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Abstract 

Purpose: Concerns about environmental impacts and health effects associated with particulate matter 

emissions of sugarcane production in Brazil have been raised, mainly due to pre-harvest burning of straw 

in manual harvesting. In consequence, mechanical harvesting without burning has been increasingly 

adopted. Life-cycle studies have assessed environmental impacts of sugarcane and sugarcane products. 

However, incorporating health effects of PM2.5 in a Life Cycle Assessment focusing on evaluating the 

impacts of increasing use of mechanization has not been conducted. This article compares the life-cycle 

environmental and health impacts (with spatially differentiated characterization factors for PM2.5) of 

manual and mechanical harvesting of sugarcane in Brazil, and quantifies the health benefits due to the 

change of harvesting operations.   

Methods: An attributional LCA of manual vs. mechanical sugarcane harvesting was conducted to evaluate 

the impacts of one tonne of sugarcane at the distillery. ReCiPe was applied to characterize impacts at mid-

point (i.e. climate change, fossil depletion, ozone depletion, terrestrial acidification, freshwater 

eutrophication, human toxicity, photochemical oxidant formation, and particulate matter formation) and 

end-point (i.e. human health, ecosystems, and resources). Impacts on climate change were compared 

considering different soil carbon sequestration scenarios. Characterization factors (CFs) of health effects 

of PM2.5 for Brazil were calculated differentiating emission sources, population densities, and burdens of 

disease. 

Results and discussion: At the mid-point, sugarcane production with manual harvesting has higher 

impacts on photochemical oxidant formation and particulate matter formation mainly due to pre-harvest 

burning. Mechanical harvesting system may lead to higher impacts on fossil depletion, ozone depletion 

and terrestrial acidification resulting from higher use of fertilizers and diesel. Differences of impacts on 

climate change between two systems vary depending on the soil carbon sequestration scenario. At the 

end-point level, manual harvesting has higher impacts on human health but lower impacts on resources 

use. The health effects of PM2.5 vary considerably with population density. Changing from manual to 

mechanical harvesting close to urban areas, leads to a 93% reduction of health effects, while for rural only 

15% and for remote areas 5%. When considering average population density, the health effects of PM2.5 

of manual harvesting were approximately six times higher than mechanical harvesting. Health effects of 

PM2.5 calculated with ReCiPe are much lower and may underestimate the effects of primary PM2.5 

emissions. 

Conclusions: The results of this article are an incentive to accelerate the mechanization of sugarcane 

harvesting in areas with lower mechanization levels (i.e. north-northeast region in Brazil and some rough 

terrain areas) concerning public health benefits. Meanwhile, manual harvesting with straw burning should 

only be performed in fields located in rural or remote areas. These results can also contribute to further 

studies comparing potential benefits of sugarcane culture with alternative crops and guide better decision 

making at regional development level. Spatially differentiated CFs of PM2.5 calculated in this article may 

be applied to future studies regarding health effects in the Brazilian context. 

Key words: Life cycle assessment, PM2.5, agricultural automation, public health, air pollution, regional 

impacts 
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1. Introduction 

Brazil, the world largest sugar producer and the second largest ethanol producer, has been experiencing a rapid 

expansion of its sugarcane sector in the past decades. In 2015, this country produced 36% of the sugarcane in the 

world, after an increasing production at an annual growth rate of 5.8% by weight since 2005. The harvesting area 

reached 10.4 million hectares, resulting in 736 million tonnes of sugarcane in 2014 (OECD-FAO 2016). Sugarcane 

production is concentrated in the center-south region, led by the State of São Paulo, accounting for 56% of the total 

production in the 2013/2014 harvest year (UNICA 2015). However, concerns about the environmental impacts and 

public health risks of sugarcane production have been raised in response to increasing demand for sustainable 

practices (Seabra et al. 2011; Cavalett et al. 2013). Sugarcane has been conventionally harvested manually, and 

burning the leaves and tops before harvesting has been a common practice to improve the harvest productivity, 

facilitate transportation and protect field workers from venomous animals. Sugarcane pre-harvest burning has been 

associated with increasing public health risks (Arbex et al. 2000; Cançado et al. 2006). The importance of phasing 

out sugarcane burning has been increasingly realized among companies, environmental groups and at the 

governmental level since the 1990s (Alves 2009). With incentives from the governments and the industry union, the 

fraction of sugarcane harvesting area with pre-harvest burning in the State of São Paulo dropped from 77% to 15% 

from 2005 to 2014. Meanwhile, the percentage of mechanical sugarcane harvesting without pre-harvest burning 

quadrupled in the same period (CTC 2014).  

Regarding  the health impacts of sugarcane production in Brazil, several epidemiology studies have pointed 

out the correlation between particulate matter emissions due to pre-harvest burning and the rising occurrence of 

respiratory diseases in the communities near sugarcane fields (Arbex et al. 2000; Arbex et al. 2007; Cançado et al. 

2006; Mazzoli-Rocha et al. 2008; Uriarte et al. 2009; Goto et al. 2011). Arbex et al. (2007) evaluated the relation 

between total suspended particles generated from pre-harvest burning and asthma hospital admissions in Araraquara, 

São Paulo. These authors sustained that increase in total suspended particles was closely related with asthma 

hospital admissions. Uriarte et al. (2009) and Cançado et al. (2006) studied the impacts of particle emissions due to 

sugarcane burning on the respiratory health of children and the elderly. Both studies concluded sugarcane pre-

harvest burning was the main cause of hospital respiratory admissions for both age groups. Other researchers studied 

the chemical characteristics of atmospheric particles in the areas close to sugarcane plantations during the burning 
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seasons. Carcinogenic components such as Polycyclic Aromatic Hydrocarbons (PAHs) were found, and significant 

rises of PAH concentrations during the burning seasons compared to non-burning seasons were reported (Zamperlini 

et al. 1997; Andrade et al. 2010; Silva et al. 2010; Cristale et al. 2012).  

Life-cycle studies have been conducted to assess the environmental impacts of sugarcane ethanol in Brazil  

(Macedo et al. 2008; Luo et al. 2009; Ometto et al. 2009; Seabra et al. 2011; Cavalett et al. 2013; Galdos et al. 2013; 

Tsiropoulos et al. 2014; Chagas et al. 2016). The majority of studies have assessed environmental impacts of 

sugarcane ethanol, focusing on energy use and greenhouse gases emissions. However, health effects were not 

addressed with the exception of Galdos et al. (2013) and Tsiropoulos et al. (2014), which calculated human health 

impacts at the end-point level applying global characterization factors using established life cycle impact assessment 

methods, Ecoindicator 99 and Impact 2002+, respectively. According to previous studies, the agricultural phase 

(sugarcane production) contributed the most to the life-cycle environmental impacts of bioethanol. Harvesting is 

among the largest contributors on GHG emissions, but has been treated as a combination of manual and mechanical 

operations, expressed by a certain ratio or scenarios of different ratios of mechanical harvesting. Considering the 

importance of harvesting process on environmental and health impacts associated with sugarcane production, a life-

cycle study assessing the broad environmental impacts in the conversion from manual to mechanical harvesting of 

sugarcane production, with a focus on health impacts of particulate matter emissions is lacking.   

