Available online at www.sciencedirect.com

SCIENCE<dDIRECT®

Analytical Biochemistry 332 (2004) 321-329

ANALYTICAL
BIOCHEMISTRY

www.elsevier.com/locate/yabio

Voltammetric determination of all DNA nucleotides

A.M. Oliveira-Brett”, J.A.P. Piedade, L.A. Silva, V.C. Diculescu

Departamento de Quimica, Faculdade de Ciéncias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal

Received 13 March 2004
Available online 21 July 2004

Abstract

The voltammetric oxidation of all deoxyribonucleic acid (DNA) monophosphate nucleotides is investigated for the first time over
a wide pH range by differential pulse voltammetry with a glassy carbon electrode. Experimental conditions such as the electrode size,
supporting electrolyte composition, and pH were optimized to obtain the best peak potential separation and higher currents. This
enabled the simultaneous voltammetric determination of all four DNA bases in equimolar mixtures and detection limits in the
nanomolar range at physiological pH. It was also possible to detect for the first time the oxidation of each of the purine and py-
rimidine nucleotides free in solution or as monomers in single-stranded DNA.
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The purine bases, guanine (G) and adenine (A), and
the pyrimidine bases, thymine (T) and cytosine (C),
are fundamental compounds in biological systems, par-
ticipating in processes as distinct as energy transduction,
metabolic cofactors and cell signaling, and are essential
building blocks of nucleic acids [1]. Their sequence order
in deoxyribonucleic acid (DNA) chains generates do-
mains of information (genes) necessary to the living cell
to build up proteins and self regulate its metabolism.
Other noncoding and repetitive base sequence domains
constitute structural motifs that appear to be important
in DNA-protein interactions and recognition [1,2].

Chemical modification of each of the DNA bases caus-
es molecular disturbance to the genetic machinery that
leads to cell malfunction and death. For instance, oxida-
tive DNA damage by free radicals and exposure to ioniz-
ing radiation generates several products within the double
helix such as 8-oxoguanine, 2,8-oxoadenine, 5-formylura-
cil, 5-hydroxicytosine, etc., which are mutagenic [3]. It is
well established that the oxidation of DNA is an impor-

" Corresponding author. Fax: +351-239-835295.
E-mail addresses: brett@ci.uc.pt, brett@cygnus.ci.uc.pt (A.M.
Oliveira-Brett).

0003-2697/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.ab.2004.06.021

tant source of genomic instability since there is evidence
that the oxidation products of DNA bases play important
roles in mutagenesis, carcinogenesis, aging, and age-relat-
ed disease [3-5]. Hence, great interest exists in the sensitive
determination and full characterization of the mecha-
nisms involved in oxidative damage of all DNA bases.
Electrochemical methods are very promising for the
study of DNA oxidative damage and in the investigation
of the mechanisms of interaction of drugs with DNA [6—
8]. In particular, electrochemical DNA biosensors have
proved to be excellent tools for investigating the effects
of various endogenous and exogenous sources of hazard
on the genomic material, allowing quick and low-cost
determination of DNA damage. Most electrochemical
DNA biosensors are based on the determination of pu-
rine oxidation peaks, principally the guanine peak, to
monitor the degree of oxidative damage caused to
DNA [6-9]. This is due to the fact that guanine has
the lowest oxidation potential of all DNA bases [7,10]
and that its principal oxidation product, 8-0x0-7,8-dihy-
droguanine (8-oxoGua),' is considered a useful biomar-

Y Abbreviations used: 8-oxoGua, 8-0x0-7,8-dihydroguanine; GCE,
glassy carbon electrode; LOD, limit of detection.


mailto:brett@cygnus.ci.uc.pt 

322 A.M. Oliveira-Brett et al. | Analytical Biochemistry 332 (2004) 321-329

ker of DNA damage by oxidative stress [3-5] and can be
easily quantified by voltammetry [11,12].

Several studies showed the importance of considering
the influence on the chemical reactivity of guanine of the
chemical environment surrounding guanine residues in
DNA (which is determined by base sequence). For in-
stance, it has been shown that cytosine hydrogen bond
interaction with guanine affects the rate of guanine oxi-
dation within the double helix of DNA [13]. This can in-
fluence the concentrations found for 8-oxoGua and the
extent of DNA oxidative damage [3-3].

