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COVARIANT LIE DERIVATIVES AND FROLICHER-NIJENHUIS
BRACKET ON LIE ALGEBROIDS

ANTONIO DE NICOLA AND IVAN YUDIN

ABSTRACT. We define covariant Lie derivatives acting on vector-valued forms
on Lie algebroids and study their properties. This allows us to obtain a concise
formula for the Frolicher-Nijenhuis bracket on Lie algebroids.

1. INTRODUCTION

The Frolicher-Nijenhuis calculus was developed in the seminal article [2] and
extended to Lie algebroids in [I0]. It has proven to be an indispensable tool of
Differential Geometry. Indeed, different kinds of curvatures and obstructions to
integrability are computed by the Froélicher-Nijenhuis bracket. For example, if
J:TM — TM is an almost-complex structure, then J is complex structure if
and only if the Nijenhuis tensor Ny = 1[J, J]py vanishes (this is the celebrated
Newlander-Nirenberg theorem [9)). If F : TM — TM is a fibrewise diagonal-
izable endomorphism with real eigenvalues and of constant multiplicity, then the
eigenspaces of F are integrable if and only if [F, F]py = 0 (see []). Further, if
P : TE — TFE is a projection operator on the tangent spaces of a fibre bundle
E — B, then [P, P]py is a version of the Riemann curvature (see [5], page 78).
Finally, given a Lie algebroid A and N € I'(A* ® A) such that [N, N]py = 0,
one can construct a new (deformed) Lie algebroid Ay (cf. [3 [6]). Moreover,
Frolicher-Nijenhuis calculus is useful in geometric mechanics where it allows to give
an intrinsic formulation of Euler-Lagrange equations. In this field, Lie algebroids
have also been shown to be a useful tool to deal with systems with some kinds of
symmetries.

In [8], P. Michor obtained a short expression for the Frolicher-Nijenhuis bracket
on manifolds in terms of the covariant Lie derivatives. A formula for the Frolicher-
Nijenhuis bracket on Lie algebroids in supergeometric language was obtained by
P. Antunes in [I]. In this paper we define some operators relevant for Frolicher-
Nijenhuis calculus in the setting of Lie algebroids, including the covariant Lie de-
rivative, and study their properties. In this way we are able to extend Michor’s
formula for Frolicher-Nijenhuis bracket to Lie algebroids.

2. COVARIANT LIE DERIVATIVE ON LIE ALGEBROIDS

Let (A,[, ],p) be a Lie algebroid over a manifold M, and E a vector bundle
over M. We write QF(A, E) = I'(AFA* ® E) for the space of skew-symmetric E-
valued k-forms on A. If E = M x R is the trivial line bundle over M, we denote
QOF(A, E) by QF(A).

We write X, for the permutation group on {1,...,m}. For k and s such that
k+ s = m, we denote by Shy s the subset of (k,s)-shuffles in ¥,,. Thus o € Shy ,
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if and only if
o(l) <o(2) < <o(k), ok+1)< - <oak+s).

Similarly, for a triple (k,l,s), such that k 4+ 4+ s = m, we denote by Shy ;s the
subset of (k,l, s)-shuffles in 3, that is the set of permutations o, such that

c(l)<o2)<---<o(k), ok+1)<---<olk+]1),
ok+1l+1)<---<ok+1+s).

For a k-form w € QF(A) and ¢ € QP(A E) , we define the form wA¢ €
QFP(A, E) by

(ngb) (Zl, sy Zp+k) = Z (—1)0(4) (Zg(l), ey Za(k)) ¢(Za(k+1), ey Zo’(k+p))'
o€Shy,

Here and everywhere in this paper Zi,..., 2,41 denote arbitrary sections of the
Lie algebroid A. If E = M x R is the trivial line bundle over M, we denote A by A,
and Q*(A) becomes a commutative graded algebra with the multiplication given
by A. Further, note that Q*(A, E) is an Q*(.A)-module with the action given by A.
For any w € QF(A) we define the operator ¢, on Q*(A, E) by

o : V(A E) = Q*TF (A, E)
¢ — WAQ
Sometimes, given a operator A we will use w A A as an alternative notation for €, A.

