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Abstract

It is shown that the molecular potential energy surface corresponding to a high level of ab initio theory can be accurately predicted by
performing calculations with smaller basis sets and then scaling the electron correlation at a single point calculated with the larger target
basis set.
� 2006 Elsevier B.V. All rights reserved.
Knowledge of a molecular potential energy surface
(PES) is key in many fields, ranging from spectroscopy
and mechanisms of chemical reactions to force fields in bio-
logical molecules and chemical kinetics. Although a limited
portion of its s-dimensional configuration space
(s = 3N � 6 for a N-atom species) near the equilibrium
geometry often suffices for studying small-amplitude vibra-
tions, the full PES or the large part of it is required for
spectroscopic studies in floppy molecules, chemical reac-
tion dynamics, and molecular dynamics simulations.
Whether using a global PES [1] or performing direct
dynamics calculations by determining the energies and
energy gradients (forces) on the fly [2], it is crucial that
the PES or its part relevant to the dynamics simulation is
calculated with high accuracy. In both cases, the main chal-
lenge is to generate a relatively large number of points on
the PES along the relevant nuclear coordinates with high
accuracy ab initio methods of quantum chemistry. Because
of the large cost of accurate electronic structure calcula-
tions, which rapidly grows with the size of the basis set,
it is essential to develop a procedure for obtaining high-
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quality ab initio energies and forces from inexpensive calcu-
lations employing smaller basis sets.

Despite major advances in ab initio electronic structure
methods, the conventional process of solving the electronic
Schrödinger equation point-by-point to generate a molecu-
lar PES is a painstaking computational effort which grows
as ms, where m is a typical number of points required to
represent a one-dimensional PES cut (typically, m � 10–
30 for bond distances and 5–20 for bond angles). This com-
pounds the total cost of generating a PES for a given
molecular system to at least msn4, since accurate ab initio

methods scale with at least the fourth power of the number
of unoccupied orbitals in a basis set (n). The calculation of
an accurate PES using large basis sets is then affordable
only for few-electron molecular systems, where n is already
on the order of 100, with medium to large polyatomic sys-
tems usually calculated using small and therefore unrealis-
tic basis sets.

A significant progress in calculations for small molecules
has become possible after the introduction of the so-called
correlation-consistent (cc) basis sets [3,4], including the
aug-cc-pVXZ and aug-cc-pCVXZ basis sets used in this
work (abbreviated by AVXZ and ACVXZ, respectively).
Built in a systematic manner, that is intended to relate
the correlation energy to the cardinal number X, such basis
sets prompted the search for laws to extrapolate the corre-
lation energy to the complete basis set (CBS) limit (see, e.g.,
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[5–8]). Although low-order perturbation-type laws are
known for the dependence of the correlation energy on
the partial wave quantum number in two-electron atomic
systems and for second-order pair energies in many-elec-
tron atoms [9,10], X is not a rigorous quantum number
for scaling correlation energy in many-electron atoms and
molecules. Several empirical laws defining the dependence
of the correlation energy on X have been suggested (see,
e.g., [5–8]), such as [5] DEX = DE1 + cX�3, where DEX is
the correlation energy obtained with the X-tuple basis set
of (aug)cc quality and DE1 and c are parameters deter-
mined from the calculations for the two highest affordable
values of X, often 5 and 6. An obvious criticism is that this
scheme utilizes as many values of DEX as the number of
parameters in a situation, where the X�3-dependence of
the correlation energy is only approximate. Moreover,
because the scaling of DEX with X is geometry-dependent,
the CBS extrapolation of a molecular PES must be repeat-
edly carried out for a large number of nuclear geometries.
This is complicated by the fact that for AVXZ and
ACVXZ basis sets, the number of basis functions grows
rapidly with X. For example, for the N2, O2, and F2 mole-
cules considered in this work, the dimensions of the AVXZ
basis sets grow from 46 for X = 2 to 254 for X = 5. For lar-
ger molecules, the numbers of basis functions are in thou-
sands. Thus, the basis-set extrapolation of a PES for a
polyatomic system is a mammoth task even for the fastest
computers, without a guarantee that the predicted PES is
accurate since there will be a numerical noise in the extrap-
olated energies at different geometries, and the extrapola-
tion laws employed may not be precise enough.

