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Abstract

Standard single-valued double many-body expansion (DMBE) theory has been extended to allow an accurate representation of a

double-valued potential energy surface. With this new theory, the degeneracy of the two sheets along the conical intersection line can

be guaranteed by construction. The method has been applied to the lowest triplet state of Hþ
3 (a

3E0) for which the lowest vibrational

levels have also been calculated.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

In two recent publications [1,2] we have studied the

potential energy surfaces of the two lowest triplet states

of Hþ
3 . These two states become degenerate at equilat-

eral triangular configurations and are thus connected by

a conical intersection. Nearly independent analytical

representations of the two sheets were obtained in the
above-mentioned publications, the only restriction being

that the linear energy splitting between the two surfaces

in the vicinity of the intersection line be described cor-

rectly. No attempt was made to guarantee the degener-

acy of the two states along the intersection line. While in

principle this degeneracy should be an automatic out-

come of the individual fits, in practice we have to live

with a certain untidiness. That is, very small and
harmless inaccuracies may have to be allowed, as it has

indeed been observed. We have now devised a theoret-

ical method for the representation of a double-valued

potential energy surface that ensures the degeneracy at

the intersection line to any degree of accuracy that may

be required by using a single-valued like formalism. In
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the present paper, we have applied this new theory,

which is based on the double many-body expansion

(DMBE) method, to the two sheets of triplet Hþ
3 (a

3E0).
2. Single-valued like DMBE representation of a double-

valued surface

In the following, the basic formalism of single-valued

DMBE theory [3] and the necessary modifications to

obtain an accurate representation of a double-valued

potential energy surface will be discussed. For a general
multivalued DMBE approach, see [4,5].

For a triatomic molecule, the potential energy surface

can be expanded as a sum of one-body, two-body and

three-body terms

V ðRÞ ¼
X3
i¼1

V ð1Þ
i þ

X3
i¼1

V ð2ÞðRiÞ þ V ð3ÞðRÞ; ð1Þ

where R ¼ fR1;R2;R3g denotes the full set of interpar-

ticle distances. The sum of the three one-body terms
corresponds to the energy of the three separated parti-

cles and thus provides a constant energy shift. Each of

the many-body terms is then further split into two parts,

which describe the extended Hartree–Fock and dy-

namical correlation energies, as
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1 Note that in previous papers [1,2] the definition of C2 and C3 is

incorrect and that, in Eq. (17) of [1] and Eq. (11) of [2], the
ffiffiffiffiffiffi
C2

p
should

be replaced by C2. Such changes have no implications on results

reported there that were calculated using the correct expressions.
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V ð2ÞðRiÞ ¼ V ð2Þ
EHFðRiÞ þ V ð2Þ

dc ðRiÞ ð2Þ
and

V ð3ÞðRÞ ¼ V ð3Þ
EHFðRÞ þ V ð3Þ

dc ðRÞ: ð3Þ
The dynamical correlation terms are represented ana-

lytically [6] as

V ð2Þ
dc ðRÞ ¼

X
n

vnðRÞCnR�n ð4Þ

and

V ð3Þ
dc ðRÞ ¼

X3
i¼1

fiðRÞ
X
n

vnðriÞCnr�n
i : ð5Þ

In the latter equation, ri denotes the distance between

the third particle and the centre of mass of particles one

and two, as defined in the Jacobi coordinate system with

index i. In turn,

fiðRÞ ¼
1

2
1
�

� tanh½nðgsi � sj � skÞ�
�

ð6Þ

is the corresponding switching function, with ði; j; kÞ
cyclic permutations of ð1; 2; 3Þ and the si ¼ Ri � Rref .

This switching function ensures proper weighting of the
three contributions i ¼ 1; 2; 3 in Eq. (5) when a partic-

ular atom-diatom dissociation channel is reached. In the

expressions for the dynamical correlation energies, Eqs.

(4) and (5), damping functions vn are needed to make

those terms behave at short range. These damping

functions are expressed analytically as [7]

vnðRÞ ¼ 1

�
� exp

�
� An

R
q
� Bn

R2

q2

��n
; ð7Þ

where An and Bn are the auxiliary functions

An ¼ a0n�a1Bn ¼ b0 e
�b1n ð8Þ

with parameters a0 ¼ 16:36606, a1 ¼ 0:70172, b0 ¼
17:19338 and b1 ¼ 0:09574. The variable q in Eq. (7) is

defined as

q ¼ 5:5þ kR0; ð9Þ
where R0 ¼ 2

ffiffiffi
3

p
is Le Roy’s [8] parameter and k is a

variational parameter.

In two previous papers [1,2], we have applied DMBE

theory to model separately the lower and upper sheets of

the triplet Hþ
3 Jahn–Teller system. The EHF three-body

term was split into two parts [9],

V ð3Þ
EHF;u=lðRÞ ¼ PN

1;u=lðC1;C2;C3Þ
h

� C2PM
2;u=lðC1;C2;C3Þ

i
� T ðC1Þ ð10Þ

the second of which is proportional to the Jahn–Teller

type coordinate [10] C2. In the above equation, the P I
1;2

are polynomials of order I ,

P I
nðC1;C2;C3Þ ¼

X
iþ2jþ3k6 I

cnijkC
i
1C

j
2C

k
3 ð11Þ
and T ðC1Þ is a range determining factor, chosen as

T ðC1Þ ¼ T2ðC1Þ (see [1]), where

T2ðxÞ ¼ 1
�

þ ecðx�x0Þ
	�1

: ð12Þ
The Ci are the coordinates of the integrity basis [11] and

are defined as 1

C1 ¼ Q1; C2
2 ¼ Q2

2 þ Q2
3; C3

3 ¼ Q3ðQ2
3 � 3Q2

2Þ; ð13Þ
where the Qi are the usual symmetry coordinates

[1,12,13], i.e. symmetry adapted linear combinations of

the expansion coordinates ~Ri, for which in turn we use

the Morse displacement coordinates [14]

~Ri ¼ 1f � exp½ � bðRi=R0 � 1Þ�g=b: ð14Þ
Looking at the analytical form of the three-body

EHF term, Eq. (10), one might think that the degener-

acy of the two sheets of the potential energy surface at

the intersection line can be enforced by a consistent

choice of coefficients of the first polynomials, PN
1;u=l. Such

a procedure would work if the one-body and two-body

contributions to the two sheets were identical at the

intersection line, which in general is not the case. In the

present system, for example, the two-body potentials of
the lower sheet belong to the electronic ground state of

Hþ
2 , X

2Rþ
g , while those of the upper sheet belong to the

repulsive b3Rþ
u state of H2. Fortunately, there is a

remedy: we need to invalidate the two-body contribu-

tions at the intersection line and to fold them into the

three-body EHF term. To this end the three-body EHF

terms of the upper and lower surfaces are expressed as

V ð3Þ
EHF;u=lðRÞ ¼ �V ð3Þ

EHF;u=lðRÞ

�
X3
i¼1

V ð2Þ
u=l ðRiÞe�f ðC1;C2;C3ÞT ðC1Þ; ð15Þ

where the three diatomic potentials are to be multiplied

with some function that takes the numerical value of one

at the intersection, to counteract the two-body term in

the expansion Eq. (1), but that otherwise tends to zero

smoothly and rapidly. Such a function may be written as

e�f ðC1;C2;C3Þ, where f ðC1;C2;C3Þ is a polynomial in which

the coefficients that depend only on the symmetric

stretch coordinate C1 and the coefficient of the constant
term are zero. In its simplest form this polynomial might

be

f ðC1;C2;C3Þ ¼ cC2 ð16Þ
a form which we have used in the present work. Note

that the two-body functions in Eq. (15) could be either

the complete functions of Eq. (2), which include the

EHF and the dynamical correlation terms, or just the
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EHF terms, since the dynamical correlation contribu-

tions are identical for the two sheets. Due to the non-

polynomial character of these dynamical correlation

terms, the latter option is to be preferred. The EHF

three-body functions �V ð3Þ
EHF;u=l, that have been defined

through Eq. (15), can now be written in the desired

form, which is

�V ð3Þ
EHF;u=lðRÞ ¼ �PN

1;u=lðC1;C2;C3Þ
h
� C2

�PM
2;u=lðC1;C2;C3Þ

i
T ðC1Þ ð17Þ

with the positive sign referring to the upper sheet and

the negative to the lower, respectively. The contribution

of the two-body functions at the intersection line, which

has been subtracted in Eq. (15), is included in the defi-

nition of the polynomials �PN
1;u=lðC1;C2;C3Þ, so that the

two expressions for the three-body EHF terms, the

conventional one, Eq. (10), and the new one, Eq. (15),
are equivalent.

After these modifications, the two sheets of the po-

tential energy surface can be joined exactly. This is sub-

ject to the following two conditions: The first is that the

two sheets become degenerate along the intersection line,

which requires that those coefficients in the first polyno-

mials of Eq. (17) depending only on the symmetric stretch

coordinate C1 be identical for the two sheets, i.e.,

c1i00;u ¼ c1i00;l 8i: ð18Þ

The second matching condition concerns the slope along

the Jahn–Teller type coordinate, since in the vicinity of

the intersection the splitting between the two sheets must

be a linear function of this coordinate [10]. This second

condition leads to the obvious constraint

c2000;u ¼ c2000;l ð19Þ

for the coefficients of the constant terms in the second

polynomials of Eq. (17).

Outside the region in which the three-body EHF term

is active, the degeneracy of the two surfaces along the

intersection line is no longer guaranteed by the analytical

form of the expansion of the surfaces. However, in this

region the diatomic potential curves are expected to be

close to their asymptotic limits, so that the energy dif-
ference between them, which spoils the degeneracy, is

very small. The active region of the three-body EHF term

is controlled by the range determining factor T ðC1Þ.
3. Ab initio calculations and fitting procedure

The electronic ab initio data points for the two sheets
were calculated in Cs symmetry with the MOLPRO

package [15]. A full CI was performed in the large basis

of 165 functions generated from Dunning’s cc-pV5Z

basis set [16]. The potential energy surfaces of Hþ
3 have a

threefold symmetry due to the three equivalent nuclei.
Each of the three sectors contains two equivalent parts

which are related by reflection through a plane of sym-

metry. It is thus sufficient to calculate the data points in

just one sixth of the configuration space. A convenient

grid can be defined in the hyperspherical coordinates
[17,18] q, h and /, from which the interparticle distances

are then obtained as

R2
1 ¼

q2ffiffiffi
3

p ½1þ sin h sinð/þ 4p=3Þ�;

R2
2 ¼

q2ffiffiffi
3

p ½1þ sin h sinð/� 4p=3Þ�;

R2
3 ¼

q2ffiffiffi
3

p ½1þ sin h sin/�:

ð20Þ

For fixed values of the hyperradius q, the hyperangles h
and / were varied within 0�6 h6 90� and 30�6/6 90�,
with increments of Dh ¼ 5� and D/ ¼ 5�. In our previous

work [1,2] wemainly used the data points from [19], which

are for q ¼ 3:0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0 and
10.0. In the course of this work it was found necessary to

extend the range of the three-body term and thus to

augment the base of data points used previously. Further

ab initio points were calculated for values of the hyper-

radius q ¼ 11:0, 12.0, 14.0, 16.0, 18.0 and 20.0 and along

the intersection line. The total number of data points was

3621 for each sheet of the surface. These points cover one-

sixth of the configuration space which, due to the high
symmetry of the potential as explained above, is repre-

sentative for the complete configuration space.

With the extended data base we have obtained new

fits for the two sheets of the a3E0 surface, employing the

novel functional forms suggested in this work. The pa-

rameters to be determined in a least squares procedure

are those of the three-body term including the correction

function with which the two-body terms are multiplied.
As described before [1], we define a function �u=lðRnÞ as

�u=lðRnÞ ¼ Eu=lðRnÞ �
X3
i¼1

V ð1Þ
i �

X3
i¼1

V ð2ÞðRi;nÞ

� V ð3Þ
dc ðRnÞ: ð21Þ

In the above equation, we denoted by Rn, n ¼ 1; . . . ;N
the ab initio data points, each of which being defined by

the three interparticle distances Ri;n, i ¼ 1, 2, 3, and by

Eu=lðRnÞ the corresponding ab initio data of the elec-

tronic energy of the upper and lower state, respectively.
Minimisation of the functions

v2u=l ¼
XN
n¼1

�u=lðRnÞ
h

� V ð3Þ
EHF;u=lðRnÞ

i2
ð22Þ

¼
XN
n¼1

�u=lðRnÞ
"

� �V ð3Þ
EHF;u=lðRnÞ

 

�
X3
i¼1

V ð2Þ
u=l ðRi;nÞe�f ðC1;C2;C3ÞT ðC1Þ

!#2
ð23Þ
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with respect to the parameters of the functions

f ðC1;C2;C3Þ and �V ð3Þ
EHF;u=lðRnÞ of the three-body EHF

term yields their numerical values.

To obtain consistent representations of the two

sheets, the corresponding least squares fits were per-
formed simultaneously. For the fit of the lower sheet all

3621 data points were used, while for that of the upper

sheet the points with extremely high energies,

E > �0:50 Eh, i.e., more than 102,000 cm�1 above the

minimum, were discarded. The results of these fits for

various orders of the two polynomials in the three-body

term are shown in Tables 1 and 2. For the upper sheet,

the 11th order fit is nearly as good as the 12th order fit,
but for the lower sheet the 12th order fit gives quite an

improvement. Therefore, we have finally chosen the 12th

order expansion, with 185 linear coefficients for each

sheet, as it yields highly accurate and still sufficiently

compact representations of the two sheets. For com-

pleteness, the linear coefficients of these expansions are

given in Table 3. The parameters of the three-body dy-

namical correlation energy term are listed in Table 4,
those of the range determining factor, T2, and of the

expansion coordinates, ~Ri, in Table 5. The accuracy of

the DMBE representations can be ascertained by com-

parison of the electronic energies at arbitrarily chosen

nuclear configurations not included in the fit. To this

end, 10 additional ab initio points were calculated for

each of the energy ranges of the two sheets of the sur-

face, covering a large range of nuclear configurations.
The results, shown in Table 6, prove that our analytical
Table 1

Results of our fitting experiments for the lower sheet

Order Number of

coefficients
v2

N M Range 1 R

209 (10) 5

9 8 94 4.77 7

10 9 120 2.67 5

11 10 150 2.91 5

12 11 185 1.27 2

The energy ranges, displayed in the second line, are E < �1:1026 (rang

�1:04 < E < �1:02 (range 4), E > �1:02 (range 5). All energies are in Hartr

respective range and, in parentheses, the weights used in the fitting procedure.

Table 2

Results of our fitting experiments for the upper sheet

Order Number of

coefficients
v2

N M Range 1

167 (10)

9 8 94 4.73

10 9 120 3.37

11 10 150 3.25

12 11 185 3.05

The energy ranges, displayed in the second line, are E < �1:01 (ran

�0:96 < E < �0:92 (range 4). The entries have the same meaning as in Tab
expressions of the two sheets represent accurately the

corresponding electronic energies.

The diatomic curves that enter into the two-body

terms Eq. (2) require some attention. In Fig. 1 the two

lowest potential curves of Hþ
2 , X2Rþ

g and A2Rþ
u , are

shown together with the lowest triplet curve of H2, de-

noted as [20] H2(b
3Rþ

u ). The potential curve of the sys-

tem H2(b
3Rþ

u ) + Hþ is below that of Hþ
2 (A

2Rþ
u ) + H

almost everywhere. However there are shallow van der

Waals minima in the diatomic potentials which make

the two curves cross: In the case of H2(b
3Rþ

u Þ, a mini-

mum with an energy of E ¼ �20:46 lEh appears at

about 7.825a0 while for Hþ
2 (A

2Rþ
u ) there is an energy

minimum of E ¼ �65:31 lEh at 12.5a0. The crossing

occurs at Rc ¼ 10:856a0. Using these two curves, we

have constructed adiabatic curves by diagonalisation of

the following diabatic matrix:

V ð2Þ
diabðRÞ ¼

VH2
ðRÞ VodðRÞ

VodðRÞ VHþ
2
ðRÞ

� �
: ð24Þ

The off-diagonal element was chosen as a Gaussian

function centered at the crossing point R ¼ Rc,

VodðRÞ ¼ a exp½�cðR� RcÞ2� ð25Þ
with c ¼ 0:5a�2

0 and a ¼ 2:0� 10�5 Eh. The resulting

adiabatic curves are shown in Fig. 2. In our previous

work [2] we have used the diatomic potential curve of
triplet H2 throughout, which due to the shallowness of

the van der Waals minima provides a very good ap-

proximation to the true adiabatic curve obtained here.
ange 2 Range 3 Range 4 Range 5

94 (5) 882 (1) 480 (1) 1456 (1)

.82 29.95 44.21 34.16

.54 16.50 28.81 24.55

.48 14.28 22.21 22.99

.81 9.56 16.05 15.02

e 1), �1:1026 < E < �1:08 (range 2), �1:08 < E < �1:04 (range 3),

ee units. In the third line we give the number of data points within the

The main entries are the root mean square deviations in wave numbers.

Range 2 Range 3 Range 4

942 (5) 891 (2) 327 (1)

9.95 18.13 38.59

7.05 13.13 24.65

6.40 13.03 24.24

6.35 11.02 24.18

ge 1), �1:01 < E < �1:00 (range 2), �1:00 < E < �0:96 (range 3),

le 1.



Table 3

Parameters of the three-body EHF term

i j k c1ijk;l c2ijk;l c1ijk;u c2ijk;u

0 0 0 0.30122377155372 )0.28935330507586 0.30122377155372 0.28935330507586

1 0 0 )0.54697403683478 )0.01402842950806 )0.54697403683478 )0.15650216030805
0 2 0 0.49726258196123 )0.14559383331206 0.79765873181720 )50.92088361618594
2 0 0 0.37557500549682 0.12712544486631 0.37557500549682 0.27973160911768

0 0 3 )0.79477856207215 3.85429546248143 1.96752537497913 )7.21088642012977
1 2 0 )0.37359021544219 0.10927091475355 )0.43962298606642 )0.77025402365138
3 0 0 )0.17416166512485 0.04400496464896 )0.17416166512485 )0.28305706959750
0 4 0 1.06084184395089 )2.97226052692556 28.57045339875761 )72.66315951465428
1 0 3 0.60495649757819 )1.32720052114982 )8.28788738434849 17.21664547564413

2 2 0 0.57608328563766 )0.18812531631956 0.20250966641852 12.40713896657378

4 0 0 0.09256922623000 )0.32386634153097 0.09256922623000 0.00262955885664

0 2 3 )10.68631406162829 16.39835739918686 18.10956552184589 )38.51315104681093
1 4 0 )0.31902479477791 0.04639556947097 )16.44277892082677 61.99889290554807

2 0 3 )0.16799475909735 )1.15891688647582 19.36725738258190 )29.28977507737056
3 2 0 )0.36388163888806 )0.67285957990138 )2.81663137985822 )4.99728510192083
5 0 0 )0.08201633440066 0.48435732989333 )0.08201633440066 0.20445866050487

0 0 6 )0.03703582903632 0.61164742964012 )1.13216249913182 7.77152665154303

0 6 0 3.82637836175714 )2.26462892807490 105.80799706513550 )104.85305605482190
1 2 3 3.91247358255366 )5.47861325897804 )18.63114049033072 41.46312839096161

2 4 0 0.01602405031625 1.49925299301221 )17.41635474710698 )4.64142849645549
3 0 3 0.04010672675937 0.93761056847833 )24.31155613518425 27.92760525700781

4 2 0 0.13443003022817 1.54704720589678 4.95191206718786 )6.03613120471341
6 0 0 0.07839428828599 )0.41151732745805 0.07839428828599 )0.17914149240040
0 4 3 )14.74207237541884 6.62426150813443 47.09852090375922 )14.38829093975993
1 0 6 )0.02168401991071 )0.17988377482680 )5.66144235157310 33.09501230172613

1 6 0 0.82722356380113 )2.71336967785496 )79.16846253558779 31.33464994422064

2 2 3 2.04751475717248 )0.01153917781829 1.03935995371920 5.97936834437824

3 4 0 )0.10348111071804 )0.00779237794571 2.96890208899606 2.21237583035730

4 0 3 0.00248192041166 )0.21613727258352 18.64285031614229 )14.85302883608863
5 2 0 )0.13358471475287 )1.26433454059637 )3.91222651415383 6.12663298039837

7 0 0 )0.05297227528534 0.22426964979776 )0.05297227528534 0.07299571631676

0 2 6 )2.08806092785418 3.93531464132131 )21.27150359678358 19.91884510642906

0 8 0 )0.14923460587272 2.71830552093002 102.72770375230930 )106.50803553961160
1 4 3 2.85372217441755 )1.30248025066946 )50.32725534807072 9.13516442719083

2 0 6 0.53197592474415 )0.45333741185624 0.81343691948798 )21.74992229853526
2 6 0 )1.47243229359787 0.41717894696250 27.37035209071646 3.42037733721745

3 2 3 )1.87573145741782 2.53669166339425 7.38721997243118 )28.75376771909166
4 4 0 )0.46023623338715 )0.33176437439251 18.31448333762220 )12.42307622551732
5 0 3 0.04729446090593 0.19065225402012 )9.57568912231895 4.13148923063669

6 2 0 0.16660605580187 0.55799663823829 1.70806662618586 )2.28807514803523
8 0 0 0.02295716346029 )0.07939786536599 0.02295716346029 )0.01423060930388
0 0 9 )0.26839326018369 1.00088531069846 1.98294350716391 )7.63037264696123
0 6 3 2.74366034560926 )6.00386875204518 )45.23247847704847 44.50652058200434

1 2 6 )1.29572028714564 2.71846079090026 )44.57493509033668 18.36980443153002

1 8 0 1.90520298979545 0.47053574733705 )3.35740903917815 14.72646258223705

2 4 3 )3.54838350423282 2.85709184530495 17.53743421048225 0.56672592952280

3 0 6 )0.56229917133659 0.83548001409323 4.60985075148112 )2.23065684017150
3 6 0 0.04697041727889 )0.30588408294335 )16.39433665197297 9.68753895874726

4 2 3 )0.68009359943781 0.08344770779551 )1.31706716072455 11.09409466721007

5 4 0 0.38949026680087 0.19644379792760 )14.10755578006616 8.93411334079022

6 0 3 )0.09656409387870 )0.08085795148344 3.42852602143602 )0.46399153183622
7 2 0 )0.11817304094414 )0.12862708697055 )0.41377218624633 0.43664311039881

9 0 0 )0.00618304688781 0.01753161047668 )0.00618304688781 0.00058194797687

0 4 6 )2.79153392519733 )0.63742665446431 )19.83175604355162 49.70488675730982

0 10 0 )3.59822262286544 1.66864332533686 69.22772362863194 )8.82968283067241
1 0 9 )0.04729337569377 0.27728674437879 )2.74627098845062 0.61641040665160

1 6 3 3.07818433726276 )1.22121476678211 17.18221941780739 )20.12984101536353
2 2 6 )0.13347133279065 )0.89696429618369 34.50629362255951 )8.61006019145325
2 8 0 0.71365917850603 )1.04558947977177 )21.68590023191552 )15.45211614005777
3 4 3 )0.43302126722225 0.51124984373962 1.80883236950235 22.71568568205576

4 0 6 0.20614674207349 )0.50161472054668 )2.75577479790481 2.71433607838544

4 6 0 0.52112932558831 )0.29478421105458 3.59573746257589 )12.91918496976746
5 2 3 0.47682970576669 )0.29439558048719 )0.88451201625561 1.37112598850917
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Table 3 (continued)

i j k c1ijk;l c2ijk;l c1ijk;u c2ijk;u

6 4 0 )0.16171711297310 )0.06575548228785 4.09623543489712 )2.78728563143766
7 0 3 0.05642908371421 0.00077100733812 )0.83462701564850 0.01402833931997

8 2 0 0.04450552759270 0.01159108915409 0.04354693799288 )0.04724225675334
10 0 0 0.00097646010885 )0.00217757225735 0.00097646010885 0.00021271357897

0 2 9 )1.31720126021633 0.39507443503424 16.01371107076800 )8.18156086564133
0 8 3 2.07090249802489 )0.17875708599099 26.92979107927163 )27.12619716912096
1 4 6 )0.55906710077351 0.44232474328358 )15.84461983429172 4.78180216290855

1 10 0 )0.52018934182193 0.48113668527530 )7.26636379667826 3.87350205935145

2 0 9 )0.03862426072784 )0.11854851358148 2.04428879106737 )0.45150827262909
2 6 3 )2.25080433731133 )0.56397522383890 )23.87056456374641 0.35423808589387

3 2 6 0.38270974149672 0.25817704388530 )3.46950055924187 1.91362295097512

3 8 0 0.43119491459406 0.52514823479094 24.43838220956226 )0.79427866364019
4 4 3 )0.24435175102465 )0.49182070128309 )10.36814716688833 )3.83148596786202
5 0 6 )0.00504719778928 0.10416396415916 0.61780928205528 )0.29262711162053
5 6 0 )0.14420609804765 0.20028627117335 2.55402964044499 1.99602363657234

6 2 3 )0.05071755422429 )0.00216764805082 )0.08457105368633 )0.59610393632367
7 4 0 0.03839601233588 0.01312712498385 )0.44490892974665 0.31940000087168

8 0 3 )0.01263079949857 0.00172390965429 0.12252604998995 )0.00294274623376
9 2 0 )0.00828384502594 0.00005205893206 0.00149302640352 0.00278093334272

11 0 0 )0.00007885509740 0.00011551742028 )0.00007885509740 )0.00002405473809
0 0 12 )0.01692136598915 )0.09194951351961
0 6 6 0.52745853892510 )27.75030747127519
0 12 0 )0.31854842510948 )7.32736107968445
1 2 9 0.02733646565819 )1.25123085470824
1 8 3 0.88187837087510 9.56392937661069

2 4 6 )0.33716283042862 )1.96233518568797
2 10 0 )0.35635095447989 1.99622798418846

3 0 9 0.03072688354360 )0.35551555817340
3 6 3 0.79983785944692 1.29201403979359

4 2 6 )0.11450971171883 )0.93025420297001
4 8 0 )0.36063930912740 )2.81165062349283
5 4 3 0.25817045445335 1.81071069832759

6 0 6 )0.00938014758819 )0.05457654777189
6 6 0 )0.02247159757695 )0.61063460824417
7 2 3 0.00373950272593 0.07376030495793

8 4 0 )0.00410975003390 0.00505774693384

9 0 3 0.00092967703581 )0.00796615322508
10 2 0 0.00059400934334 )0.00052712701299
12 0 0 0.00000222005552 0.00000222005552

Table 4

Parameters of the three-body dynamical correlation term, Eq. (5)

n ¼ 0:5 g ¼ 3:0 Rref ¼ 1:5a0
k ¼ 6:2 C4 ¼ � 9

2
Eha40 C6 ¼ �15 Eha60

Table 5

Parameters of the range determining factor T2ðxÞ and of the expansion

coordinates ~Ri, see Eqs. (12) and (14)

c ¼ 0:5a�1
0 x0 ¼ 21:0a0

R0 ¼ 1:0a0 b ¼ 0:5

Table 6

Average of deviations, given in units of cm�1, between the energy

values of ab initio data points not included in the fit and those ob-

tained from our analytical representations of the two sheets

Range 1 Range 2 Range 3 Range 4 Range 5

2.13 3.06 5.64 41.58 –

1.12 3.29 6.78 6.33 6.60

Within each energy range, as defined in Tables 1 and 2, 10 data

points were calculated. The first line refers to the upper sheet, while the

second refers to the lower sheet.
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The parameters of the diatomic potential curves for

Hþ
2 (X

2Rþ
g ) and H2(b

3Rþ
u ) were reported in [1,21], re-

spectively. For the construction of the potential curve of

the A2Rþ
u state of Hþ

2 we have, adopting a method

proposed in [21], obtained first an analytical represen-

tation of the energy difference between the A and the X
states. The potential curve for the A state is then ex-

pressed as

V ð2Þ
A ðRÞ ¼ V ð2Þ

X ðRÞ þ exp
X
i

ciRi

 !
: ð26Þ

Such a difference fit is preferred to the direct fit since, by

ensuring that the difference term is always positive, ar-
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Fig. 1. Diatomic potential curves.

Fig. 2. Adiabatic and diabatic diatomic potential curves.

Table 7

Parameters of the two-body term, Eq. (27)

c0 ¼ �1:061269 c1 ¼ 2:971129ð�1Þ c2 ¼ �4:014008ð�1Þ
c3 ¼ 7:074256ð�2Þ c4 ¼ �4:632783ð�3Þ
Numbers in parentheses denote powers of 10.

Fig. 3. Relaxed plot of the lower sheet. The first minimum can be

found at bH ¼ 0 and cH ¼ 1, and the other two at symmetry-related

positions. The saddle points for pseudo-rotation are indicated by a

dagger. Contours start at �1:116 Eh, with an equal spacing of 4 mEh.
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tificial crossing of the two potential curves can be

avoided. Note that the dynamical correlation contribu-

tion is included correctly, as these contributions are

identical for the two curves. The coefficients in Eq. (27)

are presented in Table 7.
Fig. 4. Relaxed plot of the upper sheet. Contours as in Fig. 3.
4. The potential energy surfaces

The two sheets of the double-valued 3E0 potential

energy surface of Hþ
3 have very different topologies. The

lower sheet shows three minima at symmetric linear

arrangements of the three nuclei. The three minima are

equivalent, as they reflect the three possible permuta-

tions of the nuclei. The bond lengths at the minima are
Ri ¼ Rj ¼ 2:4537a0 and Rk ¼ 2Ri. These minima are

separated by saddle points corresponding to C2v ar-

rangements with Ri ¼ Rj ¼ 5:336a0 and Rk ¼ 1:990a0.
The minima are stabilized by 2954.8 cm�1 with respect

to the dissociation to Hþ
2 (X

2Rþ
g ) +H(2S). The saddle

points are 359.1 cm�1 below this dissociation energy.

The height of the saddle points with respect to the

minima of the potential energy surface is thus 2595.7

cm�1. The upper sheet has the form of a cone with

minimum at 17876.6 cm�1 above the minimum of

the lower sheet. The depth of the upper conical

potential with respect to full dissociation to Hþ +2H(2S)

is 7596.3 cm�1.
All features of the potential surfaces can be seen in

the relaxed plots [22], Figs. 3 and 4. In these relaxed

plots the minimum energies for fixed values of the
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hyperangles are visualized. Those angles are defined as

bH ¼ b
Q and cH ¼ c

Q, with

Q
b
c

0
@

1
A ¼

1 1 1
0

ffiffiffi
3

p
�

ffiffiffi
3

p

2 �1 �1

0
@

1
A R2

1

R2
2

R2
3

0
@

1
A: ð27Þ

Fig. 3 shows the three absolute minima at
ðbH ¼ 0; cH ¼ 1Þ and symmetry-related positions. The

saddlepoints can be located by connecting two minima

through the minimum-energy path. The corresponding

figure for the upper sheet, Fig. 4, shows a regular

structure. The relaxed plots also demonstrate that the

surfaces are free from unphysical features. For sym-

metrical arrangements, this can also be seen from Fig. 5,

which shows various symmetrical cuts through the two
sheets together with the calculated ab initio points. Note

that some of these points (the ones shown by the open

circles) have not been included in the fitting procedure,

although their root mean square deviations fall within

the values reported for the current fit.

Figs. 6 and 7 show two different symmetric (C2v) cuts

through the surfaces and prove the accurate represen-

tation of the conical intersection and of the splitting
between the two sheets in the vicinity of the intersection.

The first of those figures, Fig. 6, represents a cut for a

fixed value of the hyperradius q, q ¼ 4:567a0 and

bH ¼ 0. On this figure, one of the three equivalent ab-

solute minima of the lower surface can be seen at

cH ¼ 1. Here, the energy gap between the two surfaces is

DE ¼ 57567:6 cm�1. The conical intersection is located

at cH ¼ 0, with energy EJT ¼ 17995:6 cm�1 with respect
to the minimum. EJT is referred to as the Jahn–Teller

stabilization energy. The second of the two figures,

Fig. 7, contains the energy values of the two sheets as a

function of the bending angle /, with the two equivalent

bonds relaxed. The minimum of the lowest sheet is

found at / ¼ 180�, and the minimum of the conical
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Fig. 5. Cut along the two sheets for symmetrical arrangements as a

function of the characteristic bond length. The dots indicate the cal-

culated ab initio points: �, fitted; �, not fitted. See also the text.
intersection at / ¼ 60�. As we proceed towards / ¼ 0�,
we pass the saddlepoint at / ¼ 21:5�. For smaller values

of the bending angle, one bond length keeps the equi-

librium distance of the Hþ
2 molecule, while the other two

bondlengths tend to infinity. Thus, we approach the

Hþ
2 (X

2Rþ
g ) +H(2S) dissociation channel. The curve of

the upper sheet attains the energy values close to

E ¼ �1:0 Eh for / ¼ 180� and / ! 0�. In the latter case
the energy value is that of the van der Waals minimum

of Hþ
2 (A

2Rþ
u ) +H.

Figs. 8–11 show two-dimensional plots of the two

sheets as functions of two interparticle distances for

fixed values of the bending angle of / ¼ 60�, 90�, 120�
and 180�. These plots show that the symmetry of the

surfaces is well preserved in our analytical representa-

tions, as are their characteristic features: For example,
the absolute minimum of the lower surface can be seen

on the diagonal R1 ¼ R2 of the 180� plot. In the 60� plot
of the upper or lower surfaces the minimum of the

conical intersection can be found on the diagonal. The



Fig. 8. Two-dimensional plots of the lower (a) and upper (b) sheets for

/ ¼ 60�. Contours start at )1.115 Eh, with an equal spacing of 5 mEh.

Fig. 9. Two-dimensional plots of the lower (a) and upper (b) sheets for

/ ¼ 90�. Contours as in Fig. 8.
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very small kinks that show up in the upper surface plots
if one of the distances is about R � 10:7a0 are no arte-

facts. They are caused by the avoided crossing in the

adiabatic diatomic curves, see Fig. 2. Apart from this

the contour lines are smooth, which demonstrates the

quality of the analytical representations obtained here.
5. Comparison of vibronic states on the lower sheet

The lower adiabatic sheet of this surface, of 3Rþ
u

symmetry, has received considerable attention recently.

Full potential surfaces have been reported as well as

studies of their vibronic [1,23,24] and ro-vibronic [25,26]

states. It has been known for quite some time, through

the studies by Schaad and Hicks [27], Ahlrichs et al. [28],

Wormer and de Groot [29] and Preiskorn et al. [30], that
this lowest triplet state is bound and should support

vibrational states. In their review articles on Hþ
3 , both

Tennyson [31] and McNab [32] emphasized the impor-

tance of the triplet state, as some of the yet unassigned

lines in the hydrogen plasmas might belong to this state,

and called for more detailed investigations. This call has
been answered only recently and led to the publication

of the above-mentioned articles.
The three equivalent minima of the lower sheet, re-

lated by permutational symmetry, lead to an interesting

pattern of the ro-vibronic states. Each such state has two

components, one of A0
1 or A0

2 symmetry, the other of E0

symmetry. The symmetry labels used here refer to the

three-particle permutation inversion group S3 � I . This
group is isomorphic to the molecular symmetry group

D3h (M) [33]. The two components of each ro-vibronic
state do not only have different symmetry, but also

different energies. The energy splitting is due to the

potential barriers that separate the three minima and is

negligibly small for the lowest states. For a detailed

discussion of the ro-vibronic states and their symmetry

properties the reader is referred to [26].

We have recalculated the vibronic states using the

new analytical representation of the potential energy
surface obtained here and a method based on hyper-

spherical harmonics [34,35] In this method, the ro-

vibrational wavefunction is expanded in terms of

hyperspherical harmonics, yielding a set of coupled

equations in the remaining coordinate, the hyperradius.



Table 8

Comparison of the vibronic energies of 1Hþ
3 on the lower sheet of the potential energy surface

i This work Ref. [1] Ref. [23] Ref. [25]

A0
1=A

0
2 E0 A0

1=A
0
2 E0 A0

1=A
0
2 E0 A0

1=A
0
2 E0

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 738.49 738.48 739.47 739.47 736.35 736.35 738.70 738.80

2 975.05 975.05 975.50 975.50 973.83 973.83 973.00 973.10

3 1273.73 1273.79 1274.43 1274.49 1272.43 1272.49

4 1474.50 1474.43 1475.37 1475.29 1469.08 1468.99

5 1573.69 1573.80 1574.43 1574.54 1568.58 1568.72

6 1730.35 1728.40 1731.74 1729.80 1726.70 1724.62

7 1922.54 1923.04 1923.94 1924.50 1913.74 1914.43

8 1940.32 1950.95 1942.17 1952.62 1929.08 1940.38

9 1972.74 1970.73 1974.79 1972.83 1956.72 1954.40

10 2158.72 2136.98 2161.05 2139.74 2143.10 2116.36

11 2188.49 2166.97 2191.92 2169.41 2163.55 2150.23

12 2204.85 2256.70 2207.22 2260.02 2188.39 2224.73

13 2271.16 2262.03 2276.39 2266.01 2245.95 2241.93

14 2312.14 2350.15 2318.71 2353.14 2286.15 2322.73

15 2340.90 2360.19 2344.37 2363.83 2323.79 2334.73

16 2405.21 2414.01 2418.47 2417.52 2364.73 2374.73

Energies are in wave numbers.

Fig. 11. Two-dimensional plots of the lower (a) and upper (b) sheets

for / ¼ 180�. Contours as in Fig. 8.

Fig. 10. Two-dimensional plots of the lower (a) and upper (b) sheets

for / ¼ 120�. Contours as in Fig. 8.
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This set of equations is then solved numerically with the

Numerov method. Further details can be found in [1]. In

these calculations, like in those mentioned above, the
effect of the geometrical phase has been neglected, as it

has been shown [25] for the lowest states that it is neg-

ligible.
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Finally, we compare our calculated energy values of

the vibrational states supported by the lower sheet of the

potential energy surface with those obtained previously

[1,23,25]. Such a comparison is presented in Table 8.

The increased accuracy of the present fit as compared to
our previous one [1] and the increased number of ab

initio data points in particular in the energy region near

dissociation to Hþ
2 (X

2Rþ
g ) +H(2S) manifests itself in

slightly different eigenvalues. The splitting of the two

components of A0
1=A

0
2 and E0, which might become im-

portant for a future experimental study of this system,

remains nearly unchanged.
6. Conclusions

In the present work, we have elaborated necessary

adaptations of standard DMBE theory to describe a

double-valued Jahn–Teller type potential energy sur-

face. This theory has then been applied to the electronic

a3E0 state of Hþ
3 . While the two sheets of this system

have been investigated before in separate studies, we

have now obtained an accurate description that takes

into account their degeneracy at the intersection line.
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