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Abstract

In this study, we investigated the structure–activity relationship of four flavonoids, i.e. eriodictyol, luteolin, quercetin, and taxifolin, in
cultured retinal cells after ascorbate/Fe21-induced oxidative stress. The relative order of antioxidant efficacy, determined by the thiobar-
bituric acid method, was the following: eriodictyol. quercetin. luteolin . taxifolin. Upon preincubation, the flavonoids were also
effective in reducing the extent of lipid peroxidation. Oxidative stress, determined by the changes in fluorescence of 29,79-dichlorodihy-
drofluorescein, was also decreased in the presence of the flavonoids, showing the following order of antioxidant efficacy: eriodictyol.
taxifolin ' quercetin. luteolin. Ascorbate/Fe21-induced oxidative stress or incubation in the presence of the flavonoids did not
significantly affect the viability of retinal cells. We also evaluated the degree of membrane partition of the flavonoids. In this system, the
results strongly suggest that the higher antioxidant activity of the flavonoids is not correlated with the presence of a double bond at C2–C3

and/or a hydroxyl group at C3 on the C ring, but rather may depend on the capacity to inhibit the production of reactive oxygen species to
interact hydrophobically with membranes. Eriodictyol was shown to be the most efficient antioxidant in protecting against oxidative stress
induced by ascorbate/Fe21 in the retinal cells. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Although the etiology of many diseases of the CNS is
still unclear, several lines of evidence indicate that the
generation of ROS plays an important role in many neuro-
pathological conditions, such as cerebral ischemia and Par-
kinson’s or Alzheimer’s disease [1,2]. Consequently, there
is a major interest in developing efficient antioxidants that
can protect against neuronal cell injury and death without
showing toxic effects. The flavonoids are a group of poly-
phenolic compounds ubiquitously found in plants and one
of the most important classes of compounds with biological
activity [3]. The flavonoids have been shown to be very
potent antioxidants, because they have a high scavenging

activity [4,5] and a capacity to complex iron [6]. In addition,
the flavonoids are also potent antibacterial, antiviral, anti-
cancer, immune-stimulant, hepatoprotector, antithrombotic,
and anti-inflammatory agents [7,8].

The importance of the chemical structure of the fla-
vonoids, particularly the presence of a double bond at
C2–C3 and a hydroxyl group at C3 on the C ring, in relation
with their antioxidant activity in biological systems has
been a matter of much controversy [9–12]. Previous studies
have revealed that the presence of two hydroxyl groups at
C3, and C4, on the B ring is the most important structural
feature for determining the antioxidant activity of these
compounds [13,14].

The objective of this study was to analyse the structure–
antioxidant activity relationship of four flavonoids, i.e. lu-
teolin, quercetin, eriodictyol, and taxifolin, which differ in
the position of the hydroxyl group at C3 and in that of the
double bond at C2–C3 (Fig. 1), by using the retinal cells as
a model of neuronal cells. We demonstrate that oxidative
stress, induced in the presence of ascorbate/Fe21, is highly
reduced in the presence of the flavonoids. Eriodictyol,
which has no double bond at C2–C3 and no hydroxyl group
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at C3 (Fig. 1), was found to be the most efficient flavonoid
in preventing the formation of ROS in the retinal cells,
suggesting its higher antioxidant activity.

2. Materials and methods

2.1. Compounds

Quercetin, NADH, and BME were purchased from Sig-
ma; luteolin, eriodictyol, and (6)-taxifolin were from Ex-
trasynthe`se; trypsin was from GIBCO; fetal bovine serum
was from BioChrom KG; and DCFH2-diacetate was from
Molecular Probes. All other reagents were of analytical
grade.