Let ¢ € QP(A, A). For any vector bundle E over M, we define the operator i,
on Q*(A, E) by

(1) o) (Z1s- s Zpir) = Y (D7 (S(Zo1)s -+ Zo)s Zatwr1)s- - » Zotpih))
O‘GShp‘k

where ¢ € QLA E).
We say that V: T'(A) x T'(F) — I'(E) is an A-connection on E (see [7]) if
1) Vx is an R-linear endomorphism of I'(E);
2) Vs is a C*°(M)-linear map from I'(A) to T'(E);
3) Vx(fs)=(p(X)f)s+ fVxsforany f € C*(M), X e '(A), and s € T'(E).

The curvature of an A-connection V is defined by
R(X, Y)S = vays — VyVXS — V[X7y]s.

It is easy to check that R is tensorial and skew-symmetric in the first two arguments,
thus we can consider R as an element of Q%(A,End(E)), where End(E) is the
endomorphism bundle of E.

Given an A-connection on a vector bundle F, we define the covariant exterior
derivative on Q*(A, E) by

@Y0) (Z1,. s Zpi) = D> (=1)7VF (6 Zo@)s- s Zopn))
o€Shy

- Z (=10 ([Zo1), Zo2)] s Zo(3)s -+ Zo(pt1)) -

o€Sha 1

Note that dV is related to the curvature R of V¥ by the formula

(@Y)20) (21, Zpp2) = Y (“1)7R(Zo(1): Zo(2) (0(Zo(z)s - -+ Zo(pr2))) -
o€Shsy
2



Definition 1. A derivation of degree k on Q*(A, E) is a linear map D: Q*(A, E) —
Q**tk (A, E) such that
D(wA¢) = D(w)A¢ + (—1)"wAD(¢)
for all w € QP(A) and ¢ € Q* (A, E), where D: Q*(A) — Q*(A) is some map.
For any derivation D on Q*(A, E) and a € Q*(A), we have
[D,eq] = e,

In particular, the map D is unique for a given derivation D on Q*(A, E). Let
w1 € QP1(A), wy € QP2(A). From the following computation

D((wy A wa)Ap) = D(wy Awa)Ag + (—1)FPLrEP2)y A wyAD(¢)
D(wlx(wgﬁd))) = 5(&11) AN U.)QKd) -+ (fl)kplwlﬁD(wQNb)
= D(w1) AwaAg + (=1)FPrwy A D(we)Ad + (—1)¥P1HP2) ) A woAD()

one can see that D is a derivation on Q*(A).

It is easy to check that for any given ¢ € QF(A, A), i, is a derivation of degree
k—1,and dV is a derivation of degree 1 on Q*(A, E). The covariant Lie derivative
LY is defined as the graded commutator [iy,dV] = igd" + (—=1)*dVig. The graded
commutator of two derivations of degree k and [ is a derivation of degree k + . In
particular, E{Y) is a derivation of degree k for any ¢ € QF(A, A).

Suppose we have an A-connection V on A. We will say that V is torsion-free
if VY —VyX = [X,Y] for all X, Y € I'(A). On every algebroid (A,[, ],p),
there exists a torsion-free A-connection. Namely, one can take an arbitrary bundle
metric on A and the associated Levi-Civita connection on .A. Given A-connections
VA on A and V¥ on E, we define Vxs € QP (A, E) for every s € QP (A, E) by

P
(Vx) (21, Zy) = VE((Z1, .. Zp)) =Y 8(Z1, .\ NR 2y, Z).
t=1
It is easy to check that for any s € Q¥(A, E), X € I'(A), and a torsion-free A-
connection on A, we have E;g = Vxs+ivyxs and VX = dVX. In other words
Vx = LY —igvx. Motivated by this relation, we define for ¢ € QP(A,.A) an
operator V, on Q*(A, E) by

(2) Vo =LY — (=1)Pigvy.

