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Abstract 

This paper deals with the supraconvergence of elliptic finite difference schemes on variable grids for second 
order elliptic boundary value problems subject to Dirichlet boundary conditions in two-dimensional domains. The 
assumptions in this paper are less restrictive than those considered so far in the literature allowing also variable 
coefficients, mixed derivatives and polygonal domains. The nonequidistant grids we consider are more flexible than 
merely rectangular ones such that, e.g., local grid refinements are covered. 

The results also develop a close relation between supraconvergent finite difference schemes and piecewise linear 
finite element methods. It turns out that the finite difference equation is a certain nonstandard finite element scheme 
on triangular grids combined with a special form of quadrature. In extension to what is known for the standard 
finite element scheme, here also the gradient is shown to be convergent of second order, and so our result is also a 
superconvergence result for the underlying finite element method. o 1998 Elsevier Science B.V. and IMACS. All 
rights reserved. 
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1. Introduction 

In studying finite difference schemes for BVODEs on nonuniform grids the so-called supraconver- 
gence was found (see [ 121): although the truncation error for many natural schemes is pointwise of order 
one only the finite difference solutions are second order convergent. Supraconvergence was then also 
established for finite difference approximations for the Laplacian in a rectangular region (see [3,11,13]) 
and for one-dimensional parabolic equations (see [ Ill). 

In the present paper we consider the supraconvergence of the finite difference scheme (4) for second 
order elliptic boundary value problems 
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Au := -(au,), - (bu,), - (bu,), - (cu~)~ + du, + euY + fu = g in Q c R2 (1) 

subject to Dirichlet boundary conditions in polygonal regions. 
Our aim is twofold. On the one hand, we prove second order supraconvergence for (4) under less 

restrictive assumptions considered so far in that we admit problems with variable coefficients which are 
allowed to have mixed derivatives and which are not assumed to be strongly coercive but only uniquely 
solvable. Also the domains are only assumed to be polygonal (except in [ 1,2]), which is somewhat more 
adequate than the rectangular shaped regions considered so far. 

We also analyze schemes which are obtained by adding new grid lines and consequently gridpoints. 
Here the additional assumption is imposed that each rectangle where a new gridline starts does not 
become too small compared to its length. The resulting finite difference approximation is not pointwise 
consistent in the gridpoint, where the gridline starts and in some neighbor gridpoints. We prove the 
supraconvergence result (see Theorem 3) that the convergence order is O(Hi, + H,, V ‘12), where V is 
the total area of the rectangles where additional gridlines start and H,,, denotes the maximal mesh-size. 
If there are only few of such rectangles or if the total area V is of order O(Hi,), which, e.g., holds 
true in the case of a refinement near an isolated singularity, second order convergence for solution and 
gradient is obtained. 

On the other hand, our results develop the close relation of the supraconvergent finite difference scheme 
to a certain finite element method. From this point of view our finite difference scheme is nothing else 
than a nonstandard piecewise linear finite element approximation on a triangular grid combined with a 
special form of quadrature. A numerical implementation of the scheme (4) can be based on this relation. 
We show in our main theorem (Theorem 1) that-in contrary to what is known for the standard finite 
element method-the gradient is also second order convergent. So our result, expressed in the language 
of finite element methods, is a superconvergence result. Since there is no restriction on the nonuniformity 
of the grids the triangles are allowed to have arbitrary small angles, i.e., the corresponding triangulation 
needs not to be quasi-uniform. Already about two decades ago Zlamal (see [10,18]) has found the 
superconvergence of the gradient for certain quadrature finite element solutions on nearly rectangular 
grids. His result also applies to higher order continuous elements but does not include our scheme. 

Exploiting the relation to finite element methods clarifies and simplifies the analysis of supraconver- 
gence. In the literature there have been developed so far different ways to treat supraconvergence. In the 
one-dimensional case, where naturally quite general schemes can be analyzed with reasonable effort, the 
analysis given in [9,11,12] is via a transformation of the finite difference scheme approximating second 
order equations into a centered scheme for an equivalent first order system. The idea in [8] is to use an 
explicit representation of the discrete Green’s function for the second order central divided difference 
operator. Another approach was undertaken in [6], where stability and order of the truncation error were 
considered with respect to negative norms which can be represented in the one-dimensional case in the 
form of the so-called Spijker norms. 

