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ABSTRACT

Water supply systems have to satisfy water needs in terms of quantity and quality. The
constant changes in urban areas require the regular adaptation of the water supply
infrastructure to meet new realities. However, decisions to design and operate water networks
have to be made under uncertainty. Flexibility is thus the key to more robust and confident
decisions. An approach called Real Options (ROs) can be used here. This approach makes it
possible to use adaptive strategies during the decision making process. Some decisions can be
delayed until future conditions become known. Water distribution systems are very costly and
complex infrastructures; once built, their operating structure cannot be changed significantly.
This work presents an innovative ROs approach to define an objective function to cope with
some future scenarios considered in a specific case study. The objective of the model
proposed is to find a minimum cost solution for the first period of a planning horizon, while
considering various possible future conditions that the network could have to cope with. The
results of this work show that building flexibility into the decision strategy enables an
adaptive approach to be taken that can avoid future lack of network capacity. In the case
study, an adaptive design of the network incurs an extra initial cost, but this cost can easily be
lower than the cost of reinforcing the network in a longer planning horizon. The real value of
ROs is their ability to adapt systems to different future possible scenarios.

Keywords: water distribution networks, real options, simulated annealing, flexible design,
uncertainty.

1 INTRODUCTION

Water distribution systems are costly and complex infrastructures which are meant to
distribute water over a long planning horizon without interruption. Once built, networks
cannot significantly change their operating conditions to adapt to new circumstances and the
capacity and level of service cannot be increased easily. During the planning horizon, the pipe
capacity declines as the roughness increases and the incidence of pipe burst also rises. Once
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laid, pipes cannot be reinforced without making large investments. Therefore, it is very
important in water system planning to try to predict the future operating conditions. However,
if the worst case scenario design is adopted the network could become overdesigned, with the
result that resources are wasted and the water quality declines due to the lower velocity and
higher water residence times. Moreover, cities are continually changing and the water supply
systems have to be adapted for these changes. Sometimes a new urban or industrial area is
built and the network has to be reinforced to accommodate the increased demand. But the
opposite can also occur in areas whose population declines and the demand therefore falls.
There are many sources of uncertainty in the future: technology, industry, economics,
regulations and politics are some of them. It is very difficult to make correct forecasts under
these uncertainties. Urban infrastructure planning is an immense and complex task. According
to Haimes (1998) the great challenge for the scientific community of the third millennium will
be to develop tools and technologies to support and maintain infrastructure. Several methods
for effective planning in the area of water systems have appeared in the literature. To cope
with future uncertainty, a flexible plan is required. In this context an approach called Real
Options (ROs), originating in financial theory, could make an important contribution. Myers
(1977) was the first to introduce the term Real Options (ROs), soon after the works of Black
and Scholes (1973) and Merton (1973) which proposed a solution to the financial option
valuing problem. Since then a large number of studies have been published where the
concepts of ROs have been used in several fields. The ROs concept is analogous to financial
options but ROs refer to physical assets such as buildings and infrastructure rather than
financial instruments like stocks and shares.

Wang and Neufville (2004) divide ROs into two categories, ROs “on” systems and ROs “in”
systems. ROs “on” systems focus on the external factors of a system and benefit from the use
of financial valuation tools. On the other hand, ROs “in” systems incorporate flexibility into
the structural design of a system and it is harder to value flexibility. This is the ROs category
used to design water distribution networks.

The ROs approach facilitates adaptive strategies as it enables the value of flexibility to be
included in the decision making process. Opportunities are provided for decision makers to
modify and update investments when knowledge of future states is gained enabling them to
identify the most appropriate long term intervention strategies. This gives a totally different
perspective to a decision strategy, because there is no need for decisions to be inflexible and
there is no specific date on which to take them.

