy on the kaon condensates in the quark-meson coupling model
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In this work we investigate protoneutron star properties within a modified version of the quark-meson coupling
(QMC) model that incorporates an ω-ρ interaction plus kaon condensed matter at finite temperature. Fixed entropy
and trapped neutrinos are taken into account. Our results are compared with the ones obtained with the GM1
parametrization of the nonlinear Walecka model for similar values of the symmetry energy slope. Contrary to
GM1, within the QMC model the formation of low mass black holes during cooling are not probable. It is shown
that the evolution of the protoneutron star may include the melting of the kaon condensate driven by the neutrino
diffusion, followed by the formation of a second condensate after cooling. The signature of this complex process
could be a neutrino signal followed by a gamma ray burst. We have seen that both models can, in general, describe
very massive stars.
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I. INTRODUCTION

In recent years, all sorts of phenomenological equations
of state (EoS), relativistic and nonrelativistic ones, have been
used to describe (proto)neutron star matter. These EoS are
parameter dependent and are adjusted so as to reproduce
nuclear matter bulk properties, such as the binding energy
at the correct saturation density and incompressibility as
well as ground state properties of some nuclei and their
collective responses [1,2]. Attempts to constrain the EoS
have been made and they were based either on finite nuclei
experimental results—for instance, the isoscalar monopole
and the isovector dipole giant resonances [3] and neutron skin
thickness [4]—or on astrophysical observations [5,6]. Until
2010, when a star with a mass of almost 2M� was confirmed
[7], most EoS were expected to produce maximum stellar
masses just larger than 1.44M� and radii of the order of 10
to 12 km. Some of them, such as the NL3 parametrization
[2] of the nonlinear Walecka model (NLWM) were even
discarded, considered to be too hard and to provide too large
solar masses. Recently a second very massive neutron star
was detected [8] and many parametrizations and models were
revisited and readjusted to account for the new observations.
Also, many other constraints based on the above mentioned
nuclear properties and also on the symmetry energy, its slope,
skewness, dipole polarizabilities, heavy-ion collision flows,
isobaric analog states, etc., have been proposed [9,10].

As far as relativistic models are concerned, the ω-ρ
interaction [11,12] can be adjusted to reproduce experimental
values of the symmetry energy and its related slope, the latest
being strongly correlated with many nuclear [13] and stellar
properties [14].

On the other hand, it is well known that the EoS and the
internal constitution of the neutron stars depend on the nature
of the strong interaction. In a compact star, strangeness may
occur in the form of baryons, such as � and �− hyperons, as
a Bose condensate, i.e., K− meson condensate, or in the form
of strange quarks, in all cases influencing the star structure

and its macroscopic properties [15,16]. Some years ago, it was
suggested that, above some critical density, the ground state of
baryonic matter might contain a Bose-Einstein condensate of
negatively charged kaons [17] if a pion condensate also exists.
In [18], another mechanism that allowed kaon condensation
without pion condensation was proposed for the first time.
There is a strong attraction between K− mesons and baryons
which increases with density and lowers the energy of the zero
momentum state. A condensate is formed when this energy
equals the kaon chemical potential μ. When the electron
chemical potential equals the effective kaon mass, the kaons
are favored because they help in the conservation of charge
neutrality once they are bosons and can condense in the lowest
energy state. For this reason K− mesons that have the same
electric charge as electrons are the type of kaons that normally
appear in a condensed state in stars.

At this point, it is important to bear in mind that the
presence of hyperons strongly influences the possible onset
of (anti)kaons, as discussed in [19,20] for zero temperature
systems. However, as hyperonic stellar matter has already
been extensively discussed within the quark-meson coupling
(QMC) model [21–23], in this work we restrict ourselves to
the possible appearance of the kaon condensation in finite
temperature systems. It is well known that the onset of the
kaon condensation is model dependent and varies according
to the strength of the kaon optical potential [20,24,25]. In the
present work, we revisit the possibility that a hybrid compact
star can be constituted by hadrons and kaon condensed matter
at higher densities [20] by using the quark-meson coupling
model at finite temperature [21,26] with the inclusion of
the ω-ρ interaction [11,12]. The inclusion of this nonlinear
interaction was shown to soften the symmetry energy at high
densities and to bring the QMC model properties closer to
density dependent relativistic models [22]. As the inclusion of
this term allows us to tune the slope of the symmetry energy,
shown to be strongly correlated with some star properties, it
is an important ingredient in the investigation that follows. In
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a previous work [27] a discussion on the onset of kaons and
antikaons controlled by stiff and soft symmetry energy and EoS
was performed at zero temperature with four kinds of models:
a standard relativistic mean-field one, a density dependent
model, a model with the ω-ρ interaction, and a model with
higher order coupling constants. It was found that, although
the last two models bear quite different symmetry energies,
they yield very similar star masses and radii. In [28], it was
seen that the effects of kaon condensation on metastable stars
can be quite dramatic, resulting in different neutrino emission
signals. Hence, for a better understanding of the role played by
kaons inside a star, we use two different models, the QMC and
the GM1 [16] parametrization of the NLWM for three values
of fixed entropies that correspond to different snapshots of the
star evolution and discuss the effect of the symmetry energy.
The properties of the stars are also studied.

