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Abstract

In this work we describe a detailed treatment of polarographic data curves, including error analysis, by means of
nonlinear least-squares in its standard form (or resorting to the errors in variables model). Error estimates for the
related parameters are additionally verified by Monte-Carlo simulation and resampling techniques. © 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The study of complex formation reactions is crucial
to the understanding of a variety of processes found in
areas such as environmental analytical chemistry
(Broekaert et al., 1989), medicine and pharmacology,
food production and in several other industrial
applications.

The most usual methods to study complex formation
reactions are based on separation techniques and spec-
troscopic, electrochemical or thermodynamical ap-
proaches (Bond, 1971; Anderegg, 1982; Nancollas and
Tomson, 1982; Kiss et al., 1991). However, the range of
applicability of each technique is constrained by the
actual characteristics of the chemical system, e.g., sepa-
ration techniques usually fail with labile complexes,
spectrophotometry can only be employed for chro-
mophores, direct use of potentiometric methods is only
possible for a few ions and polarographic methods are
also restricted to a few electroactive cations.

Polarographic techniques, including differential pulse
polarography (DPP), are simultaneously fast, reliable,
and allow for the direct determination of the metal ion
concentration which makes them suitable candidates
for such studies (Bond, 1971; Heath and Hefter, 1977;
Cukrowsky, 1996).

These techniques must, however, be complemented
by careful data analysis in order to explore their full
capabilities. Although some attempts have been made
in this direction, for example in what concerns decon-
volution of overlapping polarographic signals (Huang
et al., 1995), parameter estimation from reliable physi-
cal models with the associated determination of errors
and confidence intervals has not, to our knowledge,
been carried out. We note that these models give rise to
an intrinsically nonlinear regression analysis, which in-
creases the complexity of the problem, especially in
what concerns the estimation of confidence intervals for
the estimated parameters.

The structure of this article is as follows: Section 2
presents and discusses the mathematical models avail-
able for polarographic curves, Section 3 describes the
equipment and preliminary experimental error determi-
nations in the relevant variables, Section 4 deals with
the regression estimates of parameters and associated
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standard errors, comparing several approaches, and
Section 6 gathers some conclusions.

2. Mathematical models

Polarographic applications to complexometric studies
have been made for almost 60 years. A brief review can
be found in Bond, (1971), Cukrowsky (1996).
Cukrowsky, (1996) described an easy and convenient
polarographic method for labile complexes at fixed
ligand to metal ratio (CL/CM) and variable pH. As-
suming constant temperature and constant ionic
strength, this author presented an expression relating
the peak current and peak potential with the fraction of
free metal in solution for the reversible reduction of
metal Mn+ by DPP at a dropping mercury electrode,� ip
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were ip
M and ip

ML are DPP peak current and Ep
M and

Ep
ML peak potential for metal reduction without and in

the presence of the ligand, respectively, n is the number
of electrons involved in the electrode process, R is the
gas constant, T the absolute temperature, CM the ana-
lytical concentration of metal in solution, [M] and [L]
are free metal and ligand concentrations in solution
and, finally, m is the stoichiometric coefficient for the
ligand with bm formation constant. Peak current and
peak potential can be accurately estimated from polaro-
graphic curves through (Bond, 1980; Churáček et al.,
1993)
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DE is the pulse amplitude, E is the potential applied to
the working electrode and E1/2 is the polarographic
half-wave potential of the electroactive compound.

In the case of small pulse amplitudes (nDEB2RT/F)
Eq. (2) can be simplified to

i=4ip
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where

P=exp
�nF

RT
(E−E1/2)

n
(6)

Additionally, polarographic background current can be
expressed, for a relatively narrow potential range, as a
polynomial function of the applied potential,

io=A0+A1E+A2E2+… (7)

3. Experimental

3.1. Instrumentation

Polarographic experiments were conducted using a
693 VA Processor/694 VA Stand (Metrohm) system
equipped with a multimode working electrode, a dou-
ble-junction reference electrode Ag/AgCl, 3.0 M NaCl
and a Platinum wire (Metrohm) as counter electrode.
This equipment was connected to a personal computer
for data acquisition and processing.

DPP experiments were conducted on previously
deareated electrolyte solutions of 50 mM Pb2+ with a
dropping mercury electrode (1 s drop time, 0.3709
0.002 mm2). We used a pulse of small amplitude (20
mV) with a duration of 40 ms (current sampling in the
last 10 ms of the pulse) and step increments of 2 mV in
the cathodic direction (−2 mV s−1) from −260 to
−510 mV.

All experiments were conducted at constant tempera-
ture conditions, 25.090.1°C.