A number of studies have developed ROs approaches to solve a variety of problems. Roberts
and Weitzman (1981) analyse the nature of sequential investments during a time horizon. In
industry He and Pindyck (1992) solve investment decisions with flexible production
capacities. In petroleum exploration, Paddock et al. (1988) use ROs to evaluate the investment
in an offshore platform. In electric power systems, Tannous (1996) compares flexible and
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rigid electrical systems. Other uses of ROs approaches include Nembhard and Akton (2010),
who systemized applications of ROs to design and develop engineering problems and
Neufville et al. (2006), reported the use of ROs in car parking problems. In the water industry,
an ROs technique appears in the work of Woodward et al. (2011) to define maritime costal
defences to reduce the risk of flooding. In the area of water systems expansion, Suttinon and
Nasu (2010) present an ROs based approach where the demand increases. The work of
Buurman, et al, ( 2009) and the work of Zhang and Babovic, (2011) apply ROs to the
development of a maritime domain protection system. Zhang and Babovic (2012) also use an
ROs approach to evaluate different water technologies into water supply systems under
uncertainty. There is a vast body of literature reporting the use of ROs but, until now, it has
only been possible to find the work of Huang et al. (2010) that describes the application of
ROs to design of water distribution networks. The methodology used presents a flexible
design tool based on decision scenario trees that reflect uncertainty associated with future
demand for water. The authors use a genetic algorithm optimization model to find a flexible
design to a simple case study.

This work presents an innovative and different approach where uncertainty is not only
associated with future demand for water, but also, it considers new expansion scenarios for
the network. These scenarios are organized through a decision tree. The investment and the
corresponding design of the network have to cope with the first period, but they have to work
well throughout the planning horizon. This work uses a minimum cost objective function and
various scenarios are considered to predict different alternative future conditions. The
objective function also includes a regret term used to approximate the cost of the ROs solution
that must work well for all scenarios, with the cost of each scenario considered individually.
Therefore, before running the model it is necessary to find the optimal solution for each
scenario. The method proposed here to solve the optimization problem is a simulated
annealing heuristic based on Aarts and Korst (1989). The work of Cunha and Sousa (1999)
shows the capabilities of this method to find optimal solutions in water distribution network
problems. This method was also used in aquifer management (Cunha, 1999); water treatment
plants ((Afonso and Cunha, 2007); wastewater systems ((Zeferino, et al. 2012) and rail
planning networks ((Costa, et al. 2013). The case study presented in section 3 explains how
the ROs approach can be used and the benefits of using a flexible design.

The remainder of this study is organized as follows: in the next section a case study is
presented to explain the method. A decision model is built and the results are shown. Then
some comparisons are drawn with traditional approaches. Finally, the conclusions are
systemized.

2 CASE STUDY
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In this section, an ROs approach is used in a simple case study. This is a water distribution
network inspired in (Taher & Labadie, 1996). The layout of the network and characteristics of
the pipes and nodes can be consulted in this work.

This is a simple new network with 10 nodes and 11 pipes supplied from a single reservoir
with a free water surface elevation of 304.8 m. The pump is used to increase pressure at the
remote end nodes of the network. The efficiency of the pump is 80% and the daily
consumption is 12 hours at demand condition (1) and the other 12 hours at demand condition
(2). Demand condition (3) considers the instantaneous peak discharge and a fire flow in node
10. These demand conditions can be consulted in (Taher & Labadie, 1996). The energy costs
are € 0.18 /kWh and should be evaluated for a 60-year period by a discount rate of 4% year.
This rate was fixed based on the work of Wu et al. (2010). The design of the network
considers the 11 different commercial diameters presented in table 1.