To increase the knowledge on the interactions and
damage caused by chemical and physical sources on
DNA, it is important to extend the investigation of elec-
trochemical oxidation studies on DNA to simultaneous-
ly include information from all purine and pyrimidine
DNA bases. This will result in a better understanding
of the data already obtained based only on the guanine
oxidation peak and will increase the overall understand-
ing by electrochemical methods of the mechanisms of
DNA oxidative damage.

Mechanistic studies on the electrochemical behavior of
purine and pyrimidine derivatives have been performed in
the past four decades. Most of this work is concerned with
the electrochemical reduction of purine and pyrimidine
derivatives on mercury electrodes and, although guanine,
adenine, and cytosine could be reduced, no polarographic
wave has been observed for thymine on the mercury elec-
trode [6]. Oxidation of purine derivative compounds was
extensively studied at solid electrodes, mainly carbon-
based electrodes [6,7]. The electroactivity of pyrimidine
derivative compounds at solid electrodes has been shown
[14]. This led to the possibility of detecting voltammetri-
cally the oxidation of all DN A bases at glassy carbon elec-
trodes (GCEs) and confirmed that guanine and adenine
are more easily detected than thymine and cytosine. This
was done using sonovoltammetry, but the simultaneous
sonovoltammetric detection of the four DNA bases was
achieved only in alkaline electrolyte solutions containing
pyrimidine bases with a concentration 10 times higher
than the purine base concentration [14-16]. However, it
is well known that in the DNA double helix the purine/py-
rimidine ratio is equal to 1. Thus, it is a challenge to in-
crease the sensitivity of pyrimidine voltammetric
determination to allow the simultaneous electrochemical
detection of all purine and pyrimidine DNA bases in real
samples and at physiological pH.

Another major challenge is to extend the DNA voltam-
metric studies to nucleotides that will enable the simulta-
neous detection of all bases in single-stranded DNA
(ssDNA) without the necessity of a previous hydrolysis
step. Therefore, the main objective of the present work
was to study equimolar mixtures of the four DNA purine
and pyrimidine bases, their nucleotides, and ssDNA over
a wide pH range using differential pulse voltammetry with
glassy carbon electrodes of different sizes. Optimization of

the experimental conditions was achieved and enabled
low detection limits for the simultaneous determination
of the four bases and nucleotides of DNA.

Materials and methods
Materials and reagents

Guanine, adenine, thymine, cytosine, guanosine 5-
monophosphate (GMP), adenosine 5-monophosphate
(AMP), thymidine 5-monophosphate (TMP), cytidine
5-monophosphate (CMP), lyophilized calf thymus sin-
gle-stranded DNA, sodium salt poly(dT), and sodium
salt poly(dC) were obtained from Sigma-Aldrich and
used without further purification. Analytical-grade re-
agents and purified water from a Millipore Milli-Q sys-
tem (conductivity <0.1pScm™') were used for the
preparation of phosphate, acetate, borate, and ammoni-
um buffer electrolyte solutions.

Stock solutions (200 uM) of all bases were prepare in
purified water. To guarantee complete dissolution of
guanine, 10 uL of 9M NaOH was added to the stock so-
lution.

Nano- and microvolumes were measured using an
EP-10 Plus and an EP-100 Plus motorized microliter pi-
pette (Rainin Instrument, Woburn, MA, USA). The pH
was measured with a Crison Model micropH 2001 pH
meter with an Ingold combined-glass electrode. All ex-
periments were done at room temperature (25 £ 1°C).

Voltammetric cell and parameters

All voltammetric experiments were done using an
pAutolab Type II with GPES version 4.9 software
(Eco-Chemie, Utrecht, The Netherlands). A one-com-
partment electrochemical cell with a volumetric capacity
of 100uL was used containing a glassy carbon (GC)
working electrode (Cypress, USA), a Pt wire counter
electrode, and an Ag/AgCl reference electrode (3M
KCI saturated with AgCl). This cell was placed inside
a Faraday cage at room temperature during all the mea-
surements. In the present work glassy carbon disk elec-
trodes with 3mm, 1.5mm, and 7 um diameter were used.

