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Abstract. In this work we study the effect of the symmetry energy on several properties of neutron stars.
First, we discuss its effect on the density, proton fraction and pressure of the neutron star crust-core tran-
sition. We show that whereas the first two quantities present a clear correlation with the slope parameter L
of the symmetry energy, no satisfactory correlation is seen between the transition pressure and L. However,
a linear combination of the slope and curvature parameters at ρ = 0.1 fm−3 is well correlated with the
transition pressure. In the second part we analyze the effect of the symmetry energy on the pasta phase. It
is shown that the size of the pasta clusters, number of nucleons and the cluster proton fraction depend on
the density dependence of the symmetry energy: a small L gives rise to larger clusters. The influence of the
equation of state at subsaturation densities on the extension of the inner crust of the neutron star is also
discussed. Finally, the effect of the density dependence of the symmetry energy on the strangeness content
of neutron stars is studied in the last part of the work. It is found that charged (neutral) hyperons appear
at smaller (larger) densities for smaller values of the slope parameter L. A linear correlation between the
radius and the strangeness content of a star with a fixed mass is also found.

1 Introduction

Isospin asymmetric nuclear matter is present in nuclei, es-
pecially in those far away from the stability line, and in as-
trophysical systems, particularly in neutron stars. There-
fore, a well-grounded understanding of the properties of
isospin-rich nuclear matter is a necessary ingredient for the
advancement of both nuclear physics and astrophysics [1–
5]. Nevertheless, in spite of the experimental [6] and the-
oretical [7] efforts carried out to study the properties of
isospin-asymmetric nuclear systems, some of these proper-
ties are not well constrained yet. In particular, the density
dependence of the symmetry energy is still an important
source of uncertainties. In this work, we study how the
density dependence of the symmetry energy affects the
equation of state (EOS) of asymmetric nuclear matter.
We will focus on three different problems.
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In the first part the correlations of the slope and curva-
ture parameters of the symmetry energy with the density,
proton fraction and pressure at the neutron star crust-
core transition are analyzed. The analysis is done with the
microscopic Brueckner-Hartree-Fock (BHF) approach and
several phenomenological Skyrme and relativistic mean
field (RMF) models to describe the nuclear EOS [8]. A
generalized liquid-drop model (GLDM) based on a den-
sity development around a reference density is introduced
to allow the identification of possible existing correlations
between the crust-core transition and a limited set of the
coefficients of this development [9,10]. We show that the
transition density and the transition proton fraction are
correlated with the symmetry energy slope parameter L
and that the transition pressure shows no clear correlation
with the symmetry energy slope at saturation. Neverthe-
less, a correlation exists between the transition pressure
and a linear combination of the symmetry energy slope
and curvature defined at ρ = 0.1 fm−3.

In the second part, the effect of the density dependence
of the symmetry energy on the pasta phase is discussed. It
is shown that the number of nucleons in the clusters, the
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cluster proton fraction and the size of the Wigner Seitz
cell are very sensitive to the density dependence of the
symmetry energy, and that the symmetry energy slope
parameter L may have quite dramatic effects on the cell
structure if it is very large or small [11–13]. Rod-like and
slab-like pasta clusters have been obtained in all models
except one, with a large slope parameter L. The effect of
L on the extension of the inner crust is also discussed.
In particular, it is shown that a smaller L favors a wider
slab phase. This phase may allow the propagation of low
frequency modes that will affect the specific heat in a non-
negligible way [14].

In the last part, the effect of the density dependence of
the symmetry energy on the strangeness content of a neu-
tron star is studied. The study is done with RMF models.
It is shown that there is still lack of information on the
nucleonic equation of state at supra-saturation densities
and, in particular, on the hyperon interactions in nuclear
matter. Therefore, the role of exotic degrees of freedom
on the interior of compact stars is still an open issue [15–
18].

Finally, we show that some star properties are affected
in a similar way by the density dependence of the symme-
try energy and the hyperon content of the star. A linear
correlation between the radius and the strangeness con-
tent of a star with a fixed mass is obtained [18].

In the following, before considering each one of these
issues, we briefly review the main features of the asym-
metric nuclear matter (ANM) equation of state and the
different models considered in this work.

2 Asymmetric nuclear matter EOS

Assuming charge symmetry of the nuclear forces, the en-
ergy per particle of ANM can be expanded on the isospin
asymmetry parameter, δ = (N−Z)/(N+Z) = (ρn−ρp)/ρ,
around the values of symmetric nuclear matter (δ = 0) in
terms of even powers of δ as

E(ρ, δ) � ESNM (ρ) + Esym(ρ)δ2, (1)

where ESNM (ρ) is the energy per particle of symmetric
matter and Esym(ρ) = 1

2
∂2E
∂δ2 |δ=0 is the symmetry energy.

It is common to characterize the density dependence
of the symmetry energy around the saturation density ρ0

in terms of a few bulk parameters by expanding it in a
Taylor series

Esym(ρ) = J + L

(
ρ − ρ0

3ρ0

)

+
Ksym

2

(
ρ − ρ0

3ρ0

)2

+ O(3), (2)

where J is the value of the symmetry energy at saturation
and the quantities L and Ksym are related to its slope and

curvature, respectively, at such density,

L = 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣
ρ=ρ0

,

Ksym = 9ρ2
0

∂2Esym(ρ)
∂ρ2

∣∣∣
ρ=ρ0

. (3)

2.1 The BHF approach of ANM

The BHF approach of ANM [19] starts with the construc-
tion of all the G-matrices which describe the effective in-
teraction between two nucleons in the presence of a sur-
rounding medium. They are obtained by solving the well-
known Bethe-Goldstone equation, schematically written
as

Gτ1τ2;τ3τ4(ω) = Vτ1τ2;τ3τ4 +
∑
ij

Vτ1τ2;τiτj

×
Qτiτj

ω − εi − εj + iη
Gτiτj ;τ3τ4(ω), (4)

where τ = n, p indicates the isospin projection of the two
nucleons in the initial, intermediate and final states, V
denotes the bare NN interaction, Qτiτj

the Pauli opera-
tor that allows only intermediate states compatible with
the Pauli principle, and ω, the so-called starting energy,
corresponds to the sum of non-relativistic energies of the
interacting nucleons. The single-particle energy ετ of a nu-
cleon with momentum k is given by

ετ (k) =
h̄2k2

2mτ
+ Re[Uτ (k)], (5)

where the single-particle potential Uτ (k) represents the
mean field “felt” by a nucleon due to its interaction with
the other nucleons of the medium. In the BHF approxi-
mation, U(k) is calculated through the “on-shell energy”
G-matrix, and is given by

Uτ (k) =
∑
τ ′

∑
|k′|<kF

τ′

〈kk′ | Gττ ′;ττ ′(ω = ετ (k) + ετ ′(k′)) | kk′〉A, (6)

where the sum runs over all neutron and proton occupied
states and where the matrix elements are properly anti-
symmetrized. We note here that the so-called continuous
prescription has been adopted for the single-particle po-
tential when solving the Bethe–Goldstone equation [20].
Once a self-consistent solution of eqs. (4)–(6) is achieved,
the energy per particle can be calculated as

E(ρ, δ) =
1
A

∑
τ

∑
|k|<kFτ

(
h̄2k2

2mτ
+

1
2
Re[Uτ (k)]

)
. (7)

The BHF calculation carried out in this work uses
the realistic Argonne V18 [21] nucleon-nucleon interaction
supplemented with a nucleon three-body force of Urbana
type which, for the use in BHF calculations, was reduced
to a two-body density-dependent force by averaging over
the spatial, spin and isospin coordinates of the third nu-
cleon in the medium [22–24].
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2.2 Phenomenological models

Phenomenological approaches, either relativistic or non-
relativistic, are based on effective interactions that are
frequently built to reproduce properties of nuclei. Skyrme
interactions [25,26] and RMF models [27,28] are among
the most commonly used ones. They are briefly described
in the next.