In the QMC model, nucleons are described as a system of
nonoverlapping bags that interact through the scalar and vector
mesons. The quark degrees of freedom are explicitly taken into
account and the couplings are determined at the quark level.
In the present work we also treat the kaons as MIT bags [29],
and the couplings of the kaons with nucleons are determined
in a self-consistent way.

In Sec. II, we discuss the formalism employed in finite
temperature calculations. In Sec. III we present and discuss
our results and compare them with the GM1 parametrization
of the nonlinear Walecka model [16]. For this comparison, in
view of the fact that the symmetry energy slope regulates some
physical properties, it was chosen to be similar in both models.
In the final section, we draw our conclusions.

II. FORMALISM

A. QMC equation of state and the symmetry energy

In the QMC model, the nucleon in nuclear medium is
assumed to be a static spherical MIT bag in which quarks
interact with the scalar (σ ) and vector (ω,ρ) fields, and those
are treated as classical fields in the mean-field approximation
(MFA). The quark ψq(�r,t) inside the bag satisfies the equation
of motion[

iγμ∂μ − (
m0

q − gq
σσ0

) − γ 0(gq
ωω0 + 1

2gq
ρτ3qb03

)]
ψq(�r,t)

= 0, (1)

where σ0, ω0, b03 are the classical meson fields for σ , ω,
ρ mesons, m0

q is the current quark mass, and τ3q is the
third component of the Pauli matrices. g

q
σ , g

q
ω, g

q
ρ denote the

quark coupling constants with σ , ω, ρ. At finite temperature,
quarks inside the bag can be thermally excited to higher
angular momentum states and also quark antiquark pairs
can be created. For simplicity, the bag is assumed to be
spherical with radius R which depends on the temperature.
The single-particle energies in units of R−1 for the quarks and
the antiquarks are given as

εnk
q = �nk

q + RN

(
Vω ± 1

2Vρ

)
and

εnk
q̄ = �nk

q − RN

(
Vω ± 1

2Vρ

)
(2)

where Vσ = g
q
σσ0, Vω = g

q
ωω0 and Vρ = g

q
ρb03. The plus sign

refers to the u quarks and the minus sign to the d quarks.
The total energy from the quarks and antiquarks at finite
temperature is

Etot =
∑
q,n,k

�nk
q

RN

(
f

q
nk + f

q̄
nk

)
, (3)

where

f
q
nk = 1

e[�nk
q /RN−υq ]/T + 1

and

f
q̄
nk = 1

e[�nk
q /RN +υq ]/T + 1

, (4)

with �nk
q =

√
x2

nk + R2
Nm∗2

q , m∗
q = m0

q − Vσ , and the eigen-
values xnk for the state characterized by n and k are deter-
mined by the boundary condition at the bag surface. In the
above, υq = μq − Vω − m

q
τ Vρ is the effective quark chemical

potential and is related to the quark chemical potential, μq .
The energy of a static baryon bag consisting of three ground
state quarks can be expressed as

E
bag
N = Etot − ZN

RN

+ 4

3
πRN

3BN, (5)

where ZN is the parameter that accounts for zero point motion
and BN is the bag constant. The entropy of the bag is defined
as

Sbag = −
∑
q,n,k

[
f

q
nk ln f

q
nk + (

1 − f
q
nk

)
ln

(
1 − f

q
nk

)

+ f̄
q
nk ln f̄

q
nk + (

1 − f̄
q
nk

)
ln

(
1 − f̄ q

nk

)]
. (6)

The free energy of the bag is given by F
bag
N = E

bag
N − T Sbag

and the effective mass of a nucleon bag at rest is taken to be
M∗

N = F
bag
N . The equilibrium condition for the bag is obtained

by minimizing the effective mass M∗
N with respect to the bag

radius RN ,

∂M∗
N

∂R∗
N

= 0. (7)

Once the bag radius is obtained, the effective baryon mass
is immediately determined. For a given temperature and
scalar field σ , the effective quark chemical potentials νq are
determined from the total number of quarks, isospin density,
and strangeness.