The analysis of the present paper is also based on using negative norms. That this is an appropriate way 
of analysis was already observed in [13]. Supraconvergence results for certain elliptic finite difference 
schemes similar to those considered in this paper using the concept of negative norms were proved by 
the first author in his Ph.D. thesis [l] and in [2]. Still another approach was carried out in [3] for elliptic 
equations of the form (1) with b = d = e = 0, where a grid function of order two in the mesh-size is 
constructed such that the finite difference operator applied to this function represents exactly the first 
order part in the truncation error. With the aid of the maximum principle then second order convergence 



J.A. Ferreira, R. D. Grigorieff / Applied Numerical Mathematics 28 (1998) 275-292 277 

in the maximum norm is shown. The supraconvergence results obtained in [4,5,1 l] concern problems 
with one space variable only. Supraconvergence for hyperbolic problems is studied in [ 14,171. 

All the results obtained can also be proved along the same lines for n-dimensional regions, 12 > 3. 
One drawback of the finite difference scheme we consider in this paper is the smoothness assumption 

of the solution of (l), in general u E C4 (0). More competitive in this respect are finite volume schemes, 
where also supraconvergence has been established (see [9,12] for y1 = 1 and [ 16,151 for IZ = 2). 

2. The finite difference scheme 

Let U c JR2 be a bounded polygonal domain, i.e., the boundary a52 of 52 is the union of straight 
line segments. We consider the solution of (1) with zero Dirichlet boundary conditions. The variational 
formulation of this problem is: 

find u E Hd (Q) such that 

u(u, u) = (8, u), u E H;(Q). (2) 

Here Hd (0) denotes the usual L2 Sobolev space with zero boundary conditions, (. , .) is the standard 
inner product in L2(Q) and a(. , .) is the standard sesquilinear form associated with the elliptic 
operator A. We also use the notation ]I . 111 for the usual norm in Hi (52). The coefficients of A are 
assumed to be smooth enough, e.g., a, b, c E C3(n), d, e E C’(n), f E C(D) is sufficient. We also 
impose the general assumption that the homogeneous problem (2), i.e., with g taken to be equal to zero, 
has the solution u = 0 only. 

Let h = (hj)z and k = (k&g be two sequences of positive numbers. We define the grid 

Iwi = {xj E 8%: xj+i = xj + hj, j E Z) 

with x0 E Iw given and a corresponding grid Iw2 with the mesh-size vector k in place of h. Let 

&=I& xIw2cEP 

Define also 

GH:=nnrw,, 852H := aJ-2 f-l IWH, & =TZ-m,. 

The grid D, is assumed to satisfy the following regularity condition with respect to the region Q. 
(Reg) Let ??denote any subrectangle (xj, xj+i ) x (ye, ye+,) formed by the grid IF?&. Then either 

0 f’ an is empty or it is a diagonal of Cl. In the case that the operator A contains mixed 
derivatives then always 0 n aQ = fl. 

The second case in condition (Reg) means that in the case b # 0 the boundary 8Q contains no oblique 
sections (but see Remark 2). 

We are now preparing the definition of the finite difference approximation AHuH of (1). For each grid 
point (xj , ye) E IWH we define the central finite difference quotients 

6’1/2’ 
wj.t = 

wj+l/2.e - Wj-112.e 
x 

xj+1/2 - Xj-l/2 

) p 
Wj+1/2.e = 

wj+l.e - Wj,e 
3 6xWj.e = 

wj+l,e - Wj-1.e 

xj+l - Xj xj+l -Xj-I 

where xj+i/2 := Xj + hj/2, Xj-1/2 := xj - hj_1/2. Correspondingly, the central finite difference 
quotients with respect to the variable y are defined. 
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By &I we denote the space of grid functions UH defined on 3’iH with zero boundary conditions, i.e., 
satisfying 

~H(xj,yt)=o, (xj,Yt) E afiH+ 

The discretized problem then reads as follows: 

(3) 

find UH E &J such that 

AHuH := --,#l/*) x (&$“2) UH) - &(b+H) - 6,@6,uH) - $‘*)@;t’*)UH) 

fdi$4H+e8yUH+fUH=g infin. (4) 

Let RHU be the pointwise restriction of a function TV to the grid n H. By Taylor expansion it is seen 
that even for a smooth solution u the truncation error 

TH I= AHRHU - Rng 

is on a nonuniform grid in general only of first order pointwise consistent. Nevertheless we will prove 
second order convergence as stated in the theorem below, a fact which is called supraconvergence. 

Let 7~ be any triangulation of z such that the nodes of ‘& coincide with En. By PHVH we denote 
the continuous piecewise linear interpolation of a grid function uH with respect to 7~. We write 1) f llr 
for the standard norm in the Sobolev space H’(n), Y E No, and 11 . II *,A if the underlying region is the 
triangle A. The notation I( . )lr,m is used for the standard norm in W’,c”(s2). By I&,,, we denote the 
maximal mesh-size in both x- and y-direction. 

