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ABSTRACT

We characterize sets of inertias of some partitioned Hermitian matrices by a
system of inequalities involving the orders of the blocks, the inertias of the diagonal
blocks, and the ranks of the nondiagonal blocks. The main result generalizes some
well-known characterizations of Sa and Cain and others. © 1998 Elsevier Science
Inc.

1. INTRODUCTION

Define the inertia of an n X n Hermitian matrix H as the triple In(H) =
(m, v, 8), where 7 is the number of positive eigenvalues, v is the number of
negative eigenvalues and 6 = n — 7 — v. We will simply write (m, v, *) for
the inertia of H, without any mention of the value of 8.

We denote by I, the identity matrix of order r, and by I the same matrix
when we do not need to specify the order.

In [2] Cain and Sa characterized the inertia of a Hermitian skew-triangu-
lar 3 X 3 block matrix by a system of inequalities involving the orders of the
blocks, the inertias of the diagonal blocks, and the ranks of the nondiagonal
blocks.
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THEOREM 1.1 [2]. Let us assume that w,, v,, 7y, vy, ny, Ny, ng are
nonnegative and

7, + v, < n, for i=1,2,

i

: <
0 <r,; <R, <min{n,,n;}  for i=23.

1

Then the following conditions are equivalent:

(D) Fori=1,2, andj = 2,3, there exist n, X n; Hermitian matrices H,
and ny X n; matrices X,; such that In(H,) = (m, v;, *), r); < rank X}; <
Ry, and

Hl X12 XIS
H=|X: H, O
X5 0 0

has inertia (m, v, *).

(D Let k € {1,2}. Let W, be any fixed n, X n, Hermitian matrix
with inertia (m,, v, *). () holds with H, = W,.

(IID Let k € {2,3}. Let W,; be any fixed n, X n; matrix with r; <
rank W, < Ry;. (1) holds with X,;, = W,,.

(IV) For k = 1,2 let W, be any fixed n; X n, Hermitian matrix with
inertia (mw, vy, *). (I) holds with H) = W), and H, = Wy,.

(V) Let Wy, be any fixed n, X n, Hermitian matrix with inertia
(my, vy, *), and let W5 be any fixed n; X ny matrix with r;; < rank W3 <
Ry;- (D holds with Hy, = Wy, and X;3 = W,.

(V) The following inequalities hold:

7 > max{m,, my + 1)y, W+ Ty = Ryy, 1y = v, T — V),
v max{vy, vy + 15, v + vy — Ry, 1y — W, 1 = L),
o < min{n, + m,, m, + n, + Ry;, 7, + m, + Ry, + R3},
v < min{n, + vy, v, + n, + Ry5, v, + v, + R}, + Ry3},
m— v<min{m, + 7,7 + 7, + R, — vy},
v— 7w <min{y, + v,, v, + v, + R}, — vy},
mtvem +m,+ vy + v, — Ry,
7+ v < min{n, + n, + Ry3,n, + 7, + v, + R}, + Ry,

m, + v, +n, + Rjy + 2R5}.
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In this work we will generalize this result by allowing a nonzero block in
the (3, 3) entry. We will combine the tools used in [1], [2], and [3], with the
Schur complement technique.

2. THE INERTIA OF SUMS OF SEVERAL
HERMITIAN MATRICES

In this section we extend some resuls achieved by Sa in [6].

Let us assume the n, p, 7, v, n;, r;, and R, are nonnegative integers
such that r;, < R, < n, < nfori=1,..., p. We denote also by 7, 7, and p,
the nonnegative integers

3l
I

f min{ 5, Ri},

<l
il

min{v,, R},

p, = min{m, + v, R;}

fori=1,....p.

THEOREM 2.1. Fori = 1,..., p, let H, be an n, X n; Hermitian matrix
with inertia (,, v,, *). Then there exist matrices S, of dimensions n X n; and
r,<rank S, <R, i = 1,..., p, such that

In(S,H St + - +S,H,S5) = (m, v, *)

if and only if (maximizing over i € {1,..., p}) the following inequalities

hold.:

r [

M=
ol

P
max{p, + 2r, — 2n, + 7 + v} — Yp<m+rv<
: t=1 t

I

T+ v<n.
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COROLLARY 2.2. Let H, and H, be n; X n; Hermitian matrices with
inertias (w,, v;, *) for i = 1,2. Then there exists a matrix S of dimension
n, X n, and r < rank S < R such that

In(H, + SH,S*) = (7, v, *)
if and only if the following inequalities hold:
m < min{m, + 7,, 7, + R},
v < min{», + v,, v, + R},
m> max{0, 7, — vy, 7, — R, 7, — v, + 1 —n,},
v>max{0,v, — 7y, v, — R, v, — 7, + 1 — ny},
m+ v < min{n,, 7, + v, + R},

m+v>em + v, — R

3. THE MAIN RESULT

We present now the main result of this work.