Fine particulate matter (PM2.5) contributes the most to health effects associated with particulate matter 

emissions among all sizes (Humbert 2010). Discussions about characterizing health effects of PM2.5 are on the rise 

in the LCA community (Fantke et al. 2015; Gronlund et al. 2015; Humbert et al. 2011). However, few studies were 

published adopting regional characterization factors (CF) for PM2.5 for regions outside of Europe and the United 

States. An LCA of sugarcane production in Brazil incorporating health effects from PM2.5 exposure calculated with 

regional characterization factors is needed since it can quantify the magnitude of health benefits of replacing manual 

by mechanical harvesting, and contribute to the assessment of health effects of PM2.5 in LCA practices.  

This article compares the life-cycle environmental and health impacts of manual and mechanical sugarcane 

harvesting in Brazil considering fine particulate matter emissions. The health effects associated with PM2.5 

emissions were assessed using characterization factors that differentiate geographical features of emission sources 

and consider different burdens of disease. Characterization factors of primary and secondary PM2.5 for Brazil were 
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calculated and implemented. The results of this article can provide incentives to accelerate the mechanization of 

sugarcane harvesting in areas with lower mechanization rate concerning the magnitude of public health benefits. 

These results can also contribute to further studies comparing potential benefits of sugarcane culture with alternative 

crops and guide better decision making at regional development level. Characterization factors of PM2.5 calculated in 

this study may also be applied to future studies regarding health effects of PM2.5 in the Brazilian context. 

2. Materials and methods 

2.1 Life cycle model and inventory 

A comparative cradle-to-gate Life Cycle Assessment was conducted, addressing sugarcane cultivation, harvesting 

and transportation in the center-south region of Brazil. Two sugarcane product systems were investigated and 

compared: one harvested manually with pre-harvest burning and the other in which this operation occurs 

mechanically without pre-harvest burning. The functional unit chosen is 1 tonne of sugarcane at the distillery. A 

simplified diagram of the product system is shown in Fig.1.  A life cycle inventory based on the database of 

Brazilian Bioethanol Science and Technology Laboratory (CTBE) was collected and implemented (Bonomi et al. 

2016). Detailed inventory presented by functional unit were included in Online Resource (Appendix 1). The 

inventory includes average data representing current technologies and operations of manual and mechanical 

sugarcane harvesting in the center-south region of Brazil. The sugarcane yield per hectare of manual harvesting 

system is slightly higher than in mechanical harvesting. It is because in manual harvesting, sugarcane sets are semi-

mechanically planted requiring 12 tonne setts per hectare, while in mechanical harvesting the planting process is 

fully mechanized, requiring 20 tonne setts per hectare to compensate for inefficiency of the planting machine 

(CONAB 2011). Transport of raw materials and final products was also included in the product system. The average 

transportation distance of sugarcane stalks from the field to the mill is assumed as 25 km (Chagas et al. 2016). 

Production and field emissions of raw materials including organic and inorganic fertilizers, agrochemicals, diesel 

used in agricultural machineries were also considered. Vinasse, the liquid effluent of ethanol distillation, boiler 

ashes and filter cake, were used together with inorganic fertilizer (urea, SSP, and KCl) to supply the nutritional 

requirements of the sugarcane culture. The emissions of transporting vinasse from the industrial plant to the field (25 

km), and operations of pumping, storage and aspersion were included.  Capital goods including harvesters, tractors 

and agricultural machineries were also accounted for. 
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Regarding estimations of field emissions, for inorganic N fertilizer, 30% of the total N applied as urea was 

considered to be emitted as ammonia, and 1% of the ammonia was converted as N2O. 1% of the total N applied 

directly emitted as N2O, and 0.75% of the nitrogen leached were assumed to be emitted as N2O (Costa 2003; 

Nemecek et al. 2007). Estimations of emissions from organic fertilizers (vinasse and filter cake) and sugarcane 

residues (straw and roots) followed IPCC (2006), emission factor for direct and indirect N2O emissions was 

established as 1.22%, nitrogen content was assumed as 0.595 kgN/m3 for vinasse and 12.5 kgN/tonne for filter cake 

(Macedo 2007; Chagas et al. 2016). We assumed 4.77 gN/kg of sugarcane straw and 5.1 gN/kg of sugarcane roots, 

with a root:shoot ratio (defined as the weight of all biomass below the ground surface divided by the weight of all 

biomass above the ground surface, on a dry basis) of 0.2 (Smith et al. 2005; Hassuani 2005). Quantification of 

climate change impacts followed the concept of neutral biogenic carbon, thus emissions of biogenic CO2 from 

burning sugarcane residues and straw, as well as the capture of CO2 by sugarcane were not accounted for. Emission 

factors of sugarcane straw (leaves and tops) burning were based on GREET (2009) and França et al. (2012). Details 

of assumptions and emission factors applied are in Online Resource (Appendix 2). 

Sugarcane residues left on the ground from mechanical harvesting may result in an increase in soil organic 

carbon thus reducing CO2 emissions depending on the level of soil carbon saturation of sugarcane fields. Carbon 

accumulation rates ranging from 1.1 – 1.5 tonne C/ha/year in sugarcane fields in São Paulo at the time span of 4 – 

16 years and the soil depth of 20 – 60 cm have been reported (Galdos et al. 2009; Cerri et al. 2011; Carvalho et al. 

2013; Segnini et al. 2013). Research on integrating soil organic carbon sequestration (SOC) in LCA is on the rise, 

but there is lack of consensus on how to proceed at the methodological level (Bosco et al. 2013; Brandão et al. 2013; 

Petersen et al. 2013). We calculated SOC following the IPCC guidelines (IPCC 2006). The IPCC method is based 

on the assumptions that soil carbon stock in a certain field will be saturated at some point, and soil carbon changes 

over time are linear. The default values of the time dependence of stock change and the soil depth in the IPCC 

method are 20 years and 30 cm respectively. The lands currently adopting mechanical harvesting of sugarcane have 

mostly experienced the transition from manual harvesting with pre-harvest burning, which was a dominant 

agricultural practice of sugarcane sector throughout Brazil for decades. To understand the contribution of SOC on 

climate change, two SOC scenarios were considered in mechanical harvesting without pre-harvesting burning of 

straw: (i) soil carbon saturated (no SOC increase); and (ii) SOC saturated in a 20-year span. The two SOC scenarios 
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were selected because they represent the extreme scenarios for soil carbon change when a sugarcane field changes 

from manual to mechanical harvesting. In the second scenario, a total of 5.2 tonne of carbon was sequestrated per 

hectare in 20 years, considering conditions of sugarcane plantation in Brazil (temperature zone: tropical moist; Soil 

type: low activity clay) (IPCC 2006). This scenario projects an average rate of 260 kg carbon sequestered per 

hectare per year from the sugarcane residues. Detailed assumptions and calculations of soil organic carbon change 

can be found in Online Resource (Appendix 3). 