2.2. Culture of chick retinal cells

Primary cultures of retina were prepared from 8-day-old
chick embryos, as described previously [15]. The retinas
were dissected free from other ocular tissues and dissociated
with 0.1% trypsin in a Ca21- and Mg21-free Hanks’ bal-
anced salt solution for 15 min at 37°. The digested tissue
was centrifuged at 500g for 1 min, and the pellet was
resuspended in BME containing Earle’s salts andL-glu-
tamine, buffered with 25 mM HEPES and 25 mM NaHCO3,
and supplemented with 5% fetal calf serum (heat-inactivat-
ed), penicillin (100 U/mL), and streptomycin (100mg/mL).
Then, the tissue was dissociated mechanically with a glass

pipette and the retinal cells were further cultured in BME-
supplemented medium, as described above. The cells were
plated at a density of 0.763 106 cells/cm2 on poly-L-lysine
(0.1 mg/mL)-coated coverslips for fluorescence measure-
ments or at a density of 0.533 106 cells/cm2 on poly-L-
lysine-coated 6-multiwell Costar plates for the other mea-
surements. The cells were maintained in culture for 5–6
days in an atmosphere of 95% air and 5% CO2. A cell
preparation similar to the one used in this work was shown
to contain a significant percentage of amacrine-like neurons
and neurons resembling bipolar cells, and only a few glial
cells [16–20].

2.3. Induction of oxidative stress

The oxidant pair ascorbate/Fe21 was used to induce
oxidative stress in retinal cells in culture. After removal of
the culture medium, the retinal cells were washed twice and
incubated in Na1 medium, containing (in mM): 140 NaCl,
5 KCl, 1.5 CaCl2, 1 MgCl2, 1 NaH2PO4, 5.6 glucose, and 20
HEPES, pH 7.4, at 37°, for 10 min. Ascorbate (5 mM)/Fe21

(100mM) was incubated in Na1 medium (pH 7.4), for 15 or
20 min, at 37°. In this study, we used the oxidant pair
ascorbate/Fe21 because an increase in free iron concentra-
tion occurs in many neuropathological situations as a result
of a disruption of iron homeostasis. Furthermore, free iron
can be reduced by ascorbate that exists at a high (millimo-
lar) concentration in the nervous tissue, generating hydroxyl
radicals by the Fenton reaction [1,2,21].

Fig. 1. Chemical structures of four flavonoids, i.e. luteolin, quercetin, eriodictyol, and taxifolin.
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Incubation with the flavonoids was performed simulta-
neously with ascorbate/Fe21 (20 min) or during a preincu-
bation in Na1 medium (2 hr), followed by the induction of
oxidative stress (15 min). A preincubation of the flavonoids
for 2 hr ensured the permeation into the plasma membrane
[10,22]. The four flavonoids studied were used at the fol-
lowing range of concentrations: luteolin (20–50mM), quer-
cetin (10–30mM), eriodictyol (10–30mM), and taxifolin
(30–60mM). Under control conditions, the cells were in-
cubated in the absence of ascorbate/Fe21.

2.4. Measurement of the extent of lipid peroxidation

The extent of lipid peroxidation in the retinal cells was
evaluated by measuring the production of TBARS, as de-
termined by the TBA method. Thiobarbituric acid reacts
with substances named TBARS (oxidative degradation
products that react with TBA), including MDA (malondial-
dehyde). This method was previously revealed to be quite
efficient in the determination of peroxidation in retinal cells,
because is simple, quick, requires a minimum of handling,
and shows a good correlation with other methods used to
evaluate peroxidation [18–20,23].

After the induction of lipid peroxidation, the reaction
was stopped by lowering the temperature to 0–4°, placing
the wells on ice, and removing the incubation medium and
adding 1 mL of ice-cold 15 mM Tris, pH 7.4. The cells were
further scraped and 0.8 mL of cell suspension was added to
2 mL of a TBA–TCA–HCl–BHT reagent, containing
0.375% TBA (w/v), 0.25 N hydrochloric acid (HCl), and 6.8
mM 2,6-di-tert-butyl-4-methylphenol (BHT), still on ice.
Then, the samples were placed in a boiling waterbath for 15
min, removed, and allowed to cool at 0–4°, in ice. The
samples were centrifuged at 3000 rpm for 15 min (SIGMA-
302 K centrifuge), the supernatant was collected, and the
absorbance was measured at 530 nm. An absorption coef-
ficient of 1.563 105 M21 cm21 was used for calculating the
amount of TBARS produced, expressed as nmol
TBARS/mg protein. The amount of protein was measured
by the Sedmak method [24].