THEOREM 3.1.  Let us assume that for i = 1,2, 3, the quantities m,, v;, n;
are nonnegative and

m, =0

1

, T, + v, <n,, i=1,2,3,

13 1 i
0<r; <R, <min{n,n}, j=2.3.

Then the following conditions are equivalent:

(D) Fori=1,2,3, andj = 2,3, there exist n, X n, Hermitian matrices
H; and n, X n; matrices X,; such that In(H;) = (m;, v, *), r;; < rank X;,
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< le, and
Hl X12 X]3
H=|X% H, 0
X7 0 H,

has inertia (o, v, *).

(ID) Let k €{1,2,3}. Let W, be any fixed n;, X n, Hermitian matrix
with inertia (m, vy, *). (I) holds with H, = W,.

(I11) Let k € {2,3}. Let W, be any fixed n, X n, matrix with r,, <
rank W, < Ry;. (D) holds with X,;, = W,.

(IV) Fork =1,2,3 let W, be any fixed n, X n, Hermitian matrix with
inertia (my, v, *). () holds with H, = W,,, Hy = Wy,, and H; = W,,.

(V) Let j, k €{2,3} and j # k. Let Wy, be any fixed n, X n;, Hermi-

tian matrix with inertia (m;, vy, *), and let W\, be any fixed n; X n, matrix

with ry; < rank W,; < R, ;. (D) holds with H, = Wy and X, = W,
(VD) The following inequalities hold:
7> max{my, ryy = vy, ry v,
Ty = vyt = Ry, my — vy + 15,
Ty — vyt = Ry, my — vy + 1y,
m +my, — Ry, m, + 7, — Ry, 7y + 75,
7+ 7y + my — Ry, — Ry},
v max{v, ry — m,r, - W,
Vo = Ty +ry = Ry, vy — 7y 1y,
vy — w1y — Ry, vy =y g,
vi+ vy — Ry, vy + vy — Ry, vy + o,
v + v, + v, — R, — Ry},
7 < min{m, + n, + n,,
n+m,+ 7, m +tn,+ 7w, + Ry, m + 7wy, +ny+ Ry,
m + m, + my + Ry, + Rysl.
v < min{v, + n, + n,,
ny + vy, + vy, v +ny,+ vy + Ryyv + vyt 0y + Ry,
v, + v, + vy, + R, + R},
T— V< min{'rr1 + my + Ty,

m o+, +my, — vy + Ry, m, + 7y, + my, — vy + Ry}
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v — o < min{v, + v, + v,,
v, + v, + vy — 7y + Ry, vy + vy + vy — my + Ry,
m+ vz max{m, + v, + 7y + v, - Ry, m + v, + 7+ vy~ Ry,
T, + v, +m,+ v, + Ty + vy — Ry — Ry,
Ty + vy — ™ — vy + 213 — Ry,
Ty + vy — T — v+ 2ry — Ry,
m+ v < min{n, + n, + n,,
n, +n, + my + vy + Ry,
n, + my, + vy +ny + Ry,
T, + v, +n, t+ny+ R, + R,
n, + my + vy, + mwy + vy + Ry + Ryg,
m, + v, +n,t+ m;+ vy + Ry + 2R,

m o+ v, +m,+ v, + 0, + 2R, + Ryl

Of course this theorem can easily be adapted to the two other different
prescribed 3 X 3 block decomposition of a Hermitian matrix H, when two of
the nondiagonal blocks are zero, i.e., in the case

H, 0 X5
H = 0 Hz X23
X5 X3 Hy
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and when the decomposition is tridiagonal

H, X 0
H = Xikz H, Xy |.
0 X;‘a H,

Proof. The proof that (I) is equivalent to each of (ID-(V) is the same as
one can find in the proof of the Theorem 2.1 in [2]. We include this part of
the proof for completeness.

It is obvious that each of (ID-(V) implies (I). Suppose now that H
satisfies (I). Let M be a block diagonal matrix M, ® M, @ M, where M,
denotes an n; X n; invertible matrix. For i = 1,2,3 and j =2,3 set ¥, =
MXHM, Y, = MfX;,M,, and Y,, = 0. We have ¥ = (V,), , = M*HM.
Then rank Y,; = rank X,;, and by Sylvester’s theorem In(YS = In(H) and
In(Y,;) = In(H,). Thus Y has all the rank and inertia properties required in
(ID-(V). In each of these cases the only additional requirement is that, for
certain i, j, M{X;;M;, = W, and M*H, M, = W,,. Such M/’s can always be
found [5].