2.2 Life Cycle Impact Assessment extended with health effects of PM2.5 

Life cycle impact assessment (LCIA) was carried out for ReCiPe mid-point impacts (climate change, ozone 

depletion, terrestrial acidification, freshwater eutrophication, human toxicity, photochemical oxidant formation, 

particulate matter formation, and fossil depletion) and end-point damage categories (human health, ecosystem and 

resources) (Goedkoop et al. 2013). Hierarchist perspective was adopted since it is the default one in ReCiPe and 

follows the most common policy principles with regards to time-frame and other issues. ReCiPe method was chosen 

among other LCIA methods due to its feature of consistent use of midpoints and endpoints in the same 

environmental mechanism (ILCD 2010), and because it is a widely used method. Impact categories were selected 

considering the importance of environmental issues for sugarcane production. Water depletion was not addressed 

because water needs of sugarcane cultivation in the Centre-South of Brazil mostly relied on rainfall with no 

rainwater storage, and there are no expected differences on water needs between manual and mechanical product 

systems. To characterize the health effects of fine particulate matter in LCIA, models based on Humbert et al. (2011) 

and Gronlund et al. (2015) were applied. Two groups of characterization factors for PM2.5 were calculated for Brazil, 

as described below. 

2.2.1 Health effects of particulate matter in LCIA 

Particulate matter (PM) can be categorized by various sizes and compositions. PM10 (PM with aerodynamic 

diameters lower than or equal to 10 µm) and PM2.5 (a subset of PM10 with aerodynamic diameters lower than or 

equal to 2.5 µm) are the size ranges widely monitored at emission sources and in ambient air. PM can be emitted 

directly, referred as primary PM, or be referred as secondary PM, when formed in the atmosphere from chemical 

reactions involving primary gaseous emissions (e.g. SO2, NOx, and NH3). PM10-2.5 (a subset of PM10 with 
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aerodynamic diameters between 2.5 µm and 10 µm) is composed largely of primary PM. On the other hand, a much 

greater portion of PM2.5 contains secondary PM (Humbert et al. 2015). Particulate matter (PM) has been widely 

recognized for its adverse human health effects with PM2.5 being the main contributor among all PM sizes (Humbert 

2010). A number of epidemiological studies showed that PM2.5 is related to heart disease, lung cancer, reduced life 

expectancy, and low birth weight (Laden et al. 2000; Pope et al. 2002; Bell et al. 2008; Pope et al. 2009). Health 

effects of PM are evaluated in most life-cycle studies under the mid-point impact categories of particulate 

matter/respiratory inorganics, respiratory effects or human toxicity, and attributable to the end-point area of 

protection of human health, usually expressed by disability-adjusted life year (DALY) (Humbert et al. 2015). 

Widely applied LCIA methods such as CML, ReCiPe, Ecoindicator99 and IMPACT 2002+, do not differentiate the 

health effects of PM based on its size nor the geographical characteristics of emission sources (Notter 2015).  Global 

efforts have been carried out to provide recommendations and guidance on evaluating the health effects of PM in 

LCAs, such as the flagship project launched by UNEP/SETAC Life Cycle Initiative and the study performed for the 

Joint Research Center of the European Commission (JRC). Both projects have contributed to identify the best 

practices for characterization modeling in LCA (Hauschild et al. 2013; Fantke et al. 2015).   

A generic framework for assessing health effects of PM can be expressed by Equation 1 (Fantke et al. 

2015), 

IS ൌ m ൈ CF ൌ m ൈ iF ൈ ERF ൈ SF                                           (1)                      

Where IS is the impact score (usually expressed by DALY); m is the mass emitted of PM; iF stands for 

intake fraction (fraction of the mass of PM inhaled by the affected population over the mass of primary PM or 

secondary PM precursors emitted). Exposure-response factor, ERF, links the health effects in the affected population 

to the ambient PM concentration.  ERF is commonly derived from epidemiological studies and expressed by disease 

rate or risks per unit mass concentration. SF stands for severity factor, which is usually expressed by DALY per 

disease case or unit of risk. The product of iF, ERF and SF represents the characterization factor (CF; DALY per 

mass emitted). Humbert et al. (2011) developed a set of intake fractions considering emission release height (high 

stack, low stack, ground level) and archetypal environment (indoor, outdoor: urban, rural, and remote). As pointed 

out in the two abovementioned international projects, Humbert et al. (2011) is considered to be probably one of the 

most comprehensive existing models on deriving iF for PM characterization. 
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Compared to the development of iF, less consensus has been reached on the development of exposure-

response assessment (Fantke et al. 2015). In most methods (Pope et al. 2002; WHO 2006; Van Zelm et al. 2008), a 

linear, no-threshold exposure-response curve is often assumed; however, when the concentration of PM is not within 

the range (~10-35 µg/m
3
 for PM2.5) of ambient PM concentration observed in the epidemiological studies often 

conducted in the European or American conditions, the linearity assumption may not hold (Lim et al. 2012; Burnett 

et al. 2014; Humbert et al. 2015). With respect to the health effects associated with PM exposure, the field is under 

development and more consensus need to be achieved among the scientific community. Van Zelm et al. (2008) 

considered chronic and acute mortality, and acute respiratory and cardiovascular morbidity due to exposure to PM10. 

Gronlund et al. (2015) accounts for cardiopulmonary and lung cancer mortality attributable to chronic exposure to 

PM2.5. Humbert et al. (2010) also proposed a set of health effects should be considered and corresponding effect 

factors for PM10 and PM2.5. Fantke et al. (2015) pointed out the potential of the Global Burden of Disease (GBD) 

2010 study as a starting point for calculating health effects of PM2.5 exposure. PM2.5 as one of the 67 risk factors in 

the GBD study is related to five adverse health effects, including ischemic heart disease (IHD), cerebrovascular 

disease (stroke), chronic obstructive pulmonary disease among adults (COPD), trachea, bronchus and lung cancer 

(LC), and lower respiratory infections among young (Lim et al. 2012). To current knowledge, PM2.5 is primarily 

responsible for human health effects related to PM emissions (Humber et al. 2015). For this reason, merely health 

effect of primary and secondary PM2.5 were assessed in this article.  

2.2.2 Calculating characterization factors of PM2.5 for Brazil 

We have first calculated intake fractions for Latin America based on methods implemented in Humbert et al. (2011). 