Theorem 1. Assume that the grids n H satisfy condition (Reg). Let the variational problem (2) be 
uniquely solvable and assume that the solution u of (1) is in C4(n). Then, for Hmax small enough, 

the jnite diflerence scheme (4) has a unique solution uH E k&! satisfying the error estimate 112 
IIPHUH - PHRHUIII G C c 14Wam44 Ilull~,,,~ 

A&" 1 . (3 

Here and in the following C denotes a generic constant independent of the significant quantities. We 
have used the notation I A I for the area of A. 

From the estimate (5) second order convergence follows immediately, but more precisely it also reflects 
the contributions of the local error to the global one. 

3. Variational formulation 

The aim of this section is to write the finite difference scheme in the form of a variational problem: 

find UH E k/f such that 

Here 

(VHtWH)H:= c Wj,evj.e~j,e (7) 
(x;?YoEQ2H 
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is an inner product on !k~, where the weights mj.e are given by 

Oj,e I= 
hj-1 + hj ke-1 + ke 

2 2 ’ 
(Xjt YP> E QH 

It will be shown in the following how the sesquilinear form a~(. , .) is related to the form a(. , .) 
restricted to continuous piecewise linear elements on a certain triangulation 7~ with vertices equal to 
the set nH. It is well known that, e.g., the five-point approximation of the Laplacian in terms of the 
nodal variables can be obtained in this way. In our more general case some complications arise due to 
the presence of the mixed derivative term. For example it is readily seen that the finite difference scheme 
corresponding to the standard finite element equation for piecewise linear elements corresponds to a finite 
difference scheme which is not even pointwise consistent if A contains mixed derivative terms. 

To give the definition of a~(. , .) we consider two special triangulations related to the set EH, which 
we call ‘7(l) and 7(*) H H . They are obtained from the disjoint decomposition 

RH = &‘) lj @’ 
H H? 

where the sum j + e of the indices of the points (xj , ye) in IR$) and in lRt) is even or odd, respectively. To 
simplify the following definition we introduce RH .- (3) .- l!!$). With each point (Xi, ye) E RH we associate 
the triangles A:,:, i = 1,2,3,4, which have a right angle at (Xj , ye) and two of the four closest neighbor 
grid points of (Xj , ye) as further vertices. We then define the triangulations 

7;’ .= 7$‘1 ” 7(s) 
H.23 s= 1,2, 

of n (A denotes the interior of A). Fig. 1 shows an example of one of these triangulations. 

(9) 

Fig. 1. Triangulation 7:‘. T indicates triangles of 7$:. 
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With respect to these triangulations the continuous piecewise linear interpolations I$‘vH of VH E +H, 
s = 1,2, are well-defined. 

Now we define the sesquilinear form aH (. , .) in (6) as the arithmetical mean 

aH 1 f (a;’ + a$)) (10) 

of two sesquilinear forms, each of which has the form 

a;’ = a(s) + b’“’ + $1 + d’“’ + &s) + f’“‘, s = 1, 2. (11) 

The sesquilinear forms on the right-hand side of (11) are all constructed in a similar way by summing 
particular approximations of the “energy” related to each corresponding differential term over the 
triangles of 7:‘. So let A E T$‘. We define aA to be the value of a in the midpoint of the side of A 
parallel to the x-axis. Then let 

Similarly, let CA be the value of c in the midpoint of the side of A parallel to the y-axis and 

d’)(vH, WH) := c CA J (f’$‘~~),(P$)S~)~dxdy. 

In the approximation of the mixed derivative terms we need 

bA := b(XAt YA), 

where (XA, YA) is the vertex of A associated with the angle n/2 of A. Then 

b(S)(vH t WH) := c ~AJ'[(P$'w)JP$)EH)Y + (~~'vH),(~~'~H),ldXdy. 
AGT;' A 

(13) 

(14) 

(15) 

For approximating the first order terms let 

(@uH)A x := $)~H(xA,YA), A ET:), (16) 

where @A, y4) is the midpoint of the side of A parallel to the x-axis. Correspondingly, we introduce 
(P,$)vH)A,Y, where in this case (~4, ~4) is taken to be the midpoint of the side of A parallel to the 
y-axis. Then we define 

dcS)(v~, WH) := C [p~)(dmH)]A,~ J(~~)vH)x~dy7 
A&) A 

e(')(vH,wH):= c [~~'(e~H)]A,Y/(~~'vH)YdT dy. 
A&p A 

Finally, 

f(S)&, WH) := c mj,lf (Xj3 Yl)vj,ewj,t- 
(xi,YeKRH 

(17) 

(18) 

(19) 
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By choosing 21~ to vanish in all but one single point in LZ H it is an elementary calculation to verify that 
with these definitions the following proposition holds. 