The efficacy of the flavonoids, luteolin, quercetin, erio-
dictyol, and taxifolin, was evaluated by determining the
percentage of inhibition of TBARS production, as com-
pared to the maximal oxidation of the cells (oxidant condi-
tion), in the absence of the flavonoids by using the formula:

% inhibition5 100%2

TBARS antioxidant condition–TBARS control

TBARS oxidant condition–TBARS control
3 100%

2.5. Measurement ofoxidative stress

The extent of oxidative stress in retinal cells in culture
was measured by following the oxidation of DCFH2 to the
fluorescent DCF [25,26]. After incubation with the fla-
vonoids for 2 hr, the cells were loaded with 20mM

DCFH2-DA for 15 min in the dark. Loading of the probe
was renewed for each experiment. Then, the retinal cells
were exposed to ascorbate/Fe21 for 15 min. After rinsing,
cell fluorescence was measured in Na1 medium, at 37°,
with excitation at 502 nm and emission at 550 nm, using a
SPEX Fluorolog spectrometer equipped with a thermostat-
ted waterbath. The increments in DCF fluorescence, after
15-min oxidation, were recorded for 5 min and expressed as
arbitrary units above the initial values.

2.6. Analysis of retinal cell viability

The effect of oxidative stress, induced by ascorbate/
Fe21, on the viability of cultured chick retinal cells was
evaluated by determining the leakage of the cytoplasmic
enzyme LDH to the extracellular medium. The viability of
retinal cells was also determined after preincubation with
the flavonoids for 2 hr, followed by incubation with ascor-
bate/Fe21 for 20 min. LDH activity was measured spectro-
photometrically by following the conversion of NADH to
NAD1, at 340 nm, as described elsewhere [20]. LDH leak-
age to the extracellular medium was expressed as a percent-
age of total LDH activity (intracellular plus extracellular).

2.7. Evaluation of the degree of hydrophobicity of the
flavonoids

The degree of hydrophobicity of the flavonoids was
examined by measuring the partition coefficients (PC) and
the retardation factors (Rf). The PC were measured by using
ann-octanol/HEPES system. The flavonoids were dissolved
in n-octanol at a concentration of 200mM, and 5 mL of each
flavonoid solution was shaken with 100 mL HEPES (20
mM, pH 7.4) for 10 min, at 196 1°. Then, the two phases
were separated by centrifugation. The PC values were cal-
culated by using the formula [27]:

PC5 log CO/CH

where CO and CH are the concentrations of flavonoids in
n-octanol and HEPES, respectively, measured by HPLC/
diode array.

The Rf were determined by TLC on silica gel plates
(Merck, G 60) by using a solvent system consisting of
chloroform:ethyl acetate:acetic acid (16:8:1) [28]. The
plates were pre-run with the solvent and allowed to dry prior
to the application of the sample. A volume of 2mL of each
flavonoid solution (200mM) was applied on the silica
plates.

2.8. Statistical analysis

The results are the means6 SEM of triplicates from 2–4
independent experiments. Statistical values (P , 0.05)
were determined by the unpaired two-tailed Student’st-test
or by the one-way ANOVA Tukey–Kramer post-test for
multiple comparisons.
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3. Results

3.1. Effect of flavonoids on ascorbate/Fe21-induced lipid
peroxidation in cultured retinal cells

Fig. 2 shows the dose-dependent changes in TBARS
production induced by eriodictyol, quercetin, luteolin, and
taxifolin in retinal cells submitted to ascorbate/Fe21. Incu-
bation of retinal cells with ascorbate (5 mM) and Fe21 (100
mM) for 20 min significantly increased the production of
TBARS (11.236 0.28 nmol TBARS/mg protein) as com-
pared to the control, in the absence of ascorbate/Fe21