The voltammetric parameters used, unless stated
otherwise, were (a) differential pulse voltammetry, pulse
amplitude 50mV, pulse width 70ms, scan rate SmVs ',
equilibration time 10s and (b) square wave voltamme-
try, pulse amplitude 25mV, frequency 10Hz, effective
scan rate 20mVs . All potentials are referred to Ag/
AgCl reference electrode.

Preconditioning of the glassy carbon electrodes

The GCEs were polished using alumina oxide (parti-
cle size 0.3 um) before every electrochemical assay. After
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polishing they were rinsed thoroughly with Milli-Q
water for 30s; the electrode was sonicated for 1 min in
an ultrasound bath and again rinsed with water. After
this mechanical treatment electrochemical precondition-
ing was carried out in three steps: first, the potential of
the electrode was scanned in the electrolyte solution to
check the cleanliness of the electrode surface between
0.30 and 1.50V, at 5mVs™'; second, a 1.70-V potential
was applied for 300s; and third, the electrode was suc-
cessively cycled between 0.30 and 1.30V in a new sup-
porting electrolyte solution, until a steady state
baseline voltammogram was obtained. This procedure
ensured very reproducible experimental results.

Acquisition and presentation of voltammetric data

All the experimental curves presented were back-
ground-subtracted and baseline-corrected using the
moving average application with a step window of
5mV included in GPES version 4.9 software. This math-
ematical treatment improves the visualization and iden-
tification of peaks over the baseline without introducing
any artifact, although the peak intensity is in some cases
reduced (<10%) relative to that of the untreated curve.
Nevertheless, this mathematical treatment of the origi-
nal voltammograms was used in the presentation of all
experimental voltammograms for a better and clearer
identification of the peaks. The values for peak current
and charge presented in all graphs were determined from
the original untreated voltammograms.

Results and discussion

In previous work [14-16] the oxidation of all DNA
bases was detected but in solutions containing pyrimi-
dine bases with a concentration 10 times higher than
the purine base concentration.

The differential pulse voltammogram obtained for a
mixture of 20 uM guanine and adenine and 200 uM thy-
mine and cytosine in pH 7.4, 0.1 M phosphate buffer
supporting electrolyte solution using a 3-mm-diameter
GCE shows four oxidation peaks of the same height
magnitude (Fig. 1). The peak at 0.70V is attributed to
G oxidation, the easiest oxidizable of all DNA bases
[6,7,10,14]. The following peaks are due to the oxidation
of A at 0.96V [14,17,18], of T at 1.16V, and of C at
1.31V [14]. Both the recorded voltammogram (dotted
line) and that obtained after moving average baseline
correction (solid line) are presented to show the im-
provement obtained with the baseline-correction proce-
dure for the visualization and identification of peaks,
allowing a better comparison of the relative peak cur-
rents of the four peaks.

In the voltammogram presented in Fig. 1, the ratio
between purine and pyrimidine peak charge (area under
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Fig. 1. Differential pulse voltammogram obtained with a 3-mm-
diameter GCE electrode for the mixture of 2 x 107> M guanine (G) and
adenine (A), 2 x 107*M thymine (T) and cytosine (C) in pH 7.4, 0.1 M
phosphate buffer supporting electrolyte. (...) Recorded voltammo-
gram; (—) baseline-corrected voltammogram. Pulse amplitude S0mV;
pulse width 70ms; scan rate SmVs™".

the peak) [(G + A)/(T + C)] is equal to 1.3, but the con-
centrations of the pyrimidine bases are 10 times higher
than those of the purine bases. This reflects the difficulty
in detecting thymine and cytosine oxidation by voltam-
metry principally due to the fact that their oxidation oc-
curs close to the oxidation of the supporting electrolyte
[14]. This constitutes a drawback that needs to be over-
come for the simultaneous detection of all four DNA
bases when they are present in similar concentrations
in a random sample.