2.2.1 Skyrme interaction

The standard form of a Skyrme interaction reads

V (r1, r2) = t0 (1 + x0P
σ) δ(r)

+
1
2
t1 (1 + x1P

σ)
(
k′2δ(r) + δ(r)k2

)
+t2 (1 + x2P

σ)k′ · δ(r)k

+
1
6
t3 (1 + x3P

σ) (ρ(R))α
δ(r)

+iW0 (σ1 + σ2) (k′ × δ(r)k) , (8)

where r = r1 − r2,R = (r1 + r2)/2, k = (∇1 − ∇2)/2i
is the relative momentum acting on the right, k′ its con-
jugate acting on the left and P σ = (1 + σ1 · σ2)/2 is
the spin exchange operator. The last term, proportional
to W0, corresponds to the zero-range spin-orbit term. It
does not contribute in homogeneous systems and thus will
be ignored for the rest of this article.

Most of these forces are, by construction, well behaved
close to the saturation density and moderate isospin asym-
metries. Nevertheless, only certain combinations of their
parameters are well determined empirically. Consequently,
there is a proliferation of different Skyrme interactions
that produce a similar EOS for symmetric nuclear matter
but predict a very different one for pure neutron matter. A
few years ago, Stone et al., [29] tested extensively and sys-
tematically the capabilities of almost 90 existing Skyrme
parametrizations to provide good neutron star candidates.
They found that only 27 of these parametrizations passed
the restricted tests they imposed, the key property being
the density dependence of the symmetry energy. These
forces are SLy0-SLy10 [30] and SLy230a [31,32] of the
Lyon group, SkI1-SkI5 [33] and SkI6 [34] of the SkI family,
Rs and Gs [35], SGI [36], SkMP [37], SkO and SkO’ [38],
SkT4 and SkT5 [39], and the early SV [40]. The results for
the Skyrme forces shown in this work have been obtained
with these 27 forces and the additional parametriza-
tions SGII [36], RATP [41], SLy230b [31,32], NRAPR [5],
LNS [42], BSk14 [43], BSk16 [44] and BSk17 [45]. We
should mention, however, that more stringent constraints
to the Skyrme forces have been very recently presented
by Dutra et al., in ref. [46]. These authors have examined
the suitability of 240 Skyrme interactions with respect to
eleven macroscopic constraints derived mainly from ex-
perimental data and the empirical properties of symmetric
nuclear matter at and close to saturation. They have found
that only 5 of the 240 forces analyzed satisfy all the con-
straints imposed. We note that among the parametriza-
tions used in this work, only the NRAPR and LNS ones
belong to this restricted set.

2.2.2 RMF models

RMF models are based on effective Lagrangian densities
where nucleons interact with and through an isoscalar-
scalar field σ, an isoscalar-vector field ωμ, an isovector-
vector field ρμ, and an isovector-scalar field δ. In this work
we consider models with constant couplings and non-linear
terms [47], and with density-dependent couplings [48].
Within the first class of models, that we will designate
by Non-Linear Walecka Models (NLWM), we consider
NL3 [49] and GM1, GM3 [50] with non-linear σ terms,
NL3ωρ including also non-linear ωρ terms that allow the
modulation of the density dependence of the symmetry
energy [51,52], TM1 [53] with non-linear σ and ω terms,
FSU [54] and IU-FSU [55] with non-linear σ, ω and ωρ
terms. The last two parametrizations were constrained by
the collective response of nuclei to the isoscalar monopole
giant resonance (ISGMR) and the isovector dipole giant
resonance (IVGDR). Within the second class of models
with density-dependent couplings we consider TW [48],
DD-ME2 [56] and DD-MEδ [57]: DD-ME2, as all the non-
linear parametrizations considered, does not include the δ
meson, and was adjusted to experimental data based on fi-
nite nuclei properties; DD-MEδ contains the δ meson and
was fitted to microscopic ab initio calculations in nuclear
matter and finite nuclei properties. Both models present
similar properties for the symmetry energy, however, DD-
ME2 has a larger incompressibility at saturation.

The Lagrangian density for these models typically
reads

L =
∑

i=p,n

Li +Lσ+Lω+Lρ+Lδ+Lnl, (9)

where the nucleon Lagrangian is

Li = ψ̄i [γμiDμ − M∗] ψi, (10)

with

iDμ = i∂μ − ΓωΩμ − Γρ

2
τ · ρμ, (11)

M∗ = M − Γσσ − Γδτ · δ, (12)

and the meson Lagrangian densities are given by

Lσ =
1
2

(
∂μσ∂μσ − m2

σσ2
)

(13)

Lω =
1
2

(
−1

2
ΩμνΩμν + m2

ωωμωμ

)
(14)

Lρ =
1
2

(
−1

2
Rμν · Rμν + m2

ρρμ · ρμ

)
(15)

Lδ =
1
2
(∂μδ∂μδ − m2

δδ
2) (16)

Lnl = − 1
3!

κσ3 − 1
4!

λσ4 +
1
4!

ξΓ 4
ω(ωμωμ)2

+ΛωΓ 2
ωΓ 2

ρ ωμωμρμ · ρμ. (17)

In the above equations Γi (i = σ, ω, ρ, δ) denote, de-
pending on the model, the constant or density-dependent
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coupling parameters. Finally, we note that the photon and
electron Lagrangian densities,

Lγ = −1
4
FμνFμν (18)

Le = ψ̄e [γμ (i∂μ + eAμ) − me] ψe, (19)

and the term −e(1 + τ3)Aμ/2 should be added to eqs. (9)
and (11), respectively, when describing non-homogeneous
matter. β-equilibrium matter requires the inclusion of the
lepton Lagrangian density only.

2.3 The generalized liquid-drop model (GLDM)

The liquid-drop model equation of state is based on a
density expansion around the saturation point, its main
features being: the saturation density ρ0, the energy per
nucleon at saturation E0, the incompressibility coefficient
K0 which characterizes the curvature of the EOS, and the
isovector coefficients, namely the symmetry energy J , its
slope L and the symmetry incompressibility Ksym. We fo-
cus on the bulk-matter equation of state, and no surface
effects are considered. In order to discuss the link that can
be drawn between laboratory constraints and EOS prop-
erties in situations quite away from the experimental data,
in particular, at high density or at low proton fraction, we
introduce a “generalized liquid-drop model” (GLDM) [9,
10], still addressing the bulk EOS, which expresses the
EOS as an expansion of arbitrary order around a chosen
reference density ρref (not necessarily the saturation den-
sity ρ0),

EGLDM(ρ, δ) =
N∑

n=0

(
cIS,n + cIV,n δ2

) xn

n!

+(Ekin − Epara
kin ), (20)

with x = (ρ− ρref)/3ρref . The coefficients cIS,n and cIV,n,
where the index “IS” (“IV”) stands for isoscalar (isovec-
tor), are associated with the derivatives of the energy
E(ρ, δ = 0) and of the symmetry energy Esym(ρ)

cIS,n(ρref) = (3ρref)n ∂nE

∂ρn
(ρref , 0)

cIV,n(ρref) = (3ρref)n ∂nEsym

∂ρn
(ρref).

For ρref = ρ0, the lower-order coefficients are usual nu-
clear matter properties: cIS,0 = E0 (saturation energy),
cIS,2 = K0 (incompressibility), cIS,3 = Q0 (skewness),
cIV,0 = J (symmetry energy), cIV,1 = L (symmetry-
energy slope), cIV,2 = Ksym (symmetry incompressibil-
ity), cIV,3 = Qsym. Since the effective laboratory con-
straints are rather related to subsaturation density, the
coefficients of a GLDM with reference density ρref < ρ0 are
expected to be better constrained than the standard satu-
ration coefficients. Also, the neutron-star core-crust tran-
sition properties are better correlated with coefficients de-
fined at subsaturation density because the reference point
is closer to the transition point.