3.2. Experimental error characterization

Potential values in DPP experiments were checked by
direct reading, with a digital micromultimeter (resolu-
tion 910 mV), of ten replicates of each potential value
in the working range. Related errors were found to be
additive, with zero mean, non-correlated, homochedas-
tic and normally distributed according to auto-correla-
tion, skewness and kurtosis tests (Churáček et al., 1993)
conducted on our experimental data.

Current values in DPP experiments were checked
recording 19 polarogram of Pb2+ in acidic media.
Related errors are, in this case, additive, non-corre-
lated, heterochedastic and normally distributed.

The relative error associated to the dependent vari-
able is approximately three orders of magnitude larger
than that of the independent (s2:1.40×10−10 V2, see
Fig. 1). The absolute error associated to the former
variable can adequately be represented by (see Rocke
and Lorenzato, 1995 for a related structure)

s2(E)=A+B
� di

dE
�2

(8)

This form is very convenient because it not only
provides a continuous and smooth representation of the
error but can also be used in similar experimental
conditions to estimate the error behaviour in the work-
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ing potential range. It is based on the assumption of the
existence of two contributions for the error in the
dependent variable, one corresponding to the intrinsic
instrumental fluctuation and the other to error propa-
gation from the independent variable. We note that, in
the zone where the background current dominates,
extreme weighting of some points occurs by direct use
of the experimental error vector. Also, the fact that it
makes use of the first derivative of the intensity of the
cathodic current in order to the potential also allows its
use in situations where the peak potential is cathodi-
cally driven due to the presence of increasing concen-
trations of ligand in solution. In Fig. 2 we depict the
experimental error and its representation by means of
Eq. (8). For the above conditions the values of A and B
are, respectively, 1.597×10−6 mA2 and 2.299×10−7

V2. These were obtained via unweighted linear least
squares.

The experimental error distribution is not symmetric,
unlike Eq. (8), probably due to stabilization of the

system after the initial perturbation. Although inclusion
of a non-squared derivative term in the equation could
approximately account for this effect, we have chosen
to use the simpler form.

4. Regression procedure and estimation of confidence
intervals

Nonlinear regression was carried out using both the
Levenberg–Marquardt algorithm (Marquardt, 1963;
Press et al., 1992) and the ‘error-in-variables model’
(Reilly et al., 1993). The approximate analytical expres-
sion for the experimental errors was used for weighting
the squared deviations, except where indicated,

x2= %
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s(Ei)
�2

(9)

considering n non-correlated errors. In the case of the
‘error-in-variables model’ the maximum likelihood ex-
pression simply accommodates errors in both variables.

We note that, in both cases, a design matrix (A(n-
par×npar)= [ajk ]) is constructed by cross products of
weighted npar sensitivity coefficients,

[aj,k ]= %
n
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#hi

#uj
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, Öj,k�{1,...,npar} (10)

Matrix inversion of Eq. (10) leads to the covariance
matrix error estimates of npar parameters (C(npar×
npar))

ŝj=
Cjj, Öj�{1,...,npar} (11)

The use of the approximate expression for the error is
thus convenient in order to circumvent problems re-
lated to the inversion of ill-conditioned design matrices.

A rejection method (Press et al., 1992) was used to
generate the normal distribution function, giving a
slightly more rapid convergence rate then the Box-
Muller algorithm (Box and Muller, 1958; Press et al.,
1992). All uniform distributions were generated via a
congruence formula (Press et al., 1992).

4.1. Parameter and error estimation methods

Once parametric error estimates are approximate for
nonlinear regression (Beck and Arnold, 1977) we have
also used non-parametric estimation methods including
jackknife (Efron and Gong, 1983), bootstrap (Efron
and Gong, 1983; Efron and Tibshirani, 1986; DiCiccio
and Tibshirani, 1987) and Monte-Carlo simulation
(Beck and Arnold, 1977; Press et al., 1992)

Jackknife error estimation methods are based on the
effect of variability introduced in the estimated parame-
ters by removing each data point, one at a time, from
the original data set. If the parameter u is a function of
n data points, Jackknife estimate for the central posi-
tion (u. J) is,

Fig. 1. Experimental error in potential values.

Fig. 2. Experimental error (�) and its representation by Eq.
(8) (solid line).
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while for the corresponding parameter dispersion (ŝJ),

ŝJ=
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is obtained, where u(i ) is the parameter estimated with
(n−1) data points, when the ith data point is tempo-
rarily removed from original data set.

Bootstrap estimation can be carried out resorting to
resampling of data points (Efron and Gong, 1983;
Efron and Tibshirani, 1986) or residuals (Bonate, 1993;
Jones et al., 1996). Estimation based on resampling of
data points is accomplished by generating nB pseudo-
samples of the same size of the original set. These are
obtained by drawing each point independently with
replacement and equal probability from the sample.
Bootstrap estimation with resampling of residuals is
conducted in a similar way but the sample now refers to
the residual pool. In this case, new residuals for each
data point are computed by

e i*=f ej
wj/wi (14)

where rj is the residual in the original jth point (ej=
yj−hj) and f is a adjustment factor (Jones et al., 1996)
(f=
n/(n−p)) for n data points and a p parameters
model. These recalculated residuals are added to the
respective model prediction (hi),

yi*=hi+e i* (15)

The pseudo-samples yield nB parameters which allow
the calculation of bootstrap estimates of position (u. B),
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1
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and parameter dispersion (ŝB),
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If the number of replicates is high (\200), bootstrap
confidence intervals can be more efficiently estimated
from central percentile methods.