Voltammetry of equimolar mixtures of DNA bases

In Fig. 2 are presented the differential pulse voltammo-
grams obtained for a 20 uM equimolar mixture of the four
bases in pH 7.4, 0.1 M phosphate buffer supporting elec-
trolyte, using GCEs of diameter 1.5mm (Fig. 2a) and
7um (Fig. 2b). Under these conditions it was possible to
detect all four DNA bases in a 20 uM equimolar mixture.
Using the 1.5-mm-diameter GCE, a ratio between purine
and pyrimidine peak areas [(G + A)/(T + C)] equal to 10
(Fig. 2a) was obtained. This ratio was reduced five times
when the 7-um-diameter GCE was used (Fig. 2b). These
results demonstrate that it is possible to detect simulta-
neously in a voltammetric scan all four DNA base present
in solution in equal concentrations using a GC microelec-
trode. Nevertheless, the microelectrode has a smaller sur-
face area and the disadvantage of also decreasing the
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Fig. 2. Baseline-corrected differential pulse voltammograms obtained
in a 20pM equimolar mixture of guanine (G), adenine (A), thymine
(T), and cytosine (C) in pH 7.4, 0.1 M phosphate buffer supporting
electrolyte with: (a) 1.5-mm-diameter GCE and (b) 7-pm-diameter
GCE. Pulse amplitude 50mV; pulse width 70ms; scan rate SmV s7L

current, which implies that it will be difficult to detect vol-
tammetric signals for DNA base concentrations less than
the micromolar range with this microelectrode. The com-
promise between an acceptable detection limit for practi-
cal applications and a reduced electrode area led to
choosing the 1.5-mm-diameter GCE for the rest of this
study. It was also found that the GCE preconditioning,
described under Materials and methods, increased the
current and reproducibility of peaks obtained for the
equimolar mixture of the DNA bases.

The pH dependence of the differential pulse peak po-
tential (£,) and current (/) obtained for the 20 uM equi-
molar mixture of guanine, adenine, thymine, and
cytosine was studied in the pH range between 3 and 12
(Fig. 3). To avoid interference of the supporting electro-
lyte composition on the voltammetric results, as will be
considered below, phosphate salts supporting electrolyte
solutions of ionic strength equal to 0.1 M were used over
all the pH range studied.

A linear dependence over the whole pH range studied
for guanine and adenine was found, with the slopes of
the E,—pH plots (dE,/dpH) being equal to —60 and
—58mV, respectively (E,/mV =1.090-0.060 pH and
E,/mV =1.375-0.058 pH). Thus, the numbers of pro-
tons and electrons involved in the oxidation of both pu-
rines were equal over the entire pH range [19].

For thymine and cytosine oxidation peaks a linear
dependence was found within the pH interval 3 to 9,
the values of dE,/dpH being equal to —59 and
—61mV, respectively (E,/mV =1.567-0.059 pH and
Ey/mV =1.741-0.061 pH).
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Fig. 3. Plots of (a) E, vs pH and (b) 1, vs pH obtained from differential
pulse voltammograms in a 20 M equimolar mixture of guanine (G),
adenine (A), thymine (T), and cytosine (C) in 0.1 M phosphate buffer
supporting electrolyte using a preconditioned 1.5-mm-diameter GCE.
Each symbol represents the arithmetic mean of n =3 independent
experiments.

For pH > 10, the slope increased for both pyrimi-
dines. For thymine, a dE,/dpH of —84mV was found
(Ep/mV = 1.788-0.084 pH), indicating that the ratio of
the number of protons and electrons involved in the
charge transfer changed from 1 to 1.5 for pH > 9.5,
and this can be associated with the pK, of thymine that
is equal to 9.9 [1].

For cytosine, for pH < 4.5, a value of —88mV for
dE,/dpH was obtained and this can be associated to
the first pK, of cytosine that is equal to 4.6 [1,20].

For cytosine, for pH > 10, a higher value of —106 mV
per pH unit was obtained (E,/mV =2.175-0.106 pH).
This indicates that the proton/electron ratio involved
in the cytosine oxidation changed to ~2, and the change
in slope can be associated to the pK, of cytosine that is
equal to 10.2 [1,20].

The oxidation peak current (/,) of all bases changes
with pH as can be seen in Fig. 3b. It was found that
the peak currents of guanine and adenine decreased al-
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most linearly with pH. The current of thymine peak ox-
idation remained almost constant over the whole pH
range studied, but a slight increase was observed for
pH > 10, whereas a decrease in cytosine oxidation peak
current was noticed for pH > 7.

