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Abstract 

A multiobjective routing model for Multiprotocol Label Switching networks with multiple service 

types and traffic splitting is presented in this paper. The routing problem is formulated as a multiobjective 

mixed-integer program, where the considered objectives are the minimization of the bandwidth routing 

cost and the minimization of the load cost in the network links with a constraint on the maximal splitting 

of traffic trunks. Two different exact methods are developed for solving the formulated problem, one 

based on the classical constraint method and another based on a modified constraint method. A very 

extensive experimental study, with results on network performance measures in various reference test 

networks and in randomly generated networks, is also presented and its results are discussed. 

Keywords: Routing models, Multiobjective optimization, Telecommunication networks, Network flow 

approach, Traffic splitting. 

1. Introduction 

The routing calculation and optimization problems in modern multiservice networks are quite 

challenging, as the performance and cost metrics in these networks are multi-dimensional and often 

conflicting. Routing problems in communication networks consist in the selection of a sequence of 

network resources (i.e. paths or ‘routes’) that seek the optimization of some objective functions, while 

satisfying a set of constraints. According to the route related network metrics which are chosen, the 

performance of different routing decisions may be measured and compared. 

There are potential advantages in formulating routing problems in multiservice networks as multiple 
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objective optimization problems, because the trade-offs among distinct performance metrics and other 

network cost function(s), potentially conflicting, can be analyzed in a consistent manner. 

In a Multiprotocol Label Switching (MPLS) network, packets are forwarded through LSPs (Label 

Switched Paths), according to certain technical rules. An important problem in traffic engineering is to 

distribute the traffic trunks (i.e. the aggregation of traffic flows between a pair of nodes/routers of the 

same FEC – Forwarding Equivalence Class) on the network by the possible LSPs, in an adequate manner. 

This procedure is known as traffic splitting, as the traffic trunks are split and mapped onto different paths 

in the network, satisfying the constraints of the bandwidth required by the traffic trunk of the given 

service class. This is useful to obtain a balanced distribution of the load in the network, but it entails the 

establishment of more LSPs and an increase in the complexity of the network management. 

Some works concerned with load balancing can be mentioned. A multiobjective problem is 

formulated in [40] in the context of off-line routing in telecommunication networks. The multimedia 

traffic flows in current networks are characterized in [28] as batch Markovian arrival processes. The 

authors show that when these traffic flows are split, the whole network performance (measured in terms 

of end-to-end delay, delay variance, and cell loss probability) tends to improve. A survey on different 

multipath routing techniques in the Internet is presented in [38]. A fine grained traffic splitting technique 

is used in [23] in data center networks providing a better load-balanced network, when compared to 

networks where equal-cost multipath routing is considered. 

An overview on load balancing techniques in IP/MPLS networks can be found in [65]. Also see [44] 

for a comparison on multipath routing algorithms for MPLS networks, where the traffic demand is 

distributed among selected candidate paths so that an adequate balancing of the load in the network is 

achieved. A survey on different multipath routing techniques, including traffic splitting, is proposed in 

[42]. 

Many traffic splitting algorithms proposed for MPLS networks concerned with an appropriate load 

distribution can be mentioned. A multipath adaptive traffic engineering scheme (MATE) is proposed in 

[26]. In this scheme, the load is adaptively balanced among multiple paths based on measurement and 

analysis of path congestion. A multipath routing approach which adapts itself in different time scales, to 

the changing network conditions, is presented in [57]. Global information for selecting a few good paths 

based on their long term available bandwidths is used, together with local information to cushion the 

short term variations in their available bandwidths. The paper [43] proposes a traffic engineering 

algorithm that calculates the traffic split ratio for multiple paths, under constraints such as maximum hop 

count, and preferred or not preferred node/link list. A dynamic multipath traffic engineering mechanism 

named LDM (Load Distribution over Multipath) is proposed in [66]. The traffic is distributed among 

multiple paths based on both the length and the load of a path, so as to enhance the network utilization 

as well as the network performance. A traffic splitting scheme is proposed in [45] for MPLS networks. 

The traffic is split among multiple candidate paths, previously selected having in mind information on 

the widest disjoint paths. The purpose of this scheme is to guarantee an adequate load distribution over 

the network. A traffic splitting mechanism to improve network security (in case of malicious attacks) 



and resource utilization in MPLS networks is proposed in [3]. A variable splitting ratio based algorithm 

is proposed in [55], where the load is balanced by an iterative method. In every iteration, a part of the 

load is split from the maximum cost path to the minimum cost path. 

Other traffic splitting algorithms proposed in MPLS networks can be mentioned. The problem of 

allocating bandwidth to competing flows in an MPLS network, subject to constraints on fairness, 

efficiency, and administrative complexity is considered in [71]. In this model of traffic splitting, each 

flow is assigned a preferred or primary LSP, but traffic may be sent to other secondary LSPs, if needed. 

The preferred assignment is the one that sends most traffic of a source on the primary path of that source 

and minimizes the amount of traffic sent over secondary paths. In a context of fault recovery in MPLS 

networks, a model with traffic splitting is described in [18, 19]. In a case of LSP or link failure, the 

associated traffic is split and rerouted to a set of alternative pre-assigned LSP paths, so that the total 

traffic throughput and the resource utilization are maximized. The amount of traffic to be forwarded on 

each pre-assigned backup LSP is calculated off-line considering a case based reasoning process where 

information on the past experience of the loading process is taken into account. In [41], a multipath load 

balancing algorithm is used to optimally split the incoming traffic in MPLS networks. A composite cost 

function representing the combined effect of average delay and jitter in the network is used, in order to 

express a measure of the Quality of Experience (QoE) perceived by the end user. Another multiobjective 

routing optimization model using two disjoint paths per flow is in [16], where a hierarchical multicriteria 

routing optimization formulation is proposed. The formulated problem is solved exactly by recurring to 

an adaptation of the algorithm for calculating non-dominated bi-criteria shortest pairs of disjoint paths 

given in [12]. 

We consider in this paper a multiobjective formulation for the global routing problem i.e. involving 

the simultaneous calculation of the LSPs for all node-to-node traffic flows, where traffic splitting is 

allowed. This type of routing approach may be considered as a specific type of network-wide 

optimization in the sense defined in [54, 17], since the objective functions of the route optimization 

model depend explicitly on all traffic flows in the network. Note that the traffic splitting models reviewed 

in the previous paragraphs normally calculate the traffic splitting and the associated paths on a per flow 

basis, that is, for each end-to-end offered flow at a time and unlike our model, they may be considered 

as flow-oriented optimization approaches. In contrast, network-wide optimization approaches such as 

the one addressed in this paper perform global optimization by executing the joint calculation of traffic 

splits for all traffic flows simultaneously, so as to obtain Pareto optimal solutions (see definition later in 

this section) to the chosen network performance/cost objective functions. A further discussion on this 

and related modeling and methodological issues can be seen in [17]. 

Some authors have tackled similar types of formulations. We can mention the works [54, 27]. A bi-

objective lexicographic routing problem is formulated in [54], where the objectives are the maximization 

of the QoS (Quality of Service) traffic revenue and of the Best Effort (BE) traffic revenue. Traffic 

splitting is allowed in this context. The problem is solved by a lexicographic optimization method, where 

only the QoS traffic is considered first, and the BE flows will take only the remaining available 



 

bandwidth. A model with three objectives (including the minimization of traffic splitting) is considered 

in [27]. The formulated routing problem is a bi-objective one, with a constraint on the total number of 

paths used in the network, and it is solved by a lexicographic weighted Chebyshev metric method. 

A stochastic multiobjective routing formulation framework in the context of MPLS networks was 

proposed in [17]. This meta-model is a network-wide optimization routing approach, with multiple and 

hierarchical objectives and considering two different service classes, QoS and BE, and different types of 

services in each class. The possibility of alternative routing is also considered. A specialized heuristic 

strategy for finding adequate compromise solutions to a specific simplified variant of the optimization 

meta-model is proposed in [34]. 

A multiobjective model allows a mathematically consistent evaluation of the trade-offs between the 

considered objectives. In multiobjective optimization problems, see e.g. [69], one seeks to find non-

dominated solutions, i.e. feasible solutions such that it is not possible to improve the value of an objective 

function without worsening the value of at least one of the other objective functions. The non-dominated 

solutions may also be designated as Pareto optimal solutions and their set constitutes the so-called Pareto 

front. A review on multicriteria routing optimization models for modern communication networks with 

a case study can be seen in [11]. A proposal of a conceptual framework for consistent multicriteria routing 

approaches in QoS-IP networks is given in [74]. 

The routing problem considered here is formulated as a multiobjective mixed-integer program, where 

the considered objectives are the minimization of the bandwidth transport cost and the minimization of 

the load cost in the network links, with a constraint on the maximal splitting of traffic trunks. The basic 

problem addressed here is an extension to a multiservice situation of the problem proposed in [27]. 

Furthermore, we have solved variants of the main problem by exact methods, that is, methods that can 

find any (exactly) non-dominated solutions and allow for a detailed analysis of the Pareto front of the 

multiobjective problem. 

Several classical exact methods are presented in [13], namely the weighting method, the constraint 

method, the non-inferior set estimation method and the multiobjective simplex method. An annotated 

bibliography of multiple objective combinatorial optimization problems is provided in [25], including a 

section on available exact methods. Some exact methods are also mentioned in [53], such as the physical 

programming method, the normal boundary intersection method and the compromise programming 

method. A variant of the constraint method, designated in [53] as a ‘normalized normal constraint 

method’, is also described. The work [51] focuses on the constraint method to solve multiobjective 

mathematical programming problems and presents a version of the method that avoids weakly non-

dominated solutions and seeks to accelerate the resolution process. 

Concerning the methodological approaches that can be used for tackling multiobjective mixed integer 

programming problems, when exact methods are too costly in terms of execution time or memory 

requirements, heuristics and metaheuristics of various types may be considered. This is especially 

important in situations where the execution time is too high for the application purposes. Examples are 

dynamic routing models with short routing update periods or on-line routing models, where the routing 



solutions have to be calculated in times of the order of a few ms. 

There is a vast number of bibliographical references regarding heuristics and metaheuristics for the 

resolution of multiobjective problems, for instance [31, 70]. Some of the major types of metaheuristics 

include: (i) local search, where the space of candidate solutions is searched to try and find a solution 

which optimizes a specific criterion among a number of candidate solutions [1]; (ii) tabu search, where 

a local search is performed in the neighborhood of a found local optimum, while using memory structures 

that prevent going back to already visited solutions or allow for the establishment of user-provided rules 

[32]; (iii) simulated annealing, where the physical process of slowly cooling a certain material is 

replicated, in the sense that the solution space is extensively explored, and as the possible solutions are 

examined there is a decreasing probability of accepting worse solutions [5]. Although some of these 

metaheuristics may be adapted for use in multiobjective optimization, an important and vast line of 

investigation in this field focuses on Evolutionary Algorithms (EAs) [20, 33, 8, 77] and [76 – section I]. 

An extensive review on Multiobjective Evolutionary Algorithms (MOEAs) available in the literature is 

beyond the scope of this paper, but we will mention an approach of this type, which seems quite 

promising in the field of MOEAs: the Multiobjective Evolutionary Algorithm based on Decomposition 

(MOEA/D) algorithm proposed in [76], which is an EA, i.e. a population-based metaheuristic 

optimization algorithm that tries to find potentially non-dominated solutions. The main feature of this 

EA is the decomposition of a multiobjective optimization problem into several scalar optimization 

subproblems, which will be optimized simultaneously. Therefore, issues such as fitness assignment and 

diversity maintenance become easier to deal with. In the optimization of each subproblem, information 

from the neighboring subproblems is used, which leads to a lower computational complexity than other 

current MOEAs. 

Note that the solutions obtained with heuristic and metaheuristic approaches are not guaranteed to be 

non-dominated solutions of the multiobjective problems. In fact, each obtained solution may be non-

dominated in relation to all the other solutions found throughout the execution of the algorithms and 

potentially, but not necessarily, non-dominated per se. The set of solutions may constitute an 

approximation to the Pareto front. In the case of our problem and our application study concerning the 

reference test networks, the developed exact resolution methods are computationally feasible and 

therefore their use for resolution purposes is fully justified, as they guarantee that all the obtained 

solutions are indeed non-dominated per se and are part of the Pareto front. 