We next obtain the thermodynamic potential within the
mean-field approximation and perform a calculation similar to
that carried out in [20]. We assume that the kaons are described
by the static MIT bag in the same way as the nucleons.
Moreover σ, ω, and ρ mesons are only mediators of the u and
d quarks inside the kaons. The effective Lagrangian density
for the kaon sector is

LK = D∗
μK∗DμK − M∗

K
2
K∗K, (8)

where kaons are coupled to the meson fields via minimal
coupling and the covariant derivative reads

Dμ = ∂μ + iXμ, (9)
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with

Xμ = gωKωμ + gρK

2
�τ · �bμ. (10)

The energy of the static bag describing kaon K can be
expressed as

E
bag
K =

∑
q,n,k

�nk
q

RK

(
f

q
nk + f

q̄
nk

) − ZK

RK

+ 4

3
πR3

KBK. (11)

For our calculations, we have fixed the bag constant, BK , to
be the same as for the nucleon, and from the kaon mass and
the stability condition in the vacuum we have obtained ZK =
3.362 and RK = 0.457 fm for RN = 0.6 fm. The free energy
of the kaon bag is F

bag
K = E

bag
K − T Sbag and the effective mass

of a kaon bag at rest is taken to be M∗
K = F

bag
K . In analogy with

the nucleonic sector, the equilibrium condition for the bag is

∂M∗
K

∂R∗
K

= 0. (12)

The Bose occupation probability for particles (fB+ ) and anti-
particles (fB−) appears naturally in the equation of state and
reads

fB± = 1(
eβ(ω±∓νK ) − 1

) (13)

with β = 1/T , ε∗
K =

√
p2 + M∗

K
2 and ω± = ε∗

K ± X0. In the
above we define the kaon effective chemical potential νK =
μK + X0 where X0 = gωKω0 + gρKb03/2.

In the mean-field approximation, the kaon contribution to
the thermodynamic potential is

�K

V
=ζ 2

[
M∗

K
2 − (μK + X0)2

]

+T

∫ ∞

0

d3p

(2π )3

{
ln

[
1−e−β(ω−+μ)

]+ln
[
1−e−β(ω+−μ)

]}
,

(14)

from which we get

PK = −�K

V
= ζ 2

[
(μK + X0)2 − M∗

K
2]

+ 1

3

∫ ∞

0

d3p

(2π )3

p2

ε∗
K

[fB+ + fB− ], (15)

and the kaon contribution to the energy density reads

εK = ζ 2
[
M∗

K
2 + (

μ2
K + X2

0

)]

+
∫ ∞

0

d3p

(2π )3
[ω+(p)fB+ + ω−(p)fB−] (16)

≡ ζ 2
[
M∗

K
2 + (

μ2
K + X2

0

)] +
∫ ∞

0

d3p

(2π )3
ε∗
K [fB+ + fB− ].

(17)

The kaon number density is

nK = nc
K + nth

K , (18)

where nc
K = 2ζ 2(μK + X0) is the condensate contribution and

nth
K is the thermal contribution for the number density given by

nth
K =

∫ ∞

0

d3p

(2π )3
[fB+ − fB− ] . (19)

Similarly the scalar density for the kaons is given by

ns
K =

∫ ∞

0

d3p

(2π )3

M∗
K

ε∗
K

[fB+ + fB− ] . (20)

The kaon entropy density is given by sK = β(εK + PK −
μKnK ).

The equations of motion for the meson fields are given by
[23]

mσ
2σ =

∑
i=p,n

−∂M∗
N

∂σ

× 1

π2

∫
dk

M∗
N[

k2 + M∗2
N

]1/2 (fi + f̄i),

+ gσK

(
nc

K + ns
K

)
, (21)

mω
2ω0 =

∑
i=p,n

gωρi − gωKnK − 2�vg
2
ωg2

ρb
2
03ω0, (22)

mρ
2b03 =

∑
i=p,n

gρI3iρi − 1

2
gρKnK − 2�vg

2
ωg2

ρb03ω
2
0,

(23)

and

ζ [μk − ω+(0)][μk + ω−(0)] = 0, (24)

where fi and f̄i are the thermal distribution functions for the
baryon and antibaryon:

fi = 1

e(ε∗−υ)/T + 1
and f̄i = 1

e(ε∗+υ)/T + 1
. (25)

ε∗ =
√�k2 + M∗2

N , is the effective nucleon energy, and υ =
μN − gωω − I3igρb03 is the effective nucleon chemical poten-
tial. The term �vg

2
ωg2

ρb
2
03ω

2
0 accounts for the ω-ρ interaction

as proposed in [11,12] and already considered in [22].
For the parameters, we used [23] g

q
σ = 5.957, gω = 8.981,

and gρ = 8.651, with gω = 3g
q
ω and gρ = g

q
ρ . We have taken

the standard values for the meson masses, mσ = 550 MeV,
mω = 783 MeV, and mρ = 770 MeV. Note that the s quark is
unaffected by the σ , ω, and ρ mesons, i.e., gs

σ = gs
ω = gs

ρ = 0 .