(0.496 0.02 nmol TBARS/mg protein).
In the presence of the flavonoids, incubated simulta-

neously with ascorbate/Fe21, the production of TBARS
decreased significantly in a dose-dependent manner, as ob-
served by the sharp increase in the percentage of inhibition
(Fig. 2). Determination of the concentration of the fla-
vonoids sufficient to inhibit the production of TBARS by
50% (IC50 values) revealed the following order of antioxi-
dant efficacy: eriodictyol (IC50 5 13.89 6 0.66 mM) .
quercetin (IC50 5 20.74 6 0.64 mM) . luteolin (IC50 5
28.566 1.73mM) . taxifolin (IC50 5 46.496 1.11mM).
All the IC50 values were found to be statistically different
(P , 0.001,ANOVA statistical analysis).

We also determined the antioxidant effect of the fla-
vonoids when preincubated for 2 hr before the induction of
oxidative stress by using theIC50 values determined in Fig.
2. Under these conditions, eriodictyol (14mM), quercetin
(21 mM), luteolin (29 mM), and taxifolin (46 mM) also
reduced the production of TBARS to 32.396 1.64%,
28.76 6 2.08%, 28.186 2.13%, and 24.246 3.17%,
respectively. Data obtained in the presence of taxifolin,
shown to inhibit TBARS production to a lower extent, were

statistically different as compared to eriodictyol only (P ,
0.05). Inthese experiments, oxidative stress in the absence
of the flavonoids induced the formation of 10.426 0.67
nmol TBARS/mg protein, significantly different as com-
pared to the control (0.486 0.05 nmol TBARS/mg protein).

3.2. Inhibitory effect of flavonoids on the extent of
oxidative stress determined by DCFH2

Oxidative stress was also analysed by following the
increase in DCF fluorescence upon exposure to ascorbate/
Fe21. Fig. 3 shows that oxidative stress induced a signifi-
cant increase in the fluorescence intensity of DCF (approx-
imately 1.9-fold) as compared to the control (P , 0.001).
Preincubation of the flavonoids at theIC50 values determined
in Fig. 2 reduced ascorbate/Fe21-induced DCF fluorescence
by about 6.4-, 2.9-, 2-, and 3.9-fold in the presence of
eriodictyol (14mM), quercetin (21mM), luteolin (28mM),
and taxifolin (46 mM), respectively (Fig. 3). Moreover,
quercetin, taxifolin, and particularly eriodictyol were shown
to significantly decrease the fluorescence of DCF as com-
pared to the control (Fig. 3), suggesting their capacity to
reduce basal ROS production in cultured retinal cells.

3.3. Analysis of cell viability after incubation with
ascorbate/Fe21 and the flavonoids

Table 1 shows the percentage of LDH leakage, a mea-
surement of retinal cell viability. After oxidation of the
retinal cells or incubation with the flavonoids, the percent-
age of LDH release to the extracellular medium did not
change significantly in comparison to control cells (4.396
0.36% LDH), indicating the maintenance of the integrity of
the plasma membrane. Therefore, no toxic effects were

Fig. 2. Dose-dependent effect of eriodictyol, quercetin, luteolin, and taxifolin on the extent of lipid peroxidation in retinal cells in culture. The flavonoids
eriodictyol (10–30mM), quercetin (10–30mM), luteolin (20–50mM), and taxifolin (30–60mM) were incubated simultaneously with ascorbate (5 mM)/Fe21

(100 mM) in Na1 medium, pH 7.4, at 37° for 20 min. The extent of lipid peroxidation was measured by the TBA method. The results were expressed as
the percentage of inhibition of TBARS production in comparison to retinal cells incubated in the presence of the oxidant pair, but in the absence of the
flavonoids, and are the means6 SEM of triplicates from three to five experiments.
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associated with ascorbate/Fe21-induced oxidation, as
shown previously [29], or with the flavonoids.

