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Abstract

We report a single-valued potential energy surface for HO4�2A� from the double many-body expansion method. All

n-body �n � 2±4� energy terms are taken from published studies on the relevant fragments, with a ®ve-body energy term

of Gaussian form added to mimic the experimental activation energy for the OH�v � 0� �O3 reaction. A detailed

dynamics study of this reaction is also reported using classical trajectories. Good agreement with existing experimental

data is obtained. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The hydrogen±oxygen systems play a central
role in the chemistry of Earth's atmosphere [1,2],
combustion chemistry [3], and laser processes [4].
In particular, the reaction

OH�O3 ! HO2 �O2 �1�
in¯uences the steady-state concentration of many
trace gases which are important in stratospheric
chemistry (the enthalpy of reaction is
DH 0 � ÿ40:01 kcal molÿ1 [5]). It is also part of the
so-called HOx catalytic cycle for destruction of
ozone in the natural stratosphere [1]. Moreover, in
combination with HO2 �O3 ! OH� 2O2, they
form a reaction sequence which acts as a catalytic
cycle for removing odd oxygen. This cycle is par-
ticularly important at altitudes below 25 km since
it does not require oxygen atoms as do similar

catalytic cycles involving nitrogen oxides or chlo-
rine species [6].

Although much studied experimentally [5,7±9],
no single theoretical study of the reaction in Eq. (1)
has been reported in the literature so far. Since it is
an important prototype reaction, which may even
have social implications, such lack of theoretical
work can only be attributed to di�culties in
calculating a reliable HO4�2A� potential energy
surface by correlated ab initio methods. Although
largely due to the number of electrons involved,
such computational di�culties get compounded by
the fact that it is a ®ve-atom system spanning a
nine-dimensional (9D) con®guration space. In
fact, although there has been an increasing number
of studies on four-atom reactions [10], very few
have been so far carried out on ®ve-atom species
using global potential energy surfaces that cover
all possible reaction channels. To our knowledge,
the only available studies refer to ®ve-atom [11,12]
and six-atom [11] hydrogenic systems �Hn�, and
hence bene®t from the small number of electrons
and high permutational symmetry of the molecular
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system. We emphasize the methodological di�-
culties due to the fact that there are 10 possible
diatomic fragments but only 3� 5ÿ 6 � 9 Decius
independent local normal coordinates [13,14].
However, we avoid any expansion in terms of
these coordinates and hence such a problem will be
absent here.

A major goal of the present work is to report a
global double many-body expansion (DMBE)
potential energy surface for HO4�2A� using previ-
ously reported information on the relevant n-body
fragment systems: OH [15,16], HO2 [17], O3 [18],
HO3 [19], and O4 [20]. The DMBE potential
energy surface so-obtained when truncated at the
four-body level (denoted DMBE-4B heretofore)
will then be complemented with a simple ®ve-body
energy term of Gaussian form whose para-
meters are calibrated from available data on the
OH�v � 0� �O3 experimental activation energy
and the requirement that no spurious features arise
on the complete DMBE form. This will then be
employed for detailed dynamics studies of the title
reaction over the range of temperatures 2006 T 6
500 K using the classical trajectory method. This
Letter is organized as follows. Section 2 provides a
description of the HO4�2A� DMBE potential en-
ergy surface, while the trajectory calculations are
described in Section 3. The dynamics results are
presented and discussed in Section 4, while the
conclusions are in Section 5.

2. Potential energy surface

The potential energy surface assumes the form

V �RN� �
XN

n�2

X
Rn�RN

V �n�EHF�Rn�
h

� V �n�dc �Rn�
i
; �2�

which is the familiar DMBE [14,21±25] for single-
valued surfaces. Thus, Rn speci®es any set of
n�nÿ 1�=2 interatomic distances referring to n at-
oms, which is a subset of RN � �R1;R2; . . . ;
RN�Nÿ1�=2�, and the energies of the isolated atoms
have been taken as the reference energy. For the
labelling of the atoms and de®nition of the asso-
ciated interatomic coordinates, see Fig. 1 which
shows the predicted molecular structures for the