Table 1: Diameter, unit costs, Hazen-Williams coefficients

A network planning horizon of 60 years was taken for this case study, which was split into 4
periods. This subdivision considers periods of different lengths. It is supposed that in the first
period (T=1), no modifications will be needed and that conditions will remain the same for
the first 20 years. In this first step of the decision-making process, 10 pipes and the head of
the pumping station have to be designed for three different operating conditions. Periods T=2
and T=3, are short periods of 10 years each. The regional planning strategy assumes that the
land use of some areas of the city is reviewed. Therefore, for T=2 the authorities are planning
to license a new industrial area (NIA) if enough companies show an interest and so the
network will be expanded in this period. For T=3, it is expected that a new residential area
(NRA) might grow close to the industries, due to labour required for NIA, so the possible
expansion of the network to the new residential area is considered. It is assumed that the
pumps have to be changed every 20 years, so the pumps will have to be replaced in T=2 and
T=4. In the last period, T=4, the demand should be predicted. However the time horizon is
large and it is very difficult to accurately predict how demand will vary during the last 20
years of planning. For the last period it is assumed that the demand might increase between 0
and 20%, equally in all nodes in the network. The two different paths’ scenarios that are
possible in the last period are the 20% increase in demand and demand remaining constant.
The potential expansion areas are shown by dashed pipe links in Fig. 1 and the characteristics
of the new nodes and pipes are presented respectively in tables 2 and 3.

Figure 1: Water distribution network inspired from Taher & Labadie (1996) with possible
expansion areas

Table 2: Characteristics of the new nodes
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Table 3: Characteristics of the new pipes

As the planning horizon progresses and the pipes get older the wall roughness increases. The
planning horizon for this case study is 60 years and the fall in pipe capacity should not be
neglected for any future decision that has to be made. Based on the DWSD (2004) report, the
Hazen-Williams coefficients of ductile iron pipes decreased at a fixed rate of 2.5 per decade.
Of course this rate depends on many factors and is also time dependent. But to simplify
matters, a fixed rate was assumed for the entire planning horizon. The demand will also vary.
It was assumed that for the first 40 years’ operation the demand would increase at a constant
rate of 10% per decade. For the last period, the demand could stabilize or increase by no more
than 20%, as was supposed before. The main virtue of real options approach remains on the
possibility to make midcourse corrections as new information comes. Thus, these assumptions
can be adapted if required to new future realities.

Assuming a subdivided planning horizon, different conditions and possible expansions, a
decision tree for all possible paths of the process and respective probabilities is shown in Fig.
2. This is a simple case study and the decision model can be easily solved. In real systems the
complexity can increase and the computation effort too. One of the possibilities to obtain
solutions in admissible time horizons is to use parallel computing.

Figure 2: Decision tree for the planning horizon

There are 8 different paths that can be tracked during the planning horizon of the network. In
the first period (T=1) an initial design for the network is determined, in T=2 the pumps have
to be replaced and an NIA may or may not need to be supplied. An NRA might be built in
T=3. In the last period T=4, the pumps have to be replaced and the demand for the last 20
years of the planning horizon is designated. Finally, the probabilities of the different scenarios
are assigned to each path. These probabilities can be obtained by different methods, taking
into account the urban planning and other plans for future developments and land use.
Aggregating all the information, the probabilities can be given by experts. For this case study
the probabilities considered for the different paths are shown in Fig. 2. In T=1, the probability
of occurrence is 1; it is the only possibility. For T=2, it is accepted that there is a 75% chance
that an NIA will be built. The probability that an NIA is not built is the other 25%. In T=3 it
will be decided if the NRA will be extended or not. If the NIA has been installed then it is
more probable that the NRA will be built because of the labour needed for the industries, so
the probability of constructing the NRA is higher in the upper paths of the decision tree. In the
last period, T=4, the demand has to be assigned. If the NIA or/and the NRA are built the
probability of an increment in demand is higher. To conclude, the probability of the scenarios
is calculated by multiplying the probabilities of all nodes on the path of that scenario, and they
are shown in the last branches of the tree in Fig. 2.
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2.1 DECISION MODEL

The decision model presented here is based on the ROs approach and aims to define an
objective function to cope with all the different planning horizon paths that are considered in
the case study. The objective function and the corresponding constraints of the model will
determine a solution to implement in the first period, T=I, but taking into account all the
possible future conditions that the network could cope with. The proposed objective function
OF is given by Eq. 1:

OF =Min ( Ci+Cf +R) (1)

Where: Ci - cost of the initial solution to be implemented in year zero (€),Cf — cost of the
future conditions (€) and R — regret term (€).