3.4. Analysis of the degree of hydrophobicity of flavonoids

Because the antioxidant activity of flavonoids has been
reported to be related to their capacity to interact and per-
meate the lipid bilayer [13,22], we also analysed the degree
of hydrophobicity of these compounds. Table 2 shows the
PC values for eriodictyol, quercetin, luteolin, and taxifolin
by using then-octanol/HEPES system at a temperature of
19 6 1°. The results indicate the following order of affinity
for the octanol phase: luteolin. quercetin. eriodictyol.
taxifolin.

Because the PC values determined with octanol/HEPES
may underestimate the partition of the molecules into the
lipid bilayer, we also determined the Rf values for the four

flavonoids by TLC to evaluate the interaction of the fla-
vonoids with the biological membranes [28,30]. The Rf
values obtained for eriodictyol, quercetin, luteolin, and taxi-
folin (Table 2) show that the relative affinity of the fla-
vonoids for the silica, associated with the ability to establish
hydrogen bonds, varies in the following order: taxifolin.
luteolin . quercetin. eriodictyol.

4. Discussion

Previous papers have described that flavonoids have the
ability to form complexes with transition metal ions, caus-
ing them to behave either as antioxidants or pro-oxidants
depending on the reaction conditions [5,31,32]. In this
study, we show that 4 structurally related flavonoids, i.e.
quercetin, luteolin, eriodictyol, and taxifolin, are efficient
antioxidants against oxidative stress induced by ascorbate/
Fe21 in retinal cells in culture.

Fig. 3. Influence of the flavonoids on the production of intracellular ROS in retinal cells in culture. Retinal cells were preincubated with the flavonoids at
the IC50 values determined in Fig. 2 (14mM eriodictyol, 21mM quercetin, 29mM luteolin, and 46mM taxifolin) for 2 hr in Na1 medium, at pH 7.4 (37°),
washed, and loaded with 20mM DCFH2 for 15 min in the dark. The cells were further exposed to 5 mM ascorbate/100mM Fe21 for 15 min. Control cells
were incubated in the absence of the oxidant pair and the flavonoids. The results, expressed as arbitrary units (au) above the initial DCF fluorescence values,
are the means6 SEM of duplicates from four independent experiments. *P , 0.05, **P , 0.01, *** P , 0.001 ascompared to the control in the absence
of ascorbate/Fe21. 1P , 0.05, 11P , 0.01, 111P , 0.001 ascompared to eriodictyol.xP , 0.01as compared to quercetin.##P , 0.01 ascompared
to luteolin. The four flavonoids significantly inhibited (P , 0.001) theincrease in DCF fluorescence induced by ascorbate/Fe21.

Table 1
Analysis of retinal cell viability after ascorbate/Fe21-induced oxidative
stress in the absence or presence of flavonoids

LDH leakage (% of total)

Control 4.396 0.36
Ascorbate/Fe21 5.436 0.39
1Eriodictyol (14mM) 3.666 0.08
1Quercetin (21mM) 4.646 0.67
1Luteolin (29mM) 3.206 0.73
1Taxifolin (46 mM) 4.606 0.35

The retinal cells were preincubated with the flavonoids, at theIC50

values, for 2 hr in Na1 medium (37°). Then, the cells were rinsed and
further incubated in the presence of ascorbate (5 mM)/Fe21 (100mM), pH
7.4, for 20 min. Control cells were incubated in the absence of the oxidant
pair or the flavonoids. Cellular viability was determined by measuring the
release of LDH to the extracellular medium. The results are the means6
SEM of triplicates from two independent experiments.