In this Letter, a simple, yet a robust and accurate extrap-
olation scheme is proposed that allows a drastic reduction
in the labor required to generate a high-quality global PES
corresponding to larger basis sets. The proposed scheme
shows three prominent features: (a) the calculations of a
global PES or PES cut using basis sets of ranks X � 2
and X � 1, or smaller, and the calculation of a single point
with the target basis set of rank X, accurately predicts the
global PES or PES cut corresponding to the basis set of
rank X; (b) it works well with basis sets that do not belong
to the (aug)cc hierarchy and that are not defined by a car-
dinal number X; (c) it is applicable to scaling both the
dynamical and full correlation energies in a variety of elec-
tronic structure calculations, using methods such as the
multi-reference configuration interaction (MRCI) and cou-
pled-cluster (CC) approaches. For example, from the PESs
obtained in the MRCI/AVDZ and MRCI/AVTZ calcula-
tions, a global MRCI/AVQZ PES can be predicted using
only one MRCI/AVQZ calculation at some, in principle
arbitrary, reference (e.g., equilibrium) geometry. The
extrapolation error amounts typically 1–2% of the change
in total energy, when going from the PESs obtained with
the X � 2 and X � 1 basis sets to the PES obtained with
the target X or X + 1 basis set (the same applies to basis
sets, which do not belong to the (aug)cc series, and which
will be labeled by an index m).
The proposed procedure is based on extrapolating the
difference between the total energy E and the energy of
some reference wave function, Eref, which represents the
correlation energy or part of it. In the case of the MRCI
method, including the popular MRCI(Q) approach [11],
the reference wave function can be obtained in the preced-
ing CASSCF (complete-active-space self-consistent-field)
calculations. In the case of CC approach, the reference
wave function can be obtained with the Hartree–Fock
method, although other choices are possible. In the CC cal-
culations reported here using the CR–CC(2,3) method [12],
abbreviated as CRCC, which can be used to describe sin-
gle-bond breaking, the energy obtained in CCSD (CC sin-
gles and doubles) [13] calculations with the restricted
Hartree–Fock (RHF) reference is corrected for triple exci-
tations. Thus, the RHF or CCSD or even the CASSCF
wave functions can provide reference energies for the
extrapolation of the CRCC PES.

Suppose that MRCI(Q) or CRCC or some other corre-
lated calculations using basis sets indexed by m � 1 and m

are performed [m ” X for AVXZ and ACVXZ basis sets
and their cc-p(C)VXZ analogs, and is an arbitrary index
for basis sets that do not belong to the (aug)cc family].
The extrapolated MRCI(Q) or CRCC or other PESs for
the (m + 1)th basis set are obtained as

Emþ1ðRÞ ¼ Eref
mþ1ðRÞ þ vmþ1;mðRÞDEmðRÞ: ð1Þ

Here, Eref
mþ1ðRÞ is the energy of the reference wave function

calculated with the (m + 1)th basis set, DEmðRÞ ¼
EmðRÞ � Eref

m ðRÞ, R denotes the s-dimensional vector of
the nuclear space coordinates defining the PES, and

vmþ1;mðRÞ ¼ 1þ
SðRÞm;m�1 � 1

SðReÞm;m�1 � 1
SðReÞmþ1;m � 1
h i

; ð2Þ

with S(R)m,m�1 = DEm(R)/DEm�1(R). The reference geome-
try Re can be the equilibrium geometry or any other point
on the PES. Thus, the MRCI(Q) or CRCC or some other
PES Em+1(R) is extrapolated from the PESs Em(R) and
Em�1(R), the reference energies Eref