Proposition 1. With the sesquilinear form an (. , .) defined by (10) and with An dejined by (4) 

QH(VH, WH) = (AHUH, WH)H, VH, WH E WH. 

Remark. If there are no mixed derivatives in (1) then it is not necessary to define a~ as arithmetic mean 
(10). Any triangulation 7~ and corresponding sesquilinear form would do the job. 

4. Inverse stability 

We now consider a sequence of grids &!& such that the maximal mesh-size H,, tends to zero. We use 
the symbol “H E A” to indicate the sequence of discretizations considered and write “(H E A)” for the 
convergence with respect to H running through this sequence. 

One main ingredient for the convergence analysis is the following inverse stability result which will 
be proved in this section. 

Theorem 2. Let the grids Bn satisfy condition (Reg). Assume that the coeficients of A in (1) are in 
C(n) and that the homogeneous variational problem (2) i.e., with g = 0, has only the solution u = 0. 
For each H E A let Tn be a triangulation of 0. Denote by Pn the corresponding piecewise linear 
interpolation operator Then there exists a constant C such thatfor H E A with H,, small enough 

~~pH~,Y~~l 6 c 
sup I~H(VH,WH)I 

UH E +ff. 

O#WH E ce, 
IIPHwHIII ' 

(20) 

The estimate (20) can be given an alternative form. In the finite dimensional space I&, of grid functions 
a norm is defined by setting 

1~~11.~ := IIPHvHIII~ VHdH, 

which is a discrete analogue of the Sobolev norm II . II ,. Then 

IUHI-l.H := 
vH,wH)Hi 

SUP ‘(lwHILH 3 VH E&t 
O#lLlHE& 

can be considered as a discrete analogue of the “negative” norm (1 . I( -1 for functions in L*(Q). With this 
definition and recalling Proposition 1 the estimate (20) is equivalent to 

IVHII.H < CIAHVHI-I,H, VH E i&, HE A. 

This estimate shows that the mapping An is invertible for 

the sequence AjY,l, H E A,, is stable, i.e., AH1 considered 

(I&, 1 vH 1,. H) is uniformly bounded with respect to H E A. 

H in a final section A, c A and that 

as a mapping from ($H, \uHI-._l,H) in 
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The proof of Theorem 2 is based on the following well-known result from finite element theory (see, 
e.g., [7, Theorem 8.2.81). 

Proposition 2. Under the assumptions of Theorem 2 the following estimate holds for H E A with H,, 
small enough: 

IIPHvHIII <C sup 
b(PHvH7PHWH)i 

UH E&f. 

O#WHE& 
IIPHwHII~ ’ 