The kaon couplings are given by gωK = 1
3gω, gρK = gρ as in

[16].
After a self-consistent calculation, the kaon effective mass

m∗
K can be parametrized as [30]

m∗
K = mK − gσK (σ )σ 	 mK − 1

3
gσ

(
1 − aK

2
gσσ

)
σ,

(26)

where ak = 0.00045043 MeV−1 for RN = 0.6 fm. This deter-
mines gσK which is a density dependent parameter.
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TABLE I. Symmetry energy, its slope, and related model
parameters.

Model L (MeV) Esym (MeV) ρ0 (fm−3) �v gρ

QMC 93.5 33.70 0.15 0.0 8.8606
QMC 70.5 31.88 0.15 0.03 9.2463
QMC 59.3 30.87 0.15 0.05 9.5335

GM1 93.8 32.47 0.153 0.0 8.0104
GM1 70.8 29.57 0.153 0.03 8.5830
GM1 59.6 27.80 0.153 0.037 8.7358

Finally, the total energy density of the nuclear matter with
kaons at finite temperature becomes

ε = εB + εK, (27)

where [22]

εB = 2

(2π )3

∑
i=p,n

∫
d3k[ε∗(fi + f̄i)]

+ 1

2
mσ

2σ 2 − 1

2
mω

2ω2
0 − 1

2
mρ

2b2
03

+ gωω0ρB + 1

2
gρb03ρ3 − �vg

2
ωg2

ρb
2
03ω

2
0. (28)

As mentioned in the Introduction, the effect of the slope of
the symmetry energy on the kaon condensation is an important
quantity to be discussed. We first outline important aspects of
the symmetry energy and its slope. The symmetry energy is
defined as

Esym = 1

2

[
∂2(εB/ρB)

∂α2

]
α=0

= k2
F

6EF

+ g2
ρ

4m∗
ρ

2 ρB , (29)

where εB is the energy density, α is the asymmetry parameter
α = (ρn − ρp)/ρB , ρB = ρn + ρp, EF =

√
k2
F + M∗

0
2, where

M∗
0 is the nucleon effective mass at saturation density and

kF = (3π2ρB/2)1/3,

m∗
ρ

2 = m2
ρ + 2�vg

2
ωg2

ρω
2
0, (30)

and the slope of the symmetry energy is

L =
[

3ρB

∂Esym

∂ρB

]
ρB=ρ0

. (31)

We consider six different EoS, obtained from the QMC model
and the GM1 parametrization of the NLWM. Both models
have a similar symmetry energy and corresponding slope at
the saturation density. Including the ωρ term, we build other
EOS from these models by changing the symmetry energy
slope at saturation and keeping fixed the symmetry energy as
21.74 MeV at ρ = 0.1 fm−3. For each model, QMC and GM1,
we have fixed three different values of the slope L, roughly
the same for both models, namely L ∼ 59.5, 70.5, 93.5 MeV.
With a similar behavior of the symmetry energy at saturation,
we can discuss how the other properties of the EOS affect the
properties of neutron stars containing a kaon condensate. In
Table I we display the L values and the related �v and gρ for
the models we investigate.

In GM1, the coupling to the scalar σ field is fixed to a kaon
optical potential in symmetric nuclear matter at saturation,
VK = −125 MeV, a value suggested by chiral models [31].
For this value of the kaon optical potential we obtain a second-
order phase transition from a pure hadronic phase to a hadronic
phase with kaons. A more attractive potential lowers the kaon
onset density, and the transition to the hadronic phase is a
first-order one [16]. Within the QMC model this quantity is
an output, and with the present choice of parameters VK =
−123 MeV [20] at saturation, very close to the above value
taken for GM1.

B. Protoneutron star properties

For neutron stars, their particle composition is determined
by the requirements of charge neutrality and β-equilibrium
conditions under the weak processes n ⇒ p + l + ν̄ and
n + l ⇒ p + ν, implying that

μn = μp + μe

and

ρe + ρμ + ρK = ρp. (32)

If neutrino trapping is imposed to the system, the beta
equilibrium condition is altered to

μn = μp + (μe − μνe
).

In this work, different snapshots of the star evolution are
simulated through different entropies per particle and trapped
neutrinos. At first, the star is relatively warm (represented by
fixed entropy per particle) and has a large number of trapped
neutrinos (represented by fixed lepton fraction). As the trapped
neutrinos diffuse out, they heat up the star [15]. Finally, the
star is considered cold (zero temperature) and deleptonized:

(i) S = 1, Yl = 0.4,
(ii) S = 2, μνl

= 0,
(iii) S = 0, μνl

= 0.

