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Abstract

In this work we focus on partial information models for the well-known shortest path problem, where we consider

multiple instances of values for the parameters that determine the cost of each arc. This allows coping with the un-

certainty about the future, the imprecision of data, the arbitrariness of some options, the evolving values of the decision

makers (DMs) and/or the multiplicity of DMs (in group decision making). This paper proves some results and presents

detailed algorithms to identify the set of non dominated paths, a concept from decision theory under partial infor-

mation. We ®rst address problems with a ®nite set of instances, then problems with a general (eventually not discrete)

set of instances and ®nally we study a particular case of the latter, which complies with a condition that may hold in

some situations. To deal with these partial information problems we propose a new use for existing multicriteria

algorithms based on the ranking of shortest paths. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Network programming; Partial information; Multicriteria analysis

1. Introduction

Decision aid based on mathematical methods requires choosing a model and obtaining solutions using
algorithms. These models, and sometimes the behaviour of the algorithms, are characterized by a number r
of parameters of a more or less subjective nature. Setting the parameter values is often a di�cult task for
the decision makers (DMs), since these values may be subject to sources of uncertainty, imprecision and
inaccurate determination (see also Roy and Bouyssou, 1989; French, 1995):
· the value of each parameter may depend on the future state of the world, or it may result from aggre-

gating several aspects with an impact on the parameter (there may hence be some arbitrariness in con-
structing parts of the model), or it may result from a measuring instrument or from a statistic measure
(which usually involve some imprecision);
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· the DMs may wish to avoid (or delay) the costs of knowing a parameter with more exactitude;
· some parameters have no real existence (because they are inherent to the decision aid method); further-

more, they may re¯ect the values of the DMs, which they may ®nd di�cult to express and that may
change over time;

· there may be several DMs, in a group decision setting, who may not entirely agree on the values that each
parameter should take.
In these situations we may have imprecise, incomplete (lack of), contradictory (among di�erent sources)

or controversial (among several DMs) information on the value of the parameters. We consider a shortest
path problem where the DMs are not willing to ®x a value for each of the r parameters that in¯uence the
costs of each of the arcs. Instead, they are able to specify a set of acceptable instances (r-tuples) of pa-
rameter values. These instances may form a ®nite set or a subset contained in Rr (de®ned by constraints).
We will refer to the resulting problem as one of decision making under multiple instances or partial in-
formation.

This paper builds on some thoughts on how multicriteria analysis is related to the shortest path
problem with multiple instances (Dias and Cl�õmaco, 1998). The next section presents partial information
models, where multiple instances of the model are considered, each with di�erent parameter values. In
Section 3 we review some concepts and formulate the problem we are addressing. We will say that a
path is dominated whenever there is a di�erent path that is always better than or equal to the ®rst for
every instance of the model (without being equal to the ®rst under all of them). Sections 4 and 5 present
detailed algorithms for identifying non dominated paths in problems of real-world dimension, adapting
multicriteria shortest path algorithms for this new purpose. The subsequent step of choosing among the
non dominated paths is not addressed. We conclude with a summary and some ideas for future
research.

2. Partial information models

DMs often use an ``approximate'' model or a probabilistic model when certain and precise values for the
parameters are missing. The ®rst approach, where a ``most likely'' value is assigned to each parameter, is
complemented by sensitivity analysis, which determines how much can the input values change without
leading to a (even if slightly) di�erent solution. The second approach requires probability distributions
(including correlation among parameters) for the unknown values and leads to the choice of a path based
on its expected cost, and perhaps its variance. However, both approaches have the drawback of prema-
turely focusing on a single solution, which is as arbitrary as the ``most likely'' values or the probabilities
chosen. The DMs will then tend to disregard other potentially interesting solutions. Moreover, often only
one parameter is varied at a time when performing sensitivity analysis and correlations are neglected when
performing simulations, which does not account for eventual interactions and interdependencies among the
parameters.

A di�erent idea is to admit multiple instances of the model, each de®ned by an acceptable combi-
nation of values for the parameters. The ``robustness analysis'' approach, where decision aid focuses on
identifying conclusions that are valid for every instance of the model (see recent frameworks in Vincke
(1997) and Roy (1997)), is then appropriate. A related framework is that of decision theory under
partial information (good reviews are included in Hazen (1986), Weber (1987) and Rios Insua and
French (1991)). This theory addresses the general problem of choosing among a set of actions, whose
value depends on r parameters. There are multiple instances of values for these parameters, constrained
to a subset of Rr. In that context, a solution is said to be ``dominated'' whenever there is a di�erent
solution that is always better or equal than the ®rst, regardless of the instance considered (without being
equal to the ®rst under all the instances). If a path p0 is dominated, then there exists a path p1 such that
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the conclusion ``p1 is not worse than p0'' is robust and there is at least one instance where p1 is better
than p0.