The isovector channel of the EOS in eq. (20) has
a parabolic contribution accounted for by the isovec-
tor coefficients multiplied by δ2, and a minimal extra-
parabolic correction, the model-independent kinetic term
Ekin − Epara

kin ,

Ekin =
(3π2/2)5/3

10mπ2
ρ2/3

[
(1 + δ)5/3 + (1 − δ)5/3

]
,

Epara
kin =

(3π2/2)5/3

10mπ2
ρ2/3

[
2 +

10
9

δ2

]
,

that introduces the divergence of energy-density curvature
in the proton-density direction at small proton density [58]
and, therefore, avoids that the spinodal contour reaches
pure neutron matter. In the above equation m refers to
the nucleon mass.

The EOS obtained with any nuclear model can be as-
sociated with its corresponding GLDM. In the limit of
an infinite expansion (GLDM∞), the symmetric matter
EOS E(ρ, 0) and the symmetry energy Esym(ρ) are exactly
equivalent to the complete model EOS, the only remain-
ing difference, for the EOS of asymmetric matter, being
the extra-parabolic terms of the interaction part. In [10]
it was shown that the prediction for the crust-core tran-
sition density and proton fraction using the full energy
functionals practically coincides with the GLDM predic-
tions which only include the non-parabolic contributions
of the kinetic energy, and, therefore, we may expect the
extra-parabolic terms coming from the interaction are neg-
ligible. The missing extra-parabolic terms of the kinetic
terms could explain the failure of the parabolic approxi-
mation in [66]. In this last work the crust-core transition
was calculated within the full energy functional and within
the parabolic approximation and it was shown that the
parabolic approximation failed at large values of the slope
L precisely when the transition occurs at smaller densities
and smaller proton fractions.

In the following, we will address the correlations
that could be found between GLDM coefficients and the
neutron-star core-crust transition properties, being fo-
cused, in particular, on the isovector coefficients.

3 Crust-core transition

The EOS of nuclear matter can be constrained by lab-
oratory data and astrophysical observations. It has been
shown, in refs. [9] and [10], that an accurate determination
of the symmetry energy and its slope and curvature at a
subsaturation density, ρ = 0.1 fm−3, allows a quite accu-
rate prediction of the core-crust transition properties.

Nuclear models could then be used to restrict the range
of the core-crust transition properties in neutron stars and
contribute to the interpretation of astrophysical observa-
tions. Pulsar glitches are an example [59], since the transi-
tion pressure is an essential input to infer the neutron-star
mass-radius relation from glitch observations.

In the present section we will show how some of the
EOS properties are correlated with the crust-core transi-
tion properties.
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Fig. 1. (Color online) Correlation between Ksym and L.

3.1 Correlation between L and Ksym

When different nuclear models are compared, the GLDM
coefficients taken at saturation density present some cor-
relations between them. This is a manifestation of the fact
that the effective constraints from laboratory data do not
fix the nuclear properties at saturation, but rather at a
lower density. Indeed, the nuclei whose properties are used
to fit the effective nuclear density functionals have a mean
density that is lower than ρ0. Many different nuclear mod-
els tend to converge to a symmetry energy close to 25MeV
at ρ � 0.12 fm−3. A similar convergence can be observed
for the symmetry energy slope, whose value becomes close
to 100MeV at ρ � 0.06 fm−3 (see refs. [9] and [10] for a
more detailed analysis of these features).

These convergent trends away from the saturation
point imply some correlations in the expansion coefficients
around saturation density. An example is the existing cor-
relation between J and L [9,10]: since the symmetry en-
ergy is better constrained at subsaturation density, higher
values of L have to be compensated by higher values of J .
Another example is the correlation between L and Ksym

shown in fig. 1. The remarkably strong L-Ksym correla-
tion plays an important role in the links that can be
drawn between the GLDM coefficients (namely, labora-
tory constraints) and the core-crust transition pressure in
neutron star, a sensitive input for the interpretation of
pulsar glitches.

3.2 Correlation between L and the core-crust
transition properties

New experimental perspectives for the measurement of
L have drawn interest in trying to correlate this quan-
tity to the core-crust transition properties. Such correla-
tions have to be considered with care, taking into account
that fake relations may appear when the study is lim-
ited to a restricted nuclear model or family of models,
with internal correlations that disappear if different kinds
of functional models are considered. Reliable correlations
between GLDM coefficients and the core-crust transition

properties have to remain true independently of the dif-
ference between nuclear models, as long as these models
account for the existing experimental constraints.

Studying the correlations between L and the core-crust
transition properties in the framework of various models
(effective relativistic and Skyrme models, and BHF cal-
culations), we arrive to the conclusion that: i) L is well
correlated with the transition density and proton fraction
(ρt, Yp,t) and ii) L is not satisfactorily correlated with the
transition pressure Pt. We have denoted the proton frac-
tion by Yp = ρp/ρ, and used the subscript t to refer to
the properties at the crust-core transition. We summarize
below the explanation of this situation (see refs. [9,10] for
a more detailed analysis).

3.2.1 Core-crust transition: thermodynamical versus
dynamical calculations

We will next discuss how to determine the core-crust tran-
sition point in neutron stars. Cold neutron-star matter is
in β-equilibrium, and is transparent to neutrinos, thus,
for a given nuclear density, the proton fraction of homoge-
neous nuclear matter is essentially determined by the sym-
metry energy at this density. The core-crust border is the
transition from the homogeneous matter of the core to the
clusterized matter of the inner crust. For the very neutron-
rich matter of a cold neutron star, this transition is well
approximated by the dynamical spinodal border [60–62],
as shown in refs. [11,13] where it was compared with pasta
phase calculations. The dynamical spinodal is the density
region where the homogeneous nuclear matter is unstable
against finite-size density fluctuations, eventually leading
to cluster formation, and takes into account both finite
size effects and the Coulomb interaction.

In fact, it is expected that the transition density lies in
the metastable region between the binodal surface and the
dynamical spinodal surface. The binodal surface is defined
in the ρ, Yp, T space as the surface where the gas and
liquid phases coexist, and corresponds to an upper limit
for the extension of the pasta phase because it does not
take into account neither Coulomb nor finite-size effects.

A simplified definition of the transition point is deter-
mined by the crossing between the β-equilibrium line and
the thermodynamical spinodal border [63–68]. The ther-
modynamical spinodal, the bulk liquid-gas instability re-
gion in nuclear matter, touches the binodal surface at the
critical point, which, for a given temperature, occurs at a
density and proton fraction close to the crust-core transi-
tion density and proton fraction. This transition point is
sensitively different from the real transition point, since
the thermodynamical spinodal region is larger than the
dynamical one, as can be seen in fig. 2. The bulk (thermo-
dynamical) instability of nuclear matter is at the origin of
the instability against clusterization that affects star mat-
ter. This second instability region, named dynamical spin-
odal, takes into account surface terms and the Coulomb
interaction [69], both leading to a reduction of the dynam-
ical spinodal with respect to the bulk one. As a result, the
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odals. The dotted line represents the β-equilibrium EOS and
the red square and blue dot define the crust-core transition
within, respectively, the dynamical and thermodynamical spin-
odal. Right: comparison of the transition density obtained from
different approaches (binodal, dynamical spinodal, thermody-
namical spinodal and Thomas Fermi calculation) for two RMF
models: DDME2 and NL3.

transition point calculated on the basis of the thermody-
namical spinodal (that will be denoted by the index tt) is
at a significantly higher density than the actual transition
point, well approximated on the basis of the dynamical
spinodal (this transition point will be denoted by the in-
dex td). However, we have verified that the properties of
both transition points are well correlated [10]. Since the
tt point allows to study more directly the link between
the GLDM coefficients and the transition properties, we
start by discussing this thermodynamical transition point,
keeping in mind that it represents a shifted version of the
core-crust transition. The correlation effects observed in
the case of the tt transition are expected to apply as well
to the more realistic td transition point.