The last scenario has already been considered in [20]. We next
discuss the first two cases and also the possibility (only for
academic purposes) that the temperature is fixed through out
the star. The number of muons and muon neutrinos is negligible
when the fraction of electrons and electron neutrinos is fixed
at 0.4 and, therefore, in this case we do not include muons
in the calculation. For the cases without neutrinos, muons are
also considered.

III. RESULTS AND DISCUSSION

In the following, we discuss the effect of the slope L on
the properties of warm stars with a kaon condensate described
by two different models, QMC and GM1. We first refer to
the influence of L on the EOS, the kaon onset, and the
kaon fraction. In a second part the consequences on the
star properties, such as radius and mass, and the cooling of
protoneutron stars are analyzed.
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FIG. 1. (Color online) Equation of states for the QMC model and
L = 70.05 MeV for three situations of interest in the star evolution.

A. EOS and composition of matter

In Fig. 1, we plot three curves related to the equations of
state obtained with the QMC model and a fixed value of the
symmetry energy for three snapshots of the star evolution,
which will be discussed next, namely, S = 1 and trapped
neutrinos, S = 2, and S = 0 without neutrinos. For the other
values of the symmetry energy, the curves present a similar
behavior.

At this point, it is important to understand the finite size
effects of the quark bags in medium. With this purpose we plot
in Fig. 2 the nucleon effective mass and radius as a function of
the density for a fixed value of the symmetry energy. One
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FIG. 2. (Color online) (a) Nucleon effective mass and (b) radius
for the QMC model and L = 70.05 MeV for three situations of
interest in the star evolution.
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FIG. 3. (Color online) Particle fractions obtained with the QMC
model for T = 10 MeV, L = 93.5 MeV (thick line), and
L = 70.5 MeV (thin line).

can see that both quantities decrease with the increase of
density, the effective mass reducing its value by roughly 50
percent within the range of densities considered. Moreover, at
densities attained in stellar matter, the total volume occupied
by a nucleon bag varies between 0.90 fm3, at low densities,
and 0.77 fm3, at densities in the center of the star.

In [32] it was shown, for T = 0 MeV, that (a) the larger
L, the larger the fraction of kaons at a given density; (b) the
onset of kaon condensation occurs at similar or slightly smaller
densities for lower values of L. It was also pointed out that
the EoS with the lower slope L is softer, giving rise to stars
with smaller radii and with a larger total strangeness content
because of their larger central densities.

We first discuss the effect of the temperature on the kaon
onset. The EOS is calculated at a fixed temperature, even
though inside a compact object the temperature is not expected
to be constant. In Fig. 3 we plot the particle fraction for a fixed
temperature T = 10 MeV and two different L values within the
QMC model. The temperature helps the appearance of kaons
(strangeness): they appear at a smaller density as compared
with the results presented in [20] for a zero temperature system.
Similar results were obtained previously [28,33]. Moreover, it
is clear that a larger slope enhances the production of kaons.
A larger L favors larger proton and electron fractions, and,
therefore, we may also expect a larger kaon fraction, since
kaons replace the electrons.

After a short initial time, the entropy is practically constant
inside the star, and, therefore, in the following we present
results obtained for a fixed entropy per baryon, for both matter
with trapped neutrinos and S = 1 and without neutrinos
and S = 2 [15]. In Fig. 4(a), the results for kaon fractions
obtained at a fixed entropy per baryon S = 1 and a lepton
fraction of Yl = 0.4 are shown for the QMC and GM1 models
and two different values of L. The onset of a condensate
of kaons occurs only at a density ∼ 0.15–0.2 fm−3 above
the onset of thermal kaons. Within GM1, kaons appear at
lower densities and, for a given density, in larger amounts
than QMC, even when the same slope L is chosen. Hence,
stars described by the QMC model present a lower amount
of strangeness.This behavior results from a softer EOS at
densities above saturation within QMC.

045803-5
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FIG. 4. (Color online) Warm matter with trapped neutrinos, S =
1 and Yl = 0.4. (a) Particle fractions versus the baryonic density
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for both QMC and GM1.

It is seen that smaller values of L give rise to smaller
amounts of strangeness; see Fig. 4(b). This same conclusion
was drawn in [22], where hyperons (instead of kaons) were
considered. The only exception is S = 2: in this case the kaon
condensation for L = 93 MeV occurs at a density above the
range of densities shown, and, therefore, the kaon fraction is
always below the values obtained for L = 70 MeV, which
predicts a kaon condensate above 0.6 fm−3. The presence
of neutrinos also disfavors the formation of kaons as seen
comparing the S = 1 curves, obtained with trapped neutrinos,
with the ones obtained for S = 0 and S = 2 neutrino free
matter. The total amount of kaons in the star is ultimately
dictated by the central density that is larger for the softer EOS.