Lemma 1. Let s E { 1,2} and let v n, wH E $H, H E A, be two sequences satisfying 

~~~~)~H~~, < 1, II@)WHIII < 1, HEfl. 

Then (see (12)) 

a@)(Un, wn) - (a(@‘vn),, (Pj’wn),)O + 0 (H E A) 

and also the corresponding relations for the sesquilinear forms b(“) and cCS) (see (13), (15)) hold. 

Proof. Consider a triangle A E 7;“‘. Since the coefficient a is continuous in 32 we have 

(21) 

(22) 

aA 
s 

(P,!$H),(Pj,%H),dy dy - 
s 

U(X, Y)(p~‘VH)x(p~‘mH)XdXdy ----, 0 (H E A) 
A A 

uniformly with respect to A, and this proves the assertion for acS). The proof for b(“) and c@) is 
similar. 0 

Lemma 2. Let 7. be a triangulation of J2. For vn E $n and A E Tn we denote by vA,l, VA.2 and VA,3 

the values of vn in the vertices of A. Then 

c IAI(IvA,II~ + lvd,212 + IvA,~I~) 6 CIIPHVHII& VH E +H. 
Adj" 

Proof. If the assertion is known to hold for the special case 52 = A with C independent of A then 
it follows for a general 52 by summation. The proof for the case LJ = A is obtained by performing a 
change of variables which maps A onto the unit triangle and then using the equivalence of all norms on 
a three-dimensional vector space. ??

Lemma3. Lets E {1,2} and let v H, WH E~&H, H E A, be two sequences such that (22) holds. Then 
(see (17), (18)) 

d%n, WH) - (d(~~)~H)x,P$)wH)o ----, 0 (HE A), 

@(vHt WH) - (e(P,$'vH),,f$'wH)o~ 0 (HE A). 

Proof. The two convergence relations are proved similarly and we show the last one only. Since the 
imbedding of Hd (0) in L2(Q) is compact and bounded sequences in Hd (a) are weakly compact, we 
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can assume for the proof that {P$)u.JH}~ is strongly convergent in L*(Q) and {P,$‘vH}A is weakly 
convergent in Hi (a). Let v and w E Z!$ (D) be the limits of { f$‘u~}~ and { P$)wH}A, respectively. It 
follows that 

(e(@‘u,)Y, ~$)WH)~ + (eu,,, V)O (H E A). 

We show that also 

ecS)(uH, WH) + (ev,, w)e (H E A). 

With the aid of Lemma 2 we obtain 

)e(“)(uH, wH)l* 6 C c / I(@v8)y12hdy 
Ad-(') A H 

x c ~A~(~(p~)Wfd&,12+ )(Pt)W&212+ I(pi?wd&3i2) 

(23) 

(24) 

Let 4 E C,“(D), i.e., 4 in a dense subset of L*(Q). Let RHW denote the pointwise 
function w to the grid s’, . Then 

Pi’ RHc$ ---_, q.i in L*(n) (h E A) 

and one concludes with the aid of (24) that for proving (23) it is sufficient to show 

e(‘)(uH, RF&) - (ev,, 4)0 (H E A>. 

This is indeed the case since the piecewise constant function $H defined by 

@H(x, Y> := [P$‘(eR&)].,Y, (x, Y) E A, A E I$‘, 

is strongly convergent in L*(Q) with limit e@ and we can write 

@(uH, RF&) = ((Pt)u~)~, +lr~)~. 0 

Lemma 4. Under the assumptions of Lemma 3 

fCS)(VH, wfj) - (fPj’V& P$)wH)o - 0 (H E A). 

restriction of a 

Proof. The same kind of reasoning as in Lemma 3 is used but this time based on the fact that for 
$9 ti E CF(fi) 

~(%PA RH@)- (f4v+>o (HE A). 0 

Proof of Theorem 2. It is not difficult to see that for any two triangulations of 52 the corresponding 
norms 11 PHWH 111 are uniformly in H E A equivalent. Hence the assertion will follow from (21) if we 
show that for s E (1,2} and any two sequences { vff}~ and (u)HjA satisfying (22) one has 

la;‘(UH, W,y) - a(P$)uH, P;)WH)l - 0 (H E A). (25) 

This was proved in Lemmas 1, 3 and 4. •I 
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5. Truncation error estimate 

The form (20) of the stability inequality suggests to obtain an error estimate by bounding the quantity 

aH(RHu, VH)-_(RH~,VH)H 

IIPHVHIII 
(26) 

According to the definition (lo), (11) of aH(’ , .) we have to consider several terms. They all have a 
certain error structure in common: for each fixed triangle A in 7;’ one obtains by Taylor expansion in 
each vertex a contribution to the differential operator Au. Furthermore, there is a first order error term for 
which an additional power of H,, can be gained by splitting off the factor (PHvH)* or (PHvH)~ thus 
exhibiting supraconvergence. The remainder is of second order. 

Let s E { 1,2} and choose a triangle A E 7:). We assume that A has the vertices 

(Xjy Yt)9 (Xj, Yl+l)t (Xj+l, Yl)* (27) 

Different shapes of A can be handled similarly. For simplicity we write in the following only u in place 
of RHU. Consider 

T, :=a~ 
I 

(PHu),(PHVH)~~~~Y=(U~,)~+I/~,~ 
'j+l.;yvi~e ,A1 + R,,l, 

A 
J 

where lA( = hjkl/2 and R,J satisfies the estimate 

IRa.11 < $1, an,,,ll,.ASl(P~V~)xldx~y. 
A 

Expanding further we obtain 

(au,)j+l/z,e = (au,)j,c + % ((au,),)j.e + $ ((aux)xx)j,r + Ra,21 

where 

Using the corresponding expansion with respect to the point (xj+r , ye) we derive 