A final note concerning the fact that there are some types of problems in different application environ-

ments with some similarities to the problem addressed in this paper. Consider in particular the problem 

of routing and traffic assignment in transport networks. The total traffic between each origin-destination 

pair also has to be considered, along with the capacity of each road of the network. This problem has 

also been studied by many authors as a multi-objective problem, with many different resolution 

approaches. The most common approach to dealing with this problem is by considering two objectives: 

travel time and travel associated toll costs. These objectives are conflicting, as faster routes will have a 

higher toll cost associated with it. A value of time (VOT) is considered for each user, depending on how 



 

much money or time that user spends on a particular trip. Nevertheless, important differences (with 

respect to the type of problem addressed in this paper) concerning the representation of the traffic flows, 

the nature and formulation of the objective functions and some constraints can be identified, since these 

are specific to the application environment (communication networks using MPLS as the basic 

information transport technology in our case). Naturally, these features may have a significant impact in 

the specific mathematical formulations and resolution algorithms that are used in both cases. 

An extensive overview of contributions in the area of routing problems in transport networks is out 

of the scope of our work, but some reviews on routing and traffic assignment optimization in transport 

networks can be seen in [64, 58, 63], and more recently in [60, 50, 37, 6, 60, 46, 9]. We will now make 

reference, in particular, to works concerning multiobjective formulations of routing problems in transport 

networks. The objectives of cost and time are considered in many references. Work on this problem has 

been developed in [21, 22], where a probabilistic distribution is considered for the VOT parameter, rather 

than a fixed value. In [75, 39], a VOT is associated with the users of a specific class. As different classes 

of users experience different trade-offs between time and money (as they have different VOTs), an 

analysis on multiclass bi-criterion traffic equilibrium models is presented [75]. A multiclass, multicriteria 

logit-based traffic equilibrium assignment model in road networks served by advanced traveler 

information systems (ATIS) is presented in [39]. In [2], the route cost functions are nonadditive functions 

of time, where the cost parameter is converted to a time parameter. In [49], users’ path choices are 

considered in response to time-varying toll charges. Therefore, heterogeneous users with different VOT 

preferences are taken into account in the underlying path choice decision framework. A simulation-based 

heuristic approach is proposed to find an adequate path flow pattern in the bicriteria dynamic user 

equilibrium problem. We can also cite [62], where the authors propose heuristic solution methods that 

allow to obtain equilibrium solutions to the traffic assignment problem. An approach to model the 

stochastic route choice in a tolled road network is proposed in [72, 73]. All the users try to minimize 

both their travel time and the paid toll cost, in the context of a set of preferences represented by an 

indifference function: associated with a path with a specific toll, there is a limit on the time a user is 

willing to take. An additional third criterion (besides cost and time) is considered in [56], where a 

multiclass multicriteria network equilibrium problem is proposed. The criteria are travel time, travel cost 

and the emissions generated. Class-dependent and link-dependent weights are associated with each 

criterion. 

Another relevant paper regarding the subject of path-based traffic assignment is [4]. In this paper, a 

set of paths is obtained prior to the traffic assignment, and heuristic rules are proposed in order to confine 

the path set to a reasonable size. The papers [47, 48] are also relevant, as they propose an alternate 

formulation of the traffic assignment problem, by defining a gap function to convert a Nonlinear 

Complementarity Problem (NCP) formulation of the user-equilibrium traffic assignment problem to an 

equivalent Mathematical Program (MP) formulation, which allows for the use of a large number of 

solution techniques developed for MP. Different solution approaches are proposed: one based on a set of 

working routes modeled according to the users’ preferences; another based on a column generation 



procedure to generate a new route in each iteration. A framework is proposed in [7] for the design of an 

optimal multimodal transport network, where multiple objectives are considered. In this reference, a bi-

level optimization is performed, with an upper level regarding the behavior of the planner or government 

and a lower level regarding the behavior of the traveler. 

The main contributions of this paper are the following: 

 formulation (in the context of a network-wide multiobjective optimization routing approach) of a 

multiobjective routing model for MPLS networks with traffic splitting and multiple service types, 

where the considered objectives are the minimization of the bandwidth routing cost and the 

minimization of the load cost in the network links with a constraint on the maximal number of paths 

that may be used by any flow; 

 development of two different exact methods for solving the aforementioned model adapted to the 

application environment: the first one based on the classical constraint method [13] (identified 

hereafter as MCC or Multi-Criteria Classical constraint method) and the second one based on a 

modified constraint method proposed in [53] (identified hereafter as MCM or Multi-Criteria 

Modified constraint method). We have added to these methods special features related to the nature 

of the application, one that allows the choice of a specific area of the Pareto front to be explored and 

where more interesting solutions can be found, and another that allows for the choice of a specific 

solution as an adequate solution to the routing problem. Both features rely on a system of preferences 

established through the definition of preference regions in the objective function space obtained 

from aspiration and reservation levels (preference thresholds) defined for the considered objective 

functions; 

 a very extensive experimental study, where many different reference networks are considered, with 

different traffic offered values (including randomly generated values) [27, 52, 54, 59, 67, 68]. 

Further experiments were also carried out with a set of randomly generated networks obtained with 

the gt-itm (Georgia Tech – Internetwork Topology Models) software [78]. In these cases, a double 

randomness is considered, as the MPLS networks topologies are randomly generated and the matrix 

of the traffic offered to those networks is also randomly generated; 

 analysis of the results obtained for relevant network performance measures (based on the ones 

presented in [68]). Some of the performance measures are related to the links utilization, as this is a 

very important parameter concerning network traffic carrying capabilities. Other performance 

measures allow for a comparison of the final solutions with the ideal solutions that would be 

obtained if a single objective problem was solved. Results on these performance measures were 

obtained and a statistical study on their average values and variation ranges was performed. 

The paper is organized as follows: in the next section, the routing model and the mathematical 

formulation of the multiobjective optimization problem are described. In section 3, two methods for 

solving the proposed problem are presented. A fourth section describing the considered experimental 

study and the obtained results is followed by a final section with some conclusions and an outline of 

future work. 



 

2. Model Description 

The notation of the model and the multiobjective mathematical programming formulations of the 

multiobjective routing model for MPLS networks with traffic splitting, are described next. 

2.1 Nomenclature and Notation 

A network ),( AN  with unidirectional arcs (or links) is considered, where N  is the set of nodes 

in the network and A  is the set of links in the network. The capacity of each network link is given by 

ku  [Mbit/s], Ak  . 

We consider different types of services and S   denotes the set of services of the network. 

Considering the point-to-point offered bandwidth matrix and the percentage of bandwidth associated 

with each service ( Ssqs , , with 0.1 Ss sq ) are given, the value of the bandwidth that is offered 

by each flow to the network may be calculated. Let ijT  [Mbit/s] be the total value of bandwidth that is 

effectively offered from node i  to node j  in the network. The average bandwidth offered by the flow

),,( sjit    (corresponding to the traffic from service Ss   originating in node i   and destined to 

node j ) is ijst Tqd  . The set of all network flows is T . For each flow t , a set of tL  feasible paths 

is considered,  110 ,...,,


 tL
tttt pppP . Traffic splitting is allowed in this model, i.e. the bandwidth that is 

offered by a flow t  to the network may be divided by tL  feasible paths. 

2.2 Objective Functions 

For each network link Ak  , an additive cost per unit of bandwidth, kc , is considered; l
tC  is the 

cost of using path l
tp , the l -th feasible path for flow t ; the decision variable l

tx  is the part of the 

bandwidth offered by flow t  that will be carried in the l -th path. 

The first objective function is the minimization of the total cost of carrying the bandwidth of all the 

flows offered to all the feasible paths (similarly to the objective function A proposed in [68]): 
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where the constraint (3) guarantees that the total bandwidth required by flow 𝑡 is carried by the assigned 

LSPs. 

The second objective function in this problem is the minimization of the load cost in all the network 

links, due to the carrying of the bandwidth of all the flows offered to all the feasible paths that are used. 

The aim is to avoid the over-utilization of some of the links while others remain under-utilized. A more 

balanced distribution of load in the network may be accomplished, so as to maximize the possibility of 

the network accepting more traffic in the future. This type of function has been often used in earlier 



studies on routing models in MPLS (see examples in [27] and [15, 16]) and was originally proposed in 

[29, 30]. 

A piece-wise linear cost function Akk ,  is based on the utilization rate of link k , i.e. the ratio 

between the total load kf  carried in the link and the link capacity ku . By using this function, sending 

packets over a link is increasingly penalized as the utilization of the link increases. The used calibration 

of this piece-wise linear function, for MPLS networks, results from earlier studies on routing in MPLS 

[27], aiming at maximizing the traffic carrying capacity of the network, in the event of future traffic 

increase. Hence, the second objective function is: 

 


Ak kF 2min       (5) 

with 
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where (6)-(11) define the piece-wise linear function to be considered and (12) is the constraint that 

guarantees that the link capacity is not exceeded. The parameter 
k
lta ,  is binary and defines whether a 

link k   belongs to path l
tp  , i.e. 1, k

lta   iff ,, Akpk l
t  TtLl t  ,1,...,0   and 0, 

k
lta  

otherwise. 

The idea behind considering the cost function k  is that it is less expensive to send traffic over a 

link with a small utilization, as pointed out in [29]. As the utilization of a link increases, sending traffic 

over that link becomes more expensive, because of the sensitivity to sudden increases of traffic, hence 

limiting the traffic capabilities of the network. Therefore, the minimization of  


Ak kF 2  has to do 

with the objective of obtaining a globally balanced traffic distribution throughout the network, hence 

minimizing the probability of congestion. 

The specific definition of k  is not important, as long as it is a piece-wise linear increasing and 

convex function, as claimed in [29]. Therefore, the specific piece-wise linear relationships may be 

defined for a specific routing problem, according to the network features and to the traffic demands, and 

cannot be readily generalized for any routing problem. We have considered the piece-wise linear 

relationships (6)-(11), as proposed in [27], for two main reasons: i) the links are not allowed to be used 

beyond their capacities; ii) the break points of the functions are at the utilization rates kk uf /  of the 

links given by 0.5, 0.6, 0.7, 0.8 and 0.9, which are adequate for a telecommunications routing problem 

of this nature. 



 

2.3 Constraints 

It is important to limit the number of used paths for each flow for technical reasons to prevent 

excessive overheads related to control and signaling costs. If the number of used paths per flow increases, 

then the network routing control and management may become increasingly costly and complex because 

the signaling and processing tasks increase. 

Let LN ℕ be the maximal value allowed for the total number of paths used by any traffic flow. 

Let the binary variable l
ty   define whether the path l

tp   is used, i.e. 1l
ty   iff the l  -th path 

1,...,0,  t
l
t Llp   is used by flow Tt   and 0l

ty   otherwise. Therefore, a constraint for this 

problem is 
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with 

TtLlydx t
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l
t  ;1,...,0,    (15) 

TtLly t
l
t  ;1,...,0},1,0{    (16) 

A constraint on the maximal number of links sD  for the paths associated with a service Ss  is 

also considered, in the terms that will be explained later. 

2.4 Problem Formulation 

The multiobjective routing problem 0P  to be addressed is 

 21,min FF   

subject to:  (3)-(4), (6)-(13), (14)-(16)  

   constraint on SsDs ,  

with l
tC  calculated as in (2). 

The total number tL  of feasible paths for each flow 𝑡 is  tLt NNL ,min . The maximal number 

of paths in the network for flow t , tN , satisfies a constraint on the maximal number of links sD  for 

the paths associated with service Ss , which is usually defined for technical reasons, associated with 

transmission or traffic engineering and signaling requirements related to service type. 

For the values of sD , it is stipulated that: for flows of QoS services with real-time requirements 

(e.g. voice and video services), sD should be the network diameter (maximal number of links of the 

shortest paths for all the network pairs of nodes); for flows of QoS services without real-time 

requirements (e.g. Premium data services), sD should be the network diameter + 1; for BE service flows 

(e.g. plain data services), no bounds on the maximal number of links are imposed, so 1||  NDs . 

For the generation of the set tP  for each flow t , the K -shortest path MPS algorithm in [36] was 

used. 

For the calculation of the cost per unit of bandwidth in each link, an expression depending on the 

capacity of the link ku  [Mbit/s] and its length kl  [km] is considered: k
k

k l
u

c 


 , with 0,  . 

The first term reflects the economy of scale and the decrease in transmission times associated with 



increased capacity. The second term is related to propagation delays, which increase with the physical 

length of the link and are associated with specific transmission impairments. 

The use of these two terms is quite common in the literature. We can cite [29], where it is mentioned 

that when the Open Shortest Path First (OSPF) routing protocol is used, the weights of the links can be 

set proportional to their physical distances and there are recommendations from network operators to 

consider the link weights inversely proportional to its capacity. Therefore, we tried to combine both 

aspects and devised a link cost function such as kc . 