In Fig. 5 the density dependence of the kaon effective mass
is shown for several values of the entropy per baryon and for
different values of the symmetry energy slope. Up to two times
the saturation density, the curves are practically identical, i.e.,
no dependence on the slope and temperature is noticed, but at
high densities the mass decreases faster for lower temperatures.
In particular, for S = 2 and L = 93 MeV, the mass remains
quite high, and consequently no kaon condensate is formed,
since a larger mass delays the onset of kaons.

In Fig. 6 we plot the neutrino chemical potential as a
function of the baryonic chemical potential for S = 1 and
Yl = 0.4 for different values of the symmetry energy slope with
QMC and GM1 models. Lower values of the slope correspond
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and the slope L. Matter for S = 1 contains trapped neutrinos with
Yl = 0.4 and all other curves were obtained for neutrino free matter.

to larger amounts of neutrinos in matter with a fixed fraction
of leptons, because a smaller L favors smaller amounts of
electrons at large densities.

The kink at a chemical potential above 1300 MeV occurs at
the onset of the kaon condensate. After its onset, the number
of electrons decreases rapidly due to the charge neutrality
condition. For a fixed lepton the neutrino abundance increases
to compensate the decrease of the electrons. Comparing the
models, it is clear that within GM1 the amount of neutrinos is
larger, and, therefore, a larger neutrino chemical potential is
obtained. We point out that the kink in the chemical potential
due to the onset of the condensate is more pronounced for
GM1 and occurs at lower densities. This is due to the onset of
a kaon condensation at lower densities and larger amounts
of condensed kaons at a given density. Consequently, we
may expect that during the star cooling a smaller amount of
neutrinos is emitted and the probability of the occurrence of a
black hole will be smaller within QMC. We come back to this
point later.
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The temperature of the system is depicted as a function
of the baryonic density for S = 2 neutrino free β-equilibrium
matter and S = 1 β-equilibrium matter with trapped neutrinos
in Fig. 7. As compared with the results shown in [21], the
system with kaons can reach temperatures inside the star that
are much higher than the ones attained when hyperons are
included in its core, when the highest temperature is 35 MeV.
It is the kaon condensation the reason for this behavior. It is
seen that, for S = 2, L = 93 MeV, the temperature does not
increase so much because the kaons do not condensate in the
range of densities shown.

We also see from Fig. 7 that the temperature values are
somewhat similar, but still slightly larger for the smaller L
values if S = 2. In matter with larger values of L the number

of neutrons and protons is closer, which corresponds to a
smaller temperature if we fix the entropy. No L differences
are seen in matter with S = 1, because in this case the entropy
has an important contribution from neutrinos due to their
almost zero mass.

B. Kaonic star properties

Once the EoS are determined, we use them as input in the
Tolman-Oppenheimer-Volkov equations to obtain the stellar
macroscopic properties, which are shown in Table II and
Figs. 8 and 9. The result for T = 10 MeV is added only for
completeness.

For the present choice of the QMC parameters a baryon
bag occupies a volume that varies between v ∼ 0.9 fm3 at
ρ = 0 and v ∼ 0.77 fm3 at ρ ∼ 0.9 fm−3 independently of
the temperature. This volume is still compatible with no bag
overlapping at the central densities obtained for the maximum
mass configurations. For T = 0, the star with the largest central
density has ρc = 0.88 fm−3, so that the volume occupied by
one particle is 1/0.88 = 1.14 fm3. As close packing of equal
spheres fills 74% of the total volume, one particle would have
an available volume of v ∼ 0.74 × 1.14 = 0.84 fm3, larger
than the volume that is really occupied by a bag at those
densities (0.77 fm3).

The maximum masses for the cases with fixed entropy do
not show a clear behavior with the slope, but for a stable zero
temperature star they tend to decrease with the decrease of
the slope for both models. If the slope L is small the trend
may invert due to two competing effects: (a) a smaller slope L
means a softer EOS and, therefore, smaller maximum masses;
(b) however, the onset of kaons for a softer EOS occurs at larger
densities, as seen in Table II from the central energy densities
of the threshold stars for the kaon onset, and, as a result, stars

TABLE II. Star properties for the EOS described in the text for QMC and GM1 models and the three L values: the maximum gravitational
and baryonic masses, corresponding radius, the central energy density, onset energy density of the kaon condensate, the mass of a star with this
threshold mass, and radii of 1.4M� star.