T, = ; (aux)j+l,e - Dj+l,e - 2 (au,)j,e + :((aux)x) j,e vj,e + Ra.3, [ 

1 
(28) 

where Ra,3 can be estimated by 

l&,31 6 ~(bxxxkX,A + 3ll(a~i)**l~,,A)~~(~HvH)x~~dy 

A 

+~ll(au,),,,ll~,A,A,(,Vj,e, + Ivj+l.el). 

Summation of (28) over all triangles A E 7;“’ gives 

a(S)(RHU, v~)=--(RH(aux)x, UH)H +Ra (29) 
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with R, satisfying 

I&l < C 
( 

1 lAl~~(ll~~,,&,~ + II(au,),,I(,.oo,d )‘) liZll &fUHlIl, (30) 
&7-(S) 

H 

where for eStiIr&ng c IAl ( Iui,e I2 + IL’j+l,e 12) Lemma 2 was taken into account; ah0 vH = 0 on aaH 
was used in (28) for triangles A at the boundary of a. 

In the same way 

c(~)(RHu, UH) = -(RH(cu~)~, ~H)H +Rc (31) 

can be proved, where R, satisfies an estimate similar to R, in (30) only with a/ax, hd and a replaced 
by alay, kd and c, respectively. 

Next we consider the mixed derivatives term i (b(l) + bc2)). We give only the details for the part in (15) 

corresponding to (bu,),, which we denote by bi:;,,. We choose an arbitrary point (xj, ye) E QH and 

collect all contributions in the sesquilinear forms b[:i,, s = 1,2, which contain a factor Uj,e. As a typical 
quantity we have to consider 

Tb.n := bA s (h&(h&dy dx ‘b. (32) 
A 

In one of the triangulations 7:’ there are exactly the triangles A$, i = 1,2,3,4, involved which have 
a right angle at (xi, ye) (see (9)). The factor of gjvj,e coming from these triangles is easily seen to be 
zero. In the other triangulation there are eight triangles which have (xj , ye) as vertex. Obviously, four of 
them contribute nothing to gj,e. We consider the remaining four triangles. One of them, for example, has 
vertices 

(Xj, Ye)7 (Xjt Ye-l), (Xj+l, Y.!-1). 

We evaluate (32) for this triangle and determine as factor of Vj,e 

Tb.1 := ibj.r-i(ui+i.r-i - uj.e-1). 

(33) 

By suitably expanding this expression with respect to x and y we obtain 

Tb.1 = ibj.e(uj+i,e --j.e) - IAI [(‘ux)r]j,r + ;lAl [kt-i(bu,)y, -hj(bux,),]j,, + Rb.1, 
where Rb, 1 satisfies the estimate 

(34) 

Corresponding expansions hold for the other three triangles. By summation we determine the factor of 
iTj,[ in the sesquilinear form 

to be 

+ $e-1 + ke)(h;_, - h;) [(b~,,)~] j,e + Rb.2, (35) 
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where Rb.2 is the sum of the remainder terms Rb,l belonging to the four relevant triangles adjacent to 
(Xj, Ye>. 

As a preparation for the summation of (35) over 0~ we establish for the function w := (bu,),, and 
UH satisfying uj,,_t = uj,,+t = 0 the identity 

2 Wj,e (+_I - kz)Tj,e = 2 k.Z [(w.ie+l - wj,e)'t;ji,e + Wj,.f+l@j,e+l - Vj,e)] 
ezm exm- i 

(wy)j,e+ebj,e + wj,t+l 
vj.e+l - gj.e 

ke I (36) 

(the index e + 8 indicates a point between ye and ye+l). A similar result applies to the summation of 
the last term in (35) with respect to j. Hence, multiplication of (35) by Uj,e and summation over G’H 
furnishes 

; ($;, + $;,) (R HU,ZIH)=-(RH(~U,)~,~~H)H+R~, 

where 

(37) 

(38) 

For the approximation of the mixed derivative term (bu,), a corresponding result holds, where the 
remainder term can be estimated as in (38) only with the derivatives with respect to x and y interchanged. 

We are left with the first order term. We consider the approximation of du, and collect the coefficient 
Td.2 Of Vj,c in the sesquilinear form i(d(‘) + d(*)). Let A be the triangle with vertices (27). Then 

Td, 1 := idj,e / (f’$‘U), dx dy = %d,,e (uj+l,e - uj,e) = $dj,t (hju, + zuxx) + Rd.1, 
A 

i,e 

where Rd.1 can be bounded by 

I&,11 G ~Idj,eIJlu,,,,/a,A,A,. (39) 

By summing this and the corresponding results for the remaining seven triangles which contribute to Td,2 
we calculate 

G,2 = dj,t(ux)j,ewj,e + dj,e(uxx)j.e(hT - h:_l) ke-18+ ke + Rd,z 

where Rd,2 is the sum of the remainder terms corresponding to (39). A summation over 52~ yields 

; (d”’ + d’*‘) (R Hu, UH) =(RH(dkk'~)+Rdr 

where 

(41) 
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A similar result holds for the discretization of eug. The bound for the remainder term R, in this case 
is obtained by taking kn, e and a/ay in place of h A, d and a/ax, respectively, in (42). 

Altogether we have proved the following 

Proposition 3. Assume that the grids 32~ satisfy condition (Reg). Let u E C4(D). Then 

~H(RH~, 21~) = (RH(A~>, u&x, + t~(u, UH) 

with tH satisfying the estimate 
112 

(rH@ uH)( < C c lAl(diamA)4(llu,/I:,,,, + Il+ll&A )I II~HWIII~ AE'& 
(43) 

where the constant C is dependent on the coeficients of A but not on the triangulation 7~ or u. 