Note that V4 depends on two connections: an A-connection on E and a torsion-free
A-connection on A. Since V, is a linear combination of two derivations of degree
p, we see that V4 is a derivation of degree p. The following proposition shows
that for s € Q*(A, E) the map Vs: Q" (A, A) = Q* (A, E) is a homomorphism of
Q*(A)-modules.

Proposition 2. For any w € QP(A), ¢ € QF(A, A), and s € Q*(A, E), we have
Vires = (WA Vg)s = e,Vgs = wA(Vys).
Proof. The equation
LYxy = liwrg:dV] = [wNig,dV] = (=1)*P(dw) Nig +w ALY
implies that w A LY = EXK¢ — (—1)P"*i(g5g- Now we have
WAVy=wALY = (=1 wNigeg = Lyixy — (=1 Piguyme — (—1)Pimav s

v k-
= Ly¥xs — (D" iRt (- 1yrwrdav e = Vure:



It was proven in [10] that the commutator [is,i,] for ¢ € QF(A, A) and ¢ €
Q!(A, A) is given by the formula

(3) ligyiy] = i1, — (—1)F DN, o

Theorem 3. Let V be a torsion-free A-connection on A and VE be an A-connection
on a vector bundle E. For ¢ € Q*(A, A) and ¢ € Q' (A, A) we have on Q*(A, E)

(4) [V, iy] =iv,y — (—1)FDV; 4

Proof. First we check the claim for ¢ = X € T'(A) and v = Y € T'(A). Let
s € QP (A E). We get

P
(Vxivs)(Zy,..., Zp) =VR(s(Y, Z1,..., Zp)) = Y _s(Y, Z1,....,NxZh,..., Zp)
t=1

=(Vxs)Y,Z1,...,2,) +s(VxY, Z1,...,Zp)

= (ivaS)(Z1, ceey Zp) + (ivxys)(Zl, cey Zp)
Thus [Vx,iy] =ivyy. Since is additive in ¢ and 1), it is enough to prove it for
¢ = ahX, = BAY, where a € QF(A), B € Q(A), and X, Y € I'(A). Repeatedly
using Proposition and [Vx,iy] = ivyy, we get

(Varx igay] = [@AVx,BANiy] =[ea, BN iy]Vx + € [Vx, B Aiy]
= (—l)kleﬁ [ea, iy] Vx + ea[VX, 65]iy + €a€p [Vx, iy]

= 7(71)klil€[3€iyaVX + Gaevxﬂiy + Gaeﬁiva

(k—=1)1

= loAVx BAY +angAvxy T (—1) VB niy aRX

(k=1)

= igavx(gAY) T (—1) 'V s iy (R X)

=iy e ory) + (CDFIV R
O

To formulate the next result, we extend the definition of R by defining for any
# € QF(A, A) and ¥ € Q!(A, A) the form R(¢,v) € Q1A A) as follows

R(¢7 1/’)(}/17 ) Yk-‘rl"rl) =

= Z R(¢(Y0'(1)a s 7Y0'(p))a w(YO'(]H»l)v s 7YO'(P+Q)))YO'(1)+Q+1)'
ocShy 11

Theorem 4. Let V be a torsion-free A-connection on A and V¥ a flat A-connection
on a vector bundle E over M (i.e. V¥ is a representation of A). Then for any
€ QA A), ¥ € QA A), we have the following equality on Q* (A, E)

(5) Vo, Vil = Vo,u = (=D)"Vv,6 — ir@)-
Proof. First we prove for g = X,y =Y € T'(A). For s € QP(A), we get