Model Type L (MeV) Mmax (M�) Mbmax (M�) R (km) ε (fm−4) εK (fm−4) MK
max (M�) R(1.4M�) (km)

QMC T = 10 MeV 93.5 2.03 2.37 12.8 5.66 2.80 1.86
QMC S = 1, Yl = 0.4 93.5 2.03 2.25 11.7 5.26 4.09 1.99 13.12
QMC S = 1, Yl = 0.4 70.5 2.05 2.19 11.1 5.97 4.41 1.98 12.56
QMC S = 1, Yl = 0.4 59.03 2.04 2.25 10.9 5.97 4.30 1.97 11.91
QMC S = 2 93.5 2.51 3.11 12.2 5.35 3.03 2.30 14.15
QMC S = 2 70.5 2.15 2.51 11.8 5.86 3.44 2.04 13.69
QMC S = 2 59.03 2.13 2.48 11.7 5.99 3.57 2.03 13.54
QMC S = 0 93.5 1.98 2.25 12.08 5.41 2.93 1.86 13.58
QMC S = 0 70.5 1.94 2.12 11.85 5.61 2.96 1.81 13.19
QMC S = 0 59.03 1.95 2.18 11.7 5.75 3.07 1.82 13.06

GM1 S = 1, Yl = 0.4 93.8 2.24 2.52 11.9 5.52 3.70 2.17 13.13
GM1 S = 1, Yl = 0.4 70.8 2.23 2.61 11.7 5.64 3.91 2.18 12.96
GM1 S = 1, Yl = 0.4 59.6 2.24 2.53 11.7 5.64 3.92 2.18 12.88
GM1 S = 2 93.8 2.31 2.65 12.7 4.88 3.97 2.30 13.98
GM1 S = 2 70.8 2.26 2.60 12.3 5.11 4.09 2.25 13.51
GM1 S = 2 59.6 2.27 2.60 12.2 5.13 4.41 2.25 13.27
GM1 S = 0 93.8 2.14 2.46 12.8 4.63 2.70 2.03 13.82
GM1 S = 0 70.8 2.06 2.39 12.4 4.86 2.94 2.02 13.23
GM1 S = 0 59.6 2.06 2.39 12.3 4.96 2.96 1.95 13.06
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FIG. 8. (Color online) Mass-radius profiles for stars with S = 1
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for different values of the symmetry energy slope: L = 59 (thick), 70
(medium), and 93 (thin) MeV, with (a) QMC and (b) GM1. The black
dots indicate the onset of kaon condensate.

obtained from an EOS with larger L contain larger amounts of
kaons, which soften the EOS. Therefore, decreasing L reduces
the maximum star mass until a critical value of L when the on-
set of kaons is shifted to much larger densities so that the over-
all softening due to the kaon fraction becomes negligible. L =
59 MeV is one of these critical values of the slope. This effect
is present in both GM1 and QMC and for cold and warm stars.

A comment should also be made concerning the differences
of maximum masses with L. Within the QMC the maximum
mass diference is quite small, in fact not larger than ∼ 0.04M�
except for the S = 2, L = 93 MeV case, when the much larger
mass is due to the nonexisting kaon condensation in the star,
since only thermal kaons are present. Within GM1 the dif-
ferences are larger, but the main considerations above remain
valid. The difference in this case is the fact that the nucleonic
GM1 EOS is harder than QMC at intermediate densities.

The star radii, on the other hand, decrease with the decrease
of the slope, see Fig. 8, as already seen in [11,14] for different
parametrizations of the NLWM (excluding IU-FSU). In these
figures the black dots indicate the onset of thermal kaons,
which occurs for quite massive stars. Therefore, we may state
that the radius difference between the families of stars is mainly
due to the different behavior of the symmetry energy with
density and not to the presence of the kaons. According to
[34], the radii of canonical 1.4M� neutron stars should lie
within the range 9.7–13.9 km. In Table II we show our results
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FIG. 9. (Color online) Baryonic versus gravitacional masses for
stars with S = 1 and fixed lepton fraction Yl = 0.4 (top dashed curve),
S = 2 and neutrino free matter (middle full curve), and cold matter
(bottom dotted curve), for (a) and (c) L = 93.5 MeV and (b) and
(d) L = 59.3 MeV. The results were obtained with (a) and (b) QMC
and (c) and (d) GM1. The black full dots indicate the minimal mass
configuration which contains a kaon condensate in the core, and the
red asterisks the minimal configuration with a fraction 10−8 or larger
of thermal kaons.

for these canonical stars and see that, except for the S = 2,L =
93.5/93.8 case, a star which is not stable, our results fall inside
the expected range. On the other hand, other two different
analyses of five quiescent low-mass x-ray binaries in globular
clusters were performed to establish possible neutron star radii
ranges. In the first analysis [35], all neutron stars were assumed
to have the same radii in the range R = 9.1+1,3

−1.5 . The second
calculation [36], based on a Bayesian analysis, estimates that
neutron stars radii should lie in between 10.9 and 12.7 Km. It
is important to have in mind that measurement and assessment
of neutron star radii still remain to be better understood, but if
the above mentioned constraints are to be validated, our results
would only be in accordance with the second analysis.