Secondly, we calculated two groups of effect factors considering different burdens of disease: the first group 

adopted the dose-response factors estimated by Gronlund et al. (2015) and the severity factors calculated based on 

Global Burden of Disease for Brazil (WHO 2004); while the second group followed Humbert (2010).We chose 

these two groups of effect factors because they represent the latest methods of exposure-response assessment in the 

literature; meanwhile, it is worth noting how the magnitude of effect factors vary depending on the burdens of 

disease considered. Finally, the intake fractions were multiplied with the two groups of effect factors respectively to 

generate the characterization factors.  
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We calculated intake fractions of primary and secondary PM2.5 for Latin America (Table 1) based on the 

emission-weighted average iF recommended for Latin America and the methods to differentiate the intake fractions 

based on emission heights and population densities from Humbert et al. (2011). Equations and values used for 

calculation can be found in Online Resource (Appendix 4). For secondary PM2.5, stack height has limited 

importance in affecting iF. Distance from the affected population to emission locations is a critical factor influencing 

the magnitude of the health effects of PM2.5. When distance to the affected population is unknown, population-

weighted iF can be employed, which is a weighted sum of iF for urban, rural and remote with its corresponding 

fraction of population in the region. In Brazil, the distances between sugarcane fields and populated areas varied 

significantly from one place to another. For instance, according to CANASAT, a project developed by National 

Institute for Space Research (INPE) aiming at mapping the sugarcane cultivation and harvest activities in São Paulo 

State, some municipalities such as Ribeirão Preto are closely surrounded by sugarcane plantation, while other 

municipalities are hundreds of kilometers away. Due to this reason, CFs calculated using population-weighted iF 

was applied to characterize the health effects.  

Regarding effect factors, the first group (Table 2) was calculated for Brazil based on Gronlund et al. (2013). 

Mortalities due to cardiopulmonary diseases and lung cancer were considered, and the total effect factor is 45.6 

DALY/kg PM2.5 inhaled. Data of Global Burden of Disease for Brazil were collected and implemented. Ischemic 

heart disease, cerebrovascular disease and chronic obstructive pulmonary disease were considered under 

cardiopulmonary disease (GBD disease code: W107, W108, W112 respectively). For lung cancer, the analysis took 

into account trachea, bronchus and lung cancer (GBD disease code: W067). The second set of effect factors were 

calculated based on the values proposed in Humbert (2010). A wider range of diseases were considered including 

chronic mortality, acute respiratory and cardiovascular morbidity, chronic bronchitis for children and adults, asthma 

attacks for children and adults and restricted activity days. Assuming PM2.5 is 1.67 times as toxic as PM10 (European 

Commission 2005), the effect factor for PM2.5 was calculated to be 137 DALY/kg PM2.5 inhaled. For clarification, 

CF calculated with effect factor considering cardiovascular diseases and lung cancer is referred as Cardio.& Lung, 

and CF calculated with effect factor based on Humber (2010) is referred as Humbert.  

The two groups of CFs of PM2.5 calculated are presented in Table 3. Inventory of primary PM2.5 and 

secondary PM2.5 precursors of all the unit processes were then aggregated and multiplied with the relevant CFs 
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according to different sources and emission heights. Heights of PM2.5 emissions from production of raw materials 

such as fertilizers, pesticides and diesel were unknown, thus emission-weighted CFs were applied. PM2.5 emissions 

from transportation and field emissions from fertilizer use and residue burning are considered to be at the ground-

level, and CFs at the ground-level were used. A sensitivity analysis was conducted to discuss the influence of 

distance between emission sources and population (urban, rural and remote) on health impacts. 

3. Results and discussion 

3.1 Mid-point impacts 

Table 4 showed LCA results at the mid-point level and relative difference (ǻ) between two systems. Mechanical 

harvesting had much lower impacts for photochemical oxidant formation (ǻ = - 88%) and particulate matter 

formation (ǻ = - 61%). Manual harvesting presented slightly better performances on fossil depletion, ozone 

depletion and terrestrial acidification (ǻ = 17% to ǻ = 19%). Differences of two product systems on freshwater 

eutrophication and human toxicity were very small (ǻ <5%). The contributions for impacts from different processes 

were detailed in Figure 2, and results for each mid-point impact category were described in the following paragraphs.  

Fossil depletion: Mechanical harvesting lead to 17% higher impacts on fossil depletion than manual harvesting. 

Diesel use in the sugarcane fields was related with 25% and 28% of the impacts in the manual and mechanical 

harvesting systems respectively, followed by diesel production and fertilizer production as main contributors on this 

impact category. Among fertilizer production, nitrogen fertilizer was responsible for more than 75% of the impacts 

resulting from fertilizer production. The worse performance of mechanical harvesting in this category is mainly due 

to the higher use of fertilizer and diesel compared to manual harvesting. Higher use of potassium in mechanical 

harvesting system is related to the lower recycling rate of this nutrient when sugarcane straw is not burnt. Similarly, 

higher use of nitrogen is explained by the need of additional amount to make up for the decreased efficiency of this 

fertilizer when applied over the straw mulch.  

Ozone depletion: Mechanical harvesting system had 19% higher impacts due to higher inputs of diesel and fertilizer. 

Production of nitrogen fertilizer was the largest contributor for both systems, accounting for 34% of the impacts for 

the mechanical harvesting system, and 25% for manual harvesting.  
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Terrestrial acidification: Manual harvesting had 17% lower impacts on terrestrial acidification than mechanical 

harvesting. Fertilizer field emissions contributed the most mainly due to emissions of ammonia, accounting for 83% 

and 96% of the impacts respectively for the manual and mechanical harvesting systems. For the manual harvesting 

system, sugarcane residue burning was another main contributor on this category, presenting 13% of impacts. It is 

worth mentioning that ammonia emitted from fertilizer use was calculated based on the IPCC method assuming the 

same soil conditions and NH3 emission factor for both systems, which is a simplification that we acknowledge may 

be revised with future data and models. However, it is important to mention that a higher amount of nitrogen 

fertilizer (and consequently higher emissions from NH3 volatilization) is used in mechanized harvesting systems for 

compensating higher nitrogen volatilization losses due to fertilization in the presence of sugarcane straw on the soil. 

Freshwater eutrophication: The difference between two systems was less pronounced on this category. Production 

of nitrogen and phosphate fertilizers accounted for approximately one third of the impacts; while production of 

capital goods including agricultural machinery, tractors and harvesters represented another one third.  

Human toxicity: Difference of two product systems on this impact category was unclear. For both harvesting 

systems, the processes that presented the highest impacts for human toxicity were fertilizer production and field 

application. Production of capital goods was another major source of impacts for this category, representing 22-23% 

of the impacts for both systems.  

Photochemical oxidant formation: Manual harvesting had much higher impacts than mechanical harvesting due to 

emissions of carbon monoxide and nitrogen oxides from pre-harvest burning. For mechanical harvesting, around 46% 

of the impacts occurred in the sugarcane field from fertilizer use, diesel burning, and vinasse application.  