Consider a graph containing several nodes connected by oriented arcs. Each arc is associated with a cost
(e.g. money, distance, duration), which is incurred when selecting it to be part of a path between two given
nodes. Our goal is to ®nd a path between two given nodes such that its cost is minimum (the shortest path).
We consider that the model has r parameters (e.g. price of fuel, discount rate, outcome of labour negoti-
ations) that characterize the cost of each arc and there are multiple acceptable instances (r-tuples) of values
for these parameters. Throughout we will use the following notation:

Let us also de®ne the following limits for the cost of each arc �i; j� 2 A:

mij � minfcij�t�: t 2 Tg and Mij � maxfcij�t�: t 2 Tg:
This allows us to de®ne upper and lower bounds for the cost of each path p 2 P

vm�p� �
X
�i;j�2p

mij and vM�p� �
X
�i;j�2p

Mij:

We consider that the set T may contain a ®nite number of instances (discrete T ) or a region contained in
Rr (de®ned by mathematical constraints). These will be addressed in Sections 4 and 5, respectively. The
latter type of model is more demanding in terms of computation, hence we will separately deal with a
particular case where computation may be reduced (Section 5.2). This particular case consists of models
that comply with the following condition:

Condition 1. Let the set of the cij��� be such that

8p 2 P ; 9tm; tM 2 T : v�p; tm� � vm�p� and v�p; tM� � vM�p�:
This condition holds if for every path p 2 P there exists an instance such that its cost equals vm�p� and

there is another instance such that its cost equals vM�p�. This de®nition is equivalent to the following:

8p 2 P ;
\
�i;j�2p

T m�i; j� 6�£ and
\
�i;j�2p

T M�i; j� 6�£;

where T m�i; j� � ft 2 T : cij�t� � mijg (set of parameter r-tuples that minimise the cost of arc �i; j�) and
T M�i; j� � ft 2 T : cij�t� � Mijg (set of parameter r-tuples that maximise the cost of arc �i; j�).

In other words, given any arc �i; j� from path p 2 P , the worst (best) possible instance for �i; j� is also the
worst (best) instance for all other arcs from path p. Although restrictive, this condition applies to many
decision situations. We provide next two illustrative examples.

G�N ;A� is a directed graph
N � 1; . . . ; n is the set of nodes and
A is the set of arcs: �i; j� 2 A i� there is a directed arc from i to j
r is the number of parameters that a�ect the cost associated with each arc
T represents the set of the acceptable instances of r parameter values
t 2 T is an instance (r-tuple) of values for the parameters
cij�t� is the cost of arc �i; j� 2 A for the instance t 2 T
p will usually denote a path, i.e. a sequence of nodes and arcs

f1; �1; x�; x; �x; y�; y; . . . ; z; �z; n�; ng from nodes 1 to n
P represents the set of all paths from node 1 to node n
v�p; t� �P�i;j�2p cij�t� is the cost of path p for the instance t 2 T
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Example 2.1. Consider that the parameter r-tuples represent factors that in¯uence the cost of an arc �i; j�,
i.e., cij�t� � cij�a1; a2; . . . ; ar�, such that if any ak increases �16 k6 r�, while the other parameters remain
unchanged, then cij�t� also increases. Each parameter ak might represent fuel cost, labour cost, interest rate,
etc. Furthermore, there is an instance where all the a1; a2; . . . ; ar are minimum and another instance where
all the a1; a2; . . . ; ar are maximum (e.g. low in¯ation/high in¯ation scenarios). Such type of model would
only violate Condition 1 if there existed an interdependency among the cost factors a1; a2; . . . ; ar such that
an instance where these were all minimum (or maximum) would be inconsistent.

Example 2.2. Consider that the parameter r-tuples comprise one di�erent parameter per arc in the graph,
which de®nes the cost of that arc. In this model, let the value of the parameter associated with arc �i; j� be
constrained to an interval bounded by kij and mij, with kij6 mij. Then, T�Q�i;j�2A�kij; tij� �

Q
�i;j�2A c 2 R:f

kij6 c6 tijg, where the operator
Q

refers to a Cartesian product. This model allows the DMs to work with
interval values for the parameters.

If the model has an in®nite number of instances and does not comply with Condition 1, then the ap-
proach of Section 5.2 is no longer valid, but adapting a bicriteria shortest path algorithm may still be useful
to reduce the amount of computation, as shown in Section 5.1.

3. Concepts of dominance and optimality

We recall in this section some concepts from decision theory under partial information, using the no-
tation introduced above. In the following let p, q 2 P .
· Absolute dominance (DA-dominance)

p DA q iff v�p; t�6 v�q; t0�; 8t; t0 2 T and 9t; t0 2 T : v�p; t� < v�q; t0�:
· Usual dominance or Bernoulli dominance (D-dominance)

p D q iff v�q; t�6 v�q; t�; 8t 2 T and 9t 2 T : v�p; t� < v�q; t�:
Absolute dominance (DA-dominance) occurs when a path is never worse than another, even if two

di�erent instances were used to evaluate the costs of the two paths, and there is at least a pair of instances
such that the path that DA-dominates is strictly better than the other. In contrast, D-dominance occurs when
a path is never worse than the other for any given instance, and there is at least an instance such that the
path that D-dominates is strictly better than the one that is D-dominated. The costs of the two paths are
now computed using a common instance.

Whenever p D q (even if p does not DA-dominate q), we deem that q is not worth for further consider-
ation, assuming that the paths are always compared under common (although varied) circumstances.
Hence we can exclude D-dominated paths, instead of considering the stronger DA-dominance as a rejection
rule. As a result there will be fewer paths to consider (those remaining in the set of non D-dominated paths).
Consider now the following de®nitions:
· Optimality: p is optimal i� v�p; t�6 v�q; t�; 8q 2 P ÿ fpg; t 2 T .
· Potential optimality: p is potentially optimal i� 9t 2 T : 8q 2 P ÿ fpg; v�p; t�6 v�q; t�:
Let Opt�p�6 ft 2 T : v�p; t�6 v�q; t�; 8q 2 P ÿ fpgg denote the set of r-tuples for which p is a shortest path.
Then, p is optimal i� Opt(p) � T and p is potentially optimal i� Opt(p) 6� ; .