Remark 1. The dependence of C in (43) on the coefficients of A can be easily made more explicit 
based on the more detailed estimates for the remainder terms derived in (30), (38), (42) and the remarks 
following them. 

Theorem 1 is an immediate consequence of Propositions 2 and 3. 

Remark 2. If the boundary aJ2 contains a section which is not parallel to the coordinate axes the finite 
difference approximation (4) can still be used. It is only necessary to give a meaning to the mixed 
derivative approximations in those points P E f2~ near oblique parts of aQ2, where in forming AHVH a 
grid point Pi outside of 32 is involved. This is simply done by defining 

i,H(P,) := -uH(P). 

In these exceptional points P the resulting finite difference approximation is not consistent with A, 
truncation error is only O(1). Following the lines of argument leading to (38) it can be shown that 
bound for Rb now contains additional terms of the form 

the 
the 

c 14(di~A)21141~ o. A’ , 1 

where (see (9)) 

As a consequence, this shows again a supraconvergence phenomenon, where the proved overall 
convergence order is O(Hi$ (for that it was taken into account, that 7.~ is contained in a strip of 
width O(H,,,) around an). 

6. Local grid refinement 

We consider in this section more general grids than in Section 2 which are obtained by adding 
new gridline sections to the original grid. This process is allowed to be repeated and hence local grid 
refinements are feasible in this way. In the differential operator A from (1) we take b = 0, i.e., there are 
no mixed derivatives. The grids are assumed to satisfy condition (Reg). 
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Fig. 2. New gridline section and triangulation. 

For the formal description of the kind of grids we admit we start with the finest grids 52~ and DH 
as defined in Section 2 which are assumed to satisfy condition (Reg) and then delete certain gridline 

sections. The result of this process is denoted by 52;) and 52$), respectively. Let 7~ be a regular 
triangulation of 52 such that s2:) is the set of vertices. A triangle A E 7~ is said to be in normal position 
if two of its sides are parallel to the coordinate axes, otherwise it is called exceptional. We assume in this 
section the following condition to hold. 

(Rft) There exists a triangulation 7~ of 52 such that each exceptional A E ‘T,‘, is isosceles and 
exceptional triangles have no common side other than the hypotenuse perhaps. 

Remark. The assumption that new grid lines start at the middle of a rectangle is only made for the 
simplicity of presentation. 

We are now going to set up the finite difference scheme. For each grid point P E i2;2~ there are still 
local stepsizes h p, h-p, kp, k-p corresponding to hj, hj-1, kl, kl-1 well-defined as the distance to the 
closest neighbor grid point or gridline. Hence also the weight 

h-p + hp k-p + kp 
wp := 

2 2 
(4) 

(see (8)) makes sense. The original scheme (4) has only to be modified in grid points, which are vertices 
of an exceptional triangle. 

The rules for this modification are given in the following. There are four different typical orientations 
of exceptional triangles. We consider that one in more detail from which a new gridline in x-direction 
is starting to the right (see Fig. 2). Let P be the rightmost vertex of the exceptional triangle. The two 
remaining vertices are Q := (xp - h-p, yp + kp), S := (xp - h-p, yp - kp). Let QS denote the 
midpoint of the line segment joining Q and S and let M := (X P - h-p/Z YP), MQ := GM, YM + kp), 
MS := (XM, ye - kp). Modifications have only to be made in the approximation of terms containing an 
x-derivative. Firstly, consider the modified approximation in P. Here the simple rule is to replace after 
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the formal application of (4) taken in P the nonexistent grid function value u H ( Q S) in the formula (4) 

bY 

:,Y(QS) := +(u(Q> + ~0)). (45) 

The necessary modification of the scheme (4) in Q and S is a little bit more involved. We replace 

&w(Q) in (4) by 

~,uH(Q) := &uH(Q) + 4w ~(~~1i2)~H(M) - 6;1'2)~H(MQ)), 

where the tilde in 8’/2) indicates that (45) has to be used where the point Qs is involved. The 
corresponding modifkation in S is made by taking S in place of Q as argument in (46). For the 
approximation of (au,), we use 

6!‘/2)(~~H)(Q) 

:= 6~1’2)(aJ~1’2)uH)(Q) + 2 [a(M)@“2&,(M) - a(MQ)8~1’2’u,(MQ)]. (47) 