3.2.2 Correlations between L and the transition density
(ρt, Yp,t)

The correlation between L and the transition density point
(total density and proton fraction) is quite robust, as can
be seen in fig. 3 (left and middle panels). This results from
two effects that reinforce each other: a) a larger value of L
means a smaller symmetry energy at subsaturation den-
sity, i.e. a more neutron-rich β-equilibrium (lower proton
fraction Yp,t). According to the shape of the spinodal, this
also means a lower density ρt; b) the value of L also has
an impact on the spinodal border: a larger L is associated
with a spinodal border at lower density. To explain this
second effect, let us consider the energy-density curvature
of neutron matter, taken at the symmetric matter spin-
odal density ρs. This particular density is chosen in order
to cancel the isoscalar terms, and to concentrate on the
isovector ones. Thus, this quantity reads

CNM,s =
2

3ρ0
L +

1
3ρ0

∑
n≥2

cIV,n
xn−2

s

(n − 2)!

[
n + 1
n − 1

xs +
1
3

]

+
∂2 [ρ(Ekin − Epara

kin )]
∂ρ2

, (21)

with xs = (ρs−ρ0)/(3ρ0). The leading term is proportional
to L, and the following only has a quite weak effect (see
ref. [10]).

3.2.3 Lack of correlation between L and the transition
pressure Pt

In the case of the transition pressure Pt, no satisfactory
correlation with L emerges when different kinds of mod-
els are involved, as can be seen on fig. 3 (right panel).
To understand this result, it is useful to express P as a
development in terms of the GLDM coefficients,

P (ρ, δ) =
ρ2

3ρ0

⎡
⎣Lδ2 +

∑
n≥2

(
cIS,n + cIV,nδ2

) xn−1

(n − 1)!

⎤
⎦

+ρ2 ∂(Ekin − Epara
kin )

∂ρ
. (22)

The lack of L-Pt correlation that is observed results from
three main effects, which are opposed and compensate
each other: a) the leading term of the density development
of the pressure is proportional to L, so Pt should increase
with L; b) the transition density ρt has been shown to
decrease with L, and the pressure should decrease if the
density decreases; c) the second term of the development,
whose sign is negative, is proportional to the symmetry in-
compressibility Ksym, which is larger for larger L. Effects
b) and c) are opposite to a).

This conclusion has been reached by analyzing the dif-
ferent contributions to the link between L and Pt through
a variational study of eq. (22). Two kinds of variations
were considered: i) variations of the transition point (den-
sity and proton fraction) and ii) variations of the GLDM
coefficients; both kinds of variations are correlated with L.

Thus, for a given L value, the transition pressure ob-
tained will essentially depend on the nuclear model that
is used. Different models may predict either an increas-
ing or decreasing correlation of Pt with L [10], and indeed
opposite predictions exist in the literature [66,70].

3.3 Correlations between transition pressure and
GLDM coefficient combinations

Although the link between the transition pressure and the
GLDM coefficients is quite delicate, as it has been shown
in the previous section, it is important to find a way to get
a reliable estimation of Pt in relation with quantities that
could be constrained by laboratory data. For this reason,
we looked beyond a simple correlation with L, which we
did not obtain, and investigated the role of other GLDM
coefficients (see ref. [10] for a detailed discussion). One of
the most promising correlations involves a linear combina-
tion of L0.1 and Ksym,0.1, denoting, respectively, the sym-
metry energy slope and curvature taken at the reference
density ρref = 0.1 fm−3 instead of ρ0. We have considered
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the pressure at the crossing of the dynamical spinodal,
Ptd, and performed a linear fit with two variables,

Ptd(L01,Ksym,01) = a × L01 + b × Ksym,01 + c. (23)

The following relation was obtained:

Ptd(L01,Ksym,01) = 9.59 × 10−3 × [L01 − 0.343 × Ksym,01]

−0.328MeV fm−3. (24)

This correlation is represented on fig. 4. A similar rela-
tion has been verified recently by the authors of ref. [71],
although a different slope coefficient is obtained, which
they attribute to the different method used to determine
the transition point.

4 Symmetry energy and the pasta phase

Neutron stars and proto-neutron stars are believed to
have in the inner crust a special non-homogeneous matter
known as pasta phase. The pasta phase is a frustrated sys-
tem that arises from the competition between the strong

and the electromagnetic interactions [72–78] and appears
at densities of the order of 0.001–0.1 fm−3 [67,77,78] in
neutral nuclear matter or in a smaller density range [68,
79] in the β-equilibrium stellar matter. The basic shapes
of these structures (droplets (bubbles), rods (tubes) and
slabs for three, two and one dimensions, respectively) were
first discussed in [72], where the authors joked on the re-
semblance with lasagna, spaghetti and so on, from which
the phase name was chosen. It was shown in [80] that the
EOS of the inner crust is particularly sensitive to the den-
sity dependence of the symmetry energy, and, therefore,
it is expected that the pasta phase structure will depend
on it.

In the following we discuss how the density dependence
of the symmetry energy affects the pasta phase and the
inner-crust structure within a nuclear relativistic mean-
field approach. We adopt, in line with many authors, the
following simplifying view: for some given conditions (tem-
perature, density, proton fraction or chemical equilibrium)
a single geometry will be the physical one. That is, in prac-
tice, we compute the free energy of homogeneous matter
and the five structures and choose as the physical one that
with the smaller free energy. The denser regions (clusters)
will form a regular lattice that we study in the Wigner-
Seitz (WS) approximation.

First, we will discuss the pasta phase properties within
a naive picture that uses the Gibbs conditions of coexisting
phases and includes by hand the surface and Coulomb
contributions [12,67,68]. This description will be denoted
by the coexisting phases (CP) method and will allow the
identification of the main pasta features that depend on
the symmetry energy.

Next, we will present a complete self-consistent calcu-
lation of the pasta phase within a relativistic mean-field
density-dependent Thomas-Fermi approach (TF) [67].
What before was described as a two-density system with
a sharp interface, is now described as a system with
smoothly varying densities. In ref. [11] we compared the
TF and CP approaches and found that the TF method
confirms the main trends given by the more naive CP
method, but predicts a wider and richer pasta phase. It is
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worth emphasizing that other approaches are available to
build the pasta phase, each with its advantages and disad-
vantages. For example, a Hartree-Fock-Bogoliubov (HFB)
calculation would allow to include the shell effects, ne-
glected in the RMF approach, however, within this frame-
work only the spherical symmetry could be addressed. For
a comparison of HFB and TF results in this context see
ref. [13].

Finally, we will use the TF EOS for the pasta phase as
an ingredient to compute the star structure, and we will
discuss how the presence of the pasta phase affects the
inner crust.

4.1 Surface tension and symmetry energy

Before entering the discussion of the pasta phase, and in
order to compare the models used in this part, namely
NL3, NL3ωρ, FSU, IU-FSU, DDME2 and DDMEδ, we
plot in fig. 5 the symmetry energy versus density, and the
surface tension σ versus the proton fraction for all of them.
The surface tension coefficient σ (shown here for T = 0)
was obtained in the TF approach along the lines explained
in ref. [12] and it is used in a parametrized form as an
input in our CP calculation. The properties of the pasta
phase in the CP approach depend crucially on σ; also in
the TF approach, where surface terms are generated self-
consistently, it is a useful guideline to interpret the results.

Table 1. Properties at saturation: density ρ0 (fm−3), symme-
try energy value J (MeV), slope L (MeV), and incompressibil-
ity K0 (MeV), for the models discussed in sect. 4.

NL3 NL3ωρ FSU IU-FSU DDME2 DDMEδ
ρ0 0.148 0.148 0.148 0.155 0.152 0.152
J 37.3 31.7 32.6 31.3 32.3 32.4
L 118.3 55.2 60.5 47.2 51.4 52.9
K0 270.7 272.0 230.0 231.2 250.8 219.1

To help the discussion of this section, we present in
table 1 the isovector properties at saturation predicted
by the six models considered here. As shown in the table
the six models predict very similar values for the symme-
try energy at saturation, namely, J varies between 31.3
and 32.6MeV, except for NL3 that has a quite high value,
37.3MeV. However, there is a larger dispersion of the sym-
metry energy slope at saturation, L, with values that go
from 47.2MeV (IU-FSU), to 118.3MeV for NL3.