Since the set of optimal paths is usually empty, the DMs do not have an evident best choice. Then,
one could argue that the best solution should be searched among those potentially optimal. However,
notice the following example: there are three paths ± p1; p2 and p3 ± and two possible combinations of
parameters (r-tuples) ± t1 and t2. Table 1 presents the cost v(pi; tj) of each path (i� 1,2,3) under each of
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the two parameter combinations (j� 1,2). We can observe that p1; p2 and p3 are non D-dominated, but
only p1 and p3 are potentially optimal. However, few DMs would accept any method that did not
consider p2.

Hence, we can state the problem we are addressing as follows: to ®nd the set of non D-dominated paths,
to present this set to the DMs and to let them choose the most preferred path. Since an optimal path will
not usually exist, the choice of the best path depends on the DMs' personal preferences, values, attitudes
and beliefs.

4. Discrete sets of parameter r-tuples

Suppose T � ft1; t2; . . . ; tKg, i.e. T is ®nite and discrete. We next show that already existent algorithms
for the multicriteria shortest path problem can be used to determine which paths are non D-dominated.
Indeed, the concept of D-dominance regarding the set of K instances is analogous to the well-known
concept of dominance regarding K criteria, as if the cost of each path under each instance corresponded to a
di�erent criterion of evaluation.

Let us ®rst consider the case where T�ft1; t2g. For instance, there may be two DMs, each one providing
a ``personal'' set of values for the costs, or there may exist two possible scenarios for the future (e.g.
pessimistic and optimistic scenarios), each with di�erent costs for some arcs.

If the graph G�N ;A� contains cycles, the algorithm by Cl�õmaco and Martins (1982) for bicriteria shortest
path problems can be adapted. In case there are no cycles in the graph, the faster algorithm by Azevedo
et al. (1991) can be used instead. Both algorithms are based on a procedure that computes a ranking of the
paths from P, considering one of the criteria.

As an example, let us adapt the more general algorithm of Cl�õmaco and Martins (1982) to our purpose.
Without loss of generality, paths are ranked according to their cost under instance t2. The detailed algo-
rithm is presented in Appendix A (Algorithm 1). It can be outlined as follows:

Let PN contain the set of non D-dominated paths; initially, PN  ;.
Let f1 andf2 contain the value under t1 and t2, respectively, of the last path considered.
Let S be a working set containing paths that can be either D-dominated or non D-dominated.
Initiation: An upper bound u is set to the cost under t2 of the path with lowest cost under t1. Cl�õmaco and

Martins (1982) show (in the multicriteria context) that any path p such that v(p, t2� > u must be D-dom-
inated. If the r-tuple t2 represents a pessimistic scenario, then the DMs may decrease u to the highest cost
that they will tolerate.

Iteration 1: p1  shortest path under t2; S  fp1g; f1  v�p1; t1�; f2  v�p1; t2�.
Iteration j: pj  jth shortest path under t2; IF v�pj; t2� > u THEN stop;

OTHERWISE one of four cases may occur:
Case 1. �v�pj; t1� � f1 and v�pj; t2� � f2�. Path pj joins other candidates, i.e. S  S [ fpjg
Case 2. �v�pj; t1� > f1� since v�pj; t2� � f2; pj must be D-dominated.
Case 3. �v�pj; t1� < f1 and v�pj; t2� � f2�. Paths is S are D-dominated by pj. Hence, S  fpjg.
Case 4. �v�pj; t1� < f1 and v�pj; t2� > f2�. All paths in S are non D-dominated. Hence, PN  PN [ S

and S  fpjg.

Table 1

t1 t2

p1 10 20

p2 11 11

p3 20 10
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Update f1 and f2. Proceed to iteration j + 1 if there are more paths to examine.
This algorithm performs only a few instructions before moving on to the next path. It can therefore be

quite fast, depending on the algorithm chosen for ranking the paths (e.g. see Azevedo et al. (1993) and
Martins and Santos (1996) for e�cient algorithms).

As an example, consider the graph depicted in Fig. 1, where we are interested in ®nding a shortest path
from nodes 1±6. Each arc is associated with a label indicating its cost under t1 and t2. Although in this
example the cost under t1 is never higher than that under t2, the algorithm does not require this condition.
Step 1 ®nds the t1-shortest path, which is ADI, and sets u� 110 accordingly. The algorithm would continue
as shown in Table 2. The set of the non D-dominated paths would be fp1; p2; p3; p5g.

Let us now consider the general case for a discrete T, where T � ft1; t2; . . . ; tKg. This may correspond to
a group decision situation with K DMs. Since it could be di�cult to ®nd a consensus around exact or even
approximate values for each parameter, it would be interesting to consider T as the union of the combi-
nations of values suggested by them. Then, any D-dominated path could be unanimously discarded. A
discrete T may also appear if we consider K scenarios for the future, each one implying di�erent costs for
some arcs. It may also happen that T was not discrete at ®rst, but the DMs are satis®ed by probing what
happens for a ®nite number of sample r-tuples (``points'') of T, although noting that a path may be D-
dominated considering the set of sample points but non D-dominated considering the original set.