The inclusion of the second term allows for the inclusion of a delay-related parameter, as we have 

explained. In fact, the transmission times tend to increase as the length of the links increases and network 

operators are of course interested in minimizing the end-to-end delay experienced by the traffic flows in 

the links. 

Also note that by using this distance-based cost term, and multiplying it by a bandwidth parameter 

( l
tx  ) in function 1F  , we get a bandwidth-distance product, which is used quite commonly in fiber 

transmission systems (as the effect of dispersion increases with the length of the fiber, there is a trade-

off between the bandwidth of the signal and the distance it can be carried). We can cite [52], where the 

bandwidth unit cost of a link is given precisely by a linear function of the length of the link. 

As the two parameters in kc  ( ku  and kl ) may have very different ranges of variation, we have 

used normalized versions of the parameters, 
ku '

1  and kl'  , with  
 

   



uu

uu

u AA

Ak

k 1min1max

1min1

'
1








  and 

 
   



ll

ll
k

AA

Akl









minmax

min
' . 

Hence, the actual expression for the cost per unit of bandwidth in each link is 

k
k

k l
u

c '
'

' 


      (17) 

In the expression for 
ku '

1 , it is assumed that not all the links in the network have the same capacity, 

i.e.  uu AA   minmax . If indeed all the links have the same capacity, then this parameter does no 

longer need to be included in the link cost, as it affects all the links in the same way. In this situation, we 

assume that kk lc ' '   . 

 

3. Resolution Methods 

The problem 0P was solved by two algorithms described in this section, the first one based on the 

constraint method [13] and the other based on the modified constraint method [53]. For both methods, a 

feature for the exploration of a specific part of the Pareto front was added, allowing for the choice of an 

adequate non-dominated solution to the problem. 

3.1 Method Based on the Classical Constraint Method – MCC 

The first method used to solve problem 0P  is a method based on the classical constraint method 

[13]. In this method, only one objective will be optimized, while all the other objectives are constrained 

to some value. The optimal solution to this single objective problem is a non-dominated solution to the 



 

original multiobjective problem, provided some conditions are satisfied [13]. The bounds that are 

imposed on the constrained objectives have to be carefully chosen, so that a single optimal solution to 

the obtained single objective problem exists and so as to guarantee that different non-dominated solutions 

throughout the Pareto front may be obtained. 

In figure 1, an example of the application of the MCC method is presented. We consider a single 

objective problem of minimization of the objective function 2F , whereas a constraint is formulated for 

the other objective function, i.e. lim11 FF  . This constraint establishes a new feasible region where we 

seek to optimize 2F . 

Notice that in this figure the extreme solutions of the Pareto front are shown, where X   is the 

solution    max
2

min
121 ,, FFFF   and Y  is the solution    min

2
max

121 ,, FFFF  . 

 

 Figure 1 Example of the application of the MCC 

 

The proposed method is described in the following algorithm: 

Algorithm MCC 

1. Definition of upper bounds 1UB  and 2UB  for both functions 1F  and 2F , respectively. Initially, 

both 1UB  and 2UB  are  . 

2. Construction of a pay-off table for this problem. The problems of individual optimization of each of 

the objective functions 1F  and 2F  are solved at this step. Solving the problem of the optimization of 

1F   will give the value of min
1F   and presumably max

2F  , whereas solving the problem of the 

optimization of 2F  will give the value of min
2F  and presumably max

1F  as the functions 1F  and 2F  

are usually conflicting. 

There might be alternative optimal values for the problems of individual optimization of each of the 

objective functions in 0P . In that case, the obtained solutions might be weakly non-dominated in the 

objective function space. In order to guarantee that only non-dominated solutions are included in the 



pay-off table, the strategy proposed in [51] is used. 

2.a) Solution of the auxiliary problem UP1 : 

 1min F   

subject to:  (3)-(4), (6)-(13), (14)-(16)  

   11 UBF   

22 UBF   

   constraint on SsDs ,  

Let min
1F  be the value of 1F  for the solution to this problem. 

2.b) Solution of the auxiliary problem UP 2' : 

 2min F   

subject to:  min
11 FF   

(3)-(4), (6)-(13), (14)-(16)  

   11 UBF   

22 UBF   

   constraint on SsDs ,  

Let max
2F  be the value of 2F  for the solution to this problem. 

2.c) Solution of the auxiliary problem UP2 : 

 2min F   

subject to:  (3)-(4), (6)-(13), (14)-(16)  

   11 UBF   

22 UBF   

   constraint on SsDs ,  

Let min
2F  be the value of 2F  for the solution to this problem. 

2.d) Solution of the auxiliary problem UP 1' : 

 1min F   

subject to:  min
22 FF   

(3)-(4), (6)-(13), (14)-(16)  

   11 UBF   

22 UBF   

   constraint on SsDs ,  

Let max
1F  be the value of 1F  for the solution to this problem. 

3. Solution of an auxiliary problem of mixed-integer type 

3.a) Calculation of the range for 1F : min
1

max
11 FFr  . 

3.b) Definition of , the number of auxiliary constraints that will be considered. 

3.c) For 1  to 2 : 

3.c)i. Calculate 11

max
1  rFNC 

  . 

3.c)ii. Solution of the problem UP 3' : 



 

 gF 2min   

subject to:  CNgF 1  

(3)-(4), (6)-(13), (14)-(16)  

   11 UBF   

22 UBF   

0g  

   constraint on SsDs ,  

with  ℝ+
 infinitely small. 

Notice that the application of the MCC would consist of solving a problem UP3 , which would be 

similar to UP 3'  except that we would try to minimize simply 2F  (rather than gF 2 ) and the first 

constraint would be CNF 1   rather than CNgF 1  . An optimal solution to this problem UP3  

corresponds to a non-dominated solution iff it is a unique optimal solution. Otherwise, the optimal 

solution obtained when solving UP3  could be one of various alternative optima and might correspond 

to a weakly non-dominated solution to problem 0P . In order to avoid this situation, problem UP 3'  was 

formulated based on the method in [51] and solved. 

3.d) The  solutions obtained when solving this problem UP 3'  are non-dominated and so they are part 

of the Pareto front. In figure 2, an example of the result after steps 1 to 3 of the MCC method is presented. 

A total of  solutions were found. 

 

 Figure 2 Example of the application of steps 1-3 of MCC, obtaining a total of =10 solutions that are part of the 

Pareto front 

 

4. If the algorithm is being run for the first time, proceed to step 5. If the algorithm is being run for the 

second time, then a specific region of the Pareto front has already been thoroughly analyzed and we may 



proceed to step 7. 

5. Choice of an area of the Pareto front that deserves to be more thoroughly analyzed, by considering 

preference regions in the bidimensional objective function space obtained from aspiration and 

reservation levels (preference thresholds) defined for the two objective functions:
2

min avFFreqF 




 and 

2

max avFFacF 




 with

2

maxmin




FFavF


 , 2,1 . 

As an example of the definition of priority regions in the objective function space, see figure 3. The 

ideal optimum is obtained when both objective functions 1F  and 2F  are optimized separately. The 

region for which the requested levels are satisfied for both objective functions is the first priority region 

A; the regions for which only one of the requested values is satisfied and an acceptable value is 

guaranteed for the other metric are the second priority regions 1B  and 2B  (note that when a choice 

has to be made between 1B  and 2B , we will consider 1B  slightly preferable to 2B  because, for 

solutions in any second priority region, a slight preference is given to the one with lower 1F  even if 

with greater 2F ); the region where only acceptable values are guaranteed for both metrics is the third 

priority region C. Beyond the acceptable values, lies the least priority region D. 

Therefore the new upper bounds 1UB and 2UB that will define an area of the Pareto front that will be 

looked into with more detail are defined by the boundaries of the region to be considered. Firstly, region 

A will be considered, so reqFUB 11   and reqFUB 22  ; if there is no possible solution in region A, then 

region 1B   will be considered and reqFUB 11   and acFUB 22   ; and so on, exploring in succession, 

regions 2B  and C, if necessary. 

  

  

Figure 3 Example of the definition of priority regions in the objective function space (step 5 of MCC) 

6. Proceed to step 2. 

7. Choice of an adequate non-dominated solution in the Pareto front, for which a Chebyshev weighted 

metric will be applied to the found non-dominated solutions. The approach chosen to select the “best” 



 

solution in the Pareto front relies on the minimization of a weighted Chebyshev distance to a reference 

point. As mentioned in step 5 of the algorithm, aspiration and reservation levels were specified for each 

criterion. In this context, the weighted Chebyshev distance of a non-dominated solution in a given 

preference region to an associated reference point (see definition below) is calculated and the “best” 

solution will be the one in the best possible priority region which minimizes that distance, following a 

method of the type described in [10]. With this approach, we are considering that in the best possible 

priority region (region A) both objective functions 1F  and 2F  have equal importance. 

Defining R as the best possible priority region in the objective function space where at least one 

solution  can be found, a specific reference point  *
|2

*
|1 ; RR CC  can be chosen in R as the “ideal” point 

in that region. The reference point in each rectangular region is the bottom left corner of that region. For 

a non-rectangular region such as D, the considered reference point is the ideal optimum in the objective 

function space,  min
2

min
1 ;FF . 

Other parameters that must be defined are the minimum Rm | and the maximal RM |  values of 

each metric for region R. 

The problem of selection of a final solution considers a weighted Chebyshev norm: 

 *
||2,1 )(maxmin RRR CCw      (18) 

where )()( 11  FC  and )()( 22  FC  are the metrics for solution . The weights in the weighted 

Chebyshev distance, 
RR mMRw
||

1
|


 

  , allow the Chebyshev metrics  *
|| )( RR CCw      to be 

dimension free and proportional to the size of the rectangular region. This weighted Chebyshev norm 

seems to be the more adequate to the adopted technique of search and selection of non-dominated 

solutions in rectangular preference regions. In fact, the use of the weights (as defined in the method) 

makes the contour of the rectangle an isocost Chebyshev line for each particular region. 

3.2 Method Based on the Modified Constraint Method – MCM 

The second method used to solve problem 0P  is based on the modified constraint method developed 

in [53]. This method also relies on the formulation of a single objective problem related to the original 

multiobjective problem. As in the MCC, only one objective will be optimized, while constraints 

involving the other objectives are formulated. 

Problem 0P  is bi-objective so we will optimize one of the objectives and formulate a constraint 

involving the other objective. We start by calculating the optimal solutions that would be obtained if 

each of the two objectives was taken separately, i.e. we calculate min
1F   and min

2F   in the feasible 

region. The line joining the two extreme points X and Y is called, in [53], the utopia line. The utopia line 

is divided in –1 segments, resulting in  points. In each of these points, a normal to the utopia line is 

considered, which will allow a reduction of the feasible space. Note that the points considered in the 

utopia line are evenly distributed. For each of the points defined in the utopia line, a constraint is 

formulated and an auxiliary single objective problem is solved. According to [53], when this method is 

used, there may occur situations where the optimal solution to this auxiliary problem does not correspond 



to a non-dominated solution in the original multiobjective problem and in these situations a so-called 

Pareto filter would be applied to the  solutions, so as to retain only the solutions which are not 

dominated by any other solution in the set of obtained solutions. However, in our problem these 

situations do not occur because the hull of the feasible solution set of our optimization problem is convex 

(as a result of the linearity properties of the objective functions) and therefore this Pareto filter was not 

applied. 

The application of this method generates a set of solutions, which will tend to be a set of evenly 

distributed non-dominated solutions of the original multiobjective problem and constitute a good 

representation of the whole Pareto front (see as an example, figure 5). 

In figure 4, an example of the application of the MCM method is presented. Taking one of the points 

in the utopia line, the normal to the utopia line in that point is considered and it will allow us to formulate 

a constraint that restricts the feasible area. We then consider a single objective problem of minimization 

of the objective function 2F  in the new feasible area. Notice that in this figure the Pareto front is shown 

to clarify the example of the optimization of 2F  subject to the constraint that defines the new feasible 

area. 

 

Figure 4 Example of the application of the MCM 

 

A comparison between this figure and figure 1 shows clearly the difference between the two methods 

that we considered in our work. In the MCC method, it is a normal to the X axis (rather than a normal to 

the utopia line) that will allow us to formulate the constraint that restricts the feasible area. 

Notice that the utopia line is “closer” to the shape of the Pareto front than the X axis, and that is the 

reason why the consideration of the normal to the utopia line in the restriction of the feasible area will 

lead to finding solutions better distributed along the Pareto front. This can clearly be seen in figure 5: 

the comparison between this figure and figure 2 shows that in the MCM method the solutions are indeed 

better distributed along the Pareto front. 

