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COVARIANT LIE DERIVATIVES AND FRÖLICHER-NIJENHUIS

BRACKET ON LIE ALGEBROIDS

ANTONIO DE NICOLA AND IVAN YUDIN

Abstract. We define covariant Lie derivatives acting on vector-valued forms

on Lie algebroids and study their properties. This allows us to obtain a concise
formula for the Frölicher-Nijenhuis bracket on Lie algebroids.

1. Introduction

The Frölicher-Nijenhuis calculus was developed in the seminal article [2] and
extended to Lie algebroids in [10]. It has proven to be an indispensable tool of
Differential Geometry. Indeed, different kinds of curvatures and obstructions to
integrability are computed by the Frölicher-Nijenhuis bracket. For example, if
J : TM → TM is an almost-complex structure, then J is complex structure if
and only if the Nijenhuis tensor NJ = 1

2 [J, J ]FN vanishes (this is the celebrated
Newlander-Nirenberg theorem [9]). If F : TM → TM is a fibrewise diagonal-
izable endomorphism with real eigenvalues and of constant multiplicity, then the
eigenspaces of F are integrable if and only if [F, F ]FN = 0 (see [4]). Further, if
P : TE → TE is a projection operator on the tangent spaces of a fibre bundle
E → B, then [P, P ]FN is a version of the Riemann curvature (see [5], page 78).
Finally, given a Lie algebroid A and N ∈ Γ(A∗ ⊗ A) such that [N,N ]FN = 0,
one can construct a new (deformed) Lie algebroid AN (cf. [3, 6]). Moreover,
Frölicher-Nijenhuis calculus is useful in geometric mechanics where it allows to give
an intrinsic formulation of Euler-Lagrange equations. In this field, Lie algebroids
have also been shown to be a useful tool to deal with systems with some kinds of
symmetries.

In [8], P. Michor obtained a short expression for the Frölicher-Nijenhuis bracket
on manifolds in terms of the covariant Lie derivatives. A formula for the Frölicher-
Nijenhuis bracket on Lie algebroids in supergeometric language was obtained by
P. Antunes in [1]. In this paper we define some operators relevant for Frölicher-
Nijenhuis calculus in the setting of Lie algebroids, including the covariant Lie de-
rivative, and study their properties. In this way we are able to extend Michor’s
formula for Frölicher-Nijenhuis bracket to Lie algebroids.

2. Covariant Lie derivative on Lie algebroids

Let (A, [ , ], ρ) be a Lie algebroid over a manifold M , and E a vector bundle
over M . We write Ωk(A, E) = Γ(∧kA∗ ⊗ E) for the space of skew-symmetric E-
valued k-forms on A. If E = M × R is the trivial line bundle over M , we denote
Ωk(A, E) by Ωk(A).

We write Σm for the permutation group on {1, . . . ,m}. For k and s such that
k + s = m, we denote by Shk,s the subset of (k, s)-shuffles in Σm. Thus σ ∈ Shk,s
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if and only if

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(k + s).

Similarly, for a triple (k, l, s), such that k + l + s = m, we denote by Shk,l,s the
subset of (k, l, s)-shuffles in Σm, that is the set of permutations σ, such that

σ(1) < σ(2) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l),

σ(k + l + 1) < · · · < σ(k + l + s).

For a k-form ω ∈ Ωk(A) and φ ∈ Ωp(A, E) , we define the form ω∧φ ∈
Ωk+p(A, E) by

(ω∧φ) (Z1, . . . , Zp+k) =
∑

σ∈Shk,p

(−1)σω
(
Zσ(1), . . . , Zσ(k)

)
φ(Zσ(k+1), . . . , Zσ(k+p)).

Here and everywhere in this paper Z1, . . . , Zp+k denote arbitrary sections of the
Lie algebroid A. If E = M ×R is the trivial line bundle over M , we denote ∧ by ∧,
and Ω∗(A) becomes a commutative graded algebra with the multiplication given
by ∧. Further, note that Ω∗(A, E) is an Ω∗(A)-module with the action given by ∧.
For any ω ∈ Ωk(A) we define the operator εω on Ω∗(A, E) by

εω : Ω∗(A, E)→ Ω∗+k(A, E)

φ 7→ ω∧φ

Sometimes, given a operator A we will use ω∧A as an alternative notation for εωA.
Let φ ∈ Ωp(A,A). For any vector bundle E over M , we define the operator iφ

on Ω∗(A, E) by

(iφψ) (Z1, . . . , Zp+k) =
∑

σ∈Shp,k

(−1)σψ
(
φ(Zσ(1), . . . , Zσ(p)), Zσ(p+1), . . . , Zσ(p+k)

)
(1)

where ψ ∈ Ωk+1(A, E).
We say that ∇ : Γ(A)× Γ(E)→ Γ(E) is an A-connection on E (see [7]) if

1) ∇X is an R-linear endomorphism of Γ(E);
2) ∇s is a C∞(M)-linear map from Γ(A) to Γ(E);
3) ∇X(fs) = (ρ(X)f)s+ f∇Xs for any f ∈ C∞(M), X ∈ Γ(A), and s ∈ Γ(E).