If the graph G�N ;A� contains cycles, the algorithm by Cl�õmaco and Martins (1980) for the general
multicriteria shortest path problem can be adapted. However, this algorithm, which is an extension of the
algorithm presented above, is slow for large problems. In case there are no cycles in the graph, the (faster)
algorithm by Azevedo et al. (1991) can be used instead.

5. General sets of parameter r-tuples

5.1. General case

Let us now consider the possibility of T being any subset of Rr, either discrete or continuous (delimited
by constraints provided by the DMs). In these cases we can test whether p D-dominates q for a given pair of
paths p; q 2 P as follows:

Fig. 1. Problem with two instances for costs.

Table 2

j Path pj v�pj; t1� v�pj; t2� Remarks

1 BFJ 54 68 PN  ;; S  fp1g; f1  54; f2  68

2 BG 54 68 Case 1 ) S  fp1; p2g
3 BFHI 53 88 Case 4 ) f1  53; f2  88; PN  fp1; p2g; S  fp3g
4 BCDI 69 110 Case 2 ) �do nothing: move to next path�
5 ADI 40 110 Case 4 ) f1  40; f2  110; PN  PN [ S � fp1; p2; p3g; S  fp5g
6 BFHEDI 73 143 v�p6; t2� > u) STOP. PN  PN [ S � fp1; p2; p3; p5g
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�Exhaustive test� let d� be the optimal value of

max d�t� � v�p; t� ÿ v�q; t�
s:t: t 2 T ;

then p D q iff d� < 0 or �d� � 0 and 9t 2 T : v�p; t� < v�q; t��:
If T is delimited by constraints, this test amounts to a mathematical program, which may be costly to

compute. Therefore, it may be worthwhile to spend some computational e�ort in trying to identify the
paths that are surely D-dominated and those that are surely non D-dominated. Then, we would only
perform the exhaustive test to see if the remaining paths are dominated or not. We only require a simpler
test for the e�ort to be worthwhile.

Let us ®rst note that, by de®nition (recall Section 2), vM��� and vm��� are such that

vm�p�6 v�p; t�6 vM�p�; 8t 2 T ; p 2 P : �1�
Let us now de®ne the following binary relations for any pair of paths (p, q) 2 P 2:
p � q iff vM�p� < vm�q�;
p < q iff �vm�p� � vm�q� and vM�p� < vM�q�� or �vm�p� < vm�q� and vM�p� � vM�q��;
p <� q iff vm�p�6 vm�q� and vM�p�6 vM�q�:
It is easy to see that� and < are irre¯exive and transitive relations and that <� is a re¯exive transitive

relation. Note also that p� q) p < q) p <� q.

Proposition 1. Let p; q 2 P . Then p � q) p D q.

Proof. p � q) vM�p�vm�q��by definition�: From Eq. (1) we guarantee that v�p; t�6 vM�p� and vm�q�6
v�q; t�; 8t 2 T : Hence, v�p; t�6 vM�p� < vm�q� � v�q; t�; 8t 2 T ) v�p; t� < v�q; t�; 8t 2 T ) p D q: �

A similar result for a relation weaker than� cannot be proven for the general case. To see this, consider
the following counter-example. Suppose we are interested in a path from nodes 1±5 and are considering
path p � {1, (1,2), 2, (2,3), 3, (3,5), 5} and path q � {1, (1,4), 4, (4,5), 5}. Let T � ft1; t2; t3g and consider
the costs shown in Table 3. Then,

v�p; t1� � 20; v�p; t2� � 30; v�p; t3� � 30; vm�p� � 10; vM�p� � 60;

v�q; t1� � 30; v�q; t2� � 34; v�q; t3� � 35; vm�q� � 9; vM�q� � 55:

We conclude that for this example p D q and not (p� q). In fact, q� p! Therefore, we cannot a�rm that
p < q) p D q nor that p � q) p D q:

In the absence of further restrictions on the problem, the approach suggested by these conclusions is to
adapt bicriteria shortest path algorithms to consider �-dominance, where

p is� -dominated iff 9q 2 P : q� p:

Table 3

(i,j) cij�t1� cij�t2� cij�t3�
(1,2) 0 0 20

(2,3) 0 20 0

(3,5) 20 10 10

(1,4) 5 30 15

(4,5) 25 4 20
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Among the non �-dominated paths we will ®nd all the non D-dominated paths along with some D-
dominated paths.

An algorithm to ®nd non dominated paths could compare each path in P (assume that there are np

paths) with all the other, which requires up to np�np ÿ 1� exhaustive tests. However, thanks to Proposition
1, this can be improved if we use an algorithm based on the one that Cl�õmaco and Martins (1982) have built
for the bicriteria shortest path problem. Algorithm 2, presented in Appendix A, requires a shortest paths
ranking algorithm, instead of an algorithm that provides all paths in no particular order.

This second algorithm starts by ®nding the shortest path according to the vM��� cost and sets the upper
bound u to that minimum vM��� cost. Afterwards, paths are considered in ascending order of their vm��� cost
until the upper bound is reached. For any path p; vm�p� > u means that p is �-dominated and, by
Proposition 1, p is D-dominated. Given n0p � np paths with a vm��� cost less than (or equal to) u, the number
of exhaustive tests to perform does not exceed n0p �n0p ÿ 1�. This can mean a signi®cant improvement if n0p is
much less than np.