Following the algorithm presented in the previous sub-section, only the changes to be performed in 



 

that algorithm will be mentioned here. 

Algorithm MCM 

1. (Step 1 as in the MCC algorithm) 

2. (Step 2 as in the MCC algorithm) 

3. Solution of an auxiliary problem of mixed-integer type 

3.a) Calculation of the ranges for F , with 2,1 : 
minmax
 FFr  . 

3.b) Definition of , the number of auxiliary constraints that will be considered. 

3.c) For 1  to 2 : 

3.c)i. Calculate
1

21
2

min
2

1

min
1


 

 r

F

r

F
N . 

3.c)ii. Solution of the problem UP 4' : 

 gF 2min   

subject to:  Ng
r

F

r

F


2

2

1

1  

(3)-(4), (6)-(13), (14)-(16)  

   11 UBF   

22 UBF   

0g  

   constraint on SsDs ,  

with  ℝ+
 infinitely small. 

Notice that the direct application of the MCM would consist of solving a problem where we would 

try to minimize simply 2F  (rather than gF 2 ). This perturbation of the objective function allows us 

to avoid potential weakly non-dominated solutions to problem 0P . 

3.d) The solutions obtained are part of the Pareto front. In figure 5, an example of the result after steps 

1 to 3 of the MCM method is presented. A total of  solutions were found. 

4. (Step 4 as in the MCC algorithm) 

5. (Step 5 as in the MCC algorithm) 

As an example of the definition of priority regions in the bidimensional objective function space of 

the obtained solutions in step 5, see figure 6. 

6. (Step 6 as in the MCC algorithm) 

7. (Step 7 as in the MCC algorithm) 

 

Note that the proposed algorithms MCC and MCM enable that unsupported non-dominated solutions 

(i.e. non-dominated solutions located in the interior of the convex hull of the feasible solution set) may 

be found. 



 

Figure 5 Example of the application of steps 1-3 of MCM, obtaining a total of =10 solutions that are part of the 

Pareto front 

 

Figure 6 Example of the definition of priority regions in the objective function space (step 5 of MCM) 

4. Experimental Study 

A very extensive experimental study was carried out. In the next sub-sections, the features of the 

networks and of the services are described. Afterwards, the performed tests are described and the network 

performance measures are presented. Finally, the obtained results are analyzed. 

4.1 Network Description 

Three different sets of networks N1, N2 and N3 were considered, as described next. 



 

The first set of networks, designated by N1, is a set of 5 networks presented in previous works [27, 

54, 59], where information on the capacities of the links and on the offered traffic is provided. 

The first of these networks will be designated as N1-1a and is displayed in figure 7. It is considered 

in many different studies, e.g. [59, 67, 68]. It is a network with 12 nodes and 36 unidirectional links. 

Notice that in the original network, there are 18 bidirectional links, but we have applied a simple rule to 

transform them into unidirectional links, as we will explain later in the text. The average node degree is 

3.0. The information on the capacities of the links and on the node-to-node offered traffic is provided by 

[59 – N12-1]. 

 

 

Figure 7 Network N1-1(a and b) and N2-1 [59 – Fig. 7] 

 

The second of these networks will be designated as N1-1b and has the same topology and the same 

demand volumes as N1-1a. The difference is on the capacities of the links, which are provided in [59 – 

N12-2]. 

The third of these networks will be designated as N1-2 and is displayed in figure 8. It is a network 

with 7 nodes and 24 unidirectional links. Notice that in the original network, there are 12 bidirectional 

links. The average node degree is 3.43. The information on the capacities of the links and on the node-

to-node offered traffic is provided in [59 – N7]. 

The fourth of these networks will be designated as N1-3 and is displayed in figure 9. It is a network 

with 8 nodes and 20 unidirectional links, with an average node degree of 2.5. The information on the 

capacities of the links and on the node-to-node offered traffic is provided in [54]. 

The last of these networks will be designated as N1-4 and is displayed in figure 10. It is a network 

with 10 nodes and 32 unidirectional links, with an average node degree of 3.2. The information on the 

capacities of the links and on the node-to-node offered traffic is provided in [27]. 

The second set of networks, designated by N2, is a set of 4 networks presented in [68]. Some of these 

networks have also been used in other studies, such as [52, 59, 67]. No information on the capacities of  



Figure 8 Network N1-2 [59 – Fig. 7] 

 

Figure 9 Network N1-3 [54 – Fig. 1] 

 

 Figure 10 Network N1-4 [27] 

 

the links or on the offered traffic is provided. We have followed the approach in [68] to estimate these 

parameters. 

In these networks all the links are bidirectional but we have considered them unidirectional with the 

adaptation which will be explained later in the text. 

The first of these networks will be designated as N2-1 and has the same topology as N1-1a and N1-



 

1b (see figure 7). This network has also been used in [59, 67]. 

The second of these networks will be designated as N2-2 and is displayed in figure 11. It is a network 

with 6 nodes and 24 unidirectional links (12 bidirectional links in the original network), with an average 

node degree of 4.0. This network has also been used in [67]. 

 

Figure 11 Network N2-2 [68 – Fig. 1] 

 

The third of these networks will be designated as N2-3 and is displayed in figure 12. It is a network 

with 12 nodes and 50 unidirectional links (25 bidirectional links in the original network), with an average 

node degree of 4.17. This network has also been used in [52]. 

Figure 12 Network N2-3 [68 – Fig. 3] 

The last of these networks will be designated as N2-4 and is displayed in figure 13. It is a network 

with 10 nodes and 56 unidirectional links (28 bidirectional links in the original network), with an average 

node degree of 5.60. This network has also been used in [52]. 

The third set of networks, designated by N3, is a set of randomly generated MPLS network topologies 

obtained with the gt-itm software [78], given the desired number of nodes n and the desired average 

node degree a. With the used software, the topology of Internet networks may be randomly generated 

with different probability laws of occurrence of a link between two nodes. Typically, that probability law 

is an exponential function of the Euclidian distance between the nodes and of a set of calibration 

parameters. With these models, there is an attempt to simulate realistic structures of Internet-type 

networks [24]. 



 

Figure 13 Network N2-4 [68 – Fig. 2] 

 

In this experimental study, and similarly to the study in [16], the model that was considered for the 

probability distribution of the existence of links was the Doar-Leslie model [24], calibrated so as to 

guarantee the desired value for the average node degree a, considering the stipulated number of nodes n. 

The used software generates information on the nodes which are connected by a pair of unidirectional 

links. 

For each pair of values (n;a) we have obtained 5 different topologies with an average of n a 

unidirectional links. We have considered networks with (n=14; a=2.7), which will be designated as N3-

1; (n=14; a=4.0), which will be designated as N3-2; (n=30; a=2.7), which will be designated as N3-3; 

(n=30; a=4.0), which will be designated as N3-4. 

Notice that in some of the networks in sets N1 and N2 which we considered in this study, the links 

were originally bidirectional. Instead, we have considered the links to be unidirectional with capacity 

equal to the provided one, i.e. if a bidirectional link between nodes i and j with a capacity u is given in 

the original network, we have considered the existence of unidirectional links from i to j and from j to i, 

both with capacity u. This adaptation has to do with the nature of MPLS networks, requiring a 

representation with unidirectional links. The same approach was followed for the demand volumes: if a 

demand of v is offered between nodes i and j in the original network, we have considered the existence 

of a demand of v from i to j and also a demand of v from j to i. 

For some of the networks in set N1, the original link capacities provided in the references had to be 

slightly increased for the resolution of our problem. For instance, for networks N1-1b and N1-3, the link 

capacities had to be increased by 20%, so that our problem could be solved. For a problem similar to 

ours, but with only one type of service (i.e. a mono-service formulation) without any constraint on the 

maximal number of links sD for the service, then the provided capacity would have been adequate. 

For the networks in sets N2 and N3, no information on the offered traffic and link capacities is 

provided in the original papers. In this situation, we have followed the dimensioning criteria in [68]. A 



 

fixed value of 100 Mbit/s is assumed to be the demand volume between all pairs of nodes. The capacity 

of the links is calculated so as to guarantee that all the links have less than 67% utilization when shortest 

path routing between any pair of nodes is considered. The link capacity obtained with this very simple 

procedure is called the baseline capacity. 

For the randomly generated networks, information on the lengths of the links is provided by the used 

software for a given maximal length of 35 km, typical of metropolitan type networks, as in [14]. For the 

other networks (in sets N1 and N2), we have devised a simple method to estimate the lengths of the links 

in each network. We have superimposed each network on a rectangular grid with 400*240 points where 

the mesh space unit corresponds to 10 km, as in [10]. Therefore, the maximal horizontal distance in the 

grid is 4000max l  km. With this value as reference, we have obtained the length of each of the links 

Aklk ,  in the networks. This technique was used for all the networks for which the lengths of the links 

were not provided in the original papers they appear in, i.e. for networks in sets N1 and N2. 

4.2 Service Description 

A total of S=4 services were considered. In table 1, the values of sq , the fraction of bandwidth 

associated with each service, are given. 

Table 1 Features of the services in the network tests 

Service sq
 

0 – video (QoS) 0.1 

1 – Premium data (QoS) 0.25 

2 – voice (QoS) 0.4 

3 – data (BE) 0.25 

 

4.3 Tests Description 

The test environment that we considered in our study considers the type of tests used in [68]. For 

each network we performed 4 different types of tests. 

In test T1, the offered traffic matrix is fixed, either with a value provided in [27, 54, 59] (for N1 

networks) or with the value of 100 Mbit/s (for N2 and N3 networks); the link capacities are the so-called 

baseline capacities, i.e. the ones provided in literature (for N1 networks) or with the value calculated so 

as to guarantee a maximal link utilization of 67% (for N2 and N3 networks), as explained earlier. 

In test T2, the offered traffic matrix is randomly generated, with a uniform distribution (as in [52]) 

using as the average demand volume for each demand pair the value provided in [27, 54, 59] (for N1 

networks) or the value of 100 Mbit/s (for N2 and N3 networks). A total of 16 instances are considered, 

as in [52], with different seeds allowing for the generation of different traffic matrices. This number of 

instances guarantees the statistical relevance of the obtained results. The link capacities are the baseline 

capacities. 

In test T3, the offered traffic matrix is fixed as in T1, but in this case the networks have a 50% 



additional capacity derived by multiplying the baseline capacity of each link by 1.5. 

In test T4, the offered traffic matrix is randomly generated as in T2, but in this case the networks 

have a 50% additional capacity derived by multiplying the baseline capacity of each link by 1.5. A total 

of 16 instances of the offered traffic matrix are considered. 

Note that for the randomly generated networks (N3), a double randomness exists in tests T2 and T4, 

as not only the MPLS networks are randomly generated but also the matrix of the traffic offered to those 

networks is randomly generated. 

The cost of each link is given by (17), with 1.0  and 9.01   . 

In the different formulations of the problem, it is necessary to define a value for the maximal number 

of paths used by each flow, LN , and in this experimental study it was equal to 4. 

For the execution of the algorithms MCC and MCM, we have considered =10. 

4.4 Network Performance Measures 

Using the described networks an extensive number of experiments were carried out enabling the 

calculation of the values of network performance measures, relevant from a teletraffic engineering point 

of view, for the routing solutions obtained with the algorithms. Some of these performance parameters 

are ‘standard’ measures of network performance often used in the evaluation of routing models, namely 

those based in single criterion optimization approaches such as the one in [68]. This is the case of the 

parameters total fraction of used capacity, sum of the link utilization and the maximal link utilization. 

For each problem (i.e. a specific network structure with a specific traffic matrix), 4 different solutions 

are obtained: 1S , the solution obtained when only the objective function 1F   is minimized; 2S , the 

solution obtained when only the objective function 2F   is minimized; MCCS  , the solution obtained 

when the algorithm based on the constraint method (see sub-section 3.1) is used to solve the 

multiobjective problem; MCMS , the solution obtained when the algorithm based on the MCM (see sub-

section 3.2) is used to solve the multiobjective problem. 

The following performance measures were defined: 

 total fraction of used capacity: 








Ak k

Ak k

u

f
FUC ; 

 sum of the link utilization:  Ak u

f

k

kSLU ; 

 maximal link utilization:  
k

k

u

f
AkMLU  max ; 

 relative variation with respect to the marginal optima, given by opt

optsol

F

FF
RV








   (with 

2,1  ) and where 
solF   is the value of F   calculated for a specific multiobjective 

solution and 
optF  is the optimal value of F  for the same problem. 

 time of execution of the algorithms using CPLEX 12.3 in a laptop computer with i7 processor, 

2.2 GHz clock and 1 GB of RAM, running on a Linux virtual machine over the Windows 

operating system. 



