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Abstract

We report calculations of the vibrational spectrum of lH2=HD=DT as well as D3 in their first-excited electronic

state, both with the inclusion of the geometric phase effect and without including it. The results show that, especially for

lHD and lDT, it plays a minor role for the first 30 vibrational levels of such systems. This can be rationalized from

the tilting of the C3-axis due to mass effects. A simple phenomenological criterion for the relative role of the GP effect in

tri-hydrogen isotopomers has been suggested.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Tri-hydrogen and its isotopic variants have long

been studied, both experimentally and theoreti-

cally. In particular, the simplest reaction in nature

HþH2 ! H2 þH has been investigated at full

quantum state-to-state level both theoretically and
experimentally. Regarding the isotopomers, the

DþH2 and HþD2 exchange reactions have re-

ceived the most attention [1,2]. However, the first

experimental and theoretical study of the reaction

HþHD ! H2 þD has been published only re-

cently [3] at E ¼ 0:5 eV; for a quantum study of

the transition state dynamics, see [4]. A striking

result from the study of Harich et al. [3] is that

�precluding a small influence of the so-called geo-

metric phase (GP) effect or errors in the potential

energy surface, it does not appear necessary to

include their effects to achieve a very good model

of the dynamics�.
The GP effect is a consequence of the conical

intersection present between the ground- and first-
excited surfaces. As pointed out by Mead and

Truhlar [5] following pioneering work by Longuet-

Higgins [6,7] and Berry [8], the GP effect should be

included whenever a single-surface Born–Oppen-

heimer treatment is carried out for such systems.

Note that the intersection in the tri-hydrogen po-

tential energy surface occurs along the line of

equilateral triangular geometries (i.e., the C3-axis),
and has its minimum energy value about 2.7 eV

above the ground surface limit for atom–diatom

dissociation. Wu and Kuppermann [1] observed

from dynamics calculations on the HþD2 reac-

tion that the GP effect may have a strong influence
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even for energies far below the conical intersection.

This result is supported by the experimental stud-

ies of Zare and co-workers [9], which indicate that

calculations including the GP effect give better

agreement with their experimental results than

calculations not including it (NGP). However,
from more recent experiments, Welge and co-

workers [2, and references therein] concluded

oppositely. Such a conclusion was supported

theoretically by Kendrick [10, and references

therein] who has shown that GP would have in-

significant effect on the dynamics of the HþD2

system at a total energy of 1.881 eV for values of

total angular momentum up to J ¼ 5. Most re-
cently, Kuppermann and Wu [11] revisited this

problem, and also found that up to J ¼ 5 the GP

effect on differential cross sections is negligibly

small. However, as the value of J is increased,

differences due the GP effect turned out to be im-

portant for the potential energy surface used in

their calculations. They have then concluded that

calculations that do not include such an effect are
conceptually incorrect and, in the case of HþD2,

numerically inaccurate.

The GP effect is also known to play a significant

role in molecular spectra [12–17]. Moreover, it has

been shown from ab initio calculations on LiNaK

that the GP effect is present even when the system

has no symmetry [18]. Thus, it should be taken

into account when studying the (reactive or non-
reactive) nuclear dynamics of such systems using a

single-BO surface. Since vibrational calculations

are easier to perform than reactive scattering ones,

and because the GP effect should manifest on both

as a topological effect, we may choose the former

to estimate its importance. Furthermore, one ex-

pects the GP effect to manifest more prominently

on the upper adiabatic sheet as this always lies
above the crossing seam. Thus, if one finds that

such an effect does not play a role on the vibra-

tional cone states, it is reasonable to conclude that

it will not play a role either for the reaction

dynamics on the bottom adiabatic sheet.

Two alternative schemes have been suggested

to treat the GP effect. One consists of multiplying

the real double-valued electronic wave functions
by a complex phase-factor which changes sign on

encircling the conical intersection. This makes the

resulting complex electronic wave function to be

single-valued [19, and references therein], and

leads to the vector potential of Mead and Truhlar

[5,20]. The other method, particularly advanta-

geous for X3-type systems, consists of incorpo-

rating the complex phase factor into the nuclear
wave function such as to make the total electro-

nuclear wave function single-valued [12,16,17,21].

However, a complication arises when studying the

isotopomers of X3, due to the mass scaling in-

volved in defining the hyperspherical coordinates.

To cope with this problem, Kuppermann and

Wu [22] employed a mass-scaled Jacobi-vectors

formula, while we suggested both a split-basis
technique [23] and a coordinate-transformation

approach [24].

In this work, we treat the GP effect by solving a

generalized Born–Oppenheimer (GBO) equation

proposed by Varandas and Xu [25] following the

work of Baer and Englman [26,27]. Such an equa-

tion is strictly valid close to the seam (see also [28]),

although generality may be conveyed by invoking
the well known [6,7,17,29] fact that such regions

have a dominant role in the nuclear dynamics even

when energetics allows to sample areas of config-

urational space far away from the seam. It uses

the result [25] that the GP angle AðRÞ is, up to a

constant, identical to the mixing angle cðRÞ of the
orthogonal transformation that diagonalizes the

potential matrix in the coupled two-states problem.
[Note that the adiabatic-to-diabatic transforma-

tion (ADT) angle [30] is also, up to a constant,

identical to cðRÞ [31].] This GBO approach has

been used to calculate the vibrational spectra of

H3 [25] and HD2 [23,24].

The structure of this Letter is as follows. In

Section 2, we survey the method, while the vibra-

tional calculations for D3, lH2, lHD, and lDT
are reported in Section 3. The conclusions are in

Section 4.

2. Method

For any isotopomer of a X3 system, the crossing

seam in hyperspherical coordinates ðq; h;uÞ is de-
fined at an arbitrary value of the hyperradius q by

[31]
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with X, Y, and Z standing for atoms A, B, and C

with masses mA, mB, and mC. In case two atomic

masses are equal, namely mB ¼ mC, one gets the

simplified expression
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while us assumes the value p(0) when mA > mB,
and 0(p) when mA < mB; the value us ¼ 0 is chosen

here for mA < mB. For example, for HD2, the seam

is defined [31] by hs ¼ 0:5048 rad and us ¼ 0. In

turn, for lHD, one has hs ¼ 1:8025 rad and

us ¼ 0:1528 rad. Since hs 6¼ 0, only closed paths

with hP hs will therefore enclose the seam, with

the accumulated phase change along the path be-

ing equal to p. For all other loops with h < hs, the
accumulated phase change is 0.

To calculate the vibrational levels, we solve the

time-independent Schr€oodinger equation [25]

ĤHv ¼ Ev; ð8Þ
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ĴJ 2z þ 4i�hĴJz cosðh=2Þðo=o/Þ
2lq2 sin2 ðh=2Þ

þ 15�h2

8lq2
þ sinðh=2Þ

lq2 cos2 ðh=2Þ
1

2
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þ ĴJ 2�
i

þ V ðq; h;/Þ þ �h2

2l
rcðq; h;/Þ½ �2 ð9Þ

and
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where we have neglected all spin–orbit and spin–

spin interactions. Thus, ĴJ , ĴJz, and ĴJ
 are the total

angular momentum, its component along the z-

axis, and the raising/lowering operators in the

body-fixed frame (respectively), which are defined

by the set of external coordinates ða; b; cÞ; the

external angle c should not be confused with the
mixing angle cðq; h;/Þ which is determined by

solving Eq. (7) of [31]. In turn, V is the potential

energy surface of the system, which depends only

on the three internal coordinates ðq; h;/Þ, with
the hyperangles h and / being related [12] to

the usual Smith-Whitten�s ðH;UÞ hyperangles

through the relations h ¼ p � 4H and / ¼ 2p�
2U. Thus, the range of h extends from 0 to p,
allowing to use Legendre (or Jacobi) polynomials

in cos h as the finite basis representation (FBR) in

h. Note that the GP effect may be turned-off by

ignoring the imaginary operator iĤH1 in the cal-

culations. We emphasize that Eq. (8) to Eq. (9)

should be strictly valid in the vicinity of the

crossing seam, since the method [25] is based on

the assumption that ðV2 � V1Þv2 � 0 near the de-
generacy locus where V1 ¼ V2; Vi and vi are, re-

spectively, the adiabatic potential energy sheet

and corresponding wave function for state i
(¼ 1,2). Although it was recognized [28] that

�certainly it is true that in a very small region,

some features of the problem are insensitive to the
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difference in potential energies�, such a method-

ology has been criticized on the basis that �the
most distinctive feature of the problem, which is

the nature of the conical intersection, is missed�. It
was further commented [28] that, �in the near
neighborhood of an intersection, one cannot as-

sume v2 to be very small�. The first criticism may

have so many readings that we make no attempt

of rebuttal. However, the second one seems

unreasonable as we based our approach on the

realistic assumption that v2 should remain well-

behaved (in the sense of being a finite function) in

the vicinity of the crossing seam. In fact, the be-
havior of the nuclear wave functions has been

studied by Varandas and Xu [32] for the homo-

nuclear isotopomers (X3-type), who demonstrated

that they vanish as a positive power of the radial

coordinate r as this approaches zero (i.e., in the

vicinity of the conical intersection). Thus, the

condition limr!0 ðV2 � V1Þv2 ¼ 0 is satisfied for

such systems, and most likely also for the het-
eronuclear isotopomers. To validate the method�s
general use, Varandas and Xu [25] have then

simply recalled that the GP effect is a topological

one known to be determined by the behavior of

the potentials in the vicinity of the degeneracy

[6,7,17,29]. Clearly, as it happens with any ap-

proximate theory (this is the case, since we have

neglected the above coupling term), its validity
can only be judged from the quality of the results

to which it leads. In fact, a comparison of the

cone states for H3 and HD2 calculated using the

present approach with those obtained from more

conventional methods has shown [23,24] the re-

sults to be almost indistinguishable, especially for

the low vibrational levels. On the other hand, the

present method reveals itself to be rather more
easy to implement computationally mostly due to

the simplicity achieved by having introduced the

mixing angle cðq; h;/Þ. Thus, although the cal-

culations presented below cannot be claimed to be

exact, they should be accurate enough for seeking

a criterion for the importance of the geometric

phase effect in vibrational calculations for tri-

hydrogen isotopomers. Stated differently, even if
errors occur, there is no reason of principle to

believe that such errors should affect distinctly the

various systems considered in the present study.

To determine the action of the Hamiltonian ĤH
on the wave function (Lanczos vector), a mixed

grid-basis method has been employed. Uniform

grids have been utilized for the coordinates q and

u, while the actions of the associated kinetic

energy operators have been performed by using a
prime-factor fast Fourier transform (PFFT)

technique [12]. As in previous work [23–25], the

calculations of the eigenenergies have been car-

ried out for J ¼ 0 by using a minimum residual

filter diagonalization (MFD) technique [33]; sim-

ilarly to the simple Lanczos algorithm, the MFD

approach has low storage requirements (only

two iteration vectors) and utilizes just a single-
Lanczos recursion for the eigenvalue problem,

while it can eliminate spurious and ghost eigen-

values.

3. Results and discussion

The calculations reported in the present work
include the systems D3, lH2, lHD, and lDT, al-
though numerical results will, for brevity, be re-

ported only for lH2 and lHD (the numerical

values for the other systems may be obtained from

the authors upon request). Note that there has

been a threefold reason for such a selection: (i) to

have a further homonuclear system besides H3; (ii)

to have a disparity of masses as large as possible
such as to cover a wide range of hs values; (iii) to
accomodate systems without any permutational

symmetry. All calculations employed the accurate

H3 DMBE potential energy surface [34]. A grid of

Nq � Nh � Nu ¼ 63� 70� 105 has been employed

covering the range 1:56q=a0 6 11:5. Fig. 1 illus-

trates the variation of the upper sheet of the po-

tential energy surface along loops corresponding
to an hyperradius of q ¼ 6 a0 and h ¼ hs (for the
cases shown of lH2 and lHD, the hs values are
1.6192 and 1.8025 rad, respectively). For lHD, a
significant feature is perhaps the discontinuity at

the conical intersection that arises at u ¼ us

(0.1528 rad). In turn, Fig. 2 illustrates the varia-

tion of the geometric phase for two distinct values

of h, one smaller and the other larger than hs.
Clearly, for values h < hs, there is no sign change

upon completion of a loop as this does not encircle
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the conical intersection. Conversely, a sign change

does occur for h > hs.
Table 1 compares the results obtained from two

sets of calculations for lH2 and lHD covering

energies up to about E � 5 eV. All eigenvalues are

quoted with four decimal figures, which are
thought to be significant from the analysis of the

associated error norms (these are typically

10�6 eV). The column headed NGP corresponds

to the case where the GP effect is neglected, and

conversely for the GP one which includes it.

Clearly, most differences are smaller than the cal-

culated error norms (and hence have been set

equal to 0 for clarity). For example, for lHD,
except a few differences which are around 10�4 eV,

in only one case it reaches 1:8� 10�3 eV. The re-

sults are compared with those obtained for H3, D3,

HD2, and lDT in Fig. 3. It is seen that the dif-

ferences between the NGP and GP results decrease

along the sequence H3 � D3 > HD2 > lH2 >
lHD > lDT, as shown from the root-mean-

square deviations for the lowest M calculated
levels:

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1 GPi �NGPið Þ2

M

s
: ð11Þ

We pause to note that a more rigorous analysis

should start with an assignment of the symmetry to

the calculated vibrational levels. However, this

would be a cumbersome task that would be virtu-

ally impossible to carry out accurately for the

highly excited vibrational states of such floppy

systems. On the other hand, for the ground state of

the homonuclear trimers, we know [16,17,25] to be
comparing levels of A1 (NGP) and E (GP) sym-

metries. Thus, their energy difference is a genuine

measure of the GP effect, which is exactly what we

are aiming at. Using a bunch of M levels may have

the advantage of taking into account the GP effect

on higher vibrational levels. Since we are aiming at

such a phenomenological quantity to measure the

GP effect on the spectra of the various isotopomers,
the symmetry assignment was judged unjustified,

and hence not done. Thus, i in Eq. (11) indicates the
level number irrespective of symmetry.

The logarithms of such deviations are displayed

for M ¼ 30 in Fig. 4 as a function of the cosine of
Fig. 2. Dependence of geometric phase on u and h at q ¼ 6 a0:

(a) lH2; (b) lHD.

Fig. 1. Potential energy surface for the electronic-excited state

as a function for u for fixed q ¼ 6 a0 and h ¼ hs: lH2

(¼ 1:6192 rad), solid line; lHD (¼ 1.8025 rad), dashed line.
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the tilting angle of the C3-axis, which increases
from hs ¼ 0 in H3 up to hs ¼ 2:2164 rad in lT2 (see

Table 2). In fact, the relative probability of looping

ðPloopÞ around such an axis is expected to be some

function of hs, which may be estimated by

Ploop /
Z 2p

0

Z p

hs

sinðh=2Þdhdu=
Z 2p

0

Z p

0

� sinðh=2Þdhdu ¼ cosðhs=2Þ: ð12Þ
Fig. 4 shows that the results obtained for all sys-

tems studied thus far may be quantitavely de-

scribed by the form

D ¼ aPm
loop ð13Þ

with the parameters (given with two decimal pla-

ces) in the linear least-squares fitting procedure

being lnða=eVÞ ¼ �2:37
 1:29 and m ¼ 17:32

6:91. A similar result is obtained when using

M ¼ 20 or 25. Other two-parameter forms such as

an inverse exponential in Ploop may also be viable,

and hence the representation chosen in the present

work should only be viewed as one amongst the

simplest possible. Being not unique, the parame-

ters in Eq. (13) cannot be claimed to be universal;
numerical variations may then be expected, al-

though the general trends should remain valid.

Thus, rather than highlighting a particular func-

tional form, we put the emphasis on the correla-

tion observed between D and hs, which is shown to

cover a wide range of values. It should also be

noted that the reduction in the importance of the

GP effect is already apparent when comparing the

Table 1

Vibrational energy levels (in eV) of lH2 and lHD calculated using the GBO approximation of [25]

Level lH2 lHD

NGP GP jNGP�GPj NGP GP jNGP�GPj

1 4.2271 4.2269 2� 10�4 4.1940 4.1940 0a

2 4.4402 4.4340 6:2� 10�3 4.3854 4.3854 0

3 4.6212 4.6211 1� 10�4 4.5527 4.5527 0

4 4.7655 4.7653 2� 10�4 4.6942 4.6942 0

5 4.7956 4.7957 1� 10�4 4.7965 4.7965 0

6 4.8049 4.8049 0 4.8021 4.8021 0

7 4.8103 4.8103 0 4.8037 4.8037 0

8 4.8197 4.8196 1� 10�4 4.8114 4.8114 0

9 4.8284 4.8287 3� 10�4 4.8187 4.8187 0

10 4.8348 4.8363 1:5� 10�3 4.8289 4.8290 1� 10�4

11 4.8423 4.8426 3� 10�4 4.8332 4.8336 4� 10�4

12 4.8465 4.8465 0 4.8430 4.8431 1� 10�4

13 4.8525 4.8522 3� 10�4 4.8451 4.8452 1� 10�4

14 4.8579 4.8580 1� 10�4 4.8467 4.8467 0

15 4.8624 4.8624 0 4.8534 4.8534 0

16 4.8640 4.8640 0 4.8569 4.8569 0

17 4.8668 4.8671 3� 10�4 4.8607 4.8609 2� 10�4

18 4.8687 4.8690 3� 10�4 4.8640 4.8640 0

19 4.8717 4.8716 1� 10�4 4.8681 4.8681 0

20 4.8734 4.8764 3� 10�4 4.8719 4.8725 6� 10�4

21 4.8799 4.8799 0 4.8729 4.8747 1:8� 10�3

22 4.8835 4.8862 2:7� 10�3 4.8772 4.8772 0

23 4.8865 4.8873 8� 10�4 4.8799 4.8802 3� 10�4

24 4.8915 4.8922 7� 10�4 4.8814 4.8814 0

25 4.8942 4.8942 0 4.8877 4.8879 2� 10�4

26 4.9017 4.8987 3� 10�4 4.8905 4.8904 1� 10�4

27 4.9030 4.9043 1:3� 10�3 4.8926 4.8927 1� 10�4

28 4.9036 4.9048 1:2� 10�3 4.8999 4.8999 0

29 4.9100 4.9107 7� 10�4 4.9014 4.9015 1� 10�4

30 4.9127 4.9126 1� 10�4 4.9023 4.9023 0

a Smaller than the calculated error norm of <10�6 eV, and hence defined as zero; see the text.
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energies for the vibrational ground state, i.e.,

without taking into consideration the averaging
process in Eq. (11). In this case too, the small

differences already observed for HD2 (and the

heteronuclear isotopomers involving a muonium

atom) may be attributed to the distinct atomic

masses or, equivalently, to incomplete encircling of

the locus of intersection.

Of course, the present criterion ignores the total

energy, which is itself a very significant parameter
when dealing with the dynamics of the exchange

reactions in the lower sheet of the potential energy

surface (as already observed, the energy must be at
least high enough to allow a loop around the

conical intersection). However, its role may not be

so decisive when studying the vibrational spec-

troscopy of the upper cone, since it is always larger

than the energy of the crossing seam. Despite such

a limitation, the simple correlation in Eq. (13) is

gratifying, and may be used to estimate the role of

the GP effect in vibrational calculations of the
cone states for other isotopomers not studied thus

far. Thus, the present results suggest that, al-

though significant for the vibrational states of

homonuclear tri-hydrogenic systems, the GP effect

is significantly less so for their isotopomers in

particular those involving a single-muonium par-

ticle. We emphasize that this result should not

drastically depend on the form of the geometric
phase. In fact, it has been noted [31] that physical

quantities such as vibrational levels should be

gauge invariant with respect to different functional

forms adopted for the angle around the conical

intersection.

Although vibrational states may have little to

do with reactive scattering, they both stem from

the same potential energy surface and hence are
influenced (possibly in different ways) by mani-

Fig. 3. A comparison of the lowest states ðE6 5 eVÞ of H3 [25],

D3, HD2 [35, and references therein], lH2, lHD, and lDT,
calculated without consideration (NGP) and with consideration

(GP) of the geometric phase effect.

Fig. 4. Logarithm of the calculated root-mean-square deviation

for the first 30 levels of H3, D3, HD2, lH2, lHD, and lDT
plotted as a function of Ploop (¼ cos hs=2), see Eq. (13).

Table 2

Values of hs and us for the various isotopomers of tri-hydrogen

System hs us

(rad) (rad)

l3 0 0

l2H 0.8668 p
l2D 0.9534 p
l2T 0.9837 p
lH2 1.6192 0

lHD 1.8025 0.1528

lHT 1.8743 0.2133

lD2 2.0241 0

lDT 2.1150 0.0650

lT2 2.2164 0

H3 0 0

H2D 0.4023 p
H2T 0.5786 p
HD2 0.5048 0

HDT 0.6667 0.3386

HT2 0.8211 0

D3 0 0

D2T 0.2497 p
DT2 0.2854 0

T3 0 0
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festations of the same geometric phase effect.

Thus, we conclude as we have began by addressing

the case of an elementary reaction such as

Aþ BC ! ABþ C. We conjecture that the impact

of the GP effect may in this case get further di-

minished since, in a classical sense, it is not man-
datory for a reactive trajectory that it completes an

entire loop around the crossing seam before

yielding the products. In fact, the probability of

doing so should increase with impact parameter,

and hence with the value of J , as it really appears
to be the case [10,11] for HþD2.

4. Conclusions

A single-surface Born–Oppenheimer equation

recently proposed [25] has been used to calculate the

cone states of D3, lH2, lHD, and lDT. In all cases
involving muonion atoms, we observe significantly

smaller differences between the NGP and GP ei-

genvalues than for H3, D3 or even HD2. Such a
result is rationalized with basis on the value of hs,
the tilting angle of the C3-axis in H3 due to mass

effects. A simple criterion involving configuration

space arguments has therefore been proposed and

shown empirically to describe well the average de-

viations between the NGP and GP results. Clearly,

the title issue deserves further investigation.

Acknowledgements

This work has been supported by the Fundac�~aao
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