5.2. A particular case

If Condition 1 holds (see Section 2), then the approach suggested in Section 5.1 may be extended to
reduce further the number of exhaustive tests to perform. We start by proving some results.

Proposition 2a. Let p,q 2 P and Condition 1 be satis®ed. Then vm�q� < vm�p� ) � �p D q�:

Proof. From Condition 1 we know that ft 2 T : v�q; t� � vm�q�g is not empty. Let tm
q 2 ft 2 T : v�q; t� �

vm�q�g (a best-case instance for q). Then, vm�p� > vm�q� () vM�q� > v�q; tm
q �: Since v�p; tm

q �P vm�p�, we
conclude that v�p; tm

q � > v�q; tm
q � ) � �p D q�: �

Proposition 2b. Let p,q 2 P and Condition 1 be satis®ed. Then vM�q� < vM�p� ) � �p D q�:

Proof. From Condition 1 we know that ft 2 T : v�p; t� � vM�p�g is not empty. Let tM
p 2 ft 2 T : v�p; t� �

vM�p�g (a worst-case instance for p). Then, vM�p� > vM�q� () v�p; tM
p � > vM�q�: Since vM�q� � v�q; tM

p �, we
conclude that v�p; tM

p � > v�q; tM
p � ) � �p D q�: �

Proposition 3. Let p,q 2 P and Condition 1 be satis®ed. Then p D q ) p <� q:

Proof. We will show that � �p <� q� ) � �p D q�: Since either vm(p) > vm(q) is true or vM (p) > vM (q) is true,
we conclude from Propositions 2a and b that � �p D q), i.e., p cannot D-dominate q. h

De®nition. p is <�-dominated i� 9q 2 P : q <� p:

Proposition 4 (A corollary from Proposition 3). Let p 2 P and Condition 1 be satis®ed. Then, p is non <�-
dominated ) p is non D-dominated.

Proof. From Proposition 3, 9q 2 P : q D p ) 9q 2 P : q <� p: Hence, � �9q 2 P : q <� p� ) � �9q 2 P :
q D p), i.e. p is non <�-dominated ) p is non D-dominated. �

One cannot prove that p <� q) p D q, p D q) p < q nor p D q( p < q. To see this, let us consider the
example in Table 4, where we are considering paths from nodes 1±5 ± p1 � f1; �1; 2�; 2; �2; 5�; 5g, p2 �
f1; �1; 3�; 3; �3; 5�; 5g and p3 � f1; �1; 4�; 4; �4; 5�; 5g ± and instances T � ft1; t2; t3g. Then,
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v�p1; t1� � 10; v�p1; t2� � 20; v�p1; t3� � 30; vm�p1� � 10; vM�p1� � 30;

v�p2; t1� � 10; v�p2; t2� � 30; v�p2; t3� � 30; vm�p2� � 10; vM�p2� � 30;

v�p3; t1� � 20; v�p3; t2� � 24; v�p3; t3� � 40; vm�p3� � 20; vM�p3� � 40:

Notice that p <� q) p D q is false because p2 <� p3 but � �p2 D p3��p3 is better under t2�. The same pair
of paths shows that p < q ) p D q is also false. It can only be proven that

p < q) � �q <� p� ) � �q D p�:
Finally, notice that p D q) p < q is false because p1 D p2 but ��p1 < p2�.

These results suggest the partition of the set P into three subsets: paths that are surely D-dominated
(which can be discarded), paths surely non D-dominated (which should be kept) and paths that are con-
tenders for non D-dominance. A new algorithm can hence be used whenever Condition 1 holds, to:
· mark all non <�-dominated paths as surely non D-dominated (according to Proposition 4);
· keep <�-dominated paths as potentially non D-dominated;
· exclude �-dominated paths as surely D-dominated (according to Proposition 1).

We must only use the exhaustive test to discover whether <�-dominated (but non�-dominated) paths
are D-dominated or not. The number of (exhaustive) tests to perform can be further reduced according to
Proposition 3: for any p, q 2 P, if p does not <�-dominate q we will know that p also does not D-dom-
inate q.

The algorithm that we outline next scans the ®rst n0p shortest paths in a ranking considering the lower
bound for the cost vm���. It stops as soon as this lower bound exceeds a cost u equal to the lowest upper
bound vM���. A detailed algorithm is presented in Appendix A (Algorithm 3). Consider the following sets
and variables:

Let PN contain the set of non D-dominated paths;
Let L contain the last paths considered that are candidate to be non D-dominated;
Let fm and fM contain the costs, considering vm��� and vM���, respectively, of the paths in L;
Let P� contain the paths that are <�-dominated but may be non D-dominated, with vm���� fm;
Let P> contain the paths that are <�-dominated but may be non D-dominated, with vm��� > fm.
In the beginning, all the sets are empty. The algorithm sets the upper bound u to the minimum vM��� cost.

In iteration 1, it ®nds the shortest path p1 considering vm��� and places it in the set L, setting fm and fM to the
values vm�p1� and vM�p1�, respectively.