The kaon onset energy density increases with decreasing
L as already referred; see εK in Table II. However, since
the existence of kaons softens the EOS, the kaon threshold
star mass is generally smaller for the smaller L. Notice that
both models, even with the inclusion of kaons and the ω-ρ
interaction, known to soften the EoS, may account for the
description of very massive stars.

In Fig. 9 we display, both for the QMC and GM1 models
and two values of the symmetry energy slope, the baryonic
versus gravitational masses for stars at different snapshots of
their lives [37]: (a) immediately after the core bounce with
trapped neutrinos S = 1 and fixed lepton fraction Yl = 0.4;
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(b) after neutrino diffusion Yν = 0 and core heating due to
deleptonization with S = 2 (the maximum entropy per baryon
S = 2 is attained at t = 15 s); (c) after core cooling with S = 0
and Yν = 0. If no accretion occurs during the cooling process.
the transition between the different stages occurs at constant
baryonic mass, i.e., along vertical lines [15]. We identify, with
a full black dot and a red asterisk, respectively, the minimal
configuration with a kaon condensate in the center and with a
fraction of kaons equal to 10−8.

Some configurations obtained for S = 2 and neutrino-free
matter cannot be populated since their baryonic mass is larger
than the maximum baryonic mass obtained with S = 1 and
trapped neutrinos. In particular, all stars with M > 2.05M�
for S = 2 and L = 93 MeV belong to this set of stars. It
is also seen that within the QMC model (but not GM1) it
may occur that a star has a kaon condensate in its center
during the neutrino trapped phase. After the neutrinos diffuse
out the condensate melts and finally it is formed once more
after cooling. These transformations should result in neutrino
signals after the supernova explosion and before the cooling
of the star.

Some conclusions are in order: (a) From both Fig. 8 and
Table II we conclude that for L = 93 MeV no black hole
will be formed during the cooling process since the maximum
baryonic mass at S = 1 and Yl = 0.4 is not larger than the
maximum baryonic mass at S = 0. This is not the case for
GM1. This model predicts the formation of low mass back
holes during cooling. (b) Decreasing the symmetry energy
slope L may modify some of the above conclusions. In
particular, for L = 70 MeV (but not anymore for 59 MeV)
within QMC there is a small range of star configurations
(�M ∼ 0.07M�) that will decay to a black hole during
cooling. Within GM1 the number of star configurations that
decay into black holes increases when L goes from 93 to
70 MeV, but decreases if L is further reduced to 59 MeV. This
is due the smaller kaon content in these last stars together with
a central density that is not much larger. (c) In same cases the
cooling of the stars that contain a kaon condensate involves
the melting of the condensate at an intermediate stage (S = 2)
and a second formation of the condensate at T = 0.

We should point out that we are studying the evolution of
stars without considering finite size effects as in [38]. In the
present calculation the kaon potential is not strong enough to
give rise to a first-order phase transition, and corresponds to a
second-order phase transition.

IV. CONCLUSIONS

In the present work we have revisited the QMC model at
finite temperature to investigate the thermal kaon effects on
stellar properties. The ω-ρ interaction was included because it

softens the very hard QMC symmetry energy at high densities
and can be used to tune the values of the slope of the symmetry
energy. As had already been seen in [14,22], lower values of
the slope yield smaller amounts of strangeness if hyperons are
considered for a given density. The same conclusion is here
obtained if kaons are the carriers of strangeness instead of the
hyperons.

As compared with the results obtained with the GM1
parametrization of the NLWM, the QMC EoS is generally
softer, the only exception being the S = 2 case for L =
93.5 MeV (see Table II), which is due to the fact that no
kaon condensate is formed because the central temperatures
of the star lie above the melting temperature of the condensate.
A softer EOS at intermediate densities implies a smaller
amount of kaons, and as a consequence within QMC no
black hole formation is expected during the cooling of the
a protoneutron star with a kaon condensate in the core, if
L is large enough. For smaller values of L, but not too
small, the set of stars that could cool to a black hole is very
reduced and certainly much smaller than what is expected
with GM1.

It is interesting to identify the role of the density dependence
of the symmetry energy on the possible evolution of a compact
star with a kaon condensate. Within QMC no black hole is
formed either if L is large or L small. This is due to the
balance between the softening of the EOS when L is smaller,
together with a less pronounced softening of the EOS because
fewer kaons are formed. Within GM1 there are always a quite
large set of stars that cool to a black-hole, although this set is
larger for intermediate values of L.

We have also shown that the complex evolution of the
star may include the melting and formation of a new kaon
condensate. The first transformation is driven by the neutrino
diffusion and the second is due to cooling. These processes
could be responsible for a neutrino signal followed by a gamma
ray burst after the supernova explosion.

Finally, we point out that both models can describe very
massive stars, namely stars as massive as the pulsars PSR
J16142230 [7] and PSR J0348+0432 [8].
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