This behavior in alkaline pH is shown in Fig. 4, where
the differential pulse voltammograms obtained for
20uM equimolar mixture of all DNA bases in pH
11.0, 0.1 M phosphate buffer supporting electrolyte solu-
tion with GCE preconditioned as described under Mate-
rials and methods are shown. The voltammogram
obtained for the same mixture but without precondi-
tioning of the GCE (dotted line) is also shown for com-
parison. However, while for guanine, adenine, and
thymine the peak currents obtained are of the same or-
der of magnitude, the cytosine oxidation peak is detect-
able only as a tiny peak. The identification of the
cytosine and thymine oxidation peaks were confirmed
by performing independent experiments in solutions
containing only one of the bases and using the same vol-
tammetric conditions. In addition to the decrease of the
cytosine oxidation peak current for pH > 6 (Fig. 3b), the
large decrease shown in Fig. 4 of the cytosine peak cur-
rent is also due to progressive fouling of the electrode
surface by the guanine and adenine oxidation products
[18] as will be further discussed.

The electrolyte composition also influences the simul-
taneous detection of DNA bases. In fact, for pH > 8
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Fig. 4. Baseline-corrected differential pulse voltammograms obtained
for a 20uM equimolar mixture of guanine (G), adenine (A), thymine
(T); and cytosine (C) in pH 11.0, 0.1 M phosphate buffer supporting
electrolyte solution with a 1.5-mm-diameter GCE; (...) not condi-
tioned; (—) preconditioned. The arrows indicate the changes observed
in thymine and cytosine oxidation peak current after electrode
preconditioning. Pulse amplitude 50mV; pulse width 70ms; scan rate
SmVs.

higher peak currents were obtained for all bases when
phosphate buffer supporting electrolyte was used, com-
pared to the results obtained with borate or ammonia
buffer solutions. For pH <5, higher peak currents for
purines and lower peak currents for pyrimidines were
obtained when acetate buffer solutions were used instead
of phosphate buffer supporting electrolyte solutions of
equal pH.

Analytical determinations of DNA bases in equimolar
mixtures

The limit of detection (LOD) was for the first time de-
termined for each DNA base in equimolar mixtures by
differential pulse voltammetry in pH 7.4, 0.1 M phos-
phate buffer. This buffer was chosen as supporting elec-
trolyte for several reasons. First, it is desirable to work
close to the physiological pH. Second, a good compro-
mise between peak separation and peak current was ob-
tained at this pH as can be seen in Fig. 3. In fact, the
lower the pH the more positive are the potentials at
which all bases undergo oxidation, which is a drawback
mainly for pyrimidine detection since their oxidation
peaks begin to be masked by electrolyte decomposition.
At high pH thymine and cytosine oxidation peak poten-
tials became closer and the peaks tend to overlap; in ad-
dition the increase of thymine peak current with pH
makes difficult the identification of the cytosine oxida-
tion peak (Fig. 4).

The differential pulse voltammetric peak current ob-
tained for each base in equimolar mixtures was deter-
mined for concentrations ranging from 0.2 to 50puM in
pH 7.4, 0.1 M phosphate buffer supporting electrolyte
with the GCE electrochemically preconditioned (see
Materials and methods). The plots of peak current (/)
vs concentration for each base in the equimolar mixtures
are given in Fig. 5. The data obtained by linear regres-
sion for each base over the concentration range, in
which the peak current has a linear response with con-
centration, are presented in Table 1. Each point in the
plots in Fig. 5 represents the average of values obtained
in three experiments and each error bar represents the
standard deviation.

The LODs attained for each DNA base in equimolar
mixtures were found to be 0.05 uM for guanine, 0.07 uM
for adenine, 0.89 uM for thymine, and 1.76 uM for cyto-
sine, based in (3 x SD)/slope [21]. Good linearity was
found between 0.2 and 10uM for purines and between
1 and 20 uM for pyrimidines, always in equimolar mix-
tures. To our knowledge, this was the first time that this
simultaneous quantification of all four DNA bases in
equimolar mixtures has been achieved, together with a
low LOD for each base in the mixed solution.