 

For networks N1 and N2, we obtained the value of the network performance measures when test T1 

was executed (i.e. the routing problem is considered with a fixed traffic matrix and the baseline link 

capacities) and then we ran 16 instances of test T2 (i.e. the routing problem is considered with a random 

traffic matrix keeping the baseline link capacities). For these 16 instances, we considered all the results 

and calculated the minimum, the average and the maximal value of each network performance measure. 

Similarly, we ran test T3 and 16 instances of test T4, obtaining again the values of the network 

performance measures for the fixed traffic matrix (T3), and the minimum, the average and the maximal 

value of each network performance measure for the random traffic matrices (T4). 

For networks N3, we proceeded likewise, but instead of displaying the results when test T1 (or T3) 

was executed for a specific network, we considered the obtained values for the 5 different topologies 

and estimated their mean value and their variation range. Considering the value of a performance 

measure for the z-th topology as zM , with z=0,…,4, the estimate of the mean is M̂  and the estimate 

of the variation range is )ˆ(ˆ
5

776.2 M , calculated as a 95% confidence interval with a t-Student bi-lateral 

distribution, where )ˆ(ˆ M  is an estimate of a standard deviation for M. 

For the minimum, the average and the maximal value of each network performance measure obtained 

when test T2 (or T4) was executed for each of the 5 different topologies, we also estimated a mean value 

and a variation range in the same manner. 

4.5 Results 

Results for the different tests (T1 to T4) for networks N1-1b, N1-3, N1-4, N2-3, N3-1, N3-2 and N3-

4 are shown in tables 2-8. The results for the other networks are omitted here, but can be seen in the 

research report [35] and follow the same qualitative trends. 

The values of the objective functions and of the network performance measures are displayed for the 

solutions of single objective problems (when only 1F   was optimized, situation 1S  , and only 2F  was 

optimized, situation 2S ) and bi-objective problems (when MCC was used, situation MCCS , and MCM 

was used, situation MCMS ). We did not display the execution time of 1S  and 2S  because these single 

objective problems were not solved in an isolated manner, but rather at the beginning of the execution 

of MCC and MCM. 

These results confirm that the objective functions 1F   and 2F   are indeed conflicting, as the 

minimization of one of them entails an increase in the value of the other objective function. 

When we optimize only the objective function 1F   (results identified by 1S   in the tables) we 

realize that the total cost of carrying the bandwidth of all the flows is indeed the lowest, but that is 

accompanied by a noticeable increase in the utilization of the links in almost all the tested networks, as 

the values of FUC, SLU and MLU tend to be higher than when only the objective function 2F   is 

optimized (results identified by 2S  in the tables) or when the multiobjective problem is considered 

(results identified by MCCS  or MCMS  in the tables, according to the used method of resolution). 

When we optimize only the objective function 2F , the cost of carrying the bandwidth of all the flows 



greatly increases, as it can be seen by analyzing the value of 1F . The utilization of the links (measured 

in different forms) is lower in almost all the situations in the tested networks, which makes sense as the 

minimization of the function 2F tends to minimize the global utilization of the links. The decrease in the 

utilization of the links can be confirmed not only by the lower value of 2F  but also by the lower values 

of the performance measures FUC, SLU (in almost all the cases) and MLU (in all the cases). In particular, 

the MLU is a relevant measurement in traffic engineering terms and its behavior is in all experiments 

congruent with the function 2F . The solutions MCCS  and MCMS  lead to compromise values of MLU, 

excepting when one of the links is fully occupied in the obtained solutions (MLU=1). Note that when 

1F is optimized, in almost all cases MLU=1, which reflects the clear conflicting nature between 1F   

and MLUF /2 , as noted in earlier studies in single criterion network flow models, as in [68]. 

Concerning the results for the networks with additional link capacity, the values for 1F  and 2F  

obtained for solutions 1S , 2S , MCCS  and MCMS  are always lower than for the baseline link capacity 

corresponding cases, as expected taking into account the nature of the objective functions. 

In these experiments, we could confirm the potential advantages of using a multiobjective 

optimization model, rather than a single objective one. In fact, the advantages of using two objectives in 

this routing problem become clear, as we get a compromise solution that tries to balance the cost of 

carrying the bandwidth and the global effect of the utilization of the links. 

The solutions obtained with the MCC and MCM algorithms may be compared. In both cases, the 

relative variation of the obtained solutions is higher for 2F  than for 1F . 

To illustrate the differences between the results obtained with the two algorithms, we present in figure 

14 the sets of solutions obtained for both algorithms (in the cases of baseline link capacity (increased by 

20%) and 50% additional link capacity) for network N1-1b. In these figures, the solutions obtained in 

both runs of the algorithms are displayed, where the first run corresponds to the situation where the 

feasible region is limited by points X (the solution    max
2

min
121 ,, FFFF   ) and Y (the solution 

   min
2

max
121 ,, FFFF  ) and the second run corresponds to the situation where a specific region of the 

Pareto front is more thoroughly analyzed. The values of 
reqF  and 

acF , with 2,1 , are obtained 

in step 5 of each algorithm. The value of the selected Pareto optimal solution (i.e. the final solution 

provided by each algorithm), obtained in step 7 of each algorithm, is also displayed in the figures. 

From figure 14, it is noticeable that the MCM algorithm provides more evenly distributed solutions 

throughout the Pareto front than the MCC algorithm, both in the first run and in the second run of the 

algorithms. Considering the displayed results, we can see that in some cases (figures 14c and 14d) the 

specific region of the Pareto front that is more thoroughly analyzed in the second run of the algorithms 

is A (the requested levels are satisfied for both objective functions), while in other cases (figures 14a and 

14b) the specific region of the Pareto front that is more thoroughly analyzed in the second run of the 

algorithms is 1B  (only the requested value for 1F  is satisfied and an acceptable value is guaranteed 

for 2F ). As for the final solution obtained with the algorithms, notice that sometimes it was obtained in 

the first run of the algorithm (see figure 14b), while in the other cases it was obtained in the second run  



 

Table 2 Network performance measure values, for network N1-1b 

Network 

performance 

measure 

Method 

Baseline capacity (increased by 20%) 50% additional capacity 

Fixed 

traffic 

Random traffic matrix Fixed 

traffic 

Random traffic matrix 

min avg max min avg max 

1F
 

1S
 

2189.42 1905.06 2142.40 2336.84 2136.11 1835.85 2046.36 2202.95 

2S
 

2337.40 2077.81 2295.26 2447.50 2342.44 2077.05 2287.06 2437.74 

MCCS
 

2212.70 1949.50 2170.96 2355.43 2170.01 1888.65 2090.22 2244.13 

MCMS
 

2211.94 1950.13 2171.44 2355.76 2170.12 1885.70 2090.46 2245.94 

2F
 

1S
 

146072.21 89714.32 141932.66 187991.45 59167.12 34362.59 60954.54 99224.36 

2S
 

46071.52 22850.45 67416.15 119179.28 11741.40 8611.40 12681.67 16667.83 

MCCS
 

93789.25 40523.62 99587.39 156604.00 19317.79 12565.17 21792.40 32071.40 

MCMS
 

94661.03 40251.29 99234.74 156310.33 19300.65 12463.58 21734.82 31704.86 

1RV
 

2S
 

6.76% 2.62% 7.28% 12.15% 9.66% 9.90% 11.83% 14.84% 

MCCS
 

1.06% 0.48% 1.38% 2.92% 1.59% 1.61% 2.15% 2.89% 

MCMS
 

1.03% 0.48% 1.40% 2.91% 1.59% 1.66% 2.16% 2.88% 

2RV
 

1S
 

217.06% 16.30% 156.73% 403.04% 403.92% 237.68% 376.54% 599.09% 

MCCS
 

103.57% 9.26% 58.10% 98.36% 64.53% 40.96% 70.26% 123.57% 

MCMS
 

105.47% 9.32% 57.37% 98.39% 64.38% 40.05% 70.01% 121.06% 

FUC 

1S
 

0.8461 0.7496 0.8168 0.8720 0.6886 0.6038 0.6601 0.7136 

2S
 

0.8361 0.7452 0.8141 0.8712 0.6694 0.5958 0.6498 0.6960 

MCCS
 

0.8358 0.7411 0.8113 0.8692 0.6728 0.5953 0.6500 0.6987 

MCMS
 

0.8361 0.7411 0.8113 0.8693 0.6728 0.5953 0.6498 0.6986 

SLU 

1S
 

30.4235 27.5088 29.5296 31.4678 25.8608 23.2842 24.7494 26.3017 

2S
 

30.2821 27.1343 29.7031 31.8564 24.1047 21.6867 23.7326 25.3974 

MCCS
 

30.2201 26.8670 29.3908 31.6265 24.5549 22.0766 23.7395 25.3237 

MCMS
 

30.2172 26.8651 29.3938 31.6281 24.5554 22.0671 23.7436 25.3306 

MLU 

1S
 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2S
 

0.9000 0.9000 0.9748 1.0000 0.7000 0.7000 0.7822 0.8000 

MCCS
 

1.0000 1.0000 1.0000 1.0000 0.9000 0.9000 0.9009 0.9098 

MCMS
 

1.0000 1.0000 1.0000 1.0000 0.9000 0.9000 0.9010 0.9099 

Time [s] 
MCCS

 
4.52 4.31 4.68 5.04 4.15 3.95 4.20 4.51 

MCMS
 

4.79 4.37 4.87 5.41 4.51 4.25 4.52 4.88 

 



 

 
Table 3 Network performance measure values, for network N1-3 

Network 

performance 

measure 

Method 

Baseline capacity (increased by 20%) 50% additional capacity 

Fixed 

traffic 

Random traffic matrix Fixed 

traffic 

Random traffic matrix 

min  avg max min avg max 

1F
 

1S
 

1652.05 1155.34 1415.05 1655.22 1573.82 1125.00 1358.55 1566.63 

2S
 

1749.76 1275.48 1516.04 1761.56 1698.45 1269.60 1498.09 1743.35 

MCCS
 

1670.94 1177.31 1433.72 1669.57 1603.71 1149.66 1386.53 1602.89 

MCMS
 

1670.84 1177.60 1433.71 1669.49 1603.71 1148.44 1386.43 1602.27 

2F
 

1S
 

37657.93 17529.72 29494.54 48869.50 36830.87 12556.25 22777.95 33601.79 

2S
 

21759.40 2835.42 12126.90 28784.50 4438.20 2258.04 3357.99 4651.24 

MCCS
 

24538.16 6872.48 16770.74 33457.21 12228.77 4254.23 7335.75 10447.51 

MCMS
 

24578.17 6823.51 16787.74 33476.28 12229.26 4266.41 7355.98 10672.46 

1RV
 

2S
 

5.91% 4.15% 7.29% 11.04% 7.92% 6.34% 10.40% 15.57% 

MCCS
 

1.14% 0.73% 1.36% 2.35% 1.90% 1.38% 2.07% 2.99% 

MCMS
 

1.14% 0.72% 1.35% 2.36% 1.90% 1.41% 2.06% 2.99% 

2RV
 

1S
 

73.07% 35.76% 267.90% 805.30% 729.86% 383.40% 583.22% 813.98% 

MCCS
 

12.77% 5.51% 69.06% 186.85% 175.53% 79.18% 117.29% 193.33% 

MCMS
 

12.95% 5.54% 69.20% 192.27% 175.55% 79.70% 117.83% 193.34% 

FUC 

1S
 

0.6574 0.4937 0.5845 0.6691 0.5132 0.4006 0.4683 0.5269 

2S
 

0.6646 0.4920 0.5832 0.6739 0.5262 0.3889 0.4622 0.5362 

MCCS
 

0.6648 0.4887 0.5860 0.6691 0.5194 0.3961 0.4674 0.5322 

MCMS
 

0.6648 0.4883 0.5860 0.6692 0.5194 0.3961 0.4673 0.5321 

SLU 

1S
 

13.4712 10.2263 12.0008 13.6988 10.4723 8.3167 9.6173 10.8271 

2S
 

13.6438 10.1836 11.9630 13.6882 10.7826 7.9727 9.4682 10.8806 

MCCS
 

13.6476 10.1054 12.0377 13.7306 10.6200 8.2083 9.5946 10.8597 

MCMS
 

13.6476 10.0962 12.0362 13.7352 10.6200 8.2083 9.5942 10.8584 

MLU 

1S
 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2S
 

1.0000 0.8000 0.9140 1.0000 0.8000 0.6051 0.7341 0.8000 

MCCS
 

1.0000 0.9000 0.9684 1.0000 0.9268 0.8482 0.8976 0.9246 

MCMS
 

1.0000 0.9000 0.9686 1.0000 0.9268 0.8562 0.8987 0.9247 

Time [s] 
MCCS

 
0.83 0.75 0.80 0.85 0.78 0.72 0.76 0.83 

MCMS
 

0.90 0.77 0.82 0.86 0.83 0.76 0.79 0.82 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Network performance measure values, for network N1-4 