Monte-Carlo, estimates require a previous characteri-
zation of experimental errors followed by a simulation
based on these determined errors. The data sets are
constructed with random distributions centered at each
experimental value with the respective distribution.
Mean values of parameters can be obtained with ex-
pressions similar to those of the bootstrap method.
Also, percentile confidence intervals are the most usual
method for dispersion estimation.

4.2. DPP model

Polarographic DPP signals modeling consists in ob-
taining estimates for three polarographic parameters

plus those required to describe the background current.
For the small pulse amplitude case, the fitting function
is

i=4u1

exp
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where u1 and u2 are, respectively, ip and Ep The u3

parameter is essentially useful to check redox reversibil-
ity. The remaining (npar−3) parameters are required
for the description of the background current.

5. Results and discussion

Least squares procedures were carried out over a
polarographic set of (E,i ) points corresponding to the
average of the 19 acquisitions for each current value
and ten determinations of the associated potential
value. In all cases results were obtained for the com-
plete model described by Eq. (2) and using the small
amplitude case of Eq. (5) (also rewritten as Eq. (18)).
The simplified approach has proved to be accurate
enough for our purposes, yielding similar x2 values as
the complete model. Also, similar results were obtained
when errors in both the independent and dependent
variables were considered and when only error in the
dependent variable was taken into consideration (see
Table 1). The maximum likelihood weights of Eq. (9)
were described by Eq. (8). The background current was
appropriately described by a straight line (npar=5).
Other tested values (npar=4, 6 and 7) have proved to
be either insufficient or inconsistent with determina-
tions of the baseline from blank runs. These findings
were corroborated by several criteria including parsi-
mony (Beck and Arnold, 1977), Akaike, mean
quadratic error of prediction, ANOVA lack-of-fit and
others (Meloun et al., 1992) of which we omit the
details.

Monte-Carlo simulation was conducted in two differ-
ent ways: in one case, weighting and error distributions
in each point were generated on the basis of Eq. (8),
while in the other the actual measured error was used
for both purposes. Obviously, we have avoided situa-
tions in which experimental and approximated error
expressions were used in conjunction.

The results obtained for the most relevant polaro-
graphic parameters (u1 and u2) are summarized in
Table 2. In this table, bootstrap and Monte-Carlo
estimates are based on percentile determinations. In
Fig. 3 we depict the experimentally determined points
superimposed on the fitted function. Table 3 summa-
rizes the convergence properties for methods involving
an arbitrary number of simulations (bootstrap and
Monte-Carlo). The simplified approach (Eq. (18)) was
used in all cases.
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Table 1
Estimation results for parameters u1 and u2, using different approachesa

ŝ2u2u1 ŝ1npar sFit

Levenberg–Marquardt
0.32633 0.00068 −0.393938 0.0000884 1.3546

0.000090−0.3936470.000680.325975 0.3688
0.32718 0.00082 −0.3936296 0.0000900.2754
0.32702 0.000847 −0.3936020.2689 0.000098

Error-in-variables model
0.32552 0.00073 −0.3938844 0.0000771.2247

0.000095−0.3936600.000730.326055 0.2730
0.32685 0.00075 −0.3936056 0.0001040.2532
0.32726 0.00077 −0.3935457 0.2142 0.000106

a Current intensities are in mA and potential values in V. The second column corresponds to sFit=
x2/(n−npar), and ŝ1 and
ŝ2 are given by Eq. (11).

Table 2
Least squares results for parameters u1 and u2, using different approaches based on the Levenberg–Marquardt methoda

Confidence intervals

68.3% 95.5% RSD(%)Method RE(%)Values

Parameter u1

0.21 –90.0013690.00068Least squares (param.) 0.32597
0.10 0.000Jackknife 0.32597 0.00032 0.00064
0.08 0.014Bootstrap (data points, 37%) 0.32601 0.00028 0.00057

0.00090 0.13Bootstrap (data points, 100%) 0.32622 0.00041 0.078
0.00065 0.10 0.0000.00034Bootstrap (residuals, 37%) 0.32598
0.00068 0.17Bootstrap (residuals, 100%) 0.32597 0.00035 0.000

0.0030.190.001200.00062Monte-Carlo (Eq. (8)) 0.32598
0.00134 0.22Monte-Carlo (experim.) 0.32602 0.00070 0.017

