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Sumário 
 

 

O desenvolvimento de organismos multicelulares requer uma coordenação correcta 

entre a proliferação e a especificação das células. As mesmas vias de sinalização 

extracelular que controlam a especificação da identidade das células também 

regulam a proliferação das mesmas. O principal objectivo desta tese foi 

compreender o papel da família de genes odd durante a especificação celular e a 

organogênese do olho e da antena de Drosophila. 

A família de genes odd é composta por quatro genes: odd-skipped (odd), brother of 

odd with entrails limited (bowl), drumstick (drm) and sister of odd and bowl (sob), 

os quais apresentam extensas semelhanças nos domínios de zinco de ligação ao 

DNA. Diferentes estudos mostraram que estes genes estão implicados na formação 

do padrão de distintos tecidos, como é o caso do intestino, patas e epiderme 

embrionária. 

Nesta tese, demonstrámos que a família de genes odd é expressa ao longo da 

margem posterior do disco de olho, um centro especializado de sinalização. Este 

domínio é requerido para o início do desenvolvimento da retina através da 

produção da molécula de sinalização hedgehog (hh). Nas células da margem, bowl 

é necessário para a activação de hh e, consequentemente, para o desenvolvimento 

do olho. Portanto, a família de genes odd é essencial para o desenvolvimento da 

retina. Além disso, a expressão ectópica de odd e drm nas células indiferenciadas 

do domínio anterior do olho é suficiente para induzir a expressão de hh com a 

concomitante formação de olhos ectópicos. Assim sendo, os genes odd são 

essenciais para definirem o domínio a partir do qual a retina se começa a 

diferenciar (Chapter I). 

No seguimento do trabalho, comprovámos que bowl também é necessário durante 

o desenvolvimento da antena para a repressão da expressão de wg (wingless), na 

região onde normalmente se expressa a molécula BMP2/4, Dpp (Decapentaplegic). 

Esta activação de wg no domínio de expressão de dpp origina um novo eixo 

proximodistal (PD) que, por sua vez, gera o desenvolvimento de antenas extra. 

Estes resultados podem ser explicados não apenas com base na simples acção 

repressora da transcrição de wg, mas também se considerarmos que bowl é 

responsável pela supressão do desenvolvimento de um primórdio cefálico, 

normalmente ‘silenciado’. Em contraste com o que foi mostrado no 

desenvolvimento da pata, a família de genes odd parece não ter nenhuma função 

na segmentação da antena (Chapter II). 

Mostrámos que a cassete Drm/Lin/Bowl, descrita como funcional durante o 

desenvolvimento do intestino e da epiderme embrionária, está também em 

funcionamento durante o desenvolvimento do disco imaginal de olho e antenna. Em 

ambas as situações, na especificação da margem e do eixo da antenna, Drm, muito 
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provavelmente em associação com Odd, é necessário para aliviar o efeito repressor 

de Lin sobre a função de Bowl (Chapter I and II). 

Em colaboração com o Dr. José Luis Gomez-Skarmeta, demonstrámos que a família 

de genes odd pode estar implicada no normal desenvolvimento dos tubos renais 

(tubos de Malphigian) de Drosophila, da mesma forma que no desenvolvimento 

renal de Xenopus e zebrafish, onde ambos os genes odd de vertebrados, Osr1 e 

Osr2, são suficientes e necessários para o correcto desenvolvimento dos pronefros 

(Appendix). 
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The development of multicellular organisms requires the correct coordination 

between proliferation and specification of cells. The same extracellular signaling 

pathways that control cell fate specifications also regulate proliferation. The main 

objective of this thesis was to understand the role of odd family genes during 

specification and organogenesis of the Drosophila eye and antenna. 

The odd family genes is composed of four genes odd-skipped (odd), brother of odd 

with entrails limited (bowl), drumstick (drm) and sister of odd and bowl (sob) that 

display extensive homology in the zinc DNA-binding domains. Different studies 

have shown that these genes are involved in the patterning of distinct tissues, such 

as gut, legs and embryonic epidermis.  

In this thesis, we have shown that odd family genes are expressed along the 

posterior margin of the eye disc, a specialized signalling center required for the 

initiation of retinal development by producing the hedgehog (hh) signaling 

molecule. In the margin cells, bowl is necessary for the activation of hh and 

therefore for eye development.  Thus, odd family genes are essential for retinal 

development. In addition, misexpression of odd and drm in anterior, 

undifferentiated eye cells is sufficient to induce hh expression with concomitant 

formation of ectopic eyes. Therefore, odd genes are essential for defining the retina 

initiation center (Chapter I).  

Further investigation revealed that bowl is also required during antennal 

development for the repression of wg (wingless) expression in territories that 

normally express the BMP2/4 molecule Dpp (Decapentaplegic). This de-repression 

of wg in the dpp-expressing domain generates a novel proximo-distal (PD) axis that 

results in the development of an extranumerary antenna. These results can be 

explained if rather than simply acting as a block of wg transcription, bowl were 

suppressing the development of a cephalic primordium that remains normally 

“silent”. In contrast to what has been shown in leg development, odd family genes 

do not seem to have any role in antennal segmentation (Chapter II).  