saddle point of the reaction OH�O3 !
HO2 �O2, the absolute minimum of the HO4�2A�
DMBE potential energy surface, and the
OH � � �O3 van der Waals minimum (see later).
Note that the potential energy is partitioned in
Eq. (2) into an extended-Hartree±Fock (EHF) part
and a dynamical correlation (dc) part. All n-body
EHF terms up to four-body level have been taken
from previous work [15,17±20] on the relevant
fragment species. Similarly, the dc and remaining
long-range terms such as electrostatic energies
have been included up to the largest possible
n-body level by using information reported else-
where [15,17±20] on such interactions. Of course,
the use of Eq. (2) to represent the potential energy
surface of interacting atoms of any spin state and
angular momentum rests on the complete neglect
of the spin-recoupling and orientational e�ects
which are inherent to the HO4�2A� system [25].
Such e�ects are introduced in an approximate way
through appropriate calibration of the various
n-body energy terms. Clearly, crossing seams are
ignored and smoothed up.

Fig. 2 shows a perspective view of the HO4

DMBE-4B potential energy surface for the regions
of con®gurational space with relevance to the
studied reaction. To understand its meaning, let us
de®ne the following polar angles: �h; c� to specify
the orientation of the OcOd bond, and �b;/� to
specify that of OdH. Thus, x represents the bond
distance between the middle and terminal atoms of
the ozone molecule (say, ObOc), while the y-axis
denotes the distance between the oxygen atom in
OdH and the terminal oxygen atom of ozone �Oc�;
to avoid confusion with chemical formulae, we use
letters (a, b, c, d) in the text to label the oxygen
atoms �1; 2; 3; 4�. During the attack, the opening
angle of the ozone molecule OaObOc has been kept
®xed at its equilibrium value of 116.8°, while all
the above polar angles were ®xed at their values
corresponding to the geometry of the HO4 mini-
mum, namely hm � 34:032°, cm � 49:810°, bm �
179:808°, /m � 46:890°. The major features from
this plot are seen to be the occurrence of a po-
tential barrier in the entrance channel, and the fact
that the reaction has a classical exoergicity of
42:2 kcal molÿ1. Clearly, the barrier height (�12.5
kcal molÿ1) looks appreciably higher in this plot
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than it is in reality, which is due to lack of proper
relaxation of the remaining degrees of freedom.
Indeed, the localization of such a barrier is a

problem far from trivial, which has been solved
numerically using cartesian coordinates. The cal-
culated geometry, energy (relative to the OH�O3

reactants asymptote), and harmonic normal mode
frequencies are reported in Table 1. Although the
classical barrier height �Vb � 3:82 kcal molÿ1�
calculated from the DMBE-4B potential energy
surface is only about 2 kcal molÿ1 higher than the
recommended [5] experimental activation energy
[Ea�exp� � 2 kcal molÿ1], such a di�erence clearly
calls for the inclusion of ®ve-body energy terms
into the DMBE development if accurate results are
to be expected. Thus, we have added the term

V �5�EHF�R� � A
X
I�y;z

exp

"(
ÿ b

X10

i�1

�Ri ÿ RI
i �2
#)

;

�3�

Fig. 1. Important structures for HO4�2A�, and de®nition of atoms labelling: (a) predicted OH � � �O3 van der Waals structure;

(b) saddle point for reaction OH�O3 ! HO2 �O2; (c) predicted absolute minimum.

Fig. 2. A perspective/contour plot of the DMBE-4B potential

energy surface for the reaction OH�O3 ! HO2 �O2. Con-

tours start at ÿ0:4733Eh, and are equally spaced by 0:01Eh.
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where A and b are disposable parameters, and RI
i

�I � y; z� are the geometries of the two equiva-
lent saddle points (one for each terminal atom
of the ozone molecule). Speci®cally, we have

chosen the Gaussian amplitude to be
A � ÿ2:62 kcal molÿ1 in order to reproduce ap-
proximately the experimental activation energy
for the title reaction. Within the spirit of tran-
sition state theory, we have then assumed that
the activation energy could be calculated by
taking into consideration the zero-point energy
of both the reactants �ER

ZPE � 10:5 kcal molÿ1�
and transition state �EyZPE � 11:3 kcal molÿ1�,
i.e., Ea � Vb � EyZPE ÿ ER

ZPE. This leads to a clas-
sical barrier height of Vb � 1:056 kcal molÿ1 for
the complete DMBE potential energy surface. In
turn, the range parameter b � 0:048aÿ2

0 has been
selected from the requirement that the ®nal
DMBE potential energy surface should be
smooth and with no apparent spurious features.
Although the barrier is visibly lower, a plot of
the resulting surface looks similar to Fig. 2 for
DMBE-4B and hence will not be shown for
brevity; for the saddle point attributes, see
Table 1.