Q 

The modification in S is obtained from (47) by replacing Q by S. 
It may happen that a gridpoint is the vertex of more than one exceptional triangle. Then the 

modification has to be repeatedly performed for each of the triangles according to the rules given above. 
There may exist exceptional triangles close to the boundary an. This happens to be the case if there 

are points on a52 n f2:’ which are not the intersection of a gridline in x- and in y-direction. In this case 
two of the vertices of the exceptional triangle are on aR. In the remaining point a modified scheme has 
to be set up following the same rules as given above for the point Q or S. 

The modified operator AH is related to a sesquilinear form ZH. Let 7~ be a partition satisfying 
condition (Rft) which is used to define the modified scheme. As in Section 4 the form ZH is obtained 
as the sum of its values on A E 7~ which we denote by GH.~. The present case is simpler than the one 
treated in Section 4 since due to the absence of the mixed derivative we need not form the mean value of 
two forms on different partitions as in (10). If A E 7~ is a triangle in normal positions then ZH is equal 
to a~. So we are left with the exceptional triangles, for which we give the following definition: 

~,Y,A(~H, WH) := c(QS> 
.I’ 

(pHuH)y(pHgH)?, d.x dy, 

A 

~H.Ahb w.4) := PH(dEH)@‘f) 
.I’ 

(pHuH)x h dy, 

A 

eH.A(uHt WH) := PH@wH)<Qs> [(pH%& dx dY. 
A 

For differently shaped exceptional A the definitions are similar, we do not give the details, 
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The definitions of AH and ZH have been made in such a way that corresponding to Proposition 1 the 
relation 

&(uH, WH) = (&fuH, t+&, VHt WH E @H, (48) 

holds. 
For the modified sesquilinear form Z Theorem 2 is still valid. Hence, in the convergence proof we need 

only to bound the truncation error of the modified scheme. For triangles in normal position there is no 
difference to the expansions given in Section 5. So we consider an exceptional triangle A. We begin with 
the term approximating (au,), . Recall the definition (45) of U( QS). By Taylor expansion we derive 

T;,A := i&f&, VH) = U(M) 
u(P) - g(QS) 

h-p J 
(pHvH)x d-x dy 

A 

= U(kf)6;“*)U(kf) J (PH??H)x tidy + R;,,, 
A 

where 

lRz,,l 6 ,z -Il~ll~,~Il~~~ll~,~ J )(~'HvH)~/&~Y. 
P 

A 

The factor of tip in T- a,~, ignoring the remainder term, is given by 

(49) 

a(M)p)U(M) k-p + kp 
2 ( 

which gives a contribution as if QS would be a grid point and one would be dealing with a normal grid 
point P. Hence the analysis given in Section 5 applies. 

The remaining part in T;,A is, again ignoring the remainder term, 

kp (uS;‘/*)u) (M)‘ziQ ; ” b_ = TV" (d~"*)u)(MQ) + kp_ 2vs (a$“*)~) (MS) + R;,z + Rri,3. (50) 

Here 

Rrl,* := :nQ [ (a$‘/*) u)(kt) - (d~“*++l4Q)] = iiQ - z( (a~;‘/*)~)~)(~) + Rz,4 1 
with Rd.4 satisfying 

where for Rz.5 the same bound as for Rz,4 holds. Consequently, we obtain 

I&,2 + &,3l 6 4;2, p [4 II(aux)YIIm,A J I( PHVH)yIkdY + I)(au,),y((oo,A~AIOv~I + IVSI)]- 
A 
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The first term on the right-hand side of (50) gives the missing contribution compared to the case that Q 
would be a normal grid point. The same observation is valid for S. Hence, another time the analysis in 
Section 5 applies. 

A similar result can be proved for the approximation of du, . For the term in A containing a y-derivative 
there is no change compared to Section 5. Hence we have the following 

Proposition 4. Assume that the grids s2$’ sati& condition (Rft). Let u E C4(z). Then 

a~(&+, 21~) = (MAu), u& + t~(u, UH) 

with y~(u, UH) satis’ing the estimate 

ItH(u, uH)I <c c lAl(diamA)4(llu,II~,A + IIqll~,A)+ c lAl(diamA)” . . . . 
AC'& AE~~.exc 

+ (1 - 0~12 IIuy IIi,m,~ 
112 

II~‘H~HII~~ (51) 

where the constant C is dependent of the coefJicients of A but not of the triangulation ?;I or u. The 
quantity oA = 1 or 0 if a new gridline is starting from the exceptional triangle A in x- or y-direction, 
respectively. 

Together with Theorem 2 this gives the proof of the following result. 

Theorem 3. Assume that the conditions of Theorem 1 hold and that the grids fli’ satisfy condition (Rft). 
Then the modijed finite difference scheme 

AHuH = gH in fi;2H 

has, for K,,,, small enough, a unique solution UH E $H which satisfies 

II~‘HuH - PHRHUIII 6 C[~H(U)~, 

where I yfj (u) I denotes the factor of II PH UH )I 1 in (5 1). 
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