Particulate matter formation: Mechanical harvesting appeared to have 61% less impacts, while 90% of the impacts 

came from the field emissions of ammonia due to fertilizer use. However, fertilizer use only contributed to 25% of 

the impact in the manual harvesting system. PM2.5 emissions from pre-harvest burning was the largest source, 

accounting for 70% of the impacts.  

3.1.1 Climate change considering two SOC scenarios  

Figure 3 compared climate change impacts of manual and mechanical harvesting systems considering the two 

scenarios of soil carbon sequestration (SOC) previously mentioned: (i) soil carbon saturated (no SOC increase); and 
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(ii) SOC saturated at a time span of 20 years. Manual harvesting resulted in 38.3 kgCO2eq/tonne sugarcane. 

Changing the harvesting operation to a mechanized system lead to an increase of 6% on climate change impacts 

when not considering the contribution of SOC, whilst a decrease of nearly 25% is observed when considering SOC.  

Fertilizer application was the largest contributor on climate change in all the scenarios, accounting for 

approximately 55% of the total impact in the mechanical harvesting system without SOC, and 40% in the manual 

harvesting system. Diesel burning in agricultural operations was another important contributor to climate change, 

representing 12% and 10% of the total for mechanical (no SOC) and manual harvesting systems, respectively. GHG 

emissions from pre-harvest burning corresponded to 18% of the total GHG emissions of the manual harvesting 

system. In both scenarios, more than 70% of the impacts occurred in the sugarcane field, mainly due to the 

emissions of N2O and CO2. 

3.2 End-point damage impacts 

Environmental impacts at damage (end-point) level were presented in Fig 4. Mechanical harvesting had lower 

impacts (ǻ = -43% to ǻ = -51%) on human health for both SOC scenarios compared to manual harvesting. This is 

mainly due to the elimination of pre-harvest burning practices. On the other hand, because of higher fertilizer and 

diesel use, mechanical harvesting had higher impacts on resources increasing by 17%. However, as pointed out in 

the LCIA literature (e.g. ILCD 2011), there is important uncertainty associated with end-point results, which 

should be taken into consideration when discussing LCA results. Regarding the impacts on ecosystems, the 

difference between manual and mechanical harvesting is unclear, although when considering SOC increase, it may 

suggest a slightly lower impact of mechanical harvesting system. 

3.3 Health effects of PM2.5 

Fig 5 compares the health effects of PM2.5 of manual and mechanical harvesting, calculated with population-

weighted CFs together with a sensitivity analysis for different population densities (urban, rural and remote) and 

applying ReCiPe. The results show that population density is a key factor when assessing the health effects of PM2.5. 

Health effects for manual harvesting in urban and population-weighted conditions were much larger than for rural 

and remote conditions. Mechanical harvesting showed lower health impacts than manual harvesting in all conditions, 

but important differences were only observed when applying urban and population-weighted CFs. Comparing our 
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results with those calculated using ReCiPe, it shows ReCiPe underestimates health effects for population-weighted 

condition (1.5-6.6 timers lower), whilst showing comparable results with rural condition.  

With regards to the two groups of CFs considering different burdens of disease, when applying population-

weighted CFs, producing one tonne of sugarcane in manual harvesting resulted in a loss of 3.7 x 10
-4

 DALY and 1.1 

x 10
-3

 DALY respectively, due to the different burdens of disease considered in the CFs. When a wider range of 

diseases was considered, health effects were two times higher than when only considering cardiovascular diseases 

and lung cancer. This difference highlighted the needs for more transparency and consensus regarding effect factors 

when characterizing health effects of PM2.5.  

Health effects of mechanical harvesting do not vary with population density as much as manual harvesting, 

because more than 90% of the health effects are due to secondary PM2.5 from NH3 associated with fertilizer field 

application; while for manual harvesting, primary PM2.5 contributed the most to health effects. The CFs of NH3 

calculated in this article were much smaller than the CFs of primary PM2.5, and fairly comparable with CF of NH3 in 

ReCiPe. The CFs of primary PM2.5 calculated were higher than the one in ReCiPe. When applying population-

weighted CFs, manual harvesting presented six times higher health effects of PM2.5 than mechanical harvesting 

regardless the effect factors chosen. To put it in perspective, from 2005 to 2014 (data for the harvest season of 

2006/2007 were missing) and considering population-weighted CFs, if the sugarcane harvested mechanically 

without pre-harvest burning were harvested manually with pre-harvest burning, it would have resulted in a potential 

loss of 479 000 - 1 440 000 DALYs. Considering average life expectancy of Brazil in 2014, this is equivalent to 

6 438 - 19 355 life losses. 

3.4 Comparison with previous studies and limitations  

Macedo et al. (2008) found higher energy consumption with increasing percentage of mechanical harvesting, and 

this is in consensus with our findings on fossil depletion. Galdos et al. (2013) used generic characterization factors 

from Ecoindicator 99 for particulate matter to assess the health impacts, without differentiating emission sources, 

specifying burdens of disease and including effects of secondary PM2.5 from precursor SO2. Chagas et al. (2016) 

compared six sugarcane bioethanol production systems and concluded similar findings of increased impacts on 

eutrophication, ozone depletion and human toxicity, and lower impacts on photochemical oxidant formation 

comparing mechanical to manual harvesting system. However, health effects and SOC scenarios were not evaluated, 
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and higher acidification and global warming impacts from manual harvesting were found, due to different choices 

on emission factors of sugarcane burning. Factors for generic agricultural residues burning from GREET (2009) 

were adopted, while in this article we employed emission factors for sugarcane burning based on laboratory 

experiments (França et al. 2012). Chagas et al. (2016) carried out an uncertainty analysis, based on a similar 

inventory (also from CTBE database), to assess how parameter uncertainty affects economic and environmental 

impacts, and reported relatively low standard deviations (SD) of ethanol GHG (SD from 20 to 23 g CO2 eq/L for a 

mean value of 518 to 478 gCO2 eq/L). Thus, this type of parameter uncertainty is not expected to affect the ranking 

of product systems in this article. Regarding the limitations of our article, characterization of health effects of PM2.5 

was based on exposure-response factors from Gronlund et al. (2015) calculated for the USA, and intake fractions 

were calculated for the scale of Latin America, due to lack of specific data for Brazil. 

4. Conclusions 

This article compared the life-cycle environmental and health impacts of sugarcane produced with manual and 

mechanical harvesting in Brazil. The results showed that the transition from manual to mechanical sugarcane 

harvesting systems in Brazil clearly reduces impacts on photochemical oxidant formation and particulate matter 

formation, mainly due to the elimination of pre-harvest burning practices. However, mechanical harvesting may 

increase the impacts on fossil depletion, ozone depletion, and terrestrial acidification resulting from higher use of 

fertilizer and diesel. Differences of impacts on freshwater eutrophication and human toxicity were not significant.  