The calculated minimum energy reaction path
for the title reaction is shown in Fig. 3. The salient
feature is the minimum in the HO2 �O2 products
valley. In fact, this corresponds to the absolute
minimum of the DMBE potential energy surface
and leads to the prediction of a HO4 species which
is stable by about 15 kcal molÿ1 relative to
O2 �HO2 if zero-point energies are ignored; see

Fig. 3. Minimum energy path for formation of HO2 �O2 and

O2 �O2 �H. The saddle point geometry is indicated by the

symbol y. Also shown are the energy of OH�v � 1� �O3 and

H�O2 �O2.

Table 1

Attributes of the minimaa in HO4(2A) potential energy surface,

and saddle point for the OH�O3 reaction

Property DMBE-4Bb DMBEc

Absolute (van der Waals) minima

R12=a0 2.3661 2.3654 (2.4033)

R13=a0 3.9726 3.9727 (4.0933)

R14=a0 5.8889 5.8928 (8.9245)

R15=a0 5.4598 5.4669 (8.4894)

R23=a0 5.9905 5.9874 (2.4092)

R24=a0 7.7066 7.7053 (7.9410)

R25=a0 6.9856 6.9872 (7.2153)

R34=a0 2.5635 2.5646 (6.7855)

R35=a0 3.3867 3.3888 (5.6359)

R45=a0 1.8173 1.8177 (1.8372)

V =Eh )0.493178 )0.494025()0.405746)

x1=cmÿ1 112 112 (36)

x2=cmÿ1 132 133 (62)

x3=cmÿ1 295 293 (78)

x4=cmÿ1 401 397 (97)

x5=cmÿ1 531 531 (292)

x6=cmÿ1 1011 1009 (720)

x7=cmÿ1 1420 1422 (1067)

x8=cmÿ1 1712 1710 (1129)

x9=cmÿ1 3715 3715 (3740)

Saddle

point

R12=a0 2.4105 2.4082

R13=a0 4.2147 4.2076

R14=a0 8.1466 8.1218

R15=a0 8.8241 8.1662

R23=a0 2.5286 2.5317

R24=a0 6.4865 6.4199

R25=a0 6.8000 6.9300

R34=a0 4.3712 4.3002

R35=a0 5.0192 4.9755

R45=a0 1.9416 1.9507

V =Eh )0.397224 )0.401623

x1=cmÿ1 194i 172i

x2=cmÿ1 96 99

x3=cmÿ1 132 151

x4=cmÿ1 323 318

x5=cmÿ1 525 526

x6=cmÿ1 823 828

x7=cmÿ1 1006 1037

x8=cmÿ1 1089 1093

x9=cmÿ1 3248 3210

a Attributes of OH � � �O3 van der Waals minimum are in

brackets.
b Expansion truncated at four-body level.
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Table 1 for its geometrical attributes and normal
mode frequencies. Such a minimum is also ap-
parent in the products valley of the plot in Fig. 2.
Although there is some experimental evidence for
the existence of a HO3 species [26,27] (the associ-
ated minimum also appears [19] in the products
valley of the reaction H�O3 ! OH�O2), no
such claim has so far been made for HO4. How-
ever, if one thinks of the minimum in HO3 as
partly due to the dominant electrostatic interac-
tion between the OH dipole and the O2 quadru-
pole, then there are good grounds to believe that
such an interaction may be even stronger in the
case of HO4 since the dipole moment of HO2 is
even larger than that of OH. Of course this anal-
ysis may be too simplistic, and hence accurate ab
initio calculations would be valuable to assess the
prediction of the stable HO4�2A� species made in
the present work. Also visible from Fig. 2 is a
small OH � � �O3 van der Waals minimum with a
well depth of about 1:53 kcal molÿ1; for attri-
butes, see Table 1. In addition, Fig. 3 shows the
energetics of the OH�v � 1� �O3 vibrational
combination according to the HO4 DMBE po-
tential energy surface. It is seen that the reaction
channel leading to O2 �O2 �H is feasible even at
low translational energies provided that the reac-
tant OH molecule is vibrationally excited. How-
ever, for the case of OH�v � 0� and the range of
translational energies considered in the present
work, such a reaction is energetically forbidden
with the only feasible product channel being
HO2 �O2.

3. Trajectory calculations

The quasiclassical trajectory (QCT) method has
been used to study the title reaction, with the
trajectories being run using adapted versions of the
MERCURY/VENUS96 [28] codes. Calculations
have been carried for diatom±triatom translational
energies in the range 1:26Etr=kcal molÿ16 16, as
speci®ed in Table 2. In all cases the initial vibra-
tional and rotational quantum numbers of the
colliding OH molecule have been ®xed at the
ground level �v � 0; j � 1�. Similarly, the O3

molecule has been kept in its ground vibrational
state �v1 � 0; v2 � 0; v3 � 0� while its rotational
energy has been determined by using the micro-
canonical sampling scheme for a temperature of
300 K; v1 is the quantum number for the sym-
metric stretching vibrational normal mode, v2 the
bending normal mode, and v3 for the asymmetric
stretching normal mode. The determination of the
step size for numerical integration has been done
by trial-and-error on the basis of accuracy re-
quirements. A value of 1:5� 10ÿ16 s has been
found su�cient to warrant conservation of energy
to better then two parts in 105. In turn, the dia-
tom±triatom initial separation has been ®xed at
9 �A, a value su�ciently large to make the inter-
action negligible. The maximum value of the
impact parameter �bmax� has been determined by
following the usual procedure, with an estimated
accuracy of �0.1 �A or so. A total of 3:8� 104

trajectories has been run, which was enough to
yield reactive cross-sections with an error smaller

Table 2

Summary of the trajectory calculations for the title reaction

Etr bmax Nr 100Pr rr=a2
0 Drr=a2

0

�kcal molÿ1� �N�
1.2 1.89 3 (2000) 0.15 0.0168 0.0097

1.4 1.89 4 (2000) 0.20 0.0224 0.0112

1.8 2.65 4 (2000) 0.20 0.0440 0.0220

2.2 3.40 21 (6000) 0.35 0.1272 0.0277

2.5 3.59 32 (6000) 0.53 0.2160 0.0381

4.0 5.10 54 (6000) 0.90 0.7361 0.0997

6.0 5.48 110 (5000) 2.20 2.0757 0.1957

8.0 6.05 174 (5000) 3.48 3.9979 0.2978

12.0 6.24 138 (2000) 6.90 8.4299 0.6924

16.0 6.43 204 (2000) 10.20 13.2280 0.8777
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than about 20% (10%) for translational energies
larger than 2:2 kcal molÿ1 �4 kcal molÿ1�; for
convenience, the calculated values are reported in
Table 2 with four decimal ®gures. Of course, such
an accuracy is virtually impossible to get close to
threshold, and we have used the overall quality of
the ®t to justify its reliability there.

For a speci®ed translational energy �Etr�, the
reactive cross-sections are given by rr � pb2

maxP r,
and the associated 68% uncertainties are Drr �
��N ÿ N r�=NN r�1=2rr; N r is the number of reactive
trajectories in a total of N, and P r � N r=N is the
reactive probability. From the reactive cross-sec-
tion and assuming a Maxwell±Boltzmann distri-
bution over Etr, the speci®c thermal rate
coe�cients are then obtained as

k�T � � ge�T � 2

kBT

� �3=2
1

pl

� �1=2

�
Z 1

0

Etrr
r exp

�
ÿ Etr

kBT

�
dEtr; �4�

where ge�T � � �1� exp�ÿ205=T ��ÿ1
accounts for

the electronic degeneracies, kB the Boltzmann
constant, l the reduced mass of the reactants, and
T is the temperature.

4. Results and discussion

Table 2 summarizes the trajectory calculations.
For all initial translational energies considered in
the present work (which are indicated in column
one of Table 2), the only open reactive channels
are:

OdH�OaObOc ! HOdOa �ObOc �5�
! HOdOc �OaOb �6�

where a, b, c and d label the four O atoms. In the
case of indistinguishable atoms, the reactions in

Eqs. (5) and (6) have similar probabilities of oc-
currence. The channel

OdH�OaObOc ! HOdOb �OaOc �7�
is essentially closed due to the high barrier en-
countered when attacking the central O atom of
ozone. Thus, the probability for reaction (7) to
take place is very small or zero.

Although not reported for brevity, interatomic
distance vs time plots for a series of reactive tra-
jectories yielding HO2 �O2 have shown that they
are short-lived. This might have been expected
since the reaction occurs over a barrier and is
highly exoergic. In fact, the average complex life-
time for the reactive trajectories at Etr �
8 kcal molÿ1 has been found to be 0.19 ps. To
obtain this value we have used the following very
simple procedure: ®rst, we subtracted for every
reactive trajectory the collision time of the reactive
trajectory which had the smallest duration, and
then attributed the excess time to the lifetime of
the complex. Such a scheme should be realistic in
the presence of direct collision dynamics as it
happens to be the case in the present work. Note
that the complex lifetimes estimated in the present
work are enough only to allow a few oscillations in
the vibrational modes of the complex, and hence
can hardly warrant the possibility of internal en-
ergy exchange. We have also carried out an anal-
ysis of the scattering angle distribution for Etr �
8 kcal molÿ1. We have observed that the scattering
tends to be forward, with the average scattering
angle being approximately 68.4°. The corre-
sponding product energy distribution is given in
Table 3. Clearly, the product's internal energy is
mostly channeled into vibration of the HO2 mol-
ecule. This suggests that the non-attacked O±O
bond of the ozone molecule acts essentially as a
spectactor, remaining vibrationally cold after for-
mation of the products.

Table 3

Percentages of energy partitioned to di�erent degrees of freedom for the reaction OH�v � 0� �O3 ! HO2 �O2

Units HO2 O2

hEtri hEri hEvi hEri hEvi
kcal molÿ1 11.850 8.623 35.199 1.622 1.034

% 20.3 14.78 60.35 2.78 1.77
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We now examine the shape of the excitation
functions (cross-section vs translational energy)
which is shown in Fig. 4 together with the asso-
ciated 68% error bars for formation of HO2 �O2.
One observes the common pattern found in reac-
tions which have an energy threshold, i.e., rr is an
increasing function of Etr. Such a threshold has
been found to be close to Eth

tr � 1:056 kcal molÿ1,
i.e., the classical barrier height of the DMBE po-
tential energy surface. Indeed, a batch of one
thousand trajectories run for Etr � 1:0 kcal molÿ1

has shown no reactive trajectories at all. Its loca-
tion has also been con®rmed by plotting low-
energy trajectories over the �x; y� plots in Fig. 3. To
analytically describe rr�Etr�, we have used the form

rr � C Etr

ÿ ÿ Eth
tr

�n
exp

�ÿ m Etr

ÿ ÿ Eth
tr

��
; E P Eth

tr

�8�

rr � 0; E < Eth
tr �9�

where Eth
tr � 1:056 kcal molÿ1, and the remaining

parameters have been determined from an eye-®t
to the calculated cross-sections: C � 0:0925; n �
2:037, and m � 0:0355 (units are such that with the
energy in kcal molÿ1 the cross-section comes in
a2

0). Clearly, the line ®ts the data within the cal-
culated error bounds.

The kinetics of the OH�v � 0� �O3 reaction
has been much studied experimentally, and is now

brie¯y surveyed. [8] measured its rate constant
over the temperature range from 220 to 450 K
using a discharge ¯ow-resonance ¯uorescent
technique, having obtained k�T � � 1:3� 10ÿ12 exp
�ÿ1900=RT � cm3 moleculeÿ1 sÿ1. Kurylo [7] used
the ¯ash photolysis-resonance ¯uorescence (FP/
RF) technique to report k�T�298K�� �6:5�1:0��
10ÿ14 cm3 moleculeÿ1 sÿ1. Ravishankara et al. [9]
used a laser FP/RF technique to get k�T � �
1:82�0:35