The curvature of an A-connection ∇ is defined by

R(X,Y )s := ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

It is easy to check that R is tensorial and skew-symmetric in the first two arguments,
thus we can consider R as an element of Ω2(A,End(E)), where End(E) is the
endomorphism bundle of E.

Given an A-connection on a vector bundle E, we define the covariant exterior
derivative on Ω∗(A, E) by

(d∇φ) (Z1, . . . , Zp+1) =
∑

σ∈Sh1,p

(−1)σ∇EZσ(1)
(
φ(Zσ(2), . . . , Zσ(p+1))

)
−

∑
σ∈Sh2,p−1

(−1)σφ
([
Zσ(1), Zσ(2)

]
, Zσ(3), . . . , Zσ(p+1)

)
.

Note that d∇ is related to the curvature R of ∇E by the formula

((d∇)2φ)(Z1, . . . , Zp+2) =
∑

σ∈Sh2,p

(−1)σR(Zσ(1), Zσ(2))
(
φ(Zσ(3), . . . , Zσ(p+2))

)
.
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Definition 1. A derivation of degree k on Ω∗(A, E) is a linear map D : Ω∗(A, E)→
Ω∗+k(A, E) such that

D(ω∧φ) = D(ω)∧φ+ (−1)kpω∧D(φ)

for all ω ∈ Ωp(A) and φ ∈ Ω∗(A, E), where D : Ω∗(A)→ Ω∗(A) is some map.

For any derivation D on Ω∗(A, E) and α ∈ Ω∗(A), we have

[D, εα] = εDα.

In particular, the map D is unique for a given derivation D on Ω∗(A, E). Let
ω1 ∈ Ωp1(A), ω2 ∈ Ωp2(A). From the following computation

D((ω1 ∧ ω2)∧φ) = D(ω1 ∧ ω2)∧φ+ (−1)k(p1+p2)ω1 ∧ ω2∧D(φ)

D(ω1∧(ω2∧φ)) = D(ω1) ∧ ω2∧φ+ (−1)kp1ω1∧D(ω2∧φ)

= D(ω1) ∧ ω2∧φ+ (−1)kp1ω1 ∧D(ω2)∧φ+ (−1)k(p1+p2)ω1 ∧ ω2∧D(φ)

one can see that D is a derivation on Ω∗(A).
It is easy to check that for any given φ ∈ Ωk(A,A), iφ is a derivation of degree

k− 1, and d∇ is a derivation of degree 1 on Ω∗(A, E). The covariant Lie derivative
L∇φ is defined as the graded commutator [iφ, d

∇] = iφd
∇ + (−1)kd∇iφ. The graded

commutator of two derivations of degree k and l is a derivation of degree k + l. In
particular, L∇φ is a derivation of degree k for any φ ∈ Ωk(A,A).

Suppose we have an A-connection ∇ on A. We will say that ∇ is torsion-free
if ∇XY − ∇YX = [X,Y ] for all X, Y ∈ Γ(A). On every algebroid (A, [ , ], ρ),
there exists a torsion-free A-connection. Namely, one can take an arbitrary bundle
metric on A and the associated Levi-Civita connection on A. Given A-connections
∇A on A and ∇E on E, we define ∇Xs ∈ Ωp(A, E) for every s ∈ Ωp(A, E) by

(∇Xs)(Z1, . . . , Zp) := ∇EX(s(Z1, . . . , Zp))−
p∑
t=1

s(Z1, . . . ,∇AXZt, . . . , Zp).

It is easy to check that for any s ∈ Ωk(A, E), X ∈ Γ(A), and a torsion-free A-
connection on A, we have L∇Xs = ∇Xs + i∇Xs and ∇X = d∇X. In other words
∇X = L∇X − id∇X . Motivated by this relation, we define for φ ∈ Ωp(A,A) an
operator ∇φ on Ω∗(A, E) by

(2) ∇φ := L∇φ − (−1)pid∇φ.

Note that ∇φ depends on two connections: an A-connection on E and a torsion-free
A-connection on A. Since ∇φ is a linear combination of two derivations of degree
p, we see that ∇φ is a derivation of degree p. The following proposition shows
that for s ∈ Ω∗(A,E) the map ∇s : Ω∗(A,A) → Ω∗ (A, E) is a homomorphism of
Ω∗(A)-modules.