In terms of climate change, the difference between two systems depended on the soil organic carbon sequestration 

scenario considered. When considering soil carbon increase at a 20-year time span, reduction of CO2 emissions 

offset the contribution from higher use of diesel and fertilizers, and mechanical harvesting showed lower impacts on 

climate change. Whereas when not considering the contribution of soil carbon sequestration, the difference between 

manual and mechanical harvesting systems was small. At the end-point level, manual harvesting presented higher 

impacts on human health, but lower impacts on resources. The health effects of PM2.5 vary considerably with 

population density. Changing from manual to mechanical harvesting close to urban areas leads to a drastic reduction 

of impacts, while for rural and remote areas, reductions are less important. When considering average population 

density, health effects of PM2.5 of manual harvesting were approximately six times higher than mechanical 
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harvesting. Health effects of PM2.5 calculated with ReCiPe are much lower and may underestimate the effects of 

primary PM2.5 emissions. 

Concerning public health benefits, the results of this article recommend to accelerate mechanization of 

sugarcane harvesting in areas with lower mechanization levels (i.e. north-northeast region in Brazil and some rough 

terrain areas), and manual harvesting should only be performed in fields located in rural or remote areas. To reduce 

environmental impacts, measures such as removing sugarcane residues on the fields before applying fertilizers to 

increase use efficiency and using biodiesel in agricultural machineries should be considered. 
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Fig. 1 A simplified diagram of the sugarcane product system 

Fig. 2 Relative LCA results at the mid-point level 

Fig. 3 Impacts on climate change considering different SOC sequestration scenario 

Fig. 4 LCA results at the end-point level 

Fig. 5 Health effects associated with PM2.5 emissions considering various population densities 
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*Cardio.&Lung stands for health effects considering cardiopulmonary diseases and lung cancer 

*Humbert stands for health effects considering a wider range of diseases based on Humbert et al. (2010) 

 

 

 

 

 

 

 

 

 

 

 



Table 1 Intake fraction (iF) of primary PM2.5 and secondary PM2.5 (ppm - parts per million, 

representing mg PM inhaled per kg PM emitted) for Latin America calculated based on the 

recommended values and methods by Humbert et al. (2011) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Parameters and effect factors applied to calculate CFs considering cardiopulmonary diseases 

and lung cancer 

a
: Ischemic heart disease; 

b
: Chronic obstructive pulmonary disease; 

c
: Lung cancer; 

d
: Disability 

adjusted life years; 
e,f

: Data from WHO Global Burden of Disease 2004 statistics; 
g
: (Gronlund et al., 

2015) 

Table 3 Two groups of CFs (DALY/kg PM2.5 or secondary PM2.5 precursors emitted) of PM2.5 

 

Pollutant and stack height Urban Rural Remote Population-weighted average 

Primary PM2.5 

high-stack 13 0.48 0.1 5.6 

low-stack 17 0.58 0.1 7.3 

ground-level 49 1.1 0.1 20.7 

emission-weighted average 29 0.75 0.1 12 

Secondary PM2.5 

SO2 0.99 0.79 0.11 0.86 

NOx 0.2 0.17 0.02 0.18 

NH3 1.7 1.7 0.23 1.7 

  Cardiopulmonary Lung cancer Total 

IHD
a 

Stroke COPD
b 

Total death LC
c 

Death
e
 (thousands) 140.8 129.2 50.5 320.5 22.3 342.8 

DALY
d, f

 (thousands) 1427 1279 796 3502 223 3725 

Severity factor (DALY/death) 10.1 9.9 15.8 10.9 10 10.9 

Exposure-response factor
g
 (death/kg PM2.5 inhaled)       3.9 0.35 4.2 

Effect factor (DALY/kg PM2.5 inhaled)       42.6 3.5 45.6 

Pollutant and stack 

height 

CFs considering cardiopulmonary diseases and lung 

cancer (Cardio.& Lung) 

CFs considering a wider range of diseases 

(Humbert) 

Urban Rural Remote Population-weighted Urban Rural Remote Population-weighted 

Primary PM2.5 

High stack 5.93E-04 2.19E-05 4.56E-06 2.56E-04 1.78E-03 6.58E-05 1.37E-05 7.67E-04 

Low stack 7.76E-04 2.65E-05 4.56E-06 3.33E-04 2.33E-03 7.95E-05 1.37E-05 1.00E-03 

Ground level 2.24E-03 5.02E-05 4.56E-06 9.45E-04 6.71E-03 1.51E-04 1.37E-05 2.84E-03 

Emission-weighted 

average 

1.32E-03 3.42E-05 4.56E-06 5.48E-04 3.97E-03 1.03E-04 1.37E-05 1.64E-03 

Secondary PM2.5 

SO2 4.52E-05 3.61E-05 5.02E-06 3.92E-05 1.36E-04 1.08E-04 1.51E-05 1.18E-04 

NOx 9.13E-06 7.76E-06 9.13E-07 8.21E-06 2.74E-05 2.33E-05 2.74E-06 2.47E-05 

NH3 7.76E-05 7.76E-05 1.05E-05 7.76E-05 2.33E-04 2.33E-04 3.15E-05 2.33E-04 



Table 4 Mid-point Life Cycle Impact Assessment (per tonne of sugarcane) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impact category Unit 
Manual harvesting 

product system (A) 

Mechanical harvesting 

product system (B) 

Relative 

Difference 

( ∆ = 

(B-A)/A) 

Fossil depletion kg oil eq 6.66 7.80 + 17.1% 

Ozone depletion kg CFC-11 eq 1.47E-06 1.75E-06 + 19% 

Terrestrial acidification kg SO2 eq 1.34 1.57 + 17.2% 

Freshwater eutrophication kg P eq 1.90E-03 1.99E-03 + 4.7% 

Human toxicity kg 1,4-DB eq 4.22 4.38 + 3.8% 

Photochemical oxidant 

formation kg NMVOC 6.83E-01 8.05E-02 - 88.2% 

Particulate matter 

formation kg PM10 eq 5.76E-01 2.24E-01 - 61.1% 
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Appendix 1 Life-Cycle Inventory for two sugarcane production systems (per tonne of sugarcane), including cultivation, 

harvesting and transportation from field to industry 

 Unit Manual 

harvesting 

Mechanical  

harvesting 

 