Table 2
Partition coefficient (PC) and retardation factor (Rf) values for
eriodictyol, quercetin, luteolin, and taxifolin

Flavonoids PC values Rf values

Eriodictyol 1.656 0.05 0.43
Quercetin 2.046 0.04 0.34
Luteolin 2.306 0.06 0.27
Taxifolin 0.796 0.02 0.20

PC values were determined by then-octanol/HEPES (20 mM, at pH 7.4)
system, and Rf values were determined by TLC on silica gel plates using
a non-polar elution system consisting of chloroform:ethyl acetate:acetic
acid (16:8:1). The flavonoids were tested at a concentration of 200mM.
The results of PC values are the means6 SEM of duplicates from three
independent determinations. All values were found to be statistically dif-
ferent (P , 0.001,ANOVA statistical analysis).
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Eriodictyol, characterised by not having a double bond at
C2–C3 or a hydroxyl group at C3 (Fig. 1) and by having a
decreased ability to establish hydrogen bonds (Table 2), was
shown to be the most efficient antioxidant, followed by
quercetin, luteolin, and taxifolin. The antioxidant activity of
the flavonoids was determined by their capacity not only to
decrease the extension of lipid peroxidation, but also to
reduce the production of ROS induced by ascorbate/Fe21.

Lipid peroxidation has been described to cause gradual
changes in membrane structure, ultimately leading to the
loss of membrane function and integrity [33, for review].
The extent of cellular oxidation induced by 5 mM ascorbate/
100 mM Fe21 was considered moderate, because a signifi-
cant increase in the formation of ROS and in the extent of
lipid peroxidation was observed in cells exposed to the
oxidant pair (Figs. 2 and 3) without significative changes in
retinal cell viability (Table 1).

Lower IC50 values obtained in the presence of eriodictyol
or quercetin as compared to luteolin or taxifolin suggest
their greater efficiency as antioxidants. We also observed
that the antioxidant activity of the flavonoids did not cor-
relate with the presence of the double bond at C2–C3 and/or
with the hydroxyl group at C3 [order of antioxidant activity:
eriodictyol. quercetin (C2 5 C3; 3-OH) . luteolin (C2 5
C3) . taxifolin (3-OH)], suggesting that the changes in
chemical structure are a requirement for the antioxidant
activity upon ascorbate/Fe21-induced oxidative stress in
cultured retinal cells.

The antioxidant activity of a compound can depend ei-
ther upon the free radical species generated and/or the
oxidants used in a given system [5,34,35]. In a previous
study, Rice-Evanset al. determined the radical-scavenging
abilities of these flavonoids by measuring their ability to
scavenge 2,29-azinobis-(3-ethylbenzothiazoline-6-sulphonic
acid) radical cation and the activity order was: quercetin.
luteolin . taxifolin . eriodictyol [36]. Major differences
between our results and the data obtained by Rice-Evanset
al. may be related to the use of a more complex system
when using the retinal cells in culture. In another study,
using H2O2–Cu21 as the generator of hydroxyl radicals,
Caoet al. showed that eriodictyol and taxifolin have a high
antioxidant capacity as compared to quercetin and luteolin
[5]. These results were explained on the basis of a direct
interaction of the flavonoids with the transition metals,
thereby affecting the rate of hydroxyl radical generation. In
accordance, Ackeret al. verified that taxifolin complexes
more strongly with Fe21 than luteolin or quercetin [10].

Thus, the antioxidant activity of the flavonoids has been
described to result from a combination of iron chelation and
free radical-scavenging activities [37]. Although the identi-
fication of these two processes is not easy, by comparing the
antioxidant efficacy of the flavonoids after a preincubation,
which mainly reflects their ability to permeate the plasma
membrane, and the simultaneous incubation of the fla-
vonoids with the oxidant pair, which accounts for a certain
ability of the flavonoids to chelate iron in solution, we can

partly discriminate the contribution of iron chelation. Taxi-
folin showed a lower antioxidant efficacy in inhibiting the
extent of lipid peroxidation induced by ascorbate/Fe21 as
compared to eriodictyol (Fig. 2). In fact, taxifolin was
shown to be the flavonoid that established the weakest
hydrophobic interactions and the strongest hydrogen bonds
(Table 2), suggesting that it had a lower ability to permeate
the plasma membrane.