The properties of the pasta will reflect these facts, with
IU-FSU and NL3 behaving in a quite different way, while
all the other models show similar results. The slope L has
a direct influence on the surface tension and surface thick-
ness of the clusters. A smaller L corresponds generally to
a larger surface tension and smaller neutron skin thick-
ness [52], as can be seen by comparing the surface tensions
of the above models. The decrease of the surface tension
with the slope L may be understood from the fact that the
neutron pressure at a density close to 0.1 fm−3, a typical
density at the nucleon surface, is essentially proportional
to the slope L [8,81,82]. Therefore, a larger value of L
will favor neutron drip and a smaller surface tension, i.e.,
particles at the surface are not so tightly bound to the
nucleus.

4.2 Pasta phase

4.2.1 Coexisting phases (CP) method

As first approximation, the pasta phase is calculated
within the CP method [67]. In this section we focus on
nuclear matter with a fixed proton fraction Yp and impose
charge neutrality by setting ρe = ρp. However, the same
scheme could be applied to β-equilibrium stellar matter:
in this case, the species fractions would be defined by the
conditions of chemical equilibrium and charge neutrality.

As in [67,75], for a given total density ρ, the pasta
structures are built with different geometrical forms in a
background nucleon gas. This is achieved by calculating
from the Gibbs conditions P I = P II , μI

i = μII
i where I

and II label the high- and low-density phase, respectively,
the density and the proton fraction of the pasta and of
the background gas. The density of electrons is considered
uniform. The total pressure and total energy density of the
system are given, respectively, by P = P I + Pe and

E = fEI + (1 − f)EII + Ee + Esurf + ECoul, (25)
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where f is the volume fraction of phase I, the proton frac-
tion can be obtained from

fρI
p + (1 − f)ρII

p = Ypρ,

and Ee, Esurf and ECoul denote electron, surface and Cou-
lomb energy densities. By minimizing Esurf + ECoul with
respect to the size of the droplet/bubble, rod/tube or slab
we get [75] Esurf = 2ECoul, and

ECoul =
2F

42/3
(e2πΦ)1/3

(
σD(ρI

p − ρII
p )

)2/3
, (26)

where F = f for droplets and F = 1 − f for bubbles, σ is
the surface energy coefficient, D is the dimension of the
system and Φ is the geometric factor,

Φ =
(

2 − DF 1−2/D

D − 2
+ F

)
1

D + 2
, D = 1, 2, 3.

In the following discussion the parameter sets for the
models NL3, NL3ωρ, FSU and IU-FSU will be considered
and the effect of the symmetry energy on the pasta phase
discussed. One expects, generally speaking, two types of
effects: a smaller L corresponds to a larger surface tension
for asymmetric matter [12] and a larger J leads to a more
isospin-symmetric liquid phase. In models with a larger
surface tension the pasta phase sets in at higher densi-
ties and neutron drip is unfavored, giving rise to a lower
density background gas.

In fig. 6 the range of the different pasta phases for
matter with a proton fraction Yp = 0.2 and temperature
T = 5MeV is plotted for these four models. Some com-
ments are in order: for the proton fraction considered no
model presents the bubble configuration, and for NL3 the
tube configuration is also missing; the onset of the rod and
slab configurations are quite model independent, while the
transition to the core reflects the symmetry energy be-
havior, in particular, the transition density is smaller for
larger values of L, as discussed above.

In fig. 7 we show some pasta properties, mainly for the
droplet phase. Let us denote by Adrop the number of nu-
cleons belonging to a droplet (the type of structure that
appears at the lowest densities in the non-homogeneous
phase) and by Zdrop its charge content. Notice that we
adopt the prescription to define both quantities as ex-
cesses with respect to the background nucleon gas. In the
left panel we display the results for a) Adrop and b) Zdrop

for the above parametrizations. The onset of the droplet
phase is characterized by a discontinuity on the number of
nucleons inside the cluster: a minimum number of nucle-
ons is necessary to compensate the surface energy, which
is larger for models with a smaller L. It should be referred,
however, that in a TF calculation, where the surface en-
ergy is calculated self-consistently, this discontinuous be-
havior will not occur. A change in the isovector channel of
the model NL3 as in NL3ωρ leads to a large effect on the
number of nucleons in the droplet, increasing this num-
ber to more than the double. In fact, a smaller symmetry
energy slope corresponds to a larger surface energy and
neutrons do not drip out so easily. The number of nucle-
ons obtained within NL3ωρ is consistent with the results
of [83] within a statistical model. The other two models,
FSU and IU-FSU, also present larger nuclei than NL3, the
heaviest ones corresponding to the model IU-FSU, which
bears the smallest slope L.

The radius of the Wigner-Seitz cell together with the
cluster radius is plotted in the middle panel of fig. 7 as a
function of density. The ordering of the radii obtained in
the different parametrizations reflects perfectly the order-
ing of their surface tensions [12], that, in turn, is closely
linked to the symmetry energy density dependence. NL3
has by far the smallest surface energy at Yp = 0.2, while
IU-FSU has the largest: correspondingly, NL3 has the
smallest Wigner-Seitz cell and droplets and IU-FSU the
largest ones.

In the right panel of fig. 7 the ratio Zdrop/Adrop is
plotted as a function of density. This ratio decreases with
density and is model dependent. A decrease of the pro-
ton fraction of the clusters with density was also obtained
in [84]. The models with a smaller symmetry energy slope
have smaller proton fractions. A smaller slope implies that
neutrons drip out of the cluster with more difficulty giv-
ing rise to neutron richer clusters. Also, a smaller slope
corresponds to a smaller J , and, thus, a smaller L favors
less symmetric clusters.

In summary, within the coexistence method we have
shown that models with a smaller symmetry energy slope
have larger clusters with a smaller proton fraction and
larger Wigner-Seitz cells. We will next discuss the pre-
dictions of a Thomas Fermi calculation of the pasta
phase [13], which generally agree with the above conclu-
sions.

4.2.2 Thomas-Fermi (TF) approach

In the Thomas-Fermi approximation of the non-uniform
npe matter, the fields are assumed to vary slowly so that
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the baryons can be treated as moving in locally con-
stant fields at each point [75,67]. We obtain the finite-
temperature semiclassical TF approximation based on the
density functional formalism [12] and start from the grand
canonical potential density,

ω = ω({fi+}, {fi−}, σ0, ω0, ρ0, δ0)

= Et − TSt −
∑

i=p,n,e

μiρi, (27)

where {fi+}({fi−}), i = p, n, e stands for the protons,
neutrons and electrons positive (negative) energy distri-
bution functions and St = S + Se, Et = E + Ee are the
total entropy and energy densities, respectively [11]. The
equations of motion for the meson fields (see ref. [67]) fol-
low from the variational conditions

δ

δσ0(r)
Ω =

δ

δω0(r)
Ω =

δ

δρ0(r)
Ω =

δ

δδ0(r)
Ω = 0, (28)

where Ω =
∫

d3r ω.
The numerical algorithm for the description of the neu-

tral npe matter at finite temperature is a generalization
of the zero temperature case which was discussed in detail
in [11,67]. The Poisson equation is always solved by using
the appropriate Green function according to the spatial
dimension of interest and the Klein-Gordon equations are
solved by expanding the meson fields in a harmonic oscil-
lator basis with one, two or three dimensions based on the
method presented in [11,67].

We next present results for the pasta phase of β-equili-
brium matter obtained within a TF calculation at T = 0.
Due to the β-equilibrium condition the proton fraction is
very small and only three different shapes occur: droplet,
rod and slab. The transition densities between the shapes
are compared in fig. 8 for the six models mentioned above.
All of the three shapes appear in the inner crust except
for NL3, which only predicts the existence of droplets. In
fact, in [80] it was shown that models with a large L, like
NL3, would not predict the existence of non-droplet pasta
shapes in β-equilibrium matter. As discussed before, the
slope L defines the crust-core transition within models in
the same framework. It is seen, however, that although
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Fig. 8. (Color online) Pasta phases in TF method at T = 0
in β-equilibrium matter. Results for NL3, NL3ωρ, FSU, IU-
FSU, plus two density-dependent hadronic parametrizations,
DDME2 and DDMEδ.