In iteration j �j > 1�, the algorithm ®nds the jth shortest path pj considering vm���. If either there is no jth
shortest path (there are no more paths in the graph) or vm�pj� exceeds the bound u, then the algorithm stops.
In this case, the paths in sets PN and L must be non D-dominated, whereas paths in P� and P> are either non
D-dominated or dominated by paths in L (some exhaustive tests have to be performed). Otherwise, one of
the following cases applies:

Case 1. vm�pj� � fm and vM�pj� � fM , which means that path pj <�-dominates the paths in L and paths
in L <�-dominate pj. Check if any path in L D-dominates pj. If none does, check if pjD-dominates any path
in L and let L  L [ pj.

Table 4

(i,j) cij�t1� cij�t2� cij�t3�
(1,2) 5 10 15

(2,5) 5 10 15

(1,3) 5 15 15

(3,5) 5 15 15

(1,4) 10 12 20

(4,5) 10 12 20
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Case 2. vm�pj� � fm and vM�pj� < fM , which means that path pj <�-dominates the paths in L. Check if
any path in L D-dominates any path in P�. Let P�  P� [ L. Let L  pj and set fM  vM�pj�.

Case 3. vm�pj� � fm and vM�pj� > fM , which means that paths in L <�-dominate pj. Check if any path in
PN [ P�D-dominates path pj. If none does, check if pj D-dominates any path in P� and let P�  P� [ pj.

Case 4. vm�pj� > fm and vM�pj� < fM , which means that paths in L are non D-dominated. Check if any
path in L D-dominates any path in P� or P>. Let PN  PN [ L [ P� [ fp 2 P>: vm�p� < vm�pj�g. Let P�  
fp 2 P>: vm�p� � vm�pj�g and then set P>  ;. Let L pj and update fm and fM to vm�pj� and vM�pj�,
respectively.

Case 5. vm�pj� > fm and vM�pj�P fM , which means that pj is <�-dominated. Check if any path in
PN [ P� [ P> D-dominates path pj. If none does, check if pj D-dominates any path in P> and let
P>  P> [ fpjg.

The minimum number of tests to perform when using Algorithm 3 is zero, in the case where all paths are
non <�-dominated as in Fig. 2(a). The maximum number of tests to perform is n0p �n0p ÿ 1�, where n0p is the
number of paths such that its vm��� cost is less than or equal to the lowest vM��� cost. This is the number of
tests performed by the algorithm in Section 5.1. This worst case occurs when all paths have equal vm��� and
vM��� costs, as in Fig. 2(c). Most of the times one will be in an intermediate situation, as depicted in
Fig. 2(b). The next two examples illustrate the execution of this algorithm.

Example 5.1. Consider again the graph in Fig. 1 and the following situation. Let costs be uncertain,
depending on two parameters concerning the near future. Parameter a1 represents the evolution of fuel
costs, which may vary up to �5% around the current level. Parameter a2 represents the evolution of labour
costs, which may grow up to 5% above the current level. The cost of an arc (in the near future) is given by
the expression

cij�a1; a2� � B�i; j� � k1�i; j�a1 � k2�i; j�a2; a1 2 �ÿ0:05; 0:05� and a2 2 �0; 0:05�;
where B�i; j�, k1�i; j� and k2�i; j� are constants associated with each arc. Table 5 presents the value of these
constants, as well as the minimum and maximum possible costs for each arc.

Condition 1 is satis®ed: parameter 2-tuple �a1; a2� � �ÿ0:05; 0� is a best case for all arcs and �a1; a2� �
�0:05; 0:05� is a worst case for all arcs. The algorithm starts by ®nding a path that minimises vM���. In this
case it ®nds paths BFJ or BG, where vM���� 68. It then sets the upper bound u� 68: any path with a vm���

Fig. 2. Worst case (a), usual case (b) and best case (c) examples for algorithm.
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higher than u is D-dominated. The algorithm (see Table 6) avoids many exhaustive tests, exploiting
Propositions 2a and b as well as the transitivity of the D-dominance relation.

Example 5.2. Consider the situation depicted in Fig. 2(b). We next show how the algorithm would operate
if all paths (except the eleventh) were non D-dominated. Notice that this implies more tests than if some
paths were discarded along its execution. First, the algorithm would determine the upper bound u as the
minimum vM���, which occurs for the 10th path. Then, it would examine one path at a time in non
decreasing order of their vm���. Suppose that paths are numbered in the ®gure according to the order they
would appear (when several paths have equal vm���, their order of appearance is undetermined a priori). The
algorithm would then continue as shown in Table 7. At most 14 exhaustive tests would have to be
performed, compared to the 10(10ÿ1)� 90 tests performed by the algorithm of Section 5.1.

6. Summary and future research

We addressed the shortest path problem with multiple instances for the parameters that determine the
cost of each arc. We considered models where the DMs de®ne a set of multiple acceptable values of pa-
rameters (model instances). Within this framework we will not usually ®nd a path that is optimal under all
circumstances. We suggest as a ®rst step to exclude only the dominated paths (in the sense that there is a
better path for every acceptable instance) while keeping all the non dominated ones for further consider-
ation.