The incorporation of the flavonoids in cellular mem-
branes is affected by electrostatic interactions, formation of
hydrogen bonds with polar groups of the phospholipids,
hydrophobic interactions with fatty acyl chains, and by the
molecular geometry of the phospholipids [22,38]. Whereas
in n-octanol/HEPES, hydrophobic interactions or van der
Waals forces are the main factors involved in the separation
of the flavonoids, according to their polarity, the prepon-
derant factors in TLC on silica gel plates are the hydrogen
bonds formed between the silica (SiO2) and the flavonoids
[27,28]. Thus, the order of affinity for the octanol phase
(luteolin . quercetin. eriodictyol . taxifolin, Table 2)
was different when compared to the order of affinity for the
silica (taxifolin . luteolin . quercetin. eriodictyol, Table
2), suggesting that luteolin is the flavonoid that forms the
strongest hydrophobic interaction with octanol, whereas
taxifolin forms the strongest hydrogen bonds and least
strong hydrophobic interactions. These differences may be
explained by the planarity and electronic delocalisation of
the molecules: luteolin or quercetin have a more planar
structure than eriodictyol or taxifolin due to the presence or
absence of the double bond at C2–C3 on the C ring [39].
Analysis of our data strongly suggests that the order of
antioxidant efficacy of the flavonoids in the retinal cells is
closely related to the Rf values (eriodictyol. quercetin.
luteolin. taxifolin), i.e. an increased antioxidant efficiency
is in the inverse order to their ability to establish hydrogen
bonds. Furthermore, the higher antioxidant activity of erio-
dictyol can also result from its non-planar structure, which
confers a higher flexibility to conformational changes, ac-
cording to Aroraet al. [40] and a higher permeation through
the plasma membrane, as compared to the more rigid struc-
ture of quercetin or luteolin.

The extent of oxidative stress was also determined by
following the changes in fluorescence of DCF in the pres-
ence of DCFH2, a measurement of intracellular ROS pro-
duction. Ascorbate/Fe21 significantly increased the forma-
tion of intracellular free radicals in the retinal cells, as
observed previously [25]. A high inhibition in the formation
of intracellular ROS was observed after incubation in the
presence of eriodictyol (14mM), followed by taxifolin (46
mM), quercetin (21mM), and luteolin (28mM) (Fig. 3).
Although the order of antioxidant activity as determined by
DCF fluorescence (eriodictyol. quercetin. luteolin) was
in accordance with the inhibition of TBARS, the observa-
tion that taxifolin had a higher antioxidant activity than
luteolin was probably due to a higher hydrophobic interac-
tion of luteolin with the plasma membrane, as evaluated by
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the PC and Rf values (Table 2). Our results are in accor-
dance with Oyamaet al., who showed that quercetin and
other flavonoids can reduce the oxidation of DCFH in both
resting (basal conditions) and Ca21-loaded brain neurons
[41]. Although the effects of the flavonoids in reducing DCF
fluorescence were mainly associated with a decrease in
intracellular ROS, we cannot exclude the possibility that the
flavonoids can scavenge the DCF semiquinone free radical
intermediate (oxygen radical) produced during the forma-
tion of the fluorescent product DCF.

In conclusion, eriodictyol was shown to be the most
efficient flavonoid in inhibiting the oxidative stress induced
by ascorbate/Fe21. The higher antioxidant activity of erio-
dictyol observed in our study may be associated with its
capacity to inhibit the production of hydroxyl radicals in
Fenton reaction and membrane permeability in retinal cells
in culture [5,12]. This observation implicates eriodictyol as
a highly potent neuroprotector in pathological conditions, in
which the generation of free radical species is involved.
These data may be relevant to establish natural flavonoids as
potent antioxidants against oxidative stress-mediated cell
injury associated with neuropathological conditions.
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