Inputsa 

Vinasse m3 0.88 0.88  

Filter cake kg 7.95 7.95  

Urea, as N kg 0.74 1.18  

Single superphosphate, as P2O5 kg  0.15 0.16  

Potassium chloride, as K2O kg 1.0 1.21  

Limestone kg 4.84 4.94  

Gypsum kg  2.42 2.47  

Pesticide unspecified g 3.7 3.3  

Glyphosate g 3.1 3.2  

Diuron g 1.2 1.2  

Carbofuran g 5.1 0  

Harvester, production kg 0 0.055  

Tractor, production kg 0.097 0.063  

Agricultural machinery, production kg  0.15 0.12  

Diesel, farm operation  kg 1.22 1.57  

Diesel, sugarcane transportationb kg 0.80 0.58  

Diesel, input transportationc kg  0.10 0.11  

Diesel, vinasse transportationb kg 0.20 0.20  

Emission to aird 

Dinitrogen monoxide g 39.9 62.1 Fertilizer, residues (vinasse, 

filtercake, straw and roots) and 
soil amendments field 

emissions  

Ammonia g 454.2 615.1 

Nitrogen oxides g 8.4 13.0 

CO2, fossil kg 3.29 4.03 

VOC kg 0.95 0 Straw burning (only apply to 

manual harvesting system) Nitrogen oxides kg 0.2 0 

PM2.5 kg 0.35 0 

Sulfur oxides kg 0.05 0 

Dinitrogen monoxide kg  0.01 0 

Methane kg 0.13 0 

Carbon monoxide, biogenic kg 8.81 0 

Emissions to water (groundwater)e 

Nitrate  kg 1.67 2.64 Fertilizer and residues (vinasse, 

filtercake, straw and roots)  

Emissions to water (river)f 

Carbofuran g 0.076 0  

 

 
Pesticides 

Diuron g 0.018 0.018 

Fiproni g 0.007 0 

Glyphosate g 0.047 0.048 

Hexazinone g 0.005 0.005 

Pesticides, unspecified g 0.025 0.026 

Tebuthiuron g 0.018 0.019 

Emissions to soile,f 

Zinc g 0.26 0.26 Emissions of tire 

(machinery) Lead g 0.04 0.04 

Cadmium g 0.01 0.01 

Cadmium g 0.005 0.005  
 

Fertilizers 
Copper g 0.09 0.1 

Zinc g 0.31 0.36 

Lead g 0.11 0.11 

Nickel g 0.05 0.06 

Chromium g 0.1 0.11 

Carbofuran g 5.01 0  

 
 
Pesticides 

Diuron g 1.16 1.19 

Fiproni g 0.48 0 

Glyphosate g 3.09 3.15 

Hexazinone g 0.34 0.35 

Imazapic g 1.67 1.7 

Tebuthiuron g 1.19 1.22 
a. Inputs and outputs were based on data from Brazilian Bioethanol Science and Technology Laboratory (CTBE), which represents the average technology 

and agricultural operations in the centre-south of Brazil. (Bonomi et al. 2016) 

b. For sugarcane and vinasse transportation, it was considered a transport distance of 25 km between field and mill. 



c. Inputs included are seed cane, limestone, gypsum, fertilizers and agrochemicals, and filter cake.  

d. Breakdowns of emission sources and assumptions can be found in Appendix 2.  

e. It was assumed that 5% of the total nitrogen applied as urea or as ammonia leach to groundwater, being converted into nitrate. All the heavy metals 

contained in mineral fertilizers, limestone and gypsum were considered as emissions to soil (Trivelin and Franco 2011; Renouf et al 2010). No 

phosphorous or potassium is assumed to leach to groundwater because Brazilian soils have, in general, acid pH (CTBE 2012). 

f. 98.5% of pesticides were considered to be emitted to agricultural soil and 1.5% to superficial water (Renouf et al 2010).  

Appendix 2 Emission factors applied to calculate sugarcane field emissions 

Emission Unit Emission factor 

Emission to air 

Diesel combustion in agricultural machinerya 

Carbon dioxide, fossil kg/kg diesel 3.14 

Carbon monoxide, fossil kg/kg diesel 1.14E-02 

Dinitrogen monoxide kg/kg diesel 1.20E-04 

Heat, waste MJ/kg diesel 45.58 

Methane, fossil kg/kg diesel 1.61E-04 

Nickel kg/kg diesel 7.05E-08 

Fertilizer field emissionsb 

Ammonia kg/kg urea 3.60E-01 

Nitrogen oxides kg/kg urea 4.40E-03 

Dinitrogen monoxide kg/kg urea 2.10E-02 

Carbon dioxide, fossil kg/kg urea 1.58 

Vinasse field emissionsc 

Nitrogen oxides kg/m3 vinasse 3.00E-03 

Dinitrogen monoxide kg/m3 vinasse 1.40E-02 

Filter cake field emissionsc 

Nitrogen oxides kg/kg filter cake 5.05E-05 

Dinitrogen monoxide kg/kg filter cake 2.41E-04 

Sugarcane strawd 

Nitrogen oxides kg/t straw 2.70E-03 

Dinitrogen monoxide kg/t straw 1.27E-02 

Sugarcane rootsd 

Nitrogen oxides kg/t roots 0.01 

Dinitrogen monoxide kg/t roots 0.05 

Limestoneb 

Carbon dioxide, fossil kg/limestone 0.48 

Sugarcane burning before manual harvestinge 

VOC kg/t residues 7 

Nitrogen oxides kg/t residues 1.5 

PM2.5 kg/t residues 2.6 

Sulfur oxides kg/t residues 0.4 

Dinitrogen monoxide kg/t residues 0.1 

Methane kg/t residues 0.93 

Carbon monoxide, biogenic kg/t residues 65 

Emission to water (groundwater) 

Fertilizer: ureaf 

Nitrate kg/kg of fertilizer 0.22 

Emission to water (river) 

Pesticidesg 

Carbofuran g/g carbofuran 0.015 

Diuron g/g diuron 0.015 

Fiproni g/g fiproni 0.015 

Glyphosate g/g glyphosate 0.015 

Hexazinone g/g hexazinone 0.015 

Imazapic g/g imazapic 0.015 

Tebuthiuron g/g tebuthiuron 0.015 

Emission to soil 

Agricultural machinerya 

Zink g/kg tire 8.96 

Lead g/kg tire 1.456 

Cadmium g/kg tire 0.336 

Pesticidesh 

Carbofuran g/g carbofuran 0.985 

Diuron g/ g diuron 0.985 

Fiproni g/g fiproni 0.985 

Glyphosate g/g glyphosate 0.985 



Hexazinone g/g hexazinone 0.985 

Imazapic g/g imazapic 0.985 

Tebuthiuron g/g tebuthiuron 0.985 

Fertilizer field emissions: Ureai 

Cadmium mg/kg of urea 0.034 

Lead mg/kg of urea 0.73 

Nickel mg/kg of urea 1.32 

Copper mg/kg of urea 3.96 

Zinc mg/kg of urea 29.04 

Chromium mg/kg of urea 1.32 

Fertilizer field emissions: Single superphosphatei 

Cadmium mg/kg of input 0.64 

Lead mg/kg of input 9.59 

Nickel mg/kg of input 3.23 

Copper mg/kg of input 2.43 

Zinc mg/kg of input 16.32 

Chromium mg/kg of input 4.63 

Cadmium mg/kg of input 0.64 

Fertilizer field emissions: Potassium chloridei 

Cadmium mg/kg of input 0.05 

Lead mg/kg of input 4.79 

Nickel mg/kg of input 1.83 

Copper mg/kg of input 4.35 

Zinc mg/kg of input 40 

Chromium mg/kg of input 1.74 

Fertilizer field emissions: Limestonei 

Copper mg/kg of input 6 

Zinc mg/kg of input 7 

Chromium mg/kg of input 9.9 

Fertilizer field emissions: Gypsumi 

Cadmium mg/kg of input 0.8 

Lead mg/kg of input 9.9 

Nickel mg/kg of input 4.9 

Copper mg/kg of input 10 

Zinc mg/kg of input 5 

Chromium mg/kg of input 9.9 
a. Based on data from Nemececk et al. 2007, with updates to represent Brazilian conditions. 