Let us prove that (ID is equivalent to (VI). Assume that rj; = R;; = r.
We set

Our choice of Hj allows us to partition H as

H X, Y Z
Xt H, 0 0
Y* 0 H, 0
Z* 0 0 0

where [Y Z] = X;;. Let s be the rank of Z. There exist nonsingular matrices,
say U and V, such that

vzv = |0 B
0 0
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Let us define the matrix

H=UeleloeV)HU*oI®IoV)
[ 0 I ]
UHU* UX,, UY :

0 0
(UXIZ)* H2 0
@y o H, o [
0
p 8 0 0 0

s

which is conjunctive to H, so In(H) = In(H"). Note that for the same reason
In(H,) = In(UH,U*).
Let us make a new partition of H' in the following way:

[+ x o+ oL
* H X, X3 00
* Xt H 0 0
H = ~12 2 .
* * 0 H, 0
0 0
Lo 0 0 0

Then applying the Schur complement technique, H' is conjunctive to H"”
defined by

* * * * 0 I
* H XISH—S_ XY X, 0
g o= | * X% H, 0 0
* 0 0 H, 0
0
L L 0 0 0 0
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Applying a corollary and a lemma of [4], we get

In(H) = In(H") = (s5,5,0) + (7, v5,0) + In(H),
where

H~l - }legc:le} iu
X% H,

H =

Now, describing the inertias (7, v, 0) of H is equivalent to describing the

inertias (7,7, *)=(7w' —s, v’ —s, %) of H, where 7' = o — 7, and
v =v— v,

Applying the Claim of [2], as X,; varies over the set of n; X n, rank r
matrices with rank Z = s, the matrices X,; form the set of all (n;, —s) X
(75 + v3) matrices of rank r — s. On other hand, we easily prove that as X,
varies over the set of n, X n, matrices X such that r, < rank X < Ry, X,,
ranges over all (n; — s) X n, matrices X such that r;, —s < rank X < R,,.
Hence we may apply Theorem 2.1 of [2]. According to it, (7' — s, v" — s, *)
will be the inertia of H for some (1, 2) and (2, 2) blocks, with the (1, 1) block

fixed, if and only if
7'+ v <n, +nytos,

max{x, 7} < 7' —s<min{n, —s+ 7, x +n,},
2 ! 2 2

max{y, v} < v’ —s <min{n, —s+ v,, y + n,},
7' - v <x+ m,,
v —m' <y + v,

re <min{7’ +y, 7 + v, v +x, v + 7},

Rz max{lx + my — 7' +sl.ly + vy — v' +5sl},

Ry+2s>m"+v —min{x +y +n,, 7y + v, + n, — s},

Ryzx+ty+my+v,— 7 — v +2s, (3.1

where (x, y, *) is the inertia of H, — X, H;' X5,
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We note that s = rank Z varies as
max{0,r — m; — vy} <s < min{n; — m, — vy, 1},
and, since 13 < r < Ry3 and r — s = rank X,;, eliminating r, we conclude
max{0, ri; — m, — v;} <s < min{n, — m; — vy, Ry3}
and
r —s < rank X;3 < Rjy — 5.
Accordmg to the Corollary 2.2, the set of inertias ( %, y, *) when In(H, )
= (7}, 9, *), In(—H;Y) = (vy, my, %), and ry; — s < rank X3 < Ry —
is characterized by
x < min{#, + vy, 7, + Ryy — s},
y < min{¥, + 75, ¥, + Ry; — s},

ax{O,ﬁ'l —~ Ty, T, —~ Ryg+s,—my — v, + 13 —S}’

®
A%

y > max{()’ f)l - VG’ i‘/l - RlS + S, —Vs - ’Frl +- r13 - S},
x+ys£min{n1-s,77rl+ b1 + Ry — s},
x+y>i + ¥ —Ryts, (3.2)

while, by Theorem 1 of [6], the set of inertias (7, #,, *) which arise as H,
varies is characterized by

max{0, m, — s} < 7, < 7y,
max{0, v, —s} < ¥, < v,
7+ V< ny — s, {3.3)