We have shown that already existent algorithms that deal with to the multicriteria shortest path
problems can be adapted when the DMs only consider a discrete and ®nite set of K instances. As an ex-
ample, we provided an algorithm for the case where K� 2, which can be extended for K > 2 but at greater
computational cost. When considering the case where the set of instances is de®ned by constraints, the test
for non dominance may require an amount of computation that is not negligible. For example, it can

Table 6

j Path pj vm�pj� vM �pj� Case Remarks

1 ADI 40 110 ÿ L fp1g; fm  40; fM  110; PN  ;; P�  ;; P>  ;.
2 BFHI 53 88 4 PN  PN [ L � fp1g; L fp2g; fm  53; fM  88.

3 BFJ 54 68 4 PN  PN [ L � fp1; p2g; L fp3g; fm  54; fM  68.

4 BG 54 68 1 not p3Dp4 and not p4Dp3; L fp3; p4g.
5 ADEDI 60 165 5 Clearly, p1Dp5 ) fp5g is discarded.

6 BCDI 69 110 ÿ vm�p6� > u) exit outer loop;

PN  PN [ L [ P� [ P> � fp1; p2; p4; p3g.

Table 5

Arc (i,j) B(i,j) k1(i,j) k2(i,j) mij Mij

A 10.115 2.3 695.4 10 45

B 19.205 4.1 11.8 19 20

C 20.29 5.8 88.4 20 25

D 10.16 3.2 293.6 10 25

E 10.1 2 396 10 30

F 5.105 2.1 155.8 5 13

G 35.375 7.5 245 35 48

H 9.135 2.7 114.6 9 15

I 20.255 5.1 389.8 20 40

J 30.365 7.3 85.4 30 35
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correspond to a mathematical program. To lower the number of tests to perform, we adapted a bicriteria
shortest path algorithm. Afterwards, after proving some propositions, we have shown that the number of
tests can be further reduced if the problem complies with a condition that holds in some real-world situ-
ations. This allowed us to build a speci®c algorithm for these problems.

Although we have not implemented the proposed algorithms in any machine, we can a�rm that they
allow to solve problems of real-world dimension in reasonable time as they can use a very fast shortest
paths ranking algorithm and, for each path in the ranking, they only perform a few operations. For in-
stance, the Martins and Santos (1996) algorithm is reported to rank half a million paths in a 10 000 node
network in less than a second. Algorithms that rank loopless paths (in graphs that may contain cycles)
would also be useful, since non dominated paths cannot have cycles. This problem is considered harder to
solve, but recent advances are promising (e.g. see Martins et al., 1998). The homepage of Ernesto Q.V.
Martins (http://www.mat.uc.pt/~eqvm) presents his papers along with computer codes and results.

Future research should focus on the second step of the problem, which consists of helping the DMs in
making a choice when faced with a large number of non dominated paths. In what regards this step, much
of the research concerning multicriteria problems may be valuable. Several issues that could be addressed
are the following:
· search for optimal paths where the optimality condition is relaxed, as implied in the work of Vincke

(1997);
· search for the path with lowest worst-case cost (when Condition 1 does not apply, or else the problem is

trivial), as suggested by Kouvelis and Yu (1997);
· construction of functions that attribute a value for each path (for instance, the result of a balance be-

tween the potential bene®t and potential regret implied by choosing that path);
· construction of binary relations among pairs of paths for posterior exploitation. For instance considering

the ``volume'' of the parameter region that supports each of the paths;
· human±machine dialogue protocols in an interactive decision support system.
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Table 7

j Case PN L P� P> fm fM Tests

1 ÿ ; p1 ; ; vm�p1� vM �p1� None

2 2 � p2 p1 � vm�p2� vM �p2� None

3 4 p1; p2 p3 ; � vm�p3� vM �p3� p2Dp1?

4 4 p1; p2; p3 p4 � � vm�p4� vM �p4� None

5 1 � p4; p5 � � � � p4Dp5?; p5Dp4?

6 3 � � p6 � � � None

7 1 � p4; p5; p7 � � � � p4Dp7?; p5Dp7?; p7dp5?;

p7Dp4?
8 4 p1; p2; p3; p4; p5; p6; p7 p8 ; � vm�p8� vM �p8� p4Dp6?; p5Dp6?; p7Dp6?

9 5 � � � p9 � � p4Dp9?; p5Dp9?; p7Dp9?

10 4 p1; p2; p3; p4; p10 � £ vm�p10� vM �p10� p8Dp9?

p5; p6; p7; p8; p9

11 ÿ p1; p2; p3; p4; ÿ ÿ ÿ None

p5; p6; p7; p8; p9; p10
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Appendix A

Algorithm 1
Let PN contain the set of non D-dominated paths; Let f1 and f2 contain the value under t1 and t2, re-

spectively, of the last path considered; Let S be a working set containing paths that can be either D-
dominated or non D-dominated;

PN  ;;
p�  shortest path under t1;
u v�p�; t2�; /* ®rst estimate for the upper bound */
p1  shortest path under t2;
IF v�p1; t1� � v�p�; t1� THEN u v�p1; t2� /* see if estimate for u can be improved */
END IF;
S  fp1g; f1  v�p1; t1�; f2  v�p1; t2�;
j 1;
REPEAT /* outer loop */

REPEAT /* inner loop */
j j� 1;
pj  jth shortest path under t2; /* pj becomes NULL if there are no more paths */
IF pj is NULL THEN exit inner and outer loop
END IF;
IF v�pj; t1� � v�p�; t1� THEN u min fu; v�pj; t2�g /* see if estimate for u can be improved */
END IF;
IF v�pj; t1� � f1 and v�pj; t2� � f2 THEN S  S [ fpjg /* path joins other candidates in S */
END IF;