In addition, we have demonstrated that the Drm/Lin/Bowl cassette, described to be 

functioning during gut and embryonic epidermis development, is also at work 

during the development of the eye-antennal imaginal disc. In both situations, 

margin specification and antennal axis specification, Drm, most likely in association 

with Odd, is required to relief the repressor effect of Lin on Bowl function (Chapter I 

and II). 

In collaboration with Dr. José Luis Gomez-Skarmeta, we have shown that odd 

family genes may be involved in proper renal (Malphigian) tubules development in 

Drosophila, like it occurs in Xenopus and zebrafish kidney development, where both 
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vertebrate odd genes, Osr1 and Osr2, are sufficient and required for proper 

pronephros development (Appendix). 
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Introduction 
 

 

1.  Drosophila eye as a model to study cell specification and 

pattern formation during organogenesis 

A key process in development is the control of growth of tissues by cell proliferation 

through the action of signaling molecules. Cells unable to respond to these external 

regulatory signals may either under-proliferate, undergo programmed cell death, or 

proliferate in a random and uncontrolled manner, typical of tumor overgrowths. 

Indeed, growth control is critical for an organism proper development and improper 

growth control is a hallmark of many diseases. Inductive signals are also required 

to convey positional information to cells and specify their developmental fates. 

Thus, the development of multicellular organisms requires coordination of 

proliferation of cells with their specification, patterning and differentiation. These 

processes are controlled by signaling molecules which are required to convey 

positional information to cells, specify their developmental fate and control the 

growth of tissues by cell proliferation. These signals and their pathways are 

conserved during evolution and belong to a limited number of gene families: Wnt, 

Hedgehog (Hh), Transforming Growth factor-ß/Bone Morphogenetic Protein 

(TGFβ/BMP), Epithelial Growth Factor (EGF), Fibroblast Growth Factor (FGF) 

(Freeman and Gurdon, 2002).  

The eye of the fruit fly Drosophila melanogaster is an excellent model to study in 

genetic and molecular terms how the control of growth and differentiation are 

coordinated in the development of an organ. The adult eye of Drosophila contains 

between 750 and 800 ommatidia, or eye units, each of which harbors eight 

photoreceptor (R1-R8) cells and 12 accessory cells: four cone cells, six pigment 

cells and one mechanosensory bristle, organized in a regular hexagonal array. 

Thus, an extra cell, a missing cell or a wrongly specified cell will disrupt this precise 

structure. 

In addition, Drosophila, apart from having a short life cycle and offering an easy 

husbandry, is an excellent genetic model organism, with a ‘tool kit’ of genetic 

techniques that allows the induction of genetic changes in groups of genetically 

marked cells or tissues at particular developmental time points (Blair, 2003). 

In this thesis, we took advantage of these genetic tools to study mechanisms 

operating during the specification and organogenesis of the Drosophila eye and 

antenna. These two sensory organs develop from a compound primordium, the so-

called eye-antennal imaginal disc. Through the study of the Odd-skipped (odd) 

gene family, we have tried to clarify the mechanisms involved in the triggering of 

retinal differentiation. In addition, we have carried out the study of the molecular 

mechanisms that permit the correct development of the proximo-distal axis of the 

antenna. 
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2. Eye Morphology 

The Drosophila compound eye comprises approximately 800 unit eyes, called 

ommatidia (Figure 1). Each ommatidium is a precise assembly of photoreceptor and 

accessory cells in which each cell can be identified by its specific morphology, gene 

expression and position. An ommatidium contains 20 cells: 8 photoreceptors (R) 

neurons – 6 outer cells, R1-R6 and 2 inner cells, R7-8, plus 12 accessory cells: 

cone, pigment and bristle cells (Harris et al., 1976; Ready et al., 1976; Tomlinson, 

1988). The core of the ommatidium contains the 8 photoreceptors, and is 

characterized by microvillar extensions of their apical membranes, called 

rhabdomeres that carry the photosensitive opsins (Cook and Desplan, 2001; 

Montell, 1999).  Photoreceptor cells can be classified into three functionally distinct 

types: R1-R6, R7 and R8. These three classes of photoreceptors have different 

spectral sensitivities and express different photosensitive pigments (Fryxell and 

Meyerowitz, 1987; Harris et al., 1976; Ligoxygakis et al., 1998; O'Tousa et al., 

1985; Zuker et al., 1987). The six outer photoreceptors, retinula cell 1 to 6 (R1-6), 

carry the blue-sensitive rhodopsin (Rh1) and are arranged in a trapezoidal 

conformation. The R7 expresses one of the two UV-sensitive rhodopsins (Rh3 or 

Rh4 type) (Fryxell and Meyerowitz, 1987; Zuker et al., 1987) and the R8 one of the 

blue-green-sensitive opsin (Rh5 or Rh6 type) (Chou et al., 1996; Papatsenko et al., 