The objective function of Eq. 1 is written so that the solution for the first period, T=1, can be
determined taking into account the different paths of decisions that have to be made during
the planning horizon. The objective function seeks to minimize not only the initial cost but
also the probable future costs of the system. To take into account the differences between the
costs of the general solution and the optimum costs for each scenario considered individually,
a regret term is used in the objective function. The cost of the solution to implement is given
by the sum of three terms. The term Ci computes the cost of the network for the first period
t=1 of planning and is given by Eq. 2:

NPI NPU

2. (Cpipe(D, L)+ Y (Cps,, )+
i=1 Jj=1
Ci= e v y.OP . HP, (4 IR 1 (2)
+ D | Cey - > Lol LAt 365 ——
] = 7 IR -(1+ IR)"™"

Where: NPI- number of pipes in the network; Cpipe;(D;,;) - unit cost of pipe i as function of
diameter D;; adopted (€/m); D;; - diameter of pipe i installed in period =1 (mm); L; - length
of pipe i (m); NPU - number of pumps in the network; Cps; ; — pumping station costs of pump
j in the period =1 (€); NDC - number of demand conditions considered for the design; Cey -
cost of energy in demand condition d (€); y - specific weight of water (KN/m?); OP; 4 -
discharge of pump j in demand condition d and for period t=1 (m%/s); HP;4; - head of the
pump ; in the demand condition d and for period =/ (m); n; - efficiency of pump j; Ats -
duration of demand condition d (h); /R - annual interest rate for updating the costs and NY; —
number of years with the same conditions considered in the period t=1.

The initial cost is given by the sum of the cost of the pipes and the cost of the pumps and the
energy cost. These costs are computed assuming NY;=20 which is the number of years of the
first period. The other term of the objective function represents the future costs of all the
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decision nodes designs (Eq. 3) weighted by the respective probability of each decision node
that is presented in Fig. 2:

NS NTI ‘
cr=>> [Cfuture,js 11 prob,,mj (3)
== ni=2

Where: NS - number of scenarios; N7/ - number of time intervals; Cfuture;s — cost of the
future path of designs in scenario s for period ¢ (€) and prob,.s - probability of the scenario s
in period nt

Adding up all possible future costs conditions, starting from T=2, multiplied by the
probability of occurrence of such costs, we get a weighted mean of the future costs for the
network. The term Cfuture;s is computed in Eq. 4, for all periods beginning in T=2 (the costs
for the first period are already calculated in the Cinitial term) and it is given by the sum of

three terms:
> (Cripe (D, L) e 3 (€, ) —
ipe.(D,, )L, ) —+ s, ) —+
CA\TPIPE s I (1+1R)" = Poane (1+1R)"
Cfuturet,,v = NDC NPY - OP, .HP. (l+]R)NY’ -1 1 4)
+ D Cey > Lls  JAET L Af, |-365- — |- .
=1 = us IR-(1+IR)™ (l+IR)'

Where: Cpipei(D;.s) - unit cost of pipe i as function of diameter D; s (€); Di:s - diameter of
pipe i installed in period ¢ for scenario s (mm);Y; - year when costs will be incurred for period
t; Cpsj.s— pumping station costs of pump j in period ¢ for scenario s (€); OP; 4 - discharge of
pump j in demand condition d for period ¢ and scenario s (m*/s) and HP; s - head of pump j
in demand condition d for period ¢ and for scenario s (m)

The first term of Eq. 4 computes the current value of the cost of the pipes to be installed in the
different periods and scenarios, the second term computes the current value of the cost of the
pumps for the different periods and for the different scenarios and finally the last term
computes the current value of the cost of energy for each period and for each scenario. To
compute the current value of the costs of energy, first it is necessary to sum and discount the
costs during the NY; number of years of each the time interval. Them it is required to update
these costs by Y; years to year zero of the planning horizon. The pumping station costs are a
function of the pump discharge and of the pump head.