Network 

performance 

measure 

Method 

Baseline capacity 50% additional capacity 

Fixed 

traffic 

Random traffic matrix Fixed 

traffic 

Random traffic matrix 

min  avg max min avg max 

1F
 

1S
 

368.73 306.27 356.03 403.78 368.73 306.27 354.76 400.38 

2S
 

415.51 346.27 405.34 456.35 411.16 342.75 402.42 457.60 

MCCS
 

378.08 311.67 364.62 413.92 375.46 311.78 362.89 407.71 

MCMS
 

377.88 311.71 364.45 414.13 375.96 312.07 362.69 408.20 

2F
 

1S
 

5913.53 3237.97 8991.79 14133.26 1032.00 842.55 1104.57 1335.30 

2S
 

1082.00 761.83 1178.11 1597.02 845.90 706.53 824.72 922.55 

MCCS
 

2017.48 1094.32 2558.97 4100.60 943.36 771.65 931.11 1106.67 

MCMS
 

2042.87 1092.59 2587.92 4041.17 939.56 770.36 933.31 1099.08 

1RV
 

2S
 

12.69% 9.81% 13.99% 20.33% 11.51% 9.07% 13.56% 21.44% 

MCCS
 

2.54% 1.36% 2.42% 3.47% 1.82% 1.45% 2.33% 5.24% 

MCMS
 

2.48% 1.39% 2.37% 3.35% 1.96% 1.27% 2.27% 5.24% 

2RV
 

1S
 

446.54% 325.03% 652.46% 785.33% 22.00% 19.25% 33.71% 56.53% 

MCCS
 

86.46% 43.64% 113.76% 156.76% 11.52% 6.91% 12.75% 19.96% 

MCMS
 

88.80% 43.42% 116.28% 153.04% 11.07% 6.99% 13.01% 19.14% 

FUC 

1S
 

0.5928 0.5030 0.5724 0.6386 0.3952 0.3353 0.3828 0.4295 

2S
 

0.5391 0.4473 0.5259 0.5833 0.3525 0.2944 0.3427 0.3819 

MCCS
 

0.5752 0.4890 0.5586 0.6144 0.3777 0.3194 0.3687 0.4159 

MCMS
 

0.5755 0.4887 0.5588 0.6139 0.3769 0.3189 0.3688 0.4144 

SLU 

1S
 

18.9710 16.0944 18.3182 20.4365 12.6473 10.7296 12.2510 13.7441 

2S
 

17.2500 14.3122 16.8301 18.6664 11.2787 9.4203 10.9663 12.2222 

MCCS
 

18.4073 15.6468 17.8763 19.6605 12.0851 10.2216 11.7995 13.3101 

MCMS
 

18.4146 15.6398 17.8815 19.6444 12.0597 10.2044 11.8019 13.2595 

MLU 

1S
 

0.9960 0.9715 0.9965 1.0000 0.6640 0.6477 0.7305 0.8262 

2S
 

0.7000 0.6413 0.7566 0.8000 0.5000 0.5000 0.5206 0.5729 

MCCS
 

0.8000 0.7494 0.8832 0.9041 0.6000 0.5670 0.6164 0.7000 

MCMS
 

0.8063 0.7494 0.8868 0.9067 0.6000 0.5670 0.6212 0.7000 

Time [s] 
MCCS

 
2.08 1.92 2.13 2.28 1.79 1.69 1.88 2.05 

MCMS
 

2.09 1.95 2.08 2.24 1.74 1.69 1.80 1.91 

 



 

Table 5 Network performance measure values, for network N2-3 

Network 

performance 

measure 

Method 

Baseline capacity 50% additional capacity 

Fixed 

traffic 

Random traffic matrix Fixed 

traffic 

Random traffic matrix 

min  avg max min avg max 

1F
 

1S
 

4485.41 4026.78 4367.52 4793.92 4153.83 3731.93 4017.56 4340.53 

2S
 

5465.25 5091.97 5486.66 5976.78 5215.98 4734.19 5207.97 5813.52 

MCCS
 

4659.88 4232.35 4559.10 5024.91 4271.85 3860.11 4144.08 4504.19 

MCMS
 

4651.44 4237.74 4560.00 5017.63 4263.50 3844.93 4141.62 4497.91 

2F
 

1S
 

557563.01 358541.73 482654.89 618306.77 315425.00 176049.24 306398.32 429400.15 

2S
 

34720.00 27389.29 40245.73 53367.07 22400.00 20065.09 21864.26 23338.37 

MCCS
 

117173.10 76888.26 116262.28 154143.26 52474.96 37752.17 52561.82 79012.12 

MCMS
 
123573.58 80149.05 115569.39 149706.58 55207.50 38026.84 53557.20 78475.58 

1RV
 

2S
 

21.85% 17.34% 25.70% 35.86% 25.57% 23.56% 29.62% 36.43% 

MCCS
 

3.89% 2.44% 4.39% 5.56% 2.84% 2.13% 3.15% 4.06% 

MCMS
 

3.70% 2.32% 4.41% 5.60% 2.64% 2.04% 3.08% 4.08% 

2RV
 

1S
 

1505.88% 804.69% 1111.52% 1371.91% 1308.15% 734.54% 1296.81% 1798.79% 

MCCS
 

237.48% 122.91% 189.88% 234.88% 134.26% 76.79% 139.70% 249.39% 

MCMS
 

255.91% 132.37% 188.38% 225.70% 146.46% 80.26% 144.32% 247.01% 

FUC 

1S
 

0.7321 0.6503 0.7005 0.7400 0.5228 0.4683 0.5031 0.5307 

2S
 

0.6667 0.6026 0.6551 0.6902 0.4444 0.3942 0.4279 0.4511 

MCCS
 

0.7033 0.6320 0.6787 0.7182 0.4964 0.4458 0.4786 0.5057 

MCMS
 

0.7039 0.6322 0.6786 0.7180 0.4975 0.4465 0.4788 0.5053 

SLU 

1S
 

38.2524 35.3417 36.9044 38.7463 28.7030 26.4874 27.6211 29.3604 

2S
 

33.5816 30.6593 32.9378 34.5051 22.7762 20.7644 21.9480 23.0985 

MCCS
 

36.6770 33.9419 35.4391 37.3803 26.8771 24.7630 25.7907 27.2809 

MCMS
 

36.7093 33.9370 35.4333 37.3835 26.9626 24.6854 25.8169 27.1206 

MLU 

1S
 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2S
 

0.7000 0.7194 0.8066 0.8800 0.5000 0.6000 0.6000 0.6000 

MCCS
 

0.9000 0.9000 0.9144 0.9767 0.9000 0.8000 0.8717 0.9000 

MCMS
 

0.9128 0.9000 0.9116 0.9533 0.9000 0.8000 0.8767 0.9000 

Time [s] 
MCCS

 
5.16 4.68 5.05 5.56 3.97 3.79 3.99 4.26 

MCMS
 

7.10 6.22 6.96 7.64 5.23 4.74 5.27 5.85 

 



 

 

Table 6 Network performance measure values with variation ranges, for random networks N3-1 

Network 

perf. 

measure 

Method 

Baseline capacity 

Fixed traffic 
Random traffic matrix 

min  avg max 

1F
 

1S
 

18161.88 ± 6769.71 16150.10 ± 6197.22 17823.34 ± 6561.94 19590.36 ± 7192.63 

2S
 

19125.11 ± 5852.54 17312.31 ± 5128.11 18931.98 ± 5578.05 20680.29 ± 6193.90 

MCCS
 

18364.45 ± 6585.04 16360.33 ± 6000.64 18041.32 ± 6359.15 19787.83 ± 7009.22 

MCMS
 

18361.08 ± 6590.10 16360.29 ± 6002.21 18040.61 ± 6360.49 19789.36 ± 7009.39 

2F
 

1S
 

422323.35 ± 319342.51 283557.21 ± 183353.59 405797.46 ± 262696.67 529990.34 ± 317634.42 

2S
 

74028.00 ± 18958.51 58087.07 ± 15406.34 86281.77 ± 22784.87 133922.69 ± 34278.52 

MCCS
 

187873.94 ± 117464.14 99206.38 ± 26725.19 164631.86 ± 65518.42 287087.53 ± 160983.12 

MCMS
 
190180.91 ± 122237.24 99122.36 ± 27079.77 165081.99 ± 66857.83 286926.37 ± 160837.80 

1RV
 

2S
 

6.65% ± 7.22% 6.21% ± 6.95% 7.74% ± 8.07% 10.18% ± 9.35% 

MCCS
 

1.38% ± 1.56% 1.00% ± 1.12% 1.53% ± 1.61% 2.07% ± 2.06% 

MCMS
 

1.35% ± 1.55% 0.95% ± 1.07% 1.52% ± 1.60% 2.08% ± 2.08% 

2RV
 

1S
 

537.19% ± 540.07% 292.87% ± 290.29% 434.86% ± 409.95% 606.38% ± 526.82% 

MCCS
 

171.76% ± 196.48% 62.34% ± 66.14% 100.71% ± 101.42% 159.60% ± 145.65% 

MCMS
 

175.25% ± 203.25% 62.77% ± 67.15% 101.14% ± 102.62% 158.73% ± 145.95% 

FUC 

1S
 

0.6819 ± 0.0113 0.6116 ± 0.0178 0.6658 ± 0.0097 0.7227 ± 0.0131 

2S
 

0.6667 ± 0.0000 0.5991 ± 0.0102 0.6547 ± 0.0028 0.7160 ± 0.0101 

MCCS
 

0.6784 ± 0.0096 0.6043 ± 0.0137 0.6601 ± 0.0072 0.7201 ± 0.0137 

MCMS
 

0.6785 ± 0.0098 0.6043 ± 0.0138 0.6601 ± 0.0072 0.7201 ± 0.0137 

SLU 

1S
 

25.9320 ± 6.7478 23.2919 ± 6.2768 25.3656 ± 6.5864 27.4647 ± 7.1687 

2S
 

25.3595 ± 6.2724 22.9674 ± 5.8378 24.9751 ± 6.2008 27.2931 ± 6.8016 

MCCS
 

25.6522 ± 6.4574 22.8933 ± 6.0269 25.0824 ± 6.3811 27.2694 ± 7.0380 

MCMS
 

25.6536 ± 6.4573 22.8890 ± 6.0226 25.0805 ± 6.3853 27.2716 ± 7.0346 

MLU 

1S
 

0.9474 ± 0.1461 0.9509 ± 0.1364 0.9666 ± 0.0929 0.9926 ± 0.0205 

2S
 

0.6933 ± 0.0185 0.7473 ± 0.0469 0.8278 ± 0.0227 0.9219 ± 0.0479 

MCCS
 

0.9082 ± 0.1368 0.8664 ± 0.0836 0.9190 ± 0.0760 0.9739 ± 0.0462 

MCMS
 

0.9081 ± 0.1369 0.8664 ± 0.0836 0.9185 ± 0.0756 0.9736 ± 0.0466 

Time [s] 
MCCS

 
4.83 ± 3.03 4.47 ± 2.77 4.76 ± 2.98 5.08 ± 3.27 

MCMS
 

5.59 ± 3.99 5.20 ± 3.72 5.61 ± 4.06 6.08 ± 4.48 
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Table 6 (cont.) Network performance measure values with variation ranges, for random networks N3-1 

Network 

perf. 

measure 

Method 

50% additional capacity 

Fixed traffic 
Random traffic matrix 

min  avg max 

1F
 

1S
 

17956.91 ± 7000.82 15999.18 ± 6353.27 17555.86 ± 6845.06 19149.46 ± 7669.19 

2S
 

18887.42 ± 6093.38 16851.74 ± 5577.56 18614.98 ± 5852.03 20554.81 ± 6304.75 

MCCS
 

18112.11 ± 6889.62 16125.66 ± 6272.98 17706.18 ± 6720.86 19356.86 ± 7500.34 

MCMS
 

18101.70 ± 6865.54 16111.82 ± 6253.33 17703.48 ± 6715.96 19358.21 ± 7497.21 

2F
 

1S
 

152851.72 ± 133312.99 113042.62 ± 96922.65 167618.69 ± 128783.24 244433.11 ± 211426.81 

2S
 

47760.00 ± 12231.30 42732.77 ± 10813.16 47086.19 ± 12162.30 52167.49 ± 13569.96 

MCCS
 

64753.07 ± 21735.69 50952.11 ± 12373.56 63190.02 ± 17829.73 77500.00 ± 22992.32 

MCMS
 

64071.00 ± 20389.06 51540.15 ± 14936.08 63070.05 ± 17651.49 78454.20 ± 22922.16 

1RV
 

2S
 

6.65% ± 7.27% 5.80% ± 6.39% 7.65% ± 8.12% 10.47% ± 10.35% 

MCCS
 

1.07% ± 1.18% 0.65% ± 0.74% 1.06% ± 1.15% 1.75% ± 1.66% 

MCMS
 

1.03% ± 1.24% 0.61% ± 0.68% 1.05% ± 1.16% 1.63% ± 1.77% 

2RV
 

1S
 

240.96% ± 344.85% 153.30% ± 204.92% 278.82% ± 341.96% 438.01% ± 517.81% 

MCCS
 

37.22% ± 39.00% 15.43% ± 17.12% 35.86% ± 32.92% 57.12% ± 55.35% 

MCMS
 

35.80% ± 36.43% 16.26% ± 16.25% 35.60% ± 32.53% 59.61% ± 57.40% 

FUC 

1S
 

0.4593 ± 0.0101 0.4106 ± 0.0134 0.4490 ± 0.0086 0.4882 ± 0.0119 

2S
 

0.4444 ± 0.0000 0.3970 ± 0.0069 0.4343 ± 0.0026 0.4750 ± 0.0081 

MCCS
 

0.4541 ± 0.0075 0.4059 ± 0.0101 0.4439 ± 0.0050 0.4837 ± 0.0086 

MCMS
 

0.4546 ± 0.0063 0.4061 ± 0.0091 0.4440 ± 0.0047 0.4836 ± 0.0085 

SLU 

1S
 

17.9733 ± 4.9674 16.1009 ± 4.4722 17.5535 ± 4.7830 18.9526 ± 5.1511 

2S
 

16.9132 ± 4.1223 15.2314 ± 3.9490 16.6014 ± 4.0913 18.1450 ± 4.4514 

MCCS
 

17.5462 ± 4.4827 15.7480 ± 4.1134 17.1516 ± 4.4176 18.5518 ± 4.8618 

MCMS
 

17.5037 ± 4.5691 15.6972 ± 4.1480 17.1442 ± 4.4258 18.5725 ± 4.9115 

MLU 

1S
 

0.8464 ± 0.2832 0.8510 ± 0.2759 0.8790 ± 0.2407 0.9284 ± 0.1987 

2S
 

0.4889 ± 0.0308 0.5090 ± 0.0360 0.5761 ± 0.0303 0.6313 ± 0.0591 

MCCS
 

0.7471 ± 0.2580 0.7051 ± 0.1859 0.7656 ± 0.1899 0.8226 ± 0.1929 

MCMS
 

0.7533 ± 0.2322 0.7071 ± 0.1907 0.7643 ± 0.1880 0.8225 ± 0.1936 

Time [s] 
MCCS

 
4.12 ± 2.35 3.90 ± 2.24 4.10 ± 2.34 4.33 ± 2.53 

MCMS
 

5.30 ± 1.48 4.21 ± 2.51 4.55 ± 2.83 5.07 ± 3.37 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 Network performance measure values with variation ranges, for random networks N3-2 

Network 

perf. 

measure 

Method 

Baseline capacity 

Fixed traffic 
Random traffic matrix 

min  avg max 

1F
 

1S
 

13432.47 ± 2745.74 12065.21 ± 2554.99 13214.70 ± 2713.93 14472.78 ± 3239.89 

2S
 

14436.32 ± 3234.59 13436.19 ± 3188.43 14496.68 ± 3255.42 15842.47 ± 3624.99 

MCCS
 

13627.81 ± 2866.45 12291.44 ± 2669.57 13448.42 ± 2836.19 14762.01 ± 3354.13 

MCMS
 

13627.41 ± 2864.26 12290.72 ± 2677.68 13447.43 ± 2833.43 14765.46 ± 3350.44 

2F
 

1S
 

505675.53 ± 107918.77 367874.62 ± 87534.55 528447.90 ± 59303.22 697115.72 ± 97679.45 

2S
 

54188.00 ± 1792.78 45979.31 ± 1938.02 64408.18 ± 3414.14 103761.14 ± 16921.16 

MCCS
 

139316.19 ± 30784.79 99491.09 ± 23169.63 147451.20 ± 18060.92 221608.25 ± 31964.06 

MCMS
 

139346.50 ± 31281.87 99539.71 ± 20939.88 147748.32 ± 18982.85 220217.19 ± 33112.94 

1RV
 

2S
 

7.23% ± 2.33% 7.44% ± 2.11% 9.49% ± 2.34% 12.18% ± 2.50% 

MCCS
 

1.39% ± 0.66% 1.27% ± 0.57% 1.70% ± 0.61% 2.19% ± 0.57% 

MCMS
 

1.39% ± 0.65% 1.27% ± 0.50% 1.70% ± 0.59% 2.20% ± 0.54% 

2RV
 

1S
 

832.82% ± 196.30% 498.51% ± 95.62% 742.43% ± 115.26% 987.58% ± 200.37% 

MCCS
 

156.93% ± 55.35% 88.82% ± 21.46% 129.69% ± 30.12% 160.11% ± 40.80% 

MCMS
 

156.94% ± 55.80% 87.72% ± 22.08% 130.38% ± 31.89% 162.27% ± 42.43% 

FUC 

1S
 

0.6871 ± 0.0119 0.6283 ± 0.0139 0.6730 ± 0.0135 0.7260 ± 0.0104 

2S
 

0.6667 ± 0.0000 0.6156 ± 0.0068 0.6596 ± 0.0045 0.7177 ± 0.0104 

MCCS
 

0.6748 ± 0.0103 0.6180 ± 0.0100 0.6613 ± 0.0100 0.7142 ± 0.0094 

MCMS
 

0.6748 ± 0.0104 0.6181 ± 0.0105 0.6613 ± 0.0101 0.7142 ± 0.0093 

SLU 

1S
 

40.0541 ± 1.9021 36.5791 ± 2.0405 38.9164 ± 2.1618 41.9268 ± 2.0481 

2S
 

37.4696 ± 2.1173 34.7715 ± 1.9031 37.2452 ± 2.1259 40.8238 ± 2.6296 

MCCS
 

38.5880 ± 2.2280 35.3708 ± 1.9735 37.7421 ± 2.3321 40.8217 ± 2.1665 

MCMS
 

38.6037 ± 2.2217 35.3614 ± 1.9913 37.7429 ± 2.3403 40.8227 ± 2.1668 

MLU 

1S
 

1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 

2S
 

0.7000 ± 0.0000 0.7378 ± 0.0532 0.8157 ± 0.0225 0.9000 ± 0.0000 

MCCS
 

0.9400 ± 0.0680 0.9175 ± 0.0485 0.9613 ± 0.0419 0.9995 ± 0.0015 

MCMS
 

0.9400 ± 0.0680 0.9081 ± 0.0521 0.9616 ± 0.0420 1.0000 ± 0.0000 

Time [s] 
MCCS

 
7.72 ± 1.20 7.06 ± 0.90 7.64 ± 0.94 8.34 ± 1.04 

MCMS
 

9.75 ± 2.92 9.15 ± 1.73 10.15 ± 2.23 11.66 ± 2.97 

 



  Table 7 (cont.) Network performance measure values with variation ranges, for random networks N3-2 

Network 

perf. 

measure 

Method 

50% additional capacity 

Fixed traffic 
Random traffic matrix 

min  avg max 

1F
 

1S
 

13036.44 ± 2355.63 11674.57 ± 2195.33 12767.53 ± 2313.52 13877.59 ± 2701.42 

2S
 

14164.43 ± 3108.57 12826.01 ± 2843.38 14039.90 ± 3091.22 15452.57 ± 3519.76 

MCCS
 

13165.86 ± 2456.07 11794.07 ± 2274.28 12911.62 ± 2425.63 14061.68 ± 2852.75 

MCMS
 

13164.65 ± 2459.36 11794.75 ± 2272.94 12910.79 ± 2423.85 14062.07 ± 2851.10 

2F
 

1S
 

282342.68 ± 160963.13 201968.54 ± 153131.42 285621.35 ± 139285.77 396086.66 ± 105496.96 

2S
 

34960.00 ± 1156.63 31881.49 ± 1295.96 34582.13 ± 1052.33 38345.84 ± 1496.49 

MCCS
 

59741.71 ± 23286.18 49101.77 ± 20612.28 61077.51 ± 21116.96 79865.56 ± 20654.65 

MCMS
 

60449.26 ± 23868.43 48623.76 ± 22165.79 61757.56 ± 22519.21 80280.22 ± 23018.82 

1RV
 

2S
 

8.27% ± 5.33% 6.98% ± 5.01% 9.54% ± 5.11% 12.24% ± 5.05% 

MCCS
 

0.94% ± 0.89% 0.75% ± 0.79% 1.06% ± 0.91% 1.47% ± 1.05% 

MCMS
 

0.92% ± 0.87% 0.75% ± 0.78% 1.06% ± 0.87% 1.44% ± 1.03% 

2RV
 

1S
 

708.12% ± 465.35% 499.79% ± 448.95% 721.77% ± 405.40% 982.00% ± 343.91% 

MCCS
 

70.82% ± 66.72% 49.77% ± 61.69% 76.01% ± 60.77% 114.33% ± 54.55% 

MCMS
 

72.89% ± 68.67% 48.71% ± 67.34% 77.92% ± 64.85% 113.66% ± 63.02% 

FUC 

1S
 

0.4732 ± 0.0126 0.4309 ± 0.0139 0.4624 ± 0.0135 0.5007 ± 0.0118 

2S
 

0.4444 ± 0.0000 0.4036 ± 0.0050 0.4351 ± 0.0021 0.4732 ± 0.0053 

MCCS
 

0.4595 ± 0.0118 0.4178 ± 0.0091 0.4495 ± 0.0106 0.4870 ± 0.0086 

MCMS
 

0.4594 ± 0.0118 0.4179 ± 0.0092 0.4494 ± 0.0109 0.4867 ± 0.0094 

SLU 

1S
 

28.8153 ± 1.9658 26.4379 ± 2.2847 28.0649 ± 2.1838 30.5958 ± 2.0203 

2S
 

25.0790 ± 1.5582 22.9592 ± 1.3793 24.7352 ± 1.5634 27.1039 ± 1.5360 

MCCS
 

27.4619 ± 2.1604 25.0250 ± 2.1415 26.7341 ± 2.0879 29.1777 ± 1.9573 

MCMS
 

27.5081 ± 2.1771 25.0117 ± 2.2112 26.7414 ± 2.1083 29.1712 ± 1.9464 

MLU 

1S
 

1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 

2S
 

0.5000 ± 0.0000 0.5467 ± 0.0563 0.5950 ± 0.0064 0.6000 ± 0.0000 

MCCS
 

0.8578 ± 0.0657 0.8212 ± 0.0731 0.8633 ± 0.0586 0.9013 ± 0.0350 

MCMS
 

0.8578 ± 0.0657 0.7917 ± 0.0927 0.8609 ± 0.0569 0.8986 ± 0.0320 

Time [s] 
MCCS

 
6.10 ± 0.88 5.69 ± 0.63 6.01 ± 0.65 6.53 ± 0.77 

MCMS
 

7.75 ± 2.81 6.64 ± 1.93 7.51 ± 2.07 8.47 ± 2.43 

 



 

 Table 8 Network performance measure values with variation ranges, for random networks N3-4 

Network 

perf. 

measure 

Method 

Baseline capacity 

Fixed traffic 
Random traffic matrix 

min  avg max 

1F
 

1S
 

75528.34 ± 3666.64 70818.03 ± 3894.02 74427.07 ± 3572.53 77379.17 ± 3113.92 

2S
 

82466.26 ± 3717.76 79240.25 ± 3678.59 82991.42 ± 3674.71 86417.03 ± 3403.72 

MCCS
 

76652.50 ± 3606.71 71984.76 ± 3843.55 75719.15 ± 3509.45 78812.30 ± 3087.91 

MCMS
 

76656.74 ± 3568.04 72009.20 ± 3802.63 75736.65 ± 3491.48 78793.59 ± 3067.92 

2F
 

1S
 

3597953.87 ± 522542.37 2737396.67 ± 317666.43 3319054.65 ± 359652.15 3729376.96 ± 412802.13 