1997; Salcedo et al., 1999). R7 is located on top of R8, so that this R pair acts as a 

detector of light quality. Each of the three types synapses in the optic lobes in 

different positions: R1-R6 extend short axons which synapse in the lamina 

ganglion, while the R7 and R8 project long axons which synapse at different levels 

in the medulla ganglion, deeper in the lobes. Above the photoreceptors lies the lens 

system consisting of a fluid-filled pseudocone, bordered on top by the corneal lens, 

laterally by the two primary pigment cells and basally by the four cone cells. The 

cone cells are 4 flattened cells and are responsible of the secretion of the dioptic 

elements, which are the lens and the crystalline cone (Perry, 1968). Surrounding 

this central group of photoreceptors, cone cells and primary pigment cells there is a 

ring of secondary and tertiary pigment cells, which are shared with neighbouring 

ommatidia. These pigment cells surrounding each ommatidium achieve the optical 

isolation of each of them. The ommatidial array is hexagonal and, at each alternate 

vertex of the pattern, a mechanosensory bristle projects from the eye. 
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Figure 1. The Drosophila adult ommatidium. (A) Schematic representation of a transversal view of 

an ommatidium (adapted from Wolff and Ready, 1993). (B, C) Confocal images of a pupal retina. Apical 

(B) and basal (C) view of an ommatidium: membranes are stained with Disc-Large (Dlg, purple) and 

photoreceptors are labelled with the neural marker Elav (green). The adult eye is composed by 

approximately 800 hexagonal ommatidia arranged in regular quasi-crystaline array. Each ommatidium 

contains eight photoreceptor (R) cells, each one associated with a rhabdomere. The outer 

photoreceptors cells (R1 to R6) surround the inner photoreceptors (R7 and R8), forming a trapezoid. 

Above the photoreceptors cells, four lens-secreting cone cells (CC) are laterally surrounded by two 

primary pigment cells (1PC). Each ommatidium is optically isolated by six secondary pigment cells (2PC) 

and three tertiary cells (3PC) that are shared with adjacent ommatidia. A mechanosensory bristle is 

present at each alternate vertex of the ommatidium.  

The precise shape, position and orientation of the cells within each ommatidium and 

between ommatidia is crucial for image formation (correct optical alignment and 

neural connection) and environmental perception, once each unit is focused on a 

point in space 2º away from its neighbours (Franceschini, 1975). Thus, the function 

of a compound eye depends on a very precise arrangement of fixed numbers of 

different cell types. Its quasi-crystalline structure can be disrupted if any cell in the 

ommatidium is missing, in excess or show a deformed shape. Therefore, the 

formation of a mature, functional eye requires the tight control of developmental 

processes, such as proliferation, differentiation and patterning. 

All external adult head structures (eye, antenna, ocelli, palpus and surrounding 

head capsule), with the exception of the proboscis, develop from a pair of 
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symmetrical epithelial sacs, called eye-antennal imaginal discs (Cohen et al., 1993; 

Haynie and Bryant, 1986) (Figure 2C, D). Eye development begins in the early 

embryo. The eye-antennal imaginal disc primordium results from the fusion of at 

least three groups of cells located in different embryonic cephalic parasegments 

(Cohen et al., 1993; Younossi-Hartenstein, 1993), i. e., approximately twenty cells 

are set aside during embryonic stage and invaginate from the ectoderm, giving rise 

to the whole disc (Garcia-Bellido and Merriam, 1969).  Each eye antennal imaginal 

disc is a flattened epithelial sac, and each one of its opposing layers has a distinct 

morphology and developmental fate. The main epithelium (ME) is composed by 

columnar cells, and it will give rise to most adult head structures, including the eye, 

the antenna and part of the head capsule; and the peripodial epithelium (PE) 

characterized by the squamous morphology of its cells, and which will form the 

surrounding head capsule structures (Haynie and Bryant, 1986) (Figure 3A, A’). 

Both epithelial layers interact during development. Signals from the PE control 

retina development in the ME (Cho et al., 2000; Gibson and Schubiger, 2000). On 

the other hand, signals from the ME control gene expression in the PE: thus,  

overexpression of the EGF receptor, its ligand spitz (spi) or the activation of the 

EGFR pathway in the ME affects gene expression in the PE (Firth and Baker, 2007). 

This communication between both epithelia occurs probably through apical 

membrane extensions detected in the lumen (space between them) (Cho et al., 

2000; Gibson and Schubiger, 2000). 

 

 

Figure 2. Drosophila head development during larval stages. The adult Drosophila head (D, shows 

a hemi-head) derives from a pair of eye-antennal imaginal discs (A-C). The development of these 

structures occurs during the three larval stages (or instars) of the fruitfly. The eye-antennal disc 

primordium is a group of cells that are set aside during embryogenesis and that grows by proliferation 

during first (A) and second (B) instar (L1 and L2). (B) During early second instar, the specification of the 

eye domain in opposition to the antennal domain occurs. These two domains are visible at this stage as 
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two lobes within the disc and are generally called antennal and eye discs. In the anterior, antennal 

domain, Wg protein (red) is detected in the dorsal part, whereas odd shows ventral expression. odd 

expression is detected using a reporter line (oddZ, green). In the posterior, eye domain, wg is expressed 

in the anterior region, while odd stains the surrounding margin. