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Abstract

We discuss a simple approach to describe the ion density around a polyelectrolyte chain, quantifying bound and bulk counteri-

ons, and allowing for the renormalization of the charge in the polyion. This approach is both physically motivated and readily exten-

sible to systems containing other types of highly charged ions. The method addresses the problem in simulation experiments and

allows to correlate ion condensation and compaction.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Coulomb interaction and thus the counterion atmos-

phere and the induced degree of neutralization are to a

large extent responsible for the behavior of highly

charged polymers such as RNA and DNA. The difficulty

of quantitatively assessing the ion density about the

chain is both experimental [1,2] and theoretical [3,4].
The simplicity of the Debye–Hückel and Poisson–Boltz-

mann (PB) approximations, which may fail in some cases

(especially in highly correlated systems with multivalent

ions [5,6]), make them prevalent and, in biophysics, the

Manning–Oosawa [7] counterion condensation (CC)

and PB theories are still of major importance. For infi-

nitely long rigid rods, Manning�s two-state picture finds
an exact counterpart in the exact solution of the cylindri-
cal PB equation [8]. Extension of the PB equation for di-

lute solutions of finite length rod-like polyelectrolytes

implies the use of a modified CC theory [9].

Studies on ion condensation are not only an attempt

to provide a reference point [10] in polyelectrolyte solu-

tions corresponding to the Debye–Hückel limiting law,

but have a counterpart in the chain conformational

behavior. The coil-globule coexistence phenomenon
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and compaction behavior of DNA under various

charged compaction agents are clearly linked to changes

in electrostatic interactions (due to salt valence and con-

centration) and to variations in the ionic atmosphere in

the close vicinity of the polyion.

The number of ions around the chain may be directly

counted [11] in simulations, but the distinction between

bound ions and those in the bulk is not clear, being the
ion density established as a function of the distance from

the chain. This distance concept has motivated several

approaches, in terms of what is usually designated as

Manning radius (see e.g. [12]). The Manning radius

(RM) is associated, for cylindrical symmetry around a

linear polyion, with the axial distance that encloses the

fraction of bound ions, but can be extended to other

central colloidal particles [13]. Two major approaches
have been used to establish RM: (i) the search for a char-

acteristic point [12,13], such as an inflection point in the

running coordination number (see below) curve,

RCN(r), or (ii) a physically motivated criterion for a pri-

ori assesment of RM [14–17]. The first approach implies

that the separation surface between bound and bulk ions

should impart some alteration in the RCN behavior.

The alteration would thus be visible in representations
of RCN vs 1/r [13] or ln r [12] based on the PB frame-

work but considered to apply beyond this framework.

In the a priori vision RM may correspond to the value
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[15] that directly yields the Manning fraction of charge

in the polyelectrolyte

f ¼ ekBTRbb

Zq2
: ð1Þ

In Eq. (1) Rbb is the average distance between chain

beads, Z is the charge of the cation, and all other sym-

bols have the usual meaning. Also, RM can be estab-

lished directly in terms of Debye screening length or

binding energy (see e.g. [14,18]). RM as defined in the lat-

ter approaches does not usually correspond to special

characteristics in the ordinary distributions.
In spite of some debate, the general aspects of the salt

effect have been characterized, and are now consensual.

Salt screens the charged interactions and contracts the

polyelectrolyte chain up to a point. The discrepancy be-

tween CC theory and experiment (for instance in what

concerns the osmotic behavior of DNA [19]) is thus

sometimes attributed to the fact that for flexible chains

counterion condensation alters the chain structure [11],
but the neglect of molecular features, such as the finite

radius is also mentioned [8,20].

Some of the results of CC theory have been, in con-

trast, confirmed both from experiment and simulation.

Ion condensation has been shown to be both salt and

chain conformation independent [21], in certain re-

gimes, and the onset of condensation [11] resides

approximately where CC theory predicts. Also, it is
clear that CC theory can be substantiated through sta-

tistical mechanics [22].

Most of this controversy arise due to the consider-

ation of different concentration regimes and accuracy

requirements. In the case of computer experiments, it

is clear that there is no unequivocal way to establish

the fraction of counterions, including salt ions, associ-

ated with the chain. The standard chain(bead)–ion dis-
tribution functions or the derived RCN (see below)

show no clear cut-off between bound and bulk ions,

especially for semi-flexible polyelectrolytes in which

even a radial distance away from the backbone cannot

be asserted. Also, the dimensions of the coil often

overlap to a large extent to those where the most

interesting features based on the chain–ion distance

can be found.
In this Letter we suggest a new method to determine

the bound fraction of ions based on the probability den-

sity function for the nearest-neighbor ion–ion distribu-

tion of the cations. This function reflects the effect of

the presence of the polyion, which concentrates ions of

opposite charge in its vicinity. The method corresponds

to a density analysis of the ion cloud away from the

polyelectrolyte backbone. It further characterizes the
populations of bulk and bound ions, and gives some in-

sight in the range of action of the chain over the neigh-

boring ions. It also allows for a detailed analysis of such

important factors as ion concentration and valence, and
may prove very useful to pinpoint phenomena of charge

inversion with physical significance. Finally, we have

been able to establish partial fractions of condensed ions

for two types of ions (mono and divalent, and mono and

trivalent), for low concentrations of the multivalent

ions.
2. Model and simulation details

The systems studied in this work were modeled within

the primitive model and consist of charged hard-spheres

residing in a continuum with a relative dielectric permi-

tivity corresponding to that of water, er = 78.4. The

model is thoroughly described in reference [23].

The present study involves a relatively small semi-

flexible chain consisting of 100 negative beads of unitary

charge, a bead radius Rbead = 2.0 Å, a bead–bead refer-
ence distance r0 = 5 Å, a bond force constant kbond = 0.4

N m�2, an angular force constant corresponding to an

intrinsic persistence length of 17 Å, and a reference angle

a0 = 180�. These values have previously been shown as

adequate to describe a semi-flexible chain [23,24]. Coun-

terions of unitary charge, salt cations of different va-

lences and coions of unitary charge are characterized

by the radii Ri = 2.0, 2.5 and 2.0 Å, respectively. The ra-
dius of the cations of monovalent salt was kept equal to

that of the polyelectrolyte counterions, rendering them

undistiguishable.

The concentration of particles in solution is deter-

mined by the radius of the simulation cell, Rcell = 340

Å. The relative concentration of salt and polyion is rep-

resented by the charge ratio, b,

b ¼ Zcation;h � N cation

N bead

; ð2Þ

where Zcation, h is the valence of the highest valence cat-

ion present, and Ncation the number of these cations.

A number of different systems was simulated, varying

the added salt (1:1, 2:1 and 3:1) and the charge ratio.

For systems with di- and trivalent salt, b ranges from

0.3 to 3, whereas for monovalent ions the smallest value

is b = 1 and corresponds to the absence of salt, accord-

ing to Eq. (2). The polylectrolyte counterions are thus
included for the calculation of the charge ratio when

only monovalent ions are present. All particles were

considered explicitly.

The model was solved by Monte Carlo simulation in

the canonical ensemble using the Molsim [25] package.

The efficiency of the simulations was improved by tak-

ing concerted moves in the chain particles. These in-

cluded slithering [26], pivot rotation and chain
translation. Additionally, we employed a cluster-move

[27] technique that is extremely important for achieving

a better sampling efficiency, specially in systems where

trivalent salt is present [23]. The number of MC steps
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used is about 50 times higher the statistical inefficiency

parameter [28], which guarantees well converged results.

Analysis included standard particle–particle radial

distribution functions, RCN and nearest-neighbor dis-

tance distribution functions. The former corresponds

to the ratio between the average number density at a
specific distance r from a particle and the density at a

distance r from a particle in a random system with the

same overall density; RCN gives the average number

of particles, of a certain type, found within a specified

distance from the reference particles; the nearest-neigh-

bor distribution yields the probability density functions

of distances between closest particles of chosen types.
3. Results and discussion

Standard bead–cation distribution representations

(see Fig. 1a) or even RCN (Fig. 1b) provide single max-

imum or monotonic functions of the corresponding sep-

aration showing no clear-cut discrimination between

bound and bulk ions (see discussion in Section 1), espe-
cially when dealing with semi-flexible polymers in which

the direction away from the backbone is not well

defined.
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Fig. 1. Radial distribution function (a) and running coordination

numbers (b) for charged bead–cations in the absence of added salt (full

line) and charged bead–trivalent ions with b = 3 (dash–point).
Some experimental properties (such as the rates of en-

ergy transfer from a electronically excited species to a

ground-state acceptor) are strongly dependent on the

nearest-neighbor average distances [29]. For homogene-

ous solutions, simple numerical calculations show that

this distance, Ædæ, is given by the following expression
dependent on the number of particles Np and the total

volume Vtot (or the related volume density)

hdi � ðV tot=NpÞ1=3=1:79: ð3Þ

In the presence of a negatively charged polyion, there is

a crowding of the positive ions around the chain, but the

bulk still follows closely Eq. (3). This originates a fluctu-

ation in the ion density which can be detected in the cat-

ion–cation nearest-neighbor distribution (Fig. 2). In
most cases, this distribution displays two maxima for

b P 1, while for multivalent ions with smaller values

of b a single maximum reflects total or near-total

condensation.

In Fig. 2 we can observe the cation–cation nearest-

neighbor distributions for monovalent (b = 1) and triva-

lent ions (b = 3). These panels illustrate two extreme

situations in the set of systems under study. In the first,
although a clear change in slope can be discerned, a
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Fig. 2. Nearest-neighbor distributions for charged bead–cation in

absence of added salt (a) and charged bead–trivalent ions with b = 3

(b). The results obtained from simulation are presented by the error

bars, the total fitted curve by the full line, the condensed counterions

by the point–dash and free ions by the dashed line.
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definite separation between the bound and free ions is

absent. In the trivalent case, the two maxima are well

pronounced and the probability very close to zero in

the transition between the two situations. We note that

all systems with b P 1 were characterized by the pres-

ence of two maxima in this kind of distribution, except
for the one illustrated in Fig. 2a.

The log-normal and Maxwell curves have proved to

be, through extensive tests, the most adequate for

describing the properties of bound and bulk ions,

respectively, using a least-squares procedure. This con-

clusion is based both in the value of the sum-of-squares

and frequency of alternation of sign in residuals. These

two probability density functions have the right charac-
teristics for a correct description of the nearest-neighbor

distributions. They are asymmetrical and unimodal, and

the random variable may be positive. The overall func-

tion is obtained by weighing with the fraction present

in each population

P ðxÞ ¼ fcond �
1

Sx
ffiffiffiffiffiffi
2p

p exp � ln x�M

2S2

� �
þ ð1� fcondÞ

�
ffiffiffi
2

p

r
a3=2ðx� bÞ2 exp � aðx� bÞ2

2

 !
: ð4Þ

The parameter fcond may be related to f in Eq. (1) simply

through

f ¼ 1� fcondb ð5Þ
if only one type of cation is considered bound.

Restrictions were imposed, in some cases, for param-
eter b keeping the value above the cation–cation contact

distance. The values of parameters obtained for b P 1

are gathered in Table 1. For these charge ratios and

multivalent salt, the number of bound monovalent

counterions is negligible. For the bulk ions, irrespective

of Zcation, h, the average value and the standard deviation
Table 1

Parameters obtained for Eq. (4)

Zcation,h b fcond S M l1

1 1 0.42 0.53 2.98 23.0

2 0.25 0.49 2.85 19.4

3 0.23 0.49 2.87 19.9

2 0.3 1.00 0.48 3.06 24.0

0.6 0.87 0.37 2.75 16.7

1 0.66 0.34 2.65 15.1

2 0.35 0.31 2.57 13.8

3 0.26 0.32 2.58 13.9

3 0.3 1.00 0.44 3.35 31.3

0.6 1.00 0.33 2.88 18.9

1 0.88 0.26 2.49 12.4

2 0.46 0.25 2.45 11.9

3 0.31 0.24 2.44 11.8

Distances in Å; values in parenthesis represent powers of 10. Averages and st

and bulk (i = 2) populations.
a Imposed values. See text.
decrease as b increases. A larger number of positive ions

tends to stay in bulk, as the chain can no longer accomo-

date them, leading to a larger density and thus to a clo-

ser proximity between particles. For the condensed ions,

and increasing b, the general tendency is for a decrease

in the average and standard deviation. These changes
become irrelevant for larger values of b.

Observation of the fitted curves in Fig. 2 and corre-

sponding plots for other systems (not represented) show

that the distances of closest proximity for condensed

ions decrease as Zcation, h increases. The attraction to

the polyanion is larger, the ion cloud around the chain

denser and, as we will see below, the conformation of

the chain is more compact. This is also consistent with
the lower average values of the distribution.

The trend of the closest proximity between ions in

bulk (corresponding to the value of b) is not as well de-

fined. However, for b = 3 in which the separation be-

tween condensed and bulk ions is drastic, this distance

seems to increase with Zcation, h, as the result of a larger

pair repulsion.

The average values of the distributions of free ions
are very close to the predictions of Eq. (3), but tend to

be lower due to a remnant attractive power of the chain

upon cations. In the case of trivalent ions, the difference

is negligible as expected from the high values of fcondb.
In Fig. 3 we compare the cation–cation nearest-neigh-

bor distribution for the divalent salt (b = 2), curve (a),

with that found in two situations in which the polyelec-

trolyte is absent. In the first, curve (b), the concentration
of the divalent salt is the same as that in the polyelectro-

lyte solution, while curve (c) corresponds to a salt con-

centration determined from the fraction of divalent

ions released into the bulk, if the polyelectrolytes were

present. Note the similitude between the part of curve

(a) ascribed to bulk ions, and curve (c), except for an
r1 a b l2 r2

12.9 4.5(�4) 4.0a 74.9 31.6

10.1 8.6(�4) 5.6 54.4 23.0

10.5 1.4(�3) 9.5 43.1 18.2

12.2

6.3 1.3(�4) 5.0a 140.6 59.3

5.3 1.9(�4) 5.0a 114.8 48.4

4.4 4.1(�4) 5.0a 79.3 33.5

4.5 7.4(�4) 11.3 58.8 24.8

14.7

6.5

3.3 6.2(�5) 5.0a 201.9 85.2

3.0 3.1(�4) 15.0 90.9 38.4

2.9 5.2(�4) 16.2 70.1 29.6

andard deviations are denoted li and ri, respectively, for bound (i = 1)
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Fig. 3. Nearest-neighbor distributions of divalent cations in the

presence (a) and absence (b) of a polyion, for a salt concentration

corresponding to b = 2. Line (c) represents the distribution in the

absence of the polyion, with a salt concentration corresponding to the

fraction of ions in bulk for system (a).
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obvious normalization constant. The behavior of the

distributions for different concentrations of salt in the
absence of polyion (for small values of r) are in agree-

ment with previous observation that ions of the same va-

lence in different concentrations present an almost

constant distance of maximum proximity.

Table 2 summarizes the estimates of the remaining

fraction of charge in the chain using CC theory [7] and

the method presented previously. CC theory provides

reasonable estimates of the number of condensed ions,
even for this finite semi-flexible chain, although some re-
Table 2

Estimate of the effective charge of the polyion expressed as the fraction

f of total charge, using CC theory and values from Table 1.

Zcation,h b f

CC This work

1 1 0.67 0.58

2 0.67 0.49

3 0.67 0.32

2 1 0.33 0.34

2 0.33 0.29

3 0.32 0.21

3 1 0.21 0.13

2 0.21 0.08

3 0.21 0.06

Table 3

Parameters obtained for Eq. (4) corresponding to monovalent counterions (

Zcation,h b fcond S M l1

2 0.3 0.31 0.62 3.36 35.0

0.6 0.12 0.62 3.53 41.2

3 0.3 0.30 0.63 3.36 35.3

0.6 0.16 0.64 3.74 52.0

Notation as in Table 1.
a Imposed value. See text.
sults differ in almost 10 unitary charges. There is a con-

sistent tendency for CC theory to overestimate the

fraction of free ions, when compared both to the present

and relevant experimental values. Other important aspect

that emerges from this table is the trend of our simulation

results, showing an increase in the condensed charge with
increasing charge ratio, i.e., salt concentration.

In systems for which b is clearly lower than unity, all

multivalent and a fraction of the �original� counterions
of the polyion are condensed around the chain. This is

also visible in the nearest-neighbor distributions for

the latter. In these situations the chain backbone is par-

tially neutralized by the multivalent charges and thus

possesses a low residual linear charge density. The sys-
tem for b = 0.6 presents an extreme test to the method

described. An estimate of the fraction of condensed

counterions of the polyion was also obtained by the fit-

ting procedure described earlier (results presented in Ta-

ble 3). For the same charge ratio of di- and trivalent salt

the distributions of bound and free counterions are very

similar. This suggests that for b < 1 the binding of

monovalent counterions has the same characteristics,
irrespective of Zcation, h.

The polyion conformation is strongly dependent on

the characteristics and concentration of the salt, as has

been observed both from experiment, in a large number

of articles, and theory (see e.g. [30,31]). The representa-

tion of the root-mean-square radius of gyration, Rg, ver-

sus the remaining fraction of charge present in the chain

(Fig. 4) shows that for multivalent salt there are two
approximately linear regimes. For low values of b and

multivalent ions, the behavior is similar to that observed

for monovalent cations, but when b approaches unity

there is an abrupt decrease on Rg. For b > 1 the slope

of the curve tends to decrease again for all cations. In

the case of trivalent ions, the decrease is less

pronounced.

We also see that for the same b, and as the valence
increases, the effective charge in the chain diminishes

considerably. This is accompanied by a corresponding

variation of Rg. This is compatible with results previ-

ously obtained, in which for the same value of b, Rg

has a tendency to decrease as Zcation, h increases (not to

be confused with Fig. 1 in [30], in which an explicit

charging of the monomers is performed).
b < 1)

r1 a b l2 r2

24.2 5.1(�4) 5.4 70.6 29.8

28.1 5.6(�4) 4a 67.4 28.5

24.7 5.0(�4) 5.0 71.3 30.1

37.2 6.2(�4) 8.4 64.0 27.0
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In summary, irrespective of the valence, there is an in-

crease in the number of condensed charges with concen-

tration. The fraction of charge neutralized in the chain

(and the degree of binding) are smaller for mono and

divalent ions than that found for trivalent ions. Only

the latter are capable of exceeding the 89–90% of neu-

tralization, presented as the fraction necessary to induce

compaction [32] in DNA.
4. Conclusion

The fraction of ions of any valence under the direct ac-

tion of the polyelectrolyte backbone can be quantified

and characterized in terms of average density and disper-

sion. The concentration of salt clearly influences this
fraction in the concentration regimes under study, but re-

sults from the CC theory are acceptable estimates, even

for this semi-flexible chain. Bulk ions behave very close

to those in a solution in the absence of a polyelectrolyte,

although its attractive influence can be discerned.

The conformational behavior of the chain depends

strongly on the number of condensed ions, with a propen-

sity for more compact structures, for each ion valence, as
this number increases. The number of condensed ions as

predicted byCC theory does not vary with salt concentra-

tion, making it impossible to correlate charge ratio b and

conformational indicators.
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