P
(VXVYS)(ZM o '7Zp):v)E((VIE/S(Zla ) Zp)) _ZVEE/S(Zh .. -avXZS7 .. ~>Zp)
s=1

P
= VRVE(s(Z1,.. ., Zp) = > VR(s(Z1, .., Vy Zey. . D))
s=1
p P
_ ng(s(zl, sV ey Zp) + Zs(zl,...,vyvxzs,...,zp)
s=1 s=1

+Y 821, Yy Ziy. . NxZe, .. ).
s#t
4



By anti-symmetrization of the above formula in X and Y and using that V¥ is flat,
we get

P

VxNy]s(Zy,..., Zp) =Viky (s(Z1, ... Zp) =Y s(Zr,.. [Vx Ny 2o, ... Zy).

s=1

Further

(Vvxy = Vvyx)s(Z1,..., Zy) = Vo, v vy x(8(Z1,..., Zp))

p
=Y " s(Z1, o (Vvxy = Voyx)Ze, o1 Zy).
s=1

Taking the difference of the last two formulas and using the definition of R and
that V torsion-free, we have

(([nyy] —Vv,vy + nyX)S)(Zl, ey Zp) = (—iR(X’y)S)(Zl, RN Zp).

Since is additive in ¢ and ¥, it is enough to prove it for ¢ = aAX and ¢p = SAY,
where a € QF(A), B € QY(A), and X, Y € I'(A). Using the already proved case
and Proposition 2| we get

[Varx:Veayl = [@AVx, BAVy] = [0, BAVy]Vx + € [Vx, 8N Vy]
= (—1)"esleas Vy]Vx + €a[Vx, €3] Vy + €acs[Vx, Vy]
= —(-DMegevyaVx + €abvysVy +€acs(Voyy — Voy x — ir(x,y))-

Repeatedly using Proposition we see that [V, 7 x,V gry] can be written as Vg+ir,
where

0 =—(—DMBAVyaAX + a AVxBAY +aABAVXY —a A BAVy X
— Rt Vx(BAY) — (~)*(B7 Vy (a7 X)) = Vo — (~1)M'V 0
and
T=—aAPBAR(X,Y) = —R(aAX,BAY) = —R(¢,v).
This finishes the proof. U
Note that the connection V4 f := p(X)f defined on the trivial line bundle

M xR — M is obviously flat. Thus holds on Q*(.A), if V is defined via V# and
any torsion-free connection on A.

3. THE FROLICHER-NIJENHUIS BRACKET ON LIE ALGEBROIDS

In [I0], Nijenhuis defined the Frolicher-Nijenhuis bracket on Lie algebroids of
¢ € QF(A, A) and ¢ € Q'(A, A) by an equality of operators on Q*(A) equivalent
to

(6) 1LY i) = g e — (DMLY .

He also obtained a formula for computing [¢,¥]rn. In the next theorem we give
an alternative formula using the covariant Lie derivatives, which extends the one
obtained in [§] to the Lie algebroids setting.

Theorem 5. Let ¢ € QF(A, A) and ¢ € QY(A, A). Suppose V be a torsion-free
A-connection on A. Then

[0, VPN = LYY — ()M LY ¢.
5



Proof. By we have

He

['Cgvldi] = [v¢ + (_1)kidv¢vi¢] = [V¢»Zw] + (—1)k[idv¢,iw].
nce, using and we get
15 sip] = iv,p — (D) IV o+ (= DFi o g — (=)™ av 4

Next, using in the second summand we have

(5] = = (FDHD (L7 = (-1 gy )

+ivyy T (‘Ukiz‘de - (_1)klii¢,dv¢~

Notice that the subscripts of £V in @ and in the above formula are the same.

He

nce, due to the injectivity of ¢ — i4, we get by comparing the subscripts of i

that

[0, en =(=D)M D (D) Vi g + Vit + (=D Fige g1 — (=1)Mipd¥ ¢
=V + (—1)Fige gt — (1) (ipd¥ ¢ — (=1)""1dVigg)

Finally, using the definitions of V4 and of EX we get the claimed result. O
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