2S
 

335668.00 ± 23003.53 277049.67 ± 21108.16 325991.93 ± 21339.77 369563.44 ± 24404.60 

MCCS
 

865480.25 ± 117267.99 621739.72 ± 62999.61 793227.55 ± 83639.06 905634.66 ± 93635.06 

MCMS
 

863968.66 ± 108085.70 615701.30 ± 70762.97 785835.34 ± 74929.49 905728.23 ± 97371.59 

1RV
 

2S
 

9.21% ± 2.17% 10.36% ± 2.70% 11.54% ± 2.75% 12.60% ± 2.81% 

MCCS
 

1.49% ± 0.34% 1.52% ± 0.44% 1.74% ± 0.40% 1.98% ± 0.42% 

MCMS
 

1.50% ± 0.42% 1.56% ± 0.44% 1.76% ± 0.41% 1.99% ± 0.45% 

2RV
 

1S
 

973.80% ± 167.80% 841.15% ± 139.60% 921.87% ± 143.31% 1026.12% ± 190.74% 

MCCS
 

158.13% ± 35.48% 121.27% ± 14.80% 143.31% ± 24.76% 163.26% ± 33.01% 

MCMS
 

157.43% ± 28.23% 114.48% ± 14.13% 141.00% ± 22.75% 164.87% ± 27.57% 

FUC 

1S
 

0.6920 ± 0.0099 0.6505 ± 0.0083 0.6799 ± 0.0103 0.7020 ± 0.0106 

2S
 

0.6667 ± 0.0000 0.6252 ± 0.0036 0.6560 ± 0.0014 0.6789 ± 0.0035 

MCCS
 

0.6776 ± 0.0033 0.6366 ± 0.0042 0.6659 ± 0.0046 0.6878 ± 0.0058 

MCMS
 

0.6775 ± 0.0031 0.6365 ± 0.0043 0.6658 ± 0.0046 0.6880 ± 0.0061 

SLU 

1S
 

85.5578 ± 9.2453 80.5862 ± 8.9263 84.2721 ± 9.4491 86.9279 ± 9.4606 

2S
 

81.7768 ± 8.1332 76.7942 ± 7.4735 80.3500 ± 7.9643 83.0299 ± 8.1954 

MCCS
 

83.6162 ± 8.9559 78.6404 ± 8.2784 82.2108 ± 8.9423 84.5953 ± 8.7675 

MCMS
 

83.6151 ± 8.9019 78.6233 ± 8.2677 82.1982 ± 8.9562 84.6888 ± 8.7708 

MLU 

1S
 

1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 

2S
 

0.7000 ± 0.0000 0.7008 ± 0.0023 0.7654 ± 0.0213 0.8202 ± 0.0320 

MCCS
 

0.9050 ± 0.0140 0.9000 ± 0.0000 0.9032 ± 0.0054 0.9306 ± 0.0520 

MCMS
 

0.9000 ± 0.0000 0.9000 ± 0.0000 0.9009 ± 0.0025 0.9094 ± 0.0244 

Time [s] 
MCCS

 
97.38 ± 10.36 87.09 ± 5.34 92.20 ± 5.64 96.94 ± 7.10 

MCMS
 

132.60 ± 38.73 98.74 ± 16.22 119.01 ± 20.74 146.43 ± 31.22 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 (cont.) Network performance measure values with variation ranges, for random networks N3-4 

Network 

perf. 

measure 

Method 

50% additional capacity 

Fixed traffic 
Random traffic matrix 

min  avg max 

1F
 

1S
 

74431.25 ± 3797.46 69776.41 ± 3954.76 73251.24 ± 3752.07 76028.31 ± 3446.19 

2S
 

79596.30 ± 3311.24 74577.81 ± 3874.77 79016.75 ± 3419.07 82540.96 ± 3225.18 

MCCS
 

75018.41 ± 3756.90 70307.07 ± 3933.84 73872.70 ± 3701.21 76723.27 ± 3375.08 

MCMS
 

74995.24 ± 3796.19 70319.18 ± 3926.18 73855.64 ± 3718.57 76709.64 ± 3362.82 

2F
 

1S
 

937868.75 ± 395407.93 736965.12 ± 286168.26 955039.63 ± 317084.83 1193586.36 ± 323364.65 

2S
 

216560.00 ± 14840.99 202987.09 ± 13954.96 212912.09 ± 14289.26 220396.64 ± 15360.76 

MCCS
 

294882.27 ± 44316.35 262100.97 ± 26828.77 289610.74 ± 38545.81 315037.63 ± 46180.37 

MCMS
 

298653.53 ± 48461.38 263729.99 ± 31236.58 291526.83 ± 39204.28 317231.61 ± 44275.68 

1RV
 

2S
 

6.97% ± 1.91% 6.49% ± 1.63% 7.89% ± 2.11% 9.34% ± 2.69% 

MCCS
 

0.79% ± 0.21% 0.68% ± 0.18% 0.85% ± 0.23% 1.00% ± 0.30% 

MCMS
 

0.76% ± 0.17% 0.65% ± 0.18% 0.83% ± 0.22% 0.98% ± 0.25% 

2RV
 

1S
 

331.80% ± 171.46% 250.47% ± 124.27% 347.48% ± 140.51% 454.56% ± 143.98% 

MCCS
 

36.03% ± 15.27% 26.73% ± 9.01% 35.88% ± 13.33% 46.17% ± 17.16% 

MCMS
 

37.77% ± 17.64% 27.66% ± 10.34% 36.79% ± 13.89% 46.81% ± 15.88% 

FUC 

1S
 

0.4672 ± 0.0081 0.4386 ± 0.0071 0.4592 ± 0.0085 0.4748 ± 0.0082 

2S
 

0.4444 ± 0.0000 0.4165 ± 0.0025 0.4368 ± 0.0010 0.4520 ± 0.0023 

MCCS
 

0.4597 ± 0.0067 0.4326 ± 0.0052 0.4520 ± 0.0069 0.4671 ± 0.0058 

MCMS
 

0.4599 ± 0.0069 0.4324 ± 0.0048 0.4522 ± 0.0070 0.4674 ± 0.0064 

SLU 

1S
 

58.3914 ± 6.8361 54.8094 ± 6.2456 57.4199 ± 6.7917 59.3277 ± 6.8259 

2S
 

54.5301 ± 5.6589 51.0505 ± 5.2117 53.5935 ± 5.5920 55.2742 ± 5.6446 

MCCS
 

57.1587 ± 6.4050 53.7229 ± 5.9307 56.1948 ± 6.4298 58.0616 ± 6.3418 

MCMS
 

57.1803 ± 6.4128 53.6978 ± 5.9092 56.2214 ± 6.4377 58.1055 ± 6.3777 

MLU 

1S
 

1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 

2S
 

0.5000 ± 0.0000 0.5000 ± 0.0000 0.5251 ± 0.0218 0.5769 ± 0.0375 

MCCS
 

0.7939 ± 0.0648 0.7800 ± 0.0555 0.8026 ± 0.0477 0.8373 ± 0.0636 

MCMS
 

0.8011 ± 0.0737 0.7800 ± 0.0555 0.8034 ± 0.0416 0.8374 ± 0.0638 

Time [s] 
MCCS

 
67.13 ± 4.97 64.39 ± 3.32 67.86 ± 3.64 71.42 ± 4.19 

MCMS
 

96.61 ± 8.80 88.65 ± 3.75 97.86 ± 4.09 107.55 ± 5.30 

 



 

of the algorithm (see figures 14a and 14c-14d). 

The final solutions obtained by the two methods are in general different but normally very close to 

each other and leading to very similar network performances. This similarity of the final solutions was 

expectable since both are exact methods for generating non-dominated solutions, the degree of 

‘exploration’ of the decision space was defined with the same parametrization in the corresponding sets 

of experiments and the method for the final solution selection was the same, consisting of an automated 

procedure based on a reference point type approach. 

The final solutions obtained with the MCC and MCM algorithms are both guaranteed to be non-

dominated solutions. There is not a method that is clearly better than the other in terms of running times, 

 
 

(a) Solutions obtained with the MCC 
algorithm in the situation of baseline link 

capacity (increased by 20%) 
 

(b) Solutions obtained with the MCM 
algorithm in the situation of baseline link 

capacity (increased by 20%) 

 
(c) Solutions obtained with the MCC 

algorithm in the situation of 50% additional 
link capacity 

 

(d) Solutions obtained with the MCM 
algorithm in the situation of 50% additional 

link capacity 

Figure 14 Non-dominated solutions obtained for fixed traffic in network N1-1b 

 
 



although we might mention the fact that the MCM algorithm tends to take more time to run in the great 

majority of the experiments (the exceptions being for network N1-3) but the differences in average 

running times are not significant. 

As for the running time of the algorithms, it clearly increases when the number of nodes and links 

increases. In the situations where a 50% additional capacity in the links is considered, the running time 

is lower than when the baseline capacity of the links is considered. As the capacity of the links increases, 

it is easier to “accommodate” the offered traffic, and it is faster to obtain an adequate solution. 

  

5. Conclusions 

In this paper, we presented a multiobjective routing model for MPLS networks with different service 

types considering a network-wide optimization approach based on a network flow modeling approach. 

This model may be relevant for telecommunication operators. In many currently implemented systems, 

the routing is optimized using a flow-oriented based approach, which lacks a global perspective in terms 

of global network performance/cost metrics. The routing problem is formulated as a multiobjective 

mixed-integer program, where the considered objectives were the minimization of the bandwidth 

transport cost and the minimization of the total load cost in the network links, with a constraint on the 

maximal splitting of traffic trunks. A variant of the original problem was proposed and two different 

exact methods were developed for solving the formulated problem, the MCC algorithm and the MCM 

algorithm, based on the classical constraint method and on a modified constraint method, respectively. 

A very extensive experimental study was presented, considering reference test networks and MPLS 

networks randomly generated with the gt-itm software. Results on relevant network performance 

measures (some related to the link utilization, and also the relative variation of the obtained solutions 

when compared to the optimal solutions obtained when each of the objective functions is individually 

optimized) were presented. 

The obtained results show that the objective functions 1F   and 2F   are indeed conflicting, which 

confirms the potential advantages of using these two objectives in this routing model, rather than solving 

a single objective problem. The fact that we are using two different and conflicting objectives provides 

the decision maker with the tools to understand the implications of these two aspects: on the one hand, 

the minimization of the bandwidth transport cost and on the other hand, the minimization of the load 

cost in the network links. If only the first objective was taken into account, there would be the tendency 

to use shortest paths, which would cause some links to be over-utilized while others would remain under-

utilized. By including the second objective function, we aim at an adequate load distribution in the 

network, which would lead to a more balanced use of the network links. This way, the trade-offs among 

these distinct performance metrics can be analyzed in a consistent manner. 

The numerical values of the network performance measures calculated for the obtained solutions are 

relevant, because they give a quantitative measure of the trade-offs between the two objective functions, 

as well as the level attained by significant performance metrics. In particular, the MLU is a relevant 

measurement in traffic engineering terms and it shows that the minimization of 2F  leads indeed to a 



 

better load distribution in the network, at the cost of an increase in the bandwidth transport cost. 

We can conclude that none of the algorithms MCC or MCM is clearly better than the other since they 

not only lead to similar solutions in terms of network performance as could be expected, but also the 

running times are similar, with a slight advantage to MCC. The final solutions are similar as both 

resolution methods are exact methods for generating non-dominated solutions, and also because the same 

parametrization was used to explore the decision space and the final solution was selected with the same 

method. 

Note that both methods could be easily adapted to an interactive procedure for selecting a final non-

dominated solution, as in a non-automated off-line application environment. In this case, the decision 

maker would explore the Pareto front at will and could favour different solutions representing different 

trade-offs between routing cost and total load cost. Also note that the dimension of the range of solutions 

that can be explored can be widened straightforwardly by increasing the parameter Δ in both algorithms. 

In this context, the only advantage of MCM over MCC stems from the fact that it tends to generate 

more evenly spaced solutions in the Pareto frontier. 

Future developments of this work will involve the adaptation of the model to the routing of 

incremental type traffic and the formulation of a multiobjective model of similar nature for networks 

with two service classes in terms of bandwidth assignment priority, namely QoS and BE traffic. Finally, 

different specifications of the objective functions could be considered for different network application 

environments. 
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