So far, the first two terms of the objective function of Eq. 1 have been detailed. The sum of
these two costs is intended to represent the full planning horizon cost of the network,
considering future uncertainty. The decision variables are the pipe diameters and the head of
the pump for each demand condition and for each time interval. The other term of the
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objective function is given in Eq. 5 and computes the regret between the cost of the solution
to implement and the optimal cost for each scenario:

NS NTI 2 Nm
R = Z HCinitial+ Z Cfuturet,s,]— COptimals} H prob, . - Nf (5)
s=1 =2 =1

Where: NS - number of scenarios; Coptimals; — optimal cost design for scenario s (€) and Nf -
normalization factor.

The term given by Eq. 5 aims to find solutions whose costs are as close as possible to all the
individual optimal costs, with all the constraints being verified and performing well for all the
scenarios. But the scenarios do not have the same probability of occurrence, so the weight of
the situations more likely to occur should be higher. Therefore, these differences are
multiplied by the probability of occurrence of each path scenario. The regret term is used to
introduce the idea of making decisions without perfect information. This means that the
design solution to be implemented can be sub-optimal and the regret term is included to
represent the risk of such decision. The squared term allows balancing that difference across
scenarios. The normalization factor Nf'is a value used to avoid that the optimization process
became high dependent from the regret term. If this term is much higher than the other terms
of the objective function, then the progress of the optimization is ruled by the modifications of
the regret term. Therefore, it is used a factor playing the role of a normalization to avoid this
situation. The value of the normalization factor is problem dependent and was defined
according to a kind of sensitivity analysis considering this particular case study.

2.2 OPTIMAL SOLUTION FOR EACH SCENARIO

The regret term shown in the objective function of Eq. 5, is based on the minimum cost
solution for each scenario. Consequently, the model shown in Eq. 6 is used to find these

solutions:
NPI 1 NPU
Cpipe (D, )L.)————+ S (Cps, ) ———+
Min
=R XWy-QP,, HP,, 1+ IR)M -1 1 (6)
+ Ce, -y =t it zp 1365 :
[dz—;[ “ ; us d} IR-(1+ IR)™" (1+1R)Yf

The objective function is the sum of 4 periods of the current value of the costs of pipes,
pumps and energy. The first term computes the present value of the pipe costs for the year
zero. The second term computes the pumping stations’ costs. Over the planning horizon the
pumps have to be replaced every 20 years, so this cost has to be updated for the first operation
year. Finally, the last term computes the cost of energy consumed by the pumps. The energy
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costs must be updated for each period of the planning horizon and then to the year zero.
Adding up these costs for all 4 periods, we get the cost of pipes, pumps and energy for the
whole planning horizon of the water distribution network.

The model includes a set of constraints. Eq. (7) is used to verify the nodal continuity
equations; Eq. (8) is used to compute the head loss of the pipes; Eq. (9) is used to limit the
pressure of the nodes and Eq. (10) is used to guarantee a minimum diameter for the pipes.
Furthermore, the optimization model use a candidate diameter for each pipe based on a set of
commercial diameters, Eq. (11) and the assignment of only one commercial diameter for each

pipe, Eq. (12).

NPI

>1,0.,,.,=0C, VneNN;VdeNDC;VteNTI;Vse NS (7)
i=1
AH,,,  =KQ.,, * VneNN;VdeNDC;VieNII;VseNS (8)
PMAX,,, 2P, >PMIN,,  VneNN;¥de NDC;Vte NTI;¥se NS )
D,>Dmin, Vie NPI (10)
ND
D, =>YD,,.Dcom,, Vie NPI (11)
d=l1
ND
YYD, =1 Vie NPI (12)