Parameter u2

90.000181 –0.02390.000090Least squares (param.) −0.393647
0.010 0.0001Jackknife −0.393647 0.000039 0.000078

0.00020.0070.0000570.000028Bootstrap (data points, 37%) −0.393647
0.000072 0.009Bootstrap (data points, 100%) −0.393638 0.000036 0.0024
0.000153 0.020Bootstrap (residuals, 37%) −0.393643 0.000079 0.0010

0.00010.0200.0001480.000077Bootstrap (residuals, 100%) −0.393647
0.000145 0.018Monte-Carlo (Eq. (8)) −0.393645 0.00050.000073
0.000152 0.020Monte-Carlo (experim.) −0.393647 0.00010.000077

a The relative standard deviations are given by RSD=100×si/ui and relative error (RE) is defined in terms of the corresponding
parametric least squares values. Units as in Table 1. The resampling factor is indicated for the bootstrap methods. Monte-Carlo and
bootstrap results correspond to 2000 simulations. The parameter values for the resampling and Monte-Carlo techniques are average
values. Confidence intervals are based on Eq. (11) for the parametric estimation, Eq. (13) for the jackknife method and direct
percentile determination for the bootstrap and Monte-Carlo approaches.

It is apparent from Table 2 that almost coinciding
values1 are obtained for each parameter using the con-
templated methods (RE50.078% for u1 and RE5

0.002% for u2). Some differences in the estimated
confidence intervals can, however, be found amongst
the different methods. First, the two Monte-Carlo ap-
proaches produce similar results and, in the case of u1,
do not also essentially differ from the parametric least
squares estimate. Jackknife and data points bootstrap
seem to underestimate the confidence intervals for both
parameters in comparison to all other approaches.

1 The results presented for bootstrap and Monte-Carlo
methods correspond to 2000 simulations. This number is
probably more than enough to ensure almost complete conver-
gence. See discussion later.
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Residuals bootstrap presents, in relation to the Monte-
Carlo, approaches, too small error intervals for u1. In
what concerns u2, the error intervals are similar to
those presented by Monte-Carlo.

In summary, for the system and experimental condi-
tions that were considered here, we think that the
parametric estimate of errors is essentially accurate,
although somewhat excessive for u2. It is also computa-
tionally less expensive than the other approaches. The
fact that we are dealing with a nonlinear model does
not alter this conclusion. Jackknife and bootstrap over
data points clearly point to underestimated error bars.
Residual bootstrap2 is almost insensitive to the level of
resampling3, 37 or 100%, and the confidence intervals
are apparently underestimated for u1 and in accordance
to Monte-Carlo findings for u2. Finally, and in what
concerns the convergence properties of the bootstrap
and Monte-Carlo methods we note that position values
stabilize after ten simulations (RE510%), irrespective
of the method. However, for the dispersion estimates,
convergence to B5% is only attained for 100 simula-
tions or more (see Table 3).

6. Conclusions

In this work we have applied several methods to
obtain estimates for the parameters and associated er-
rors describing a polagraphic curve. These parameters
can be established within an uncertainty that is much

Table 3
Convergence of simulation results corresponding to the disper-
sion of u1 and u2 for bootstrap (residuals, resampling factor of
37%) and Monte-Carlo (using Eq. (8)) approachesa

RE/%c RE/%

u2u1

Bootstrap Monte-Monte-Bootstrap
CarloCarlo

10 −25.12−21.57 −36.86 −43.9
−38.2−24.455.72−8.0220

30 −18.61−23.917.21−22.94
5.743.19−16.33 −11.6750

100 −4.67−1.51 −3.97 1.66
200 −3.76−3.47 −1.90 −3.94

2.81 −1.30300 −3.09 −2.26
−0.511.32−1.52 −3.41500

1000 −2.753.69 −1.44 −1.96

a The relative error (RE) is defined relatively to the corre-
sponding 2000 simulations case. Units as in Table 1.

lower than that arising from direct use of the discrete
data, with the advantage that modeling takes into
account the background current behaviour. The use of
DPP in complexometric studies thus allows a drastic
improvement in precision and accuracy of determined
constants.

We have also presented an approximate representa-
tion of the instrumental polarographic error that, apart
from minimizing numerical difficulties can be used as a
good estimate in similar experimental circumstances.

Although this type of modeling is intrinsically nonlin-
ear, maximum likelihood parametric estimation of
confidence intervals has shown to be almost as reliable
as Monte-Carlo, simulation results, and the most suit-
able candidate for treating the systems here dealt with
in a computationally inexpensive way. Jackknife and
bootstrap of data points produce, comparatively, un-
derestimated errors when applied to DPP models. Boot-
strap of residuals, on the other hand, presents results
that differ from those of Monte-Carlo approaches,
especially for u1.
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