UNTIL v�pj; t1� < f1 or v�pj; t2� > f2;
IF v�pj; t1� < f1 THEN

f1  v�pj; t1�;
IF v�pj; t2� > f2 THEN

f2  v�pj; t2�;
PN  PN [ S /* the candidates in S were all non D-dominated */

END IF;
S  fpjg /* new sole candidate */

END IF;
UNTIL v�pj; t2� > u;
PN  PN [ S /* will contain the set of non D-dominated paths */
END

Algorithm 2

Let P? contain the set of paths that may be non D-dominated;
p�  shortest path considering vM���;
u vM�p��; /* upper bound: any path q such that vm�q� > u must be D-dominated */
p1  shortest path considering vm���;
P?D fp1g;
j  2;

p2  2nd shortest path considering vm���; /* p2 becomes NULL if there are no more paths */
WHILE pj is not NULL and vm�pj�6 u DO

dominated  False;
LOOP for all paths pi in P?
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IF exhaustive_test(pi D pj ?)�False THEN
IF exhaustive_test(pj D pi ?)�True THEN P?  P? ÿ fpig
END IF

ELSE /* pj is D-dominated */
dominated  True;
exit loop

END IF
END LOOP;
IF not dominated THEN P?  P? [ fpjg
END IF;
j j� 1;
pj  jth shortest path considering vm��� /* pj becomes NULL if there are no more paths */

END WHILE
END /* P? now contains all the non D-dominated paths */

Algorithm 3

Let PN contain the set of non D-dominated paths; Let L contain the last paths considered that
are candidate to be non D-dominated; Let fm and fM contain the value, considering vm��� and vM���, re-
spectively, of the last paths considered in L; Let P� contain the set of paths that are <�-dominated but may
be non D-dominated, with vm��� � fm; Let P> contain the set of paths that are <�-dominated but may be
non D-dominated, with vm��� > fm;

FUNCTION is_dominated (q, set_of_paths) RETURNS true or false;
/* returns true i� path q is D-dominated by any path in set_of_paths */
BEGIN

LOOP for all paths p in set_of_paths /* see if q is D-dominated */
IF vm�p�6 vm�q� and vM�p�6 vM�q� THEN /* this condition avoids unnecessary tests */

IF exhaustive_test(p D q D) � True THEN RETURN True; /* exits function */
END IF

END IF
END LOOP;
RETURN False /* if loop did not end after testing true for some p in set_of_paths */

END;
FUNCTION delete_dominated (passive_set, active_set) RETURNS a set of paths;
=
�

returns the set of all paths in passive_set that are not D-dominated by paths in active_set */
BEGIN

LOOP for all paths (p,q) such that p 2 passive_set, q 2 active_set
IF vm�p�P vm�q� and vM�p�P vM�q� THEN /* this condition avoids unnecessary tests */

IF exhaustive_test(q D p ?) � True THEN passive_set  passive_set- fpg
END IF

END IF
END LOOP;
RETURN passive_set

END;

MAIN BODY
p�  shortest path considering vM���; /* these instructions return NULL whenever there are no more
paths */
u vM�p��; /* upper bound: any path q such that vm�q� > u must be D-dominated */
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p1  shortest path considering vm���;
L fp1g; fm  vm�p1�; fM  vM�p1�;
PN  ;; P�  ;; P>  ;;
j 2; p2  2nd shortest path considering vm���;
WHILE pj 6� NULL and vm�pj�6 u DO

WHILE pj 6� NULL and vm�pj� � fm DO
IF vM�pj� � fM THEN /* CASE 1 */

REPEAT
IF not is_dominated (pj, L) THEN

L delete_dominated (L; fpjg� [ fpjg
END IF;
j j� 1; pj  jth shortest path considering vm���

UNTIL pj � NULL or vM�pj� 6� fM or vm�pj� > fm;
END IF;
IF pj 6� NULL and vm�pj� � fm and vM�pj� < fM THEN /* CASE 2 */

P�  delete_dominated (P�; L� [ L
L fpjg; fM  vM�pj� /* fm � vm�pj� */
j j� 1; pj  jth shortest path considering vm���

END IF;
IF pj 6� NULL and vm�pj� � fm and vM�pj� > fM THEN =� CASE 3: */

IF not is_dominated (pj; PN [ P�) THEN P�  delete_dominated �P�; fpjg� [ fpjg)
END IF;
j j� 1; pj  jth shortest path considering vm���

END IF;
END WHILE;
IF pj 6� NULL and vm�pj�6 u THEN

IF vM�pj� < fM THEN /* CASE 4 */
delete_dominated (P�, L); delete_dominated (P>, L)
PN  PN [ L [ P�; P�  ;;
LOOP for all paths q in P>

IF vm�q� < vm�pj� THEN PN  PN [ fqg ELSE P�  P� [ fqg
END IF

END LOOP;
P>  ;;
L fpjg; fm  vm�pj�; fM  vM�pj�

ELSE =� CASE 5 */
IF not is_dominated (pj; PN [ P� [ P>) THEN P>  delete_dominated �P>; fpjg� [ fpjg)
END IF

END IF
j j� 1; pj  jth shortest path considering vm���
END IF;

END WHILE;
delete_dominated (P�, L); delete_dominated (P>, L)
PN  PN [ L [ P� [ P>; /* will be the set of all non D-dominated paths */
END
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