d=1

Where: 1,,; -incidence matrix of the network; Q; 4:s— flow on the pipe i in demand condition d
for period ¢ and scenario s (m*/s); OCya.s - consumption in node n in demand condition d for
period ¢ and scenario s (m*/s); NN - number of nodes; AH; - head loss in pipe i in demand
condition d for period ¢ and scenario s; K; ,a- coefficients that depends of the physic
characteristics of the pipe i; PMAX,, 4.5 - maximum pressure in node » in demand condition d
for period ¢ and scenario s (m>/s); Py - pressure in node n in demand condition d for period
t and scenario s (m); PMIN, s - minimum pressure in node »n in demand condition d for
period ¢ and scenario s (m); D; - diameter of pipe i; Dmin; - minimum diameter for the pipe i;
YDy, - binary variable to represent the use of the diameter d in pipe /; Dcoma, - commercial
diameter d assigned to pipe /and ND- number of commercial diameters.

Mainly, this study comprises three main elements. The ROs are used to shape the
optimization model of Eq. 1. The simulated annealing is used to solve the optimization model
and the EPANET (Rossman, 2000) is used to simulate the hydraulics and return the results to
verify the constraints of the model. The interaction between the optimizer and the hydraulic
simulator is shown in Fig. 3.

Figure 3: Main program diagram
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The program start by input data, then simulated annealing process starts by choosing an initial
solution generated randomly in the solution space. To it, is associated a value of the objective
function. The current solution is initialized by considering it equal to initial solution. The
candidate solution is selected in the neighborhood of the current solution and is given by a
random change of current solution. After generation the hydraulic constraints are verified
through EPANET and the candidate solution can be accepted or not according to Metropolis
criterion (Metropolis, et al. 1953). If it is accepted, this solution will be used as the starting
point for the next iteration. If not, the current solution will play this role. After a number of
generations, the cooling process is performed and the temperature parameter decreases. The
process progresses until a stop criterion is achieved. In the end the results are presented.

The design of the network has to satisfy minimum pressure constraints for 3 different demand
conditions and for 4 different subintervals of the planning horizon. The solution thus has to
verify 12 different hydraulic conditions for each scenario. Table 4 shows the solutions cost of
each scenario.

Table 4: Network cost for the different scenarios

Table 4 presents the cost subdivided into the cost of pipes, cost of PS and energy cost. All of
these costs are updated for the year zero. These solutions are used to evaluate the regret term
of the objective function of Eq. 1. Each of these solutions takes about 190 seconds to be
achieved by the optimization method.

It is possible to draw some conclusions from Table 4. The pipe costs are the greatest
percentage of the total costs. Another conclusion is that a decision about the increase of the
demand has an impact on the pipe cost in the last period. This can be seen by comparing the
construction costs in Table 4 of scenario 1 that considers a demand increase in the last period
and scenario 2 were there is no demand increase. It can be seen that if demand does not
increase in the last period the cost of the pipes will be lower. This happens because, if there is
a substantial increase in the demand, the size of the pipes has to be larger and therefore the
cost will be higher.

3 RESULTS AND DISCUSSIONS

The model was solved for the case study and the results are presented in Fig. 4.

Figure 4: Solution for Real Options approach
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Decisions have to be made for each node of the decision tree. Fig. 4 presents, for each node, a
table with the results of the design, beginning with the diameters in millimetres of the pipes to
install in the network. Then the pump heads are presented for each of the three operating
conditions considered in the case study and the costs are shown in the last lines, subdivided
into the cost of the pipes, the pumps and energy. Finally the last branches of the decision tree
present the total cost of the pipes, pumps and energy, updated for the year zero. These figures
represent, for each scenario, the total amounts of investment and operating cost that will be
expended if that scenario occurs. These future costs of the global solution can be compared
with the optimal costs of each scenario. Fig. 4 shows this comparison and enables some
conclusions to be achieved. First, the cost of the global solution is higher than the optimal cost
of each scenario. In fact considering uncertainty in the process will increase the cost. If the
future is well defined, the solution can be designed only for those conditions and not provide
the flexibility to accommodate future alterations; the pipes and pumps can be designed to a
specific capacity that will reduce the cost of investments.

Figure 5: Cost comparison

Scenario 1 is the most likely to occur, prob;=0.54, and it can be seen in Fig. 5 that the cost is
very similar to the cost of the ROs solution for scenario 1. This proximity is due to the regret
term used in the objective function in Eq. 1. The difference between the cost of the global
solution and the optimal cost for each scenario is minimized by the regret term, but this
difference is weighed with the probability of each scenario, and the scenarios with high
probabilities will further penalize the objective function.

Finally, the expected cost of the solution is computed. The ROs approach considers different
scenarios with different probabilities. By adding together all the future weighted costs
presented in each node of the decision tree in Fig. 4 it is possible to achieve to the present
value of ROs solution, which is € 5,442,569. This is the expected cost for the case study
considered for this work and is the sum of the initial solution cost, Cinitial = € 4,287,509 that

has to be implemented now plus the weighted costs of all the future options,

NS NTI t
ZZ[Cfuture,’s 11 probm,sJ = € 1,155,060. The decision makers can use this cost as the

s=1 t=2 nt=2

reference for the entire planning horizon operation of the system.

To understand the difference that using ROs will make in the flexible design of water
distribution networks, a comparison between the ROs approach and a traditional design is
made. The comparison presented covers the first 30 years of operation. The comparisons are
presented in Fig. 6.

Figure 6: Comparison between ROs and Traditional design
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Fig. 5 presents, for each node, a table with the results of the design, beginning with the
diameters in millimetres of the pipes to be installed in the network. Then the pump heads are
presented for each of the three operating conditions considered in the case study and the costs
are shown in the last lines, subdivided into the cost of the pipes, the pumps and energy. These
results are presented in two columns: ROs design and a traditional design.

The RO solution given in Fig. 6 is designed for the first period T=1, but consider 2 possible
future scenarios: for T=2 a NIA either is installed with a probability of 75%, or it is not
installed with a probability of 25%. Another design option for the first period T=I is a
solution planned only to function in the first 20 years of operation. This is the traditional
design for this case study and does not take future uncertainty into account. Analyzing the
solutions for the first time interval allows us to reach some conclusions. The ROs solution
adopts larger pipe diameters than the traditional design, if only the first period is considered.
The cost of the ROs solution is 12% higher than the cost of the traditional design solution.
This cost increment is the initial price to pay to have a flexible solution that will perform well
for the first 30 years of operation. The pump heads are higher for the traditional design
solution due to the smaller diameters of the pipes next to the pumping station. Using larger
diameters permits a reduction in head losses and, therefore, less energy is used to pump the
water.

As has been shown, the ROs solution has a higher cost for the first period. However, the
comparison has to cover the whole 30-year life and it was ascertained that the minimum
pressures could not be satisfied in T=2 where the traditional design solution is adopted in the
first period. Therefore, this solution has to be reinforced to satisfy the minimum pressure
constraints. To compare the solutions, it was considered that the reinforcements can be made
by using parallel pipes. The optimization problem assumes that these parallel pipes can be
used for all the existing pipe links and considers that the unit pipe cost is the same as that
given in Table 1.

To compare the designs the weighted cost of solutions for the 30-year planning horizon is
used. The initial cost (Eq. 2) is added to the future weighted cost (Eq. 3) to obtain the value of
€ 4,288,757 to the ROs design and the value of € 4,359,026 to the design that implies
reinforcements of the network. This shows that the cost of the ROs design is 2% lower than in
an inflexible design.