b. 30% of the total N applied as urea was considered to be emitted as ammonia, and 1% of the ammonia was converted as N2O. 1% of the total N applied 

directly emitted as N2O, and 0.75% of the nitrogen leached were assumed to be emitted as N2O. All carbon content in urea and limestone is emitted as 

carbon dioxide (Costa 2003; Nemecek et al. 2007; IPCC 2006). 

c. 1.225% of N in vinasse and filter cake is converted to direct and indirect N2O emissions (IPCC 2006). Nitrogen content was assumed as 0.595 kgN/m
3 for 

vinasse and 12.5 kgN/tonne for filter cake (Macedo 2007; Chagas et al. 2016). 

d. Direct and indirect N2O emissions are considered based on the IPCC method (IPCC 2006). Nitrogen content in straw and roots is assumed as 4.77 gN/kg 

of sugarcane straw and 5.1 gN/kg of sugarcane roots (Smith et al. 2005; Hassuani 2005). 

e. Emission factors for VOC and sulfur oxides are based on GREET (2009); and NOx, PM2.5, N2O, CH4, and CO (biogenic) are estimated based on França et 

al. (2012).  

f. It is assumed that 5% of the nitrogen content in organic and inorganic fertilizers, and in sugarcane biomass residues leach to groundwater and are 

converted to nitrate (Trivelin and Franco 2011). No phosphorous or potassium is assumed to leach to groundwater because Brazilian soils have, in general, 

acid pH (CTBE 2012). 

g. We considered that 1.5% of applied agrochemicals were emitted to surface water. The assumption is based on Renouf et al. (2010) on sugarcane 

production in Australia, and due to lack of data of specific pesticide emissions to water in Brazilian sugarcane systems, we adopted this value.  

h. We assume that the remainder 98.5% of pesticides are emitted to soil. The degradation and absorption of pesticides are not considered. 

i. Heavy metal contained in mineral fertilizers, limestone and gypsum were assumed to emit to soil. Emission factor for each substance is calculated based 

on the heavy metal content of Brazilian and imported agricultural products, considering the proportions of Brazilian and imported fertilizers in 2010 in 

Brazil (ANDA 2011; Gabe and Rodella 1999; Nemecek 2007). 

 

 

 

 

 



 

Appendix 3 Calculation of soil carbon changes transferring from manual to mechanical harvesting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location: São Paulo 

Temperature zone: Tropical moist 

Soil type: Low activity clay 

SOC REF = 47 tC/ha 

Mechanical harvesting product system (with residues) 

FLU_residue = 0.48 (long-term cultivated)  FMG_residue = 1.15 (reduced tillage)   

FI_resiude = 1 (medium input) 

According to IPCC Equation 2.25 in calculating annual change in organic carbon stocks in mineral soils, 

SOCresidue = 47 × 0.48 × 1.15 × 1 = 25.94 tC/ha 

Manual harvesting product system (without residues) 

FLU_noresidue = 0.48 (long-term cultivated)  FMG_noresidue = 1 (full tillage)   

FI_noresiude = 0.92 (low input) 

SOCnoresidue = 47 × 0.48 × 1 × 0.92 = 20.75 tC/ha 

Thus, 

Soil carbon sequestrated = 5.19 tC/ha 

Soil carbon sequestrated at a 20 year perspective: 

5.19 tC ha
-1
/20 year = 259.5 kgC ha

-1
yr
-1
 

CO2 reduction: 259.5 × 44 / 12 = 951.5 kgCO2 ha
-1
yr
-1 

Per functional unit, avoided CO2 is - 11.75 kgCO2/t cane. 



 

Appendix 4 Equations and values applied to calculate Intake Fraction 

 

This study adopted the recommended values and method by Humbert et al. (2011) to calculate Intake Fraction. Recommended 

emission-weighted average iF for Latin America is applied to calculate the iF with respect to primary and secondary PM2.5 under 

the conditions of different emission heights and population densities. Values for iF of primary PM2.5 for Latin America are as 

follows: Urban – 29 ppm; Rural – 0.75 ppm; Remote – 0.1 ppm; and Population-weighted average – 12 ppm (ppm stands for 

parts per million, representing mg PM inhaled per kg PM emitted).  These recommended values of iF are for unknown stack 

height emissions. In order to differentiate emission heights, following equations are applied, 

 

 

 

where fe, high-stack, fe, low-stack and fe, ground-level are the fractions of total emissions from high-stack (>100m), low-stack (>25m) and 

ground-level respectively. Values applied in this study is in consistent with Humbert et al. (2011), which is based on American 

conditions, with fe, high-stack= 41%, fe, low-stack = 17%, fe, ground-level = 42%. X and Y are the intake fraction ratios of ground-level to 

low-stack and low-stack to high-stack emissions respectively. In the Humbert method, X and Y values from RiskPoll were 

applied, in which X equals to 1.9 for rural and 2.9 for urban conditions, and Y equals to 1.2 for rural and 1.3 for urban conditions. 

To calculate population-weighted average iF, the population fractions for urban, rural and remote conditions are assumed to be 

41%, 57% and 2%. In terms of secondary PM2.5, the Humbert method adopted the regressions of Greco et al. (2007) and Van 

Zelm et al. (2008). For secondary PM2.5, stack height has limited importance in affecting iF. Equations applied to calculate 

secondary PM2.5 are shown in the table below. 

 Urban Rural Remote 

SO2 Based on Greco et al. (2007) with adjusting breathing rate to 13 m3 

person-1day-1, the values are equal to ones in Humbert et al. (2011). 

= iF (SO2 rural) × ( iF (PM2.5 remote) / iF(PM2.5 

rural)) 

NOx = iF (NOx rural) × ( iF (PM2.5 remote) / iF(PM2.5 

rural)) 

NH3 Based on Van Zelm et al. (2008), iFurban = iFrural = iF (NH3 rural) × ( iF (PM2.5 remote) / iF(PM2.5 

rural)) 

 

 

 

 

 

 

 

iFhigh-stack = iFunknown-stack / (fe, high-stack + Y × fe, low-stack + X × Y × fe, ground-level)   

          iFlow-stack = Y × iFunknown-stack / (fe, high-stack + Y × fe, low-stack + X × Y × fe, ground-level)                              

iFground-level = X × Y × iFunknown-stack / (fe, high-stack + Y × fe, low-stack + X × Y × fe, ground-level)                     
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