ÿ0:29 � 10ÿ12 exp��ÿ930 � 50�=T � cm3 mole-
cule ÿ1 sÿ1. They also quoted [9] a result of
Fischer and Davis [29]: k�T � � �2:15� 0:22��
10ÿ12 exp��ÿ969 � 40�=T � cm3 moleculeÿ1 sÿ1.
Using a similar technique, Smith et al. [30] have
more recently reported k�T � � 1:52 � 10ÿ12 exp
��ÿ890� 60�=T � cm3 moleculeÿ1 sÿ1 for 2406 T 6
295 K. In addition, the IUPAC Subcommittee on
Gas Kinetic Data Evaluation for Atmospheric
Chemistry indicated [5] as preferred values:
6:7� 10ÿ14 cm3 moleculeÿ1 sÿ1 for T � 298 K,
and k�T � � 1:9 � 10ÿ12 exp�ÿ1000=T � cm3

moleculeÿ1 sÿ1 over the temperature range 220±
450 K; the reliabilities are D log k � �0:15 at
T � 298 K and D�E=R� � �300 K. All such results
are compared with ours in Fig. 5. These are ob-
tained by substituting Eqs. (8) and (9) in Eq. (4)
and performing the integration analytically,
yielding

Fig. 4. Reactive cross-section rr as a function of the transla-

tional energy for HO2 �O2 formation. Also shown for com-

parison are the measured 68% error bars and the ®tted line

given by Eq. (8).

Fig. 5. Dependence on temperature of rate constant for the

reaction OH�v � 0� �O3 ! HO2 �O2. Shown by the solid line

is the result from Eq. (4), while the available experimental data

[9], ®tted Arrhenius plots [8,9,29,30], and curve [5] recom-

mended by the IUPAC Subcommittee on Gas Kinetics Data

Evaluation for Atmospheric Chemistry are also indicated.
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k�T � � ge�T �C 8RT
pl

� �1=2 �RT �n exp ÿ Eth
tr =RT

ÿ �
�1� mRT �n�2

� C�n� � 2� � C�n� 1��1� mRT �Eth
tr =RT

�
;

�10�
where all symbols have their usual meaning. The
agreement with the recommended data is seen
from Fig. 5 to be good over the whole range of
temperatures.

5. Conclusions

We have carried out a QCT study of the reac-
tion OH�v � 0� �O3 ! HO2 �O2 using a newly
developed DMBE potential energy surface for
ground-state HO4. Although using an empirical
calibration of a simple ®ve-body energy term, the
calculated k�T � vs T curve was shown to agree well
with the recommended data over the whole range
of temperatures, where the calculations and ex-
perimental data overlap. Thus, the current poten-
tial energy surface seems to be realistic at least for
studying the kinetics of the title reaction. Such a
result can provide also an indication on the con-
vergence of the many-body expansion. Indeed, by
considering the total energy, one gets for the
n-body energy sum (up to n � 5) at the OH�O3

saddle point geometry the series ÿ0:55646�
0:14524� 0:01400ÿ 0:00440 (all numbers repre-
sent the total n-body energy in Eh). Clearly, dif-
ferent results may presumably be obtained for
other representations of the n-body energies if they
become available, but one expects such changes to
be not drastic. We therefore observe a good rate of
convergence at the saddle point geometry, al-
though we must take an uncommitted view for
other geometries. Rather than implying that one
may ignore high-order n-body energies, conver-
gence of the many-body expansion may be taken
[13] as an indication that it may generally su�ce to
choose simple n-body energy forms as in Eq. (3) to
obtain a useful description of the full potential
energy surface. Thus, the approach followed here
may also be illuminating to study the reaction
HO2 �O3 ! OH� 2O2. Indeed, this exploratory
work may call for further studies. First, one may

use the current HO4 DMBE potential energy sur-
face to investigate the kinetics of the title reaction
for vibrationally excited states of OH, where ex-
perimental data is available ([5], and references
therein). Second, it would be interesting to inves-
tigate whether the weakly stable HO4 species pre-
dicted from the current work has further
theoretical support. For this purpose, a charac-
terization of the HO4�2A� potential energy surface
using correlated ab initio methods will be most
valuable, and is currently under investigation in
our group.
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