Proposition 2. For any ω ∈ Ωp(A), φ ∈ Ωk(A,A), and s ∈ Ω∗(A, E), we have

∇ω∧φs = (ω ∧∇φ)s = εω∇φs = ω∧(∇φs).

Proof. The equation

L∇ω∧φ =
[
iω∧φ, d

∇] =
[
ω ∧ iφ, d∇

]
= (−1)k+p(dω) ∧ iφ + ω ∧ L∇φ

implies that ω ∧ L∇φ = L∇
ω∧φ − (−1)p+ki(dω)∧φ. Now we have

ω ∧∇φ = ω ∧ L∇φ − (−1)pω ∧ id∇φ = L∇ω∧φ − (−1)p+ki(dω)∧φ − (−1)piω∧d∇φ

= L∇ω∧φ − (−1)p+kidω∧φ+(−1)kω∧d∇φ = ∇ω∧φ.

�
3



It was proven in [10] that the commutator [iφ, iψ] for φ ∈ Ωk(A,A) and ψ ∈
Ωl(A,A) is given by the formula

(3) [iφ, iψ] = iiφψ − (−1)(k−1)(l−1)iiψφ.

Theorem 3. Let ∇ be a torsion-free A-connection on A and ∇E be an A-connection
on a vector bundle E. For φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A) we have on Ω∗(A, E)

(4) [∇φ, iψ] = i∇φψ − (−1)k(l−1)∇iψφ.

Proof. First we check the claim for φ = X ∈ Γ(A) and ψ = Y ∈ Γ(A). Let
s ∈ Ωp+1(A, E). We get

(∇X iY s)(Z1, . . . , Zp) = ∇EX(s(Y,Z1, . . . , Zp))−
p∑
t=1

s(Y,Z1, . . . ,∇XZt, . . . , Zp)

= (∇Xs)(Y, Z1, . . . , Zp) + s(∇XY,Z1, . . . , Zp)

= (iY∇Xs)(Z1, . . . , Zp) + (i∇XY s)(Z1, . . . , Zp).

Thus [∇X , iY ] = i∇XY . Since (4) is additive in φ and ψ, it is enough to prove it for
φ = α∧X, ψ = β∧Y , where α ∈ Ωk(A), β ∈ Ωl(A), and X, Y ∈ Γ(A). Repeatedly
using Proposition 2 and [∇X , iY ] = i∇XY , we get[

∇α∧X , iβ∧Y
]

= [α ∧∇X , β ∧ iY ] = [εα, β ∧ iY ]∇X + εα [∇X , β ∧ iY ]

= (−1)klεβ [εα, iY ]∇X + εα[∇X , εβ ]iY + εαεβ [∇X , iY ]

= −(−1)kl−lεβεiY α∇X + εαε∇XβiY + εαεβi∇XY

= iα∧∇Xβ∧Y+α∧β∧∇XY + (−1)(k−1)l∇β∧iY α∧X
= iα∧∇X(β∧Y ) + (−1)(k−1)l∇β∧iY (α∧X)

= i∇α∧X(β∧Y ) + (−1)(k−1)l∇iβ∧Y (α∧X).

�

To formulate the next result, we extend the definition of R by defining for any
φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A) the form R(φ, ψ) ∈ Ωk+l+1(A,A) as follows

R(φ, ψ)(Y1, . . . , Yk+l+1) =

=
∑

σ∈Shk,l,1

R(φ(Yσ(1), . . . , Yσ(p)), ψ(Yσ(p+1), . . . , Yσ(p+q)))Yσ(p+q+1).

Theorem 4. Let ∇ be a torsion-free A-connection on A and ∇E a flat A-connection
on a vector bundle E over M (i.e. ∇E is a representation of A). Then for any
φ ∈ Ωk(A,A), ψ ∈ Ωl(A,A), we have the following equality on Ω∗(A, E)

(5) [∇φ,∇ψ] = ∇∇φψ − (−1)kl∇∇ψφ − iR(φ,ψ).

Proof. First we prove (5) for φ = X,ψ = Y ∈ Γ(A). For s ∈ Ωp(A), we get

(∇X∇Y s)(Z1, . . . , Zp)=∇EX(∇EY s(Z1, . . . , Zp))−
p∑
s=1

∇EY s(Z1, . . . ,∇XZs, . . . , Zp)

= ∇EX∇EY (s(Z1, . . . , Zp))−
p∑
s=1

∇EX(s(Z1, . . . ,∇Y Zs, . . . , Zp))

−
p∑
s=1

∇EY (s(Z1, . . . ,∇XZs, . . . , Zp) +

p∑
s=1

s(Z1, . . . ,∇Y∇XZs, . . . , Zp)

+
∑
s6=t

s(Z1, . . . ,∇Y Zt, . . . ,∇XZs, . . . , Zp).
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By anti-symmetrization of the above formula in X and Y and using that ∇E is flat,
we get

[∇X ,∇Y ] s(Z1, . . . , Zp) =∇E[X,Y ](s(Z1, . . . , Zp))−
p∑
s=1

s(Z1, . . . , [∇X ,∇Y ]Zs, . . . , Zp).