IU-FSU has the largest transition density to the core, it
also has the smallest transition density to the rod and slab
configurations. This behavior probably reflects the large
surface energy of IU-FSU that favors smaller surface to
volume geometries.

In fig. 9 we show the neutron density at the cell cen-
ter and at the cell border (left panel), the cluster proton
fraction at the cluster center (middle panel) and the total
atomic number of a cluster (right panel) [13]. As in the
CP method, also here the background nucleon gas is sub-
tracted when defining the cluster properties Yp,drop and A.
Notice that the number of nucleons belonging to a clus-
ter or to a cell (A, N and Z), are univocally determined
by the calculation only in the case of droplets. For the
slab and rod phases, by construction, the problem is only
solved in one or two dimensions. The values of A, Z and
N for these shapes were obtained assuming representative
sizes for the rod length and for the slab cross-section [13].

These results are coherent with the ones calculated
within the coexisting phases method. The density of drip-
ped neutrons is smallest for IU-FSU, the model with the
smallest slope L. Moreover, IU-FSU (NL3) has the largest
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(smallest) number of nucleons in the clusters, correspond-
ing to the smallest (largest) slope L, and at the cluster
center the proton fraction is largest for models with the
largest symmetry energy J .

In fig. 10 we show some properties of the WS cells: the
proton (a) and neutron (b) content of each cell (N and
Z), and the cell radius (c).

The properties of the models used are reflected on the
cluster structure. A small symmetry energy slope L gives
rise to larger cells, with a larger proton and neutron num-
ber, while the opposite occurs for a large L. Models with
a similar symmetry energy (∼ 31–32MeV) and slope L
(∼ 50–60MeV) at saturation density behave in a similar
way, both in the droplet phase and the non-droplet pasta
phase regions. On the other hand, models like NL3, with
a very large symmetry energy and slope L, and IU-FSU,
with a quite small L, have quite different behaviors. NL3
does not present any non-droplet pasta phase in the inner
crust of β-equilibrium matter, predicts the smallest pro-
ton and neutron numbers and the Wigner-Seitz radius in
almost all the inner crust range of densities.

All of the models, except NL3, predict the existence
of slab-like configurations in β-equilibrium matter. These
lasagna-like structures may have an important contribu-
tion to the specific heat of the crust [14].

4.3 Inner crust structure

In this section we analyse how the EOS at subsaturation
densities affects the inner-crust extension.

The Tolman-Oppenheimer-Volkov (TOV) equations
are solved to determine the density profile of neutron stars
with masses 1, 1.44, 1.6 M�. These are stars with repre-
sentative masses: the lowest one is smaller than the small-
est neutron stars detected until now, 1.44 M� is the mass
of the Hulse-Taylor pulsar, and the largest mass is cho-
sen to be smaller than the maximum mass described by
FSU. Besides these three values, the TOV equations are
also solved for the maximum mass star. The stellar mat-
ter EOS’s are built according to the following scheme [85]:
a) the EOS in the core is obtained including only nucle-
onic degrees of freedom, electrons and muons, solving the
equations for the meson fields in the mean-field approxi-
mation and imposing both β-equilibrium and charge neu-
trality; b) for the outer crust, the BPS (Baym-Pethick-
Sutherland) EOS [86] is considered; c) the inner crust,
corresponding to the range of densities between the neu-
tron drip (∼ 2×10−4 fm−3) and the crust-core transition,
is obtained from the TF calculation of β-equilibrium non-
homogeneous matter [12,13,67,68].

In table 2 we display some of the features of the inner
crust structure according to different models. All models
considered have a slab and a rod phase which together de-
fine the non-droplet pasta extension, except for NL3. For
this model the inner crust is only formed by droplets in a
neutron gas background. For the sake of readability, some
of the results given in table 2 are plotted in fig. 11 and 13.
In fig. 11 the thickness of the crust (full symbols) and
inner crust (empty symbols) are given in the left panel,
the thickness of the total non-droplet pasta phase (full
symbols) and the slab phase (empty symbols) are plotted
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Table 2. Central energy density, distance to the center of the
star at the phase transitions (homogeneous matter - slab phase
(Rhs), slab phase - rod phase (Rsr), rod phase - droplet phase
(Rrd), droplet phase - outer crust (RdBPS)) and radius of a 1.0,
1.44, and 1.6 M� star, for different models. For each model,
the maximum mass configuration is also shown.

M εc Rhs Rsr Rrd RdBPS R
(M�) (fm−4) (km) (km) (km) (km) (km)

FSU
1.00 1.81 11.09 11.14 11.23 11.93 12.80
1.44 3.07 11.25 11.28 11.33 11.75 12.28
1.60 4.39 10.92 10.94 10.99 11.30 11.66
1.66 7.04 10.27 10.29 10.32 10.56 10.84

IU-FSU
1.00 1.78 10.82 10.90 10.96 11.64 12.46
1.44 2.61 11.29 11.34 11.38 11.81 12.30
1.60 3.18 11.26 11.31 11.34 11.69 12.09
1.80 6.69 10.48 10.50 10.52 10.74 11.00

NL3
1.00 1.12 12.57 – – 13.38 14.53
1.44 1.39 13.34 – – 13.89 14.63
1.60 1.49 13.53 – – 14.01 14.66
2.78 4.42 12.78 – – 13.12 13.29

NL3ωρ
1.00 1.28 11.40 11.47 11.59 12.46 13.42
1.44 1.52 12.37 12.42 12.50 13.11 13.75
1.60 1.62 12.63 12.67 12.75 13.28 13.84
2.68 4.62 12.49 12.50 12.52 12.70 12.87

in the middle panel, and the fraction of the inner crust
with respect to the total crust is given in the right panel.
The different models are ordered according to the magni-
tude of the slope L, which increases from left to right. In
fig. 13 we represent instead the crust profile, identifying
the transition between the different configurations with
marks (black lines and symbols). In the same figure, it is
also shown the crust profile calculated with an EOS ob-
tained joining the BPS EOS directly to the homogeneous
stellar matter EOS (red dashed lines). In this last case the
transition from the BPS to the homogeneous matter EOS
is shown by a red full point.

The extension of the total crust seems to be mainly de-
fined by the incompressibility of the EOS (cf. table 1 and
fig. 12). In fig. 12 this quantity is plotted as a function of
the incompressibility at saturation for a set of seven mod-
els (NL3, TM1, NL3ωρ, FSU, IUFSU, DDME2, DDMEδ)
and an approximately linear correlation was obtained be-
tween the crust extension and K0. A careful analysis of
this correlation is in progress. However, the fraction of the
crust occupied by the inner crust is of the order of 50% or
less and depends on the symmetry energy. This quantity
increases with the star mass, resulting in a difference of
∼ +5% between stars of mass 1.6 and 1.0 M�.

The strong differences existing between NL3 and
NL3ωρ allow us to identify the effect of the symmetry

energy, since these two models only differ with respect to
the density dependence of the symmetry energy. It has
already been shown that there is an anti-correlation be-
tween the crust-core transition density and the slope L
at saturation [8,10] and, therefore, it could be expected a
larger crust for NL3ωρ. We point out, however, that this
correlation does not exist with the total crust thickness,
but only with the inner crust. In a 1.0 M� star the non-
droplet pasta extension is smaller than 200m. Generally
the stars with smaller mass have smaller relative pasta
phases. The slab fraction corresponds to ∼ 35% of the
total pasta phase for all the models, apart from IU-FSU,
where it is almost 60%. The different behavior of IU-FSU
is mainly due to the small value of the symmetry energy
slope at subsaturation densities, which affects the surface
tension giving quite high surface tension for different pro-
ton fractions, see [13]. A large surface tension favors the
slab geometry with respect to the rod geometry. On the
contrary, a smaller surface tension favors the formation
of droplets, clusters with the largest surface for the same
volume, in a larger density range.

In fig. 13 we have plotted the last ∼ 2 km of the star
profile closer to the surface. A larger mass corresponds
to a steeper profile as expected, due to the larger grav-
itational force. For NL3 and NL3ωρ, both with a large
incompressibility, the star with the larger mass has the
inner crust at a larger distance from the center. In the
case of FSU and IU-FSU there is a larger concentration
of mass at the center because the EOS is softer, and the
crust is pushed more strongly towards the center of the
star: this explains why for IU-FSU the profiles of the 1.44
and 1.6 M� stars are almost coincident, and for FSU the
profiles of the 1.0 and 1.44 M� stars cross, while the crust
of the 1.6 M� one has the smallest distance to the star
center. One interesting conclusion is that taking into ac-
count the correct description of the inner crust in the total
stellar EOS is more important for the softer EOS and with
smaller slopes L. However, on the whole, using the BPS
EOS for the outer crust and an EOS of homogeneous stel-
lar matter for the inner crust and core gives good results
for the stellar profiles.

In [87] the effect of the nuclear pasta on the crustal
shear phenomena was studied. In particular, two limits
have been considered, namely the pasta as an elastic solid
and as a liquid. In the first case the shear modulus is cal-
culated from the crust-core transition while in the second
case at the transition from the droplet to the pasta phase.
For models with no pasta phase, as NL3, there is no dif-
ference between these two pictures. However, models with
a symmetry energy slope L below 80MeV have a pasta
phase and the ratio shear modulus to pressure may be as
high as two times larger if the first picture is considered
for L = 40MeV.

5 Symmetry energy and the strangeness
content of a neutron star

For stellar matter with hyperonic degrees of freedom, as
the one described in this section, the electromagnetic field
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is switched off, the sum over nucleons in eq. (9) is replaced
by a sum over the octet of lightest baryons (n, p, Λ, Σ−,
Σ0, Σ+, Ξ−, Ξ0), and the couplings of the mesons to the
baryons are baryon dependent. Due to the Pauli principle
the nucleon Fermi energy increases and, if the Fermi en-
ergy of nucleons becomes larger than the hyperon masses,
energy and pressure are lowered by conversion of some
nucleons into hyperons. This softens the equation of state
and has some direct consequences on the properties of
compact stars: maximum star masses become smaller and
neutrino fractions in neutrino trapped matter are larger.

To fix the model, we need to define the couplings gij ,
where i is any meson and j any baryon of the octet. For
the nucleonic sector, we use the IU-FSU [55] and TM1 [53]
parametrizations. The latter is a parametrization that sat-
isfies the heavy-ion flow constraints for symmetric matter
at 2–3ρ0 [88]. To better understand the effect of the sym-
metry energy on the strangeness content, the mass and
radius of the stars, we will consider a modified version
of IU-FSU with Λω as a free parameter. Analogously, for
TM1, we will discuss a modified version obtained includ-
ing a non-linear ω − ρ term (TM1ωρ) that will allow to
change the density dependence of the symmetry energy,
as presented in [18], when Λω runs from 0 (TM1) to 0.03.
For the slope of the symmetry energy at saturation den-
sity we have the following values: Λω = 0 (L = 110MeV),

Λω = 0.01 (L = 80MeV), Λω = 0.02 (L = 70MeV) and
Λω = 0.03 (L = 55MeV).

For the hyperons, we consider two different sets of
hyperon-meson couplings, that we name A and B. Within
the coupling set A [89] the ω and ρ meson-hyperon cou-
pling constants are obtained using the SU(6) symmetry:
1
2gωΛ = 1

2gωΣ = gωΞ = 1
3gωN , 1

2gρΣ = gρΞ = gρN ,
gρΛ = 0, where N means “nucleon” (giN ≡ gi). The cou-
pling constants gσY of the hyperons with the scalar me-
son σ are constrained by choosing the hypernuclear po-
tentials in nuclear matter to be consistent with hypernu-
clear data [90–92]. Namely, we impose (see refs. [90–92])
UΛ = −28MeV, UΣ = 30MeV, UΞ = −18MeV, being
Uj = xωj Uω − xσj Uσ where xij ≡ gij/gi, Uω ≡ gωω0

and Uσ ≡ gσσ0 are the nuclear potentials for symmetric
nuclear matter at saturation.

In order to show how results are sensitive to the hy-
peron couplings we consider a quite different set of cou-
plings proposed in [50], set B, with xσY = 0.8 and equal
for all the hyperons. The fraction xωY is determined using
UY = −28MeV for all the hyperons. For the hyperon-ρ-
meson coupling we consider xρY = xσY . This choice im-
plies that the interaction of all hyperons in symmetric nu-
clear matter is attractive, and is restricted by acceptable
maximum mass star configurations.

The onset density of the nucleon Direct Urca (DU)
process is plotted as a function of the slope L for the
IU-FSU and modified versions in fig. 14. The effect of
the symmetry energy and the hyperon interaction on the
DU onset density can be summarized as follows: a) for
non-strange matter the larger the slope L the smaller the
neutron-proton asymmetry above the saturation density
and, therefore, the smaller the DU onset density; b) gen-
erally, for a low value of L the presence of hyperons de-
creases the onset density. This is always true if the hyperon
onset occurs with a negatively charged hyperon because
the proton fraction increases. However, if the hyperon on-
set occurs with a neutral hyperon, both the proton and
the neutron fractions decrease and it is the net effect that
defines the behavior.

In fig. 15 the strangeness fraction (fs =
∑

j |sj |nj/3nB

with sj and nj the strangeness, partial density of the
baryon j and nB the total baryonic density) for IU-FSU
and the modified IU-FSU model with L = 99MeV is plot-
ted as a function of density. A smaller symmetry energy
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slope hinders the formation of hyperons because it gives
rise to a softer EoS. The conditions for the onset of hy-
perons depend on the charge of the hyperon and on the
hyperon interaction: Λ is the first hyperon to appear with
set A and occurs at larger densities for a smaller slope L,
on the contrary, with set B, Σ− will occur first and at
smaller densities for smaller values of L [15].

From now on, we focus on the TM1 parametrization,
and, for the hyperon couplings, on the set A. However, we
allow some variations in it. In fact, while the binding of the
Λ in symmetric nuclear matter is well settled experimen-
tally, the binding values of the Σ− and Ξ− still have a lot
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Fig. 15. (Color online) Strangeness fraction with the hyperon-
meson coupling sets A and B for IU-FSU (L = 47MeV) and a
modified version with L = 99 MeV.

of uncertainties [93]. We, therefore, enlarge the set A by al-
lowing UΞ = −18, 0,+18MeV and UΣ = −30, 0, 30MeV.
Finally, we also consider the inclusion of the strange
mesons σ∗, φ to take into account the Y Y interactions.
According to recent experimental Λ−Λ hypernuclear data,
the Λ − Λ interaction is only weakly attractive [94]. The
effect of the small attractiveness of the hyperon-hyperon
coupling will be considered by choosing a) a weak gσ∗Y

coupling according to eq. (5) of [95]; b) the extreme value
gσ∗Y = 0. In both cases, the φ meson couplings are fixed
according to 2gφΛ = 2gφΣ = gφΞ = − 2

√
2

3 gωN .
As mentioned above, the symmetry energy also af-

fects the onset of hyperons. In fig. 16 it is shown that
the different hyperons are affected in a different way by
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the modified TM1 model and extended set A.

the symmetry energy. In this figure we plot the onset of
the Λ, Σ− and Ξ− as a function of the coupling Λω, where
Λω = 0 (0.03) corresponds to L = 110(55)MeV. It is seen
that the onset of Σ− always decreases with the decrease
of L, due to its larger isospin. On the other hand, the on-
set of Λ occurs at larger densities. The Ξ− is never the
first hyperon to appear due to its large mass, but, accord-
ing to the attractiveness of its potential in nuclear matter,
it can appear as the second hyperon. If the repulsiveness
of the Σ− in nuclear matter is confirmed we may expect
that the Λ is the first hyperon to set on and, therefore,
with a smaller slope L the onset of strangeness occurs at
larger densities. However, if the optical potential of the
Σ− in nuclear matter is only slightly repulsive there may
be a competition between the onset of Λ and Σ− depend-
ing on the L, with smaller values of L favoring the Σ−

hyperon (see top figure of the right column).
As discussed in [15,16], a smaller slope L implies a

softer increase of the strangeness fraction with density.
However, once the central density of these stars is larger, it
is important to study their total hyperon content. This will
be done by calculating for each star the total strangeness
number

NS = 4π

∫ R

0

ρs r2√
1 − 2m(r)/r

dr,

where m(r) is the mass inside the radius r.
In fig. 17 we plot the radius of a star with a mass

1.67M� similar to the mass of the pulsar PSR J1903+0327
(1.67 ± 0.02M�) [96] as a function of its strangeness con-
tent. The largest strangeness fractions were obtained con-
sidering an attractive potential for the Σ− meson. It is in-
teresting to notice that two almost parallel straight lines
are obtained: for L = 110MeV the slope is −11.27 ±
4%km and for L = 55MeV the slope is −10.62 ± 1%km.
The straight lines cross the vertical axis for a nucleonic
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star with no hyperons. The slope is almost independent
of L.

Finally, in fig. 18 we show some properties of maximum
mass stars. Some general conclusions may be drawn with
respect to the strangeness content: a) the maximum star
mass changes with L, stars with an intermediate L have
the smallest masses and, generally, have the largest central
densities (see panels a) and e)). There are two competing
factors that define this behavior: on one hand a larger L
corresponds to a harder EOS because the symmetry en-
ergy increases faster with the density, on the other hand
a larger L favors larger strangeness fractions which soft-
ens the EOS. The first one gives rise to smaller central
densities and larger radii, while the second one leads to
the opposite; b) the strangeness content depends on the
hyperon interaction, and, in particular, on the Ξ poten-
tial in the present study. If UΞ = +18MeV (triangles) the
masses are larger and the strangeness fractions generally
smaller; c) the inclusion of the strange mesons gives rise
to more massive stars that may have larger strangeness
contents. In this case the strangeness content is always
smaller for a smaller slope L, and its maximum value is of
the order 0.04–0.05 according to the hyperon interaction
if L = 55MeV. The upper limit can reach 0.07–0.08 if
L = 110MeV, fig. 18d). Larger fractions may be obtained
if the UΣ is considered attractive.

6 Conclusions

We have studied the effect of the density dependence of the
symmetry energy on several properties of neutron stars. In
particular, we have discussed the properties of the crust-
core transition, the pasta phase, and a possible existing
competition between the effects of the symmetry energy
and exotic degrees of freedom in the EOS.

The problems have been investigated within different
nuclear matter approaches, namely the BHF one, several
Skyrme forces, RMF models and a generalized liquid-drop
model.
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First, we have analyzed the correlations of the slope
parameter L with the core-crust transition from homoge-
neous to clusterized matter in neutron stars, using a sim-
plified definition of this transition, namely the crossing
between the line of beta equilibrium and the thermody-
namical spinodal. It was shown that the core-crust transi-
tion density and proton fraction appear clearly correlated
with L [9,10]. On the other hand no clear correlation was
observed between L and the transition pressure.

We have shown that the determination of the core-
crust transition by the crossing between the dynamical
spinodal and the β-equilibrium corresponds to a realistic
approximation, with results very similar to the TF predic-
tion. It takes place at a density lower than expected if the
thermodynamical spinodal approach is applied, however,
it was confirmed that the correlations obtained within the
thermodynamical approach are still valid using the dy-
namical spinodal approach.

We have verified that the predictivity of the transi-
tion pressure is considerably improved in terms of selected
pairs of coefficients. In particular, a strong correlation ap-
pears between the transition pressure and a combination
of the symmetry energy slope and curvature parameters
at the same reference density, ρ = 0.1 fm−3. This cor-
relation indicates that the relation between nuclear ob-
servables and the liquid drop model coefficients should be
investigated at subsaturation densities.

In the second part, we have studied the inner-
crust properties of neutron stars within a self-consistent
Thomas-Fermi approach developed in refs. [67,68] for
relativistic nuclear models, and the coexisting-phases
method [12,67]. Several relativistic nuclear models have
been used, with non-linear meson terms and constant cou-
plings, or with density-dependent coupling constants.

The properties of the models used are reflected in the
cluster structure. It was seen that a small symmetry en-
ergy slope L gives rise to larger cells, with a larger proton
and neutron number, while the opposite occurs for a large
L. In particular, it was shown that the NL3 model, with
a very large symmetry energy and slope, and the IU-FSU

one, with a quite small slope, have very different behav-
iors. NL3 does not present non-droplet pasta phases in
the inner crust of β-equilibrium matter, and predicts the
smallest proton and neutron numbers and Wigner-Seitz
radii in almost all the inner-crust range of densities. On
the contrary, IU-FSU predicts a quite low density for the
onset of the non-droplet pasta phase, the largest crust-core
transition density, and the largest clusters.

All models, except NL3, predict the existence of
lasagna-like structures that may have an important con-
tribution to the specific heat of the crust [14].

The effect of the inner crust EOS on the neutron star
profile was also analysed. It was verified that a smaller
slope gives rise to a steeper crust density profile and a
larger inner crust with respect to the total crust. It may
also enhance the slab phase extension as observed in
IU-FSU.

Finally, in the last part we discussed the joint effect of
strangeness and the symmetry energy on some properties
of the neutron stars, such as the hyperon content, DU and
radius.

It was shown that the smaller the slope L, the larger
the onset density of the DU process. However, the DU on-
set also depends on the hyperon content and the hyperon-
meson couplings. The DU may be hindered or favored
according to a balance between the neutron and proton
reductions if a neutral hyperon sets on first. Negatively
charged hyperons favor the DU onset due to a decrease of
the neutron fraction and an increase of the proton fraction.

It was also shown that, for a star with a fixed mass,
the radius of the star decreases linearly with the increase
of the total strangeness content. In particular, a 1 km
decrease of the radius of a 1.67 M� star may be explained
if the slope of the symmetry energy decreases from 110
to 55MeV or the strangeness to baryon fraction increases
from zero to 0.09.

A softer symmetry energy corresponds to a slower
increase of the hyperon fraction with density. However,
the onset of strangeness depends on the charge of the
hyperons. Negatively charged hyperons set on at smaller
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densities while neutral hyperons appear at larger densities
for smaller values of the slope.

If a repulsive hyperon-hyperon interaction is consid-
ered, although a larger slope L gives rise to a larger
strangeness content, the extra repulsion between hyper-
ons compensates the extra hyperon fraction and the effect
of the symmetry energy is almost not seen on the central
density of the maximum mass configuration.

We conclude that some star properties are affected in
a similar way by the density dependence of the symmetry
energy and the hyperon content of the star. To disentan-
gle these two effects it is essential to have a good knowl-
edge of the EOS at suprasaturation densities. There is still
lack of information about the nucleonic EOS at supra-
saturation densities as well as on the hyperon interactions
in nuclear matter that may allow for an unambiguous an-
swer to whether the mass of the pulsars J1614-2230 [97] or
J0348+0432 [98] could rule out exotic degrees of freedom
from the interior of compact stars.

The symmetry energy density dependence and its slope
have been topics of intense investigation in the latest
years. The work we have just presented in this paper is
intrinsically related to other topics also discussed in this
special volume. The search for constraints to the huge va-
riety of equations of states used to describe neutron star
matter involves astrophysical observations, heavy-ion col-
lision data, nuclear reactions [99,100], nuclear structure,
bulk matter empirical values [46] and finite nuclei proper-
ties, as the neutron skin thickness [101,102]. On the other
hand, the strangeness content of different equations of
state, shown above to be related to the symmetry energy,
has important consequences on both the liquid-gas phase
transition and the transition at high densities [103]. Hence,
further investigation towards a better understanding of
the symmetry energy density dependence is still required.

This work was carried out within the R&DT projects
PTDC/FIS/113292/2009 and CERN/FP/123608/2011, devel-
oped under the scope of a QREN initiative, UE/FEDER fi-
nancing, through the COMPETE programme and by the NEW
COMPSTAR, a COST initiative.
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