If it is compared to the costs of the traditional design with the ROs design for the 60-year
planning horizon and if the decision path of scenario 1 (Fig.2) is considered, a traditional
design implies expenditure of more than 270,000 € of actualized costs. This solution includes
the installation of 11 new parallel pipes. In fact, the ROs solution makes it possible to save on
resources if an extended planning horizon analysis is performed.
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From these comparisons it is also possible to conclude that the length of the planning horizon
is very important for the initial design. However, the longer the planning horizon the more
uncertainties arise and the design should be adjusted between different possible future
scenarios. The ROs approach makes an important contribution because it can handle future
uncertainty. But design flexibility has a cost. In this comparison, the ROs solution is 12%
more costly than the traditional solution designed only for the first period. However, if a 30-
year operation planning horizon is considered the ROs solution costs less than a solution that
ignores different future possible scenarios. This is a proactive way to arrive at a minimum
cost design solution for an extended planning horizon.

4 CONCLUSIONS

This work describes an innovative ROs approach used for a decision making process under
uncertainty, in the field of water supply networks’ design. The optimization model presented
in this paper tries to minimize costs over the whole planning horizon. Based on trying to delay
some decisions for the future, ROs enables total investment to be reduced. But this delay
comes at a cost. The initial solution has to be flexible enough to accommodate all the future
conditions, and some pipes have to be overdesigned.

The design of a specific case study was used to explain the approach. Different options were
considered for the infrastructure and the planning horizon was subdivided into periods with
the aim of making midcourse corrections or additional investments. The results were
presented by a decision tree, with the value for the different decision variables as well as the
total amounts of investment and operating cost that will be expended. The future costs of the
ROs solutions were compared with the optimal costs of each scenario.

A comparison between the ROs approach and a traditional design was made. Results show
that the ROs solution makes it possible to save on resources if an extended and uncertain
planning horizon analysis is performed.

The ROs philosophy tries to find opportunities to incorporate flexibility into decision making
so as to mitigate the potential impact of future uncertainties, which in turn creates
opportunities for adaptation. For the case study, an adaptable network design for a 60-year
planning horizon had an extra initial cost, since a flexible solution is more costly than a
solution that does not take the future into account. However, the latter solutions will not have
sufficient robustness to accommodate the future scenarios, and therefore some pipes in the
network will need to be reinforced, for example by installing new parallel pipes. These
reinforcements will of course increase the overall cost of the system over its entire planning
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horizon. The real value of ROs is their ability to adapt the solution to different future possible
decisions.
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Table 1: Diameter, unit costs, Hazen-Williams coefficients

Diameters Unit costs Hazen-Williams
(mm) (€/m) Coefficients
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Table 2: Characteristics of the new nodes

Node Ground Nodal consumption (1/s) Minimum pressure (m)
elevation (m) () Q) G) () 2 3)
11 298.56 18.927 13.249 18.927 35.0 35.0 14.0
12 289.56 31.545 22.082 31.545 35.0 35.0 14.0
13 243.84 18.927 13.249 18.927 35.0 35.0 14.0
14 243.84 12.618 8.833 12.618 35.0 35.0 14.0
Table 3: Characteristics of the new pipes
Pipe Initial Node | Final Node Length (m)
12 6 11 1609.344
13 7 12 1609.344
14 11 12 1609.344
15 3 13 1609.344
16 4 14 1609.344
17 13 14 1609.344
Table 4: Network cost for the different scenarios
Scenarios
1 2 3 4 5 6 7 8
Construction cost (€) 3,992,269 3,682,766 3,794,636 3,512,817 3,242,176 3,215,033 2,937,053 2,975,677
Cost of energy (€) 1,190,024 1,156,966 1,163,855 1,137,703 756,193 717,879 779,515 733,601
Cost of the pumps (€) 389,067 382,747 387,690 383,855 318,121 312,560 322,491 315,145
Total costs (€) 5,571,360 5,222,478 5,346,181 5,034,376 4,316,491 4,245,471 4,039,059 4,024,423
17 14
TI:I] 3 Tm 4 Tl:ll 1 _TN 12
\ |
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| s | |
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7 8 9 Legend:
Continuous lines - links in the original case study
Dashed lines - links in new expansion arcas
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Figure 4: Solution for Real Options approach
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