Further

(∇∇XY −∇∇YX)s(Z1, . . . , Zp) = ∇E∇XY−∇YX(s(Z1, . . . , Zp))

−
p∑
s=1

s(Z1, . . . , (∇∇XY −∇∇YX)Zs, . . . , Zp).

Taking the difference of the last two formulas and using the definition of R and
that ∇ torsion-free, we have

(([∇X ,∇Y ]−∇∇XY +∇∇YX)s)(Z1, . . . , Zp) = (−iR(X,Y )s)(Z1, . . . , Zp).

Since (5) is additive in φ and ψ, it is enough to prove it for φ = α∧X and ψ = β∧Y ,
where α ∈ Ωk(A), β ∈ Ωl(A), and X, Y ∈ Γ(A). Using the already proved case
and Proposition 2, we get

[∇α∧X ,∇β∧Y ] = [α ∧∇X , β ∧∇Y ] = [εα, β ∧∇Y ]∇X + εα[∇X , β ∧∇Y ]

= (−1)klεβ [εα,∇Y ]∇X + εα[∇X , εβ ]∇Y + εαεβ [∇X ,∇Y ]

= −(−1)klεβε∇Y α∇X + εαε∇Xβ∇Y + εαεβ(∇∇XY −∇∇YX − iR(X,Y )).

Repeatedly using Proposition 2, we see that [∇α∧X ,∇β∧Y ] can be written as∇θ+iτ ,
where

θ = −(−1)klβ ∧∇Y α∧X + α ∧∇Xβ∧Y + α ∧ β∧∇XY − α ∧ β∧∇YX

= α∧ ∇X(β ∧Y )− (−1)kl(β ∧ ∇Y (α∧X)) = ∇φψ − (−1)kl∇ψφ

and

τ = −α ∧ β∧R(X,Y ) = −R(α∧X,β∧Y ) = −R(φ, ψ).

This finishes the proof. �

Note that the connection ∇ρXf := ρ(X)f defined on the trivial line bundle
M ×R→M is obviously flat. Thus (5) holds on Ω∗(A), if ∇ is defined via ∇ρ and
any torsion-free connection on A.

3. The Frölicher-Nijenhuis bracket on Lie algebroids

In [10], Nijenhuis defined the Frölicher-Nijenhuis bracket on Lie algebroids of
φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A) by an equality of operators on Ω∗(A) equivalent
to

(6) [L∇φ , iψ] = i[φ,ψ]FN − (−1)k(l−1)L∇iψφ.

He also obtained a formula for computing [φ, ψ]FN . In the next theorem we give
an alternative formula using the covariant Lie derivatives, which extends the one
obtained in [8] to the Lie algebroids setting.

Theorem 5. Let φ ∈ Ωk(A,A) and ψ ∈ Ωl(A,A). Suppose ∇ be a torsion-free
A-connection on A. Then

[φ, ψ]FN = L∇φ ψ − (−1)klL∇ψ φ.
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Proof. By (2) we have

[L∇φ , iψ] = [∇φ + (−1)kid∇φ, iψ] = [∇φ, iψ] + (−1)k[id∇φ, iψ].

Hence, using (3) and (4) we get

[L∇φ , iψ] = i∇φψ − (−1)k(l−1)∇iψφ + (−1)kiid∇φψ − (−1)kliiψd∇φ.

Next, using (2) in the second summand we have

[L∇φ , iψ] =− (−1)k(l−1)
(
L∇iψφ − (−1)k+l−1id∇iψφ

)
+ i∇φψ + (−1)kiid∇φψ − (−1)kliiψd∇φ.

Notice that the subscripts of L∇ in (6) and in the above formula are the same.
Hence, due to the injectivity of φ 7→ iφ, we get by comparing the subscripts of i
that

[φ, ψ]FN =(−1)k(l−1)(−1)k+l−1d∇iψφ+∇φψ + (−1)kid∇φψ − (−1)kliψd
∇φ

=∇φψ + (−1)kid∇φψ − (−1)kl(iψd
∇φ− (−1)l−1d∇iψφ)

Finally, using the definitions of ∇φ and of L∇ψ we get the claimed result. �
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