m�1ðRÞ, Eref
m ðRÞ, and

Eref
mþ1ðRÞ, and a single correlated energy Em+1(Re) calcu-

lated at the reference geometry Re. Eq. (1) represents the
simplest mathematical expression that one can propose to
extrapolate the energy based on scaling the correlation en-
ergy or the part of it from basis set m to basis set m + 1. In
particular, the scaling function vm+1,m(R) in Eq. (1) satisfies
the following desirable properties: (i) vm+1,m(R)! 1 for all
values of R when m!1; (ii) the value of vm+1,m(R) at the
reference geometry R = Re equals the ratio of DEm+1(Re)
and DEm(Re). The extrapolation scheme proposed here is
analytic, resulting in a smooth PES. Thus, it should be
usable for calculating enough information about the PES
to fit it to some functional form that could subsequently
be utilized in dynamics calculations. One can even envision
the development of analytic gradients for the energy result-
ing from Eq. (1) that could be exploited in direct dynamics
calculations. Our scheme does not rely on any empirical
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data, which contrasts it with the earlier schemes [14–18]
that use readily available experimental atomization or dis-
sociation energies.

Table 1 shows the results obtained from MRCI(Q)/
AVXZ calculations employing CASSCF reference (per-
formed using MOLPRO [19]) for the N2, O2, and F2 mol-
ecules, which represent three most frequent types of
chemical bonds (single in F2, double in O2, and triple in
N2). For brevity, only the results obtained for a few geom-
etries are given. The notable feature is that the above
extrapolation scheme (in each case, the reference bond
length Re was chosen as the experimental equilibrium
geometry [20], although similar results are obtained for
any other choice) recovers the changes in the total energies
over the entire range of bond lengths (0.7 6 R/Re 6 5.0),
when going from the smaller to larger AVXZ basis sets,
to within a fraction of a millihartree (0.8–2.5% on average)
for DE43, and 0.1 millihartree (0.5–0.9% on average) for
DE54, where DEkl = Ek � El is a change in energy, when
going from basis set k to basis set l [for simplicity, we have
dropped R from E(R)]. In particular, the entire MRCI(Q)/
AV5Z potential curves can be predicted with a millihartree
or sub-millihartree accuracy through much less expensive
MRCI(Q)/AVDZ and MRCI(Q)/AVTZ calculations, as
long as one calculation at the MRCI(Q)/AVQZ level and
another one at MRCI(Q)/AV5Z level can be performed.
Extrapolation to the CBS-limit could be performed using
Table 1
Energies of various diatomic molecules from MRCI(Q)/AVXZ calculations at

System R/Re E4
a DE43

b �4
c

N2
f 0.8 �109.173214 �32.707 �0.556

1.3 �109.276761 �21.967 �0.048
1.8 �109.087088 �17.980 �0.500
4.0 �109.050342 �16.604 �0.658

rmsdg 0.430

O2
f 0.8 �150.018095 �41.344 0.114

1.3 �150.096957 �33.501 �0.458
1.8 �149.994763 �31.993 �1.137
4.0 �149.986743 �31.857 �1.302

rmsdg 0.841

F2
f 0.8 �199.268096 �54.217 �0.089

1.3 �199.324432 �49.677 �0.183
1.8 �199.300262 �49.089 �0.561
4.0 �199.299614 �49.307 �0.544

rmsdg 0.379

a Total energies, in hartree, calculated at MRCI(Q)/AVQZ (E4) and MRCI
b Differences, in millihartree, between the actual MRCI(Q)/AVQZ and MR

energies.
c Deviation, in millihartree, between the actual MRCI(Q)/AVQZ energy

calculations.
d Deviation, in millihartree, between the actual MRCI(Q)/AV5Z energy a

calculations.
e Deviation, in millihartree, between the actual MRCI(Q)/AV5Z energy a

calculations.
f Experimental equilibrium geometries [20], Re, for N2, O2 and F2 are 1.

performed for 0.7 6 R/Re 6 5.0.
g Root-mean-square deviation, in millihartree, for the 29 calculated points o
the CBS energy extrapolated at Re and the MRCI(Q)/
AVDZ and MRCI(Q)/AVTZ [or MRCI(Q)/AVTZ and
MRCI(Q)/AVQZ] curves, but this is not elaborated on
here. The key point is that our scheme accurately predicts
entire potential curves corresponding to larger basis sets
in a smooth manner.

Table 2 summarizes the results for two cuts of the
ground-state PES of H2O, calculated with MRCI(Q) and
ACVXZ basis sets. They cover distinct regions of configu-
ration space and energy, and have only one point in com-
mon, the equilibrium geometry Re taken from [21]. The
first cut (I) corresponds to breaking of one OH bond.
The second cut (II) describes the simultaneous dissociation
of two OH bonds, which is a much higher energy process
than I. In both cuts, the angle \HaOHb was fixed at its
equilibrium value (a and b label the H atoms). As the
results show, the predictive capability of our extrapolation
scheme is as good as in the cases of N2, O2, and F2. The
results in Table 2 have been obtained by fixing the reference
geometry Re at equilibrium, which is a common point in
both cuts, but they are almost identical when a point that
belongs to only one of the two cuts (e.g.,
ROHa ¼ ROHb

¼ 5Re, which belongs to cut II only) is used
as the reference geometry for extrapolation. This suggests
that a global high-level PES can be generated for H2O from
only one or two MRCI(Q) energies obtained with the larg-
est X-tuple basis sets and PESs calculated with smaller
selected internuclear distances R

E5
a DE54

b �5
d �5

e

�109.182846 �9.632 �0.604 �0.033
�109.283649 �6.888 0.003 0.052
�109.092710 �5.622 �0.458 0.051
�109.055528 �5.186 �0.590 0.078

0.443 0.120

�150.031102 �13.007 0.047 �0.069
�150.108083 �11.126 �0.417 0.051
�150.005352 �10.590 �1.057 0.104
�149.997359 �10.616 �1.191 0.140

0.777 0.086

�199.286432 �18.336 �0.191 �0.100
�199.341478 �17.046 �0.157 0.031
�199.317259 �16.997 �0.467 0.108
�199.316695 �17.080 �0.448 0.111

0.332 0.087

(Q)/AV5Z (E5) levels.
CI(Q)/AVTZ (DE43) or MRCI(Q)/AV5Z and MRCI(Q)/AVQZ (DE54)

and the extrapolated one from MRCI(Q)/AVTZ and MRCI(Q)/AVDZ

nd the extrapolated one from MRCI(Q)/AVTZ and MRCI(Q)/AVDZ

nd the extrapolated one from MRCI(Q)/AVQZ and MRCI(Q)/AVTZ

09768, 1.20752, and 1.41193 Å, respectively. All calculations have been

f each of the N2, O2, and F2 systems.



Table 2
Energies of H2O from MRCI(Q)/ACVXZ calculations at selected geometries of cuts I and II

PES cut R/Re
a E4

b DE43
c �4

d E5
b DE54

c �5
e �5

f

HO–Hg 0.75 �76.319568 �25.940 0.100 �76.327540 �7.973 0.148 0.046
1.125 �76.412167 �24.143 0.000 �76.419533 �7.366 0.000 0.000
2.0 �76.260564 �22.852 �0.250 �76.267564 �7.000 �0.231 0.025
5.0 �76.223480 �22.472 �0.476 �76.230392 �6.912 �0.449 0.037

rmsdh 0.299 0.284 0.028

H–O–Hi 0.75 �76.217614 �27.189 0.561 �76.226078 �8.465 0.661 0.087
1.05 �76.422840 �24.627 0.000 �76.430320 �7.480 0.000 0.000
2.0 �76.114238 �20.899 �0.553 �76.120718 �6.480 �0.509 0.056
5.0 �76.054710 �19.984 �0.971 �76.060973 �6.263 �0.901 0.090

rmsdh 0.604 0.575 0.058

a Re = 0.95785 Å stands for the OH bond length in the equilibrium C2v structure of the water molecule [21].
b Total energies, in hartree, calculated at MRCI(Q)/ACVQZ (E4) and MRCI(Q)/ACV5Z (E5) levels.
c Differences, in millihartree, between the actual MRCI(Q)/ACVQZ and MRCI(Q)/ACVTZ (DE43) or MRCI(Q)/ACV5Z and MRCI(Q)/ACVQZ

(DE54) energies.
d Deviation, in millihartree, between the actual MRCI(Q)/ACVQZ energy and the extrapolated one from MRCI(Q)/ACVDZ and MRCI(Q)/ACVTZ

calculations.
e Deviation, in millihartree, between the actual MRCI(Q)/ACV5Z energy and the extrapolated one from MRCI(Q)/ACVTZ and MRCI(Q)/ACVDZ

calculations.
f Deviation, in millihartree, between the actual MRCI(Q)/ACV5Z energy and the extrapolated one from MRCI(Q)/ACVQZ and MRCI(Q)/ACVTZ

calculations.
g Breaking of a single OH bond (cut I), while keeping the angle \HOH fixed at the equilibrium value of 104.51�.
h Root-mean-square deviation, in millihartree, for all calculated points from a given PES cut (11 points for cut I, and 12 points for cut II).
i Symmetric breaking of the two OH bonds (cut II), while keeping the angle \HOH fixed at the equilibrium value of 104.51�.
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basis sets. Fig. 1 highlights the predictive capability of the
method by comparing the actual changes in the total ener-
gies, when going from one basis set to another, with those
obtained from extrapolation. A direct comparison of the
calculated and predicted DEkl values resulting from
MRCI(Q) calculations is shown in panels (a) for O2 and
(b) for H2O, while the deviations between the predicted
(Ep

k ) and actual (Ek) MRCI(Q) energies, �k ¼ Ep
k � Ek, are

shown in Tables 1 and 2. The agreement between the pre-
dicted and actual values is very good, irrespective of
nuclear geometry.

For wide applicability, the method should also work
with basis sets that are not as systematic as AVXZ and
ACVXZ. In many applications, particularly when larger
systems are studied, Pople-type basis sets are often the
most affordable choice. To test the robustness of the pro-
posed extrapolation scheme, the following four basis sets
of the Pople-type have been used for O2: 6-311G (basis
set index m = 2, 26 functions), 6-311+G(d) (m = 3, 44
functions), 6-311+G(2d) (m = 4, 54 functions), and 6-
311+G(3d) (m = 5, 64 functions). As shown in Fig. 1c,
the curves representing the actual energy changes DEkl

are highly non-monotonic, and yet the errors in the DEkl

values resulting from extrapolation are small. In particular,
the proposed extrapolation scheme correctly reproduces
the shapes of the actual DEkl curves.

The procedure based on Eqs. (1) and (2) works equally
well, when methods other than MRCI(Q), such as, e.g.,
CRCC, are used to calculate total energies. This is illus-
trated in Fig. 1d and Table 3, where the results of
CRCC/ACVXZ calculations (X = 2–4), performed using
the CC routines [12,22] in GAMESS [23], for the breaking
of a single OH bond in the water molecule are summarized.
Three schemes have been adopted to extrapolate the PES.
The first scheme employs the RHF wave function to pro-
vide the reference energy Eref, and hence is based on the
extrapolation of total correlation (non-dynamical plus
dynamical) energy at the equilibrium geometry Re. In the
second scheme, CCSD provides the reference energy Eref,
and the extrapolation is performed for the remaining part
of the correlation energy that defines the triples correction
of CRCC. The third scheme uses the difference between the
CRCC and CASSCF energies to define DEm energies in
Eqs. (1) and (2). In all three cases, the substantial changes
in the total energies DE43, when going from ACVTZ to
ACVQZ basis sets are predicted with high accuracy, typi-
cally within 1–3% of the value of DE43 obtained in the cor-
responding CRCC/ACVTZ and CRCC/ACVQZ
calculations.

To conclude, an ab initio scheme has been proposed that
predicts the global PES corresponding to a calculation with
a large basis set from small basis set calculations. The cru-
cial idea is to scale the correlation energy or part of it using
the scaling factor obtained at a single geometry. The ability
to predict the smooth PES corresponding to larger basis
sets from smaller basis set calculations with (sub)millihar-
tree accuracies is the key to successfully extrapolate PESs
to the CBS-limit. If combined with the recently developed
method of correlation energy extrapolation by intrinsic
scaling [24], which enables one to achieve a nearly exact
solution of the non-relativistic electronic Schrödinger equa-
tion in a basis set, the method proposed in this work may
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Fig. 1. A comparison of the actual and predicted changes in total energies, when going from basis set l to basis set k, DEkl = Ek � El : (a) MRCI(Q)/AVXZ
results for O2; (b) MRCI(Q)/ACVXZ results for H2O (cuts I and II); (c) MRCI(Q) results for O2 using Pople-type basis sets; (d) CRCC/ACVXZ results
for single-bond breaking in H2O (cut I). In panels (a), (b), and (d), k and l are the cardinal numbers of the corresponding AVXZ (a) and ACVXZ ((b) and
(d)) basis sets (k = 2 for AVDZ and ACVDZ, k = 3 for AVTZ and ACVTZ, etc). In panel (c), k and l label Pople-type basis sets as described in the text.
The actual values of DEkl are represented by circles, triangles, and squares. The predicted DEkl values are represented by lines. The solid lines in panels (a)–
(c) represent the extrapolations from the (k � 2) and (k � 1) bases to the basis set k (k = 4,5) or, in the case of DE53, the result of two consecutive
extrapolations, from the actual calculations with basis sets 2 and 3 to 4 and from the actual calculations using basis sets 3 and 4 to 5, i.e.
DE53 = DE43 + DE54, where DE43 and DE54 are the predicted energy changes. The dashed lines representing the predicted DE53 values in panels (a)–(c)
correspond to the extrapolation from the actual calculations using basis sets 2 and 3 to 4, followed by the extrapolation from the actual calculations using
basis set 3 and the predicted result from 4 to 5. The curves in blue in panel (b) for H2O refer to single-bond breaking (cut I), while those in red refer to
double bond breaking (cut II); for both cuts, \HOH has been fixed at the equilibrium value. The lines in panel (d) have the following meaning: solid line,
predicted DE43 from CRCC/ACVXZ calculations using the RHF energy as Eref; dashed line, predicted DE43 using the CASSCF energy as Eref; dashed-
dotted line, predicted DE43 using the CCSD energy as Eref.

Table 3
Energies for single-bond breaking in H2O from CRCC/ACVXZ calculations at selected geometries from cut I

R/Re
a E4

b DE43
c �RHF

4
d �CAS

4
e �CCSD

4
f

1.25 �76.390403 �23.964 0.148 �0.034 �0.003
1.5 �76.337124 �23.597 0.301 �0.002 0.021
2.0 �76.260215 �22.861 0.322 �0.327 0.059
3.0 �76.223179 �22.141 0.876 �0.410 0.328
5.0 �76.221884 �22.003 1.031 �0.486 0.395
rmsdg 0.636 0.307 0.232

a Re = 0.95785 Å stands for the OH bond length in the equilibrium C2v structure of the water molecule [21].
b Total energy, in hartree, calculated at CRCC/ACVQZ level.
c Difference, in millihartree, between the actual CRCC/ACVQZ and CRCC/ACVTZ energies.
d Deviation, in millihartree, between the actual CRCC/ACVQZ energy and the extrapolated one from CRCC/ACVTZ and CRCC/ACVDZ energies

using the RHF wave function to provide the reference energy for extrapolation.
e Deviation, in millihartree, between the actual CRCC/ACVQZ energy and the extrapolated one from CRCC/ACVTZ and CRCC/ACVDZ energies

using the CASSCF wave function to provide the reference energy for extrapolation.
f Deviation, in millihartree, between the actual CRCC/ACVQZ energy and the extrapolated one from CRCC/ACVTZ and CRCC/ACVDZ energies

using the CCSD wave function to provide the reference energy for extrapolation.
g Root-mean-square deviation, in millihartree, for the 9 calculated geometries.
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enable one to obtain the virtually exact PESs from first
principles.
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