For solutions of only one purine base, lower LODs
for guanine (7nM [22]) and adenine (30pM [23]) have
been determined indirectly through the formation of
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Fig. 5. Plots of I, vs concentration: (a) guanine (G) and adenine (A);
and (b) thymine (T) and cytosine (C) obtained for equimolar mixtures
in pH 7.1, 0.1 M phosphate buffer supporting electrolyte solution by
differential pulse voltammetry, using a preconditioned 1.5-mm-diam-
eter GCE. Pulse amplitude 50mV; pulse width 70ms; scan rate
5mVs~'. Each error bar represents the standard deviation obtained
for n =3 experiments.

guanine— and adenine-copper complexes on mercury
electrodes. Previous determination of the LODs for mix-
tures of thymine and cytosine by sonovoltammetry at
GCE reported a value of 10uM for both of these com-
pounds [14].

The analysis of the I,—concentration plots obtained
for each of the DNA bases in equimolar mixtures by dif-
ferential pulse voltammetry (Figs. 5a and b) gives infor-

Table 1

mation on the degree of interaction between each DNA
base and the electrode surface and on lateral interac-
tions between the DNA bases adsorbed on the surface.

The I,—concentration plot for guanine (Fig. 5a) was
found to fit well to Langmuir adsorption isotherm be-
havior [24,25] and it was already found that the forma-
tion of a submonolayer of adsorbed guanine at the
electrode surface at low concentration occurred [18].
Contrarily, the /;—concentration plot obtained for ade-
nine (Fig. 5a) fits better a Temkin adsorption isotherm
in which it is considered that the adsorption sites at
the surface are not all equivalent due to surface inhomo-
geneities, the most favorable sites being first occupied by
guanine oxidation products [18,26].

The I,—concentration plot for thymine (Fig. 5b) fitted
a Frumkin adsorption isotherm with positive interaction
(positive g) [24,25], indicating an attractive interaction
between the thymine and the electrode surface. This is
interesting because it is expected that the electrode sur-
face is already covered to some extent by guanine and
adenine oxidation products [18,26] when the thymine
oxidation begins to occur.

For cytosine (Fig. 5b), the I,—concentration plot
could be fitted by a Frumkin adsorption isotherm with
negative interactions (negative g) which implies a weak
or even repulsive interaction between the cytosine and
the electrode surface and explains the difficulty in detect-
ing the cytosine oxidation peak in an equimolar mixture
solution.

Voltammetry of DNA nucleotides

In the structure of DNA each base is linked to a pen-
tose—phosphate unit in the helix skeleton. Hence, the
electrochemical oxidation of each deoxyribose-5-mono-
phosphate was studied and compared with that of the
corresponding free DNA base.

In Fig. 6 are presented the differential pulse voltam-
mograms obtained in pH 7.4, 0.1 M phosphate buffer
supporting electrolyte, with a GCE preconditioned as
described, in solutions of a DNA nucleotide. It was pos-
sible to detect the oxidation peaks of GMP at 0.89V
[17,18] and AMP at 1.19V [27]. For the first time the ox-
idation peaks of TMP at 1.41V and CMP at +1.46V
were detected. In Fig. 6 is also shown the voltammo-
gram obtained for the 20 uM equimolar mixture of all

Linear regression analysis and limits of detection (LOD) using differential pulse voltammetry for the quantification of an equimolar mixture of DNA

bases (p < 0.0001)

DNA base LOD (uM) Sensitivity (nApM ™) Linear range (uM) Standard deviation (nA) Regression coefficient n
Guanine 0.06 34.46 0.2-10 0.64 0.9989 7
Adenine 0.07 33.67 0.2-10 0.79 0.9996 7
Thymine 0.89 5.04 1-20 1.51 0.9976 9
Cytosine 1.76 3.35 1-20 1.97 0.9967 9

Concentration range 2 x 107°-5 x 107> M each base. Experimental conditions as in Fig. 7.
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Fig. 6. Baseline-corrected differential pulse voltammograms obtained
for a 20uM equimolar mixture of guanine (G), adenine (A), thymine
(T), and cytosine (C), 20uM guanosine 5-monophosphate (GMP),
20uM adenosine S-monophosphate (AMP), 500uM thymidine 5-
monophosphate (TMP), and 500puM cytidine S-monophosphate
(CMP) in pH 7.4, 0.1 M phosphate buffer supporting electrolyte with
preconditioned 1.5-mm-diameter GCE. Pulse amplitude S0mV; pulse
width 70ms; scan rate 5SmVs ..

DNA bases for a clear identification of the oxidation
peak potential differences found between the bases and
each respective S-monophosphate nucleotide. The vol-
tammograms were offset to facilitate peak identification
and comparison.

Relative to the free DNA bases, the oxidation peaks
of GMP, AMP, and TMP were always shifted by
250mV to more positive potentials, whereas for CMP
a difference of 170mV was found. The oxidation of each
corresponding nucleoside was observed to occur at the
same potential of the corresponding 5-monophosphate
nucleotide. These results are in agreement with previous
work [14-18] and reflect the increased difficulty of oxi-
dizing the deoxynucleosides and deoxynucleotides in
comparison with the DNA bases. As the 2'-deoxyribose
and the orthophosphate are not electroactive in the po-
tential window used [6] and since the phosphate group
appeared to have no influence in the oxidation peak po-
tential, the observed shift in the oxidation peak of nucle-
osides and nucleotides relative to the corresponding base
can be attributed to the inductive effect caused by the
glycosidic bound on the m-system of purine and pyrimi-
dine rings, making it more difficult to remove electrons
from the bases [1,10].

In addition to the observed shift in the peak poten-
tial, the presence of the pentose—phosphate group causes
a significative decrease in the oxidation peak current rel-
ative to the base, being even lower for the nucleotide

than for the nucleoside. This diminution of the peak cur-
rent can be explained by the lower diffusion coefficient of
the nucleotide compared to that of the base and by the
greater solvation energy caused by the polar sugar—
phosphate group [1]. Moreover, the lower peak current
obtained with nucleotides compared to that with nucle-
osides can be attributed to the steric effect caused by
electrostatic interaction between the negatively charged
phosphate group and the positively charged GCE sur-
face during the potential scan, which orients the bases
further from the electrode surface toward the solution
bulk, thus increasing the energy necessary for reorgani-
zation of the nucleotide at the surface after adsorption
and prior to charge transfer.

This diminution in peak current was observed to be
more accentuated in the case of both pyrimidine nucle-
otides, and to obtain similar peak currents for all the nu-
cleotides it was necessary to use solutions of pyrimidine
nucleotides 25 times more concentrated than those used
for purine nucleotides (Fig. 6).

The peak potential dependence on pH was studied for
each nucleotide alone and was found to be similar to
that observed for the corresponding base, noting the fact
that for all pHs the oxidation peak potential was always
shifted to more positive potentials as already described.

Detection of oxidation of all bases in ssDNA

A major challenge is the simultaneous detection of all
bases in ssDNA in which the bases are linked to the su-
gar—phosphate backbone forming the biopolymer and
are present in concentrations of the same order of mag-
nitude.

The experimental results showed that the shift in the
oxidation peak to more positive potentials observed for
the nucleotides makes detection less easy. The smaller
peak shift to more positive potentials observed for
CMP (Fig. 6) implies that there will be an overlapping
of TMP and CMP oxidation peaks when both are pres-
ent in a sample and this makes the simultaneous deter-
mination of pyrimidine nucleotides directly in ssSDNA
even more difficult.

In Fig. 7 is shown the differential pulse voltammo-
gram for a 40-ug/mL ssDNA solution in pH 7.4, 0.1M
phosphate buffer supporting electrolyte. The peaks de-
noted as G, and A, are attributed to the oxidation of
guanine and adenine residues in the ssDNA according
to present (see Fig. 6) and previous [7,17] results. The
peak Py, is attributed to the superposition of the peaks
due to oxidation of the pyrimidine residues in the
ssDNA. Experiments with poly(dT) and poly(dC) con-
firmed the pyrimidine nucleotides anodic voltammetric
behavior (Fig. 7, inset). The higher peak current ob-
tained for both purine residues compared to the peak
current assigned to the pyrimidine residues oxidation
is in agreement with the lower peak currents also ob-
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Fig. 7. Baseline-corrected differential pulse voltammogram obtained
in a 40-pg/mL ssDNA solution pH 7.4, 0.1M phosphate buffer
supporting electrolyte with a preconditioned 1.5-mm-diameter GCE.
G,, guanine residue; A,, adenine residue; Py,, pyrimidine residue.
(Inset) Baseline-corrected differential pulse voltammograms obtained
in 100-pg/mL poly(dT) (pT) and poly(dC) (pC) solutions in pH 7.4,
0.1 M phosphate buffer supporting electrolyte. Pulse amplitude S0mV;
pulse width 70ms; scan rate 5SmVs~'.

tained for T and C nucleotide oxidation currents shown
in Fig. 6. Nevertheless, it was possible to detect for the
first time the oxidation peak currents corresponding to
the pyrimidine residues in ssDNA.

In Fig. 8 is shown the differential pulse voltammo-
gram obtained for a ssDNA solution allowed to under-
go depurination by mild acid conditions (pH 3.6, 0.1 M
acetate buffer) for 48h [1,10]. In addition to the oxida-
tion peaks due to the guanine (G,), adenine (A,), and py-
rimidine (Py,) residues in the ssDNA, two oxidation
peaks attributed to free guanine (G) and adenine (A)
are observed, indicating that depurination had occurred,
causing, consequently, the diminution of both G, and A,
oxidation peaks and the concomitant appearance of the
free G and A oxidation peaks.

The difficulty in the voltammetric analysis of ssDNA
occurs from oxidation peaks overlapping when the free
bases and nucleosides or nucleotides are present in the
same sample. As can be seen in Fig. 6, the oxidation peak
of GMP will cause interference in the detection of the ad-
enine oxidation peak and the AMP oxidation peak will
overlap with the oxidation peak of thymine. This implies
that for a proper characterization of an unknown DNA
sample attention must be given to careful analysis of the
voltammogram. The presence of shoulders or broader
peaks in the voltammogram could simply mean that ba-
ses, nucleosides, and/or nucleotides, of DNA are present
in a given sample due to DNA damage, as in the case

10 nA

—_—

0?6 ' 0f8 ' lfO ' lf2 ' 1.4
E/Vvs. Ag/AgCl

Fig. 8. Baseline-corrected differential pulse voltammogram obtained
in a 40-pg/mL ssDNA solution pH 7.4, 0.1M phosphate buffer
supporting electrolyte with a preconditioned 1.5-mm-diameter GCE.
The ssDNA was allowed to undergo mild acid depurination for 48h
prior to the experiment (see text for additional details). G, free
guanine; A, free adenine; G,, guanine residue; A, adenine residue; Py,,
pyrimidine residue in ssDNA. Pulse amplitude 50mV; pulse width
70ms; scan rate 5mVs .

shown in Fig. 8. Nevertheless, this apparent drawback
becomes qualitatively advantageous when the main goal
is to verify the integrity of a double or single strand of
DNA. This shows that electrochemical methods are a
good analytical tool that can be used to confirm the oc-
currence of any damage or enzymatic activity (e.g., gly-
cosidic, nuclease) over DNA that may liberate free
bases or disrupt the polymeric strand. In general, the de-
tection of a guanine oxidation peak in a ssDNA sample is
a good indication that enzymatic base excision or acid
depurination has occurred to some extent.

Conclusion

The study of DNA oxidative damage is of great im-
portance since it is well established that it constitutes
an important source of genomic instability. Voltammet-
ric methods are suitable to study DNA oxidation, but
almost all previous studies focus only on the oxidation
of purine derivative compounds.

The voltammetric results presented in this work ex-
tend previous voltammetric studies on DNA to include
all four bases and corresponding nucleotides. For the
first time equimolar mixtures of all DNA bases, nucleo-
sides, and nucleotides have been quantified by differen-
tial pulse voltammetry.

An electrochemical preconditioning of the GCE en-
abled the achievement of a better peak separation and
an enhancement of the current of the oxidation peaks
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for all four DNA bases in pH 7.4 phosphate buffer sup-
porting electrolyte, close to physiological pH. Detection
limits in the nano- and micromolar ranges were obtained
for purine and pyrimidine bases, respectively, together
in solution.

The results presented show for the first time that the
pyrimidine nucleosides and nucleotides are electroactive
on glassy carbon electrodes and that, in addition to the
easy detection of the purines it was also possible to de-
tect simultaneously the oxidation of pyrimidine residues
in ssDNA.
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