We know now that (x, y, *) is the inertia of H, — X, H; ' X% if and only
if there exist integers 7, and 7, satisfying (3.2) and (3.3). We combine these
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two sets of inequalities to get

cg i+ ¥ <C, (34)

Where

a=max{0,7, —s,x~ vy, x—Ryz+s,—vy;—y+r;—s},

b=max{0,v, —s,y ~ 7,y — Ry +s, —7y —x +r,;— s},

c=x+y— R +s,

A =min{m,x + 7, x + R} — s},

B =min{v,,y + vy, y + Ry — s},

C = min{n, —s,x +y + R;; — s}.
Then there is an integral solution 7, and ¥, to (3.4) if and only if

a <A, b <B, c<C, a+b<CC, c <A+ B. (3.5)

Eliminating redundant inequalities from (3.5) (e.g., some inequalities are
redundant by the mv duality) gives rise to 7+ 7 + 1 + 21 + 3 = 39 in-
equalities, which can be reduced to

x < min{m, + vy,n, + v; —s, 7, + Ry; — s},
y < min{v, + w45, n, + w3 — s, v, + Rz — s},
x> max{0, 7w, — w; —s,m, — Ry;, — 73 — v, + 153 — s},
y >max{0,v, — vy —s, v, — Ry, —vy — 7 +r;— s},
x+y <min{n, —s, 7 + v, + Rj; — s},

x+y=m +v —Rjz—s. (3.6)
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Using the same idea we have used before, we will eliminate x and y. We
know that (' + mr,, v’ + v;, *) is the inertia of H if and only if there exist
integers x and y satisfying (3.1) and (3.6). Again, we combine these two sets
of inequalities to get

<x <A

a
b < B

2

<
VA

>

—+

C X

A

y<C,
and some inequalities not involving x or y, where

a=max{0, 7, — 7y —s,m — Ry, —my — v, +r;—s,
m—s—ny,,m —v —my,ry—v,m —R,,— T, s},

b=max{0,v, — v, —s,v; — Ry;, ~vy — 7, + 15 —s5s,

vV —s—n,, v — @ — vy, ry— 7, v — Ry — vy — s},

c=max{m, +v,— Ry —s, 7 +v —n, — Ry — 2s},

A=min{7, + vy, 7, + Rz —s,n,+vy;—s, 7' —s, 7' + Ry, — 7, —s},

B = min{y, + m;,v, + Rz —s,n; + w3 —s, v’ —s,v' + Ry, — vy, — s}.

C=min{n, —s,7, + v, + R, —s, 7' +v' —m, — v, + Ry, — 2s}.

When the redundancies have been eliminated we have

w20

1

T, + v,

» i SN, i=1,2 3,

i

0<r;<Rj<min{n,n}, j=2.3,
7> max{m,, r; — V[, T, — Y,
my — vyt 13— Ry, My — vy + 1, — Ry +s,
My — Vg T 1, Ty + 73 + 5,

m, + 7y — Ry, 7, + 7y — Ry +s,7m + 7y, + 74

—Ry; — Rz + S},
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v>max{v,, r, — m, e — 7,
vo—m +r;— Ry, vy — 7, +r,— Ry +s,
Vy — Ty + Ty, Vg + vy + 5,
vitv,—Ry,, v, +v;—Ry;+s, v, +v,+v,—R,,—Rj;+5s},
m<min{n, +n, + 7y, + 0y + 7, + vy + 5,
m +n,+ 7, + Ry, +m,+m, + vy + R, s,
m 4+ my + my + Ry, + Ryl
v<min{n, +n, + vy, T +n, + 7y + v, +5,
T+ n, +vs+ R, v, + v, + vy + Ry tos,
v, + vy, + vy + R, + R},
m—v<min{w, + 7, + 7,
m +am, + 7, — vy + Ry — s},
v—w<min{v, + v, + v,,
v, + v, + vy — 7y + Rj; — s},
7+ vemax{m + v, + 7, +v,— R,
m, + v+, + vy — Ry +s,
m v+, tv,+wmy+ vy — R, — Ry + s,
m,t vy, —m, — vyt 2r,; — R,
7wyt vy —m, — v, + 2r, — Rj5 + s},
7+ v<min{n, +n, + 7, + vy +s,
n+t @y, + v, + e+ vy + Ry, + s,
m + v, +n,+ 7y + vy + R, + Ry t+s,
mtv +w, vyt + vy, + 2R, + R +os,

m, + v +n, + m,+ v, + Ry, + 2R,
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Now we get a system of inequalities of the type
Z, d<s<D,

where & is a subsystem of inequalities not involving s, and d and D are

defined below:
d = max{0, r;; — m; — v,
T+ V— T3 — V3 — N — Ny,
T+ v— g — vy —n; — Ty, — ¥y, — Ry,
T— Ty — Vg — Ty — Ny, V— Ty — Vg — V| — Ny,
T— Ty — vy~ T — @y~ Ry, v— 7y — vy — v, — v, — R,,
m+v— Ty —vy—m — v, —ny— R, — Ry,
T+ v—my— vy —m — v, — 7y, — v, — 2R, — Ry},
D = min{n, — 7; — vy, Ry,
TM— Ty~ Ty, V— V; — Uy,
T—v—1my;+ v + v, + vy + Ry,
v—m— v, + T + 7+ w3 + Ry,
T—my+ v, —ry+ Ry, v— vy, + 7 —r,y+ Ry,
7T—7T1—773+Rl3,V“‘V1_V3+R13>
T—Tm —mwy— T3+ Ry +R;,v—v, —v,— vy + R+ R;,
T+ V— T -V, — Ty, — Vv, — T3 — V3 + R, + Ry,
T+ v+ o, v - my— vy — 2r, + Ryy,
T+ v—a, — v, — 7y — V3 + Ry}

Finally, eliminating s, we prove equivalence between (II) and the inequal-
ities defined in (VI). [ ]
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4. A GENERALIZATION

In this final section we generalize the Theorem 3.1 to the decompositions

of H of the type

H X, X3 - le—
HY H, 0 0

H=| X% 0 Hy - 0 . (4.1)
LX{"F 0 0 Hp

Let us define

I, = {0, m, — Ry, m, —Rlp},

Q,= {0, v, —Ry,....p, —Rlp},

and, fork =1,...,p — 1,

%00, = { Y a pcll, and#P=k},
a€P
20, = { Zpa PCQ, and#P=k}.

The symbol r, will denote the set {ry,, ..., rlp}.
We define Fp as the set

a, €{0, 7 + v, — R“}} N {0}.
The symbol A " will be used to denote the set
a, € {n,m + v, + Rli}},

{iai

i=2
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and A, \ {XF_,(m, + v, + R,))} will be represented by A\,. The set

{rlj— v + chi’CC{2,...,p},#C=p—2,andj€{2,...,p} \C}
ie

is represented by T,,, and A, represents the set

{rlj—'rrj+ Z A

cc{2,....p},#C=p —2,and j € {2,..., p} \C}‘
ieC

Finally, qlp denotes the set

{Zp:ai

i=2

a; € {ni’ m; + Rli}}

and, by v duality, ‘I’p denotes the set

12 t

a, € {n;, v, + B“}}.

Now we are ready to state the result of this section.

THEOREM 4.1. Let us assume that all symbols represent nonnegative
integers and

0 <ry; <Ry <min{n;,n}, j=2,....p.

Then the following conditions are equivalent:

D Fori=1,....,pand j=2,..., p, there exist n; X n; Hermitian
matrices H; and n; X n; matrices X,; such that In(H,) = (@, v,, *), r}; <
rank X,; < R,;, and H defined in (4.1) has inertia (m, v, *).

(D) For k=1,...,p let W, be any fixed n, X n, Hermitian matrix

with inertia (1, vy, *). (I) holds with H; = W,,,..., and H, =W
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(ITID) The following inequdlities hold:

P
T3> max{ Y m, 71 (PR T 1) | ORI TRl T |

P’
i=2

mo+ S0, + 3T }

P
v max{ Y vio A, —m + 2, 5
i=2

vi+2Q,,. .y + EP\,QP>,

i=2

[
T < min{nl + Y om,m, + <I)p},

P
v < min{n, + Y v,y + ‘l’p},
i=2

p
T v < mln{Zﬂ'-EQ Loy - E,JQ}

i=1 i=1

P P
ZV Eal""’ Z EP,O }7

i=1 i=1

7+ v > max{m, + v, + L.2r,+ 1, —m — v},

P’

p
™+ Vsmin{nl +A 7, +v, + Y R, +A'p}.
i=2

Proof. The proof is done by induction on p. |

REMARK. Concerning (III), there occur some redundant inequalities.
For instance, we have m > r\, — v; + m, — R, + 7; — R,;, which is clearly
redundant, since 7 > LF_,7; and r, < R,;,. Moreover, this phenomenon is
even more general, since when 7, — R, or v, — R;; and r,; occur simulta-
neously in the same inequality, that inequality is redundant.
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I am indebted to Professor E. Marques de Sa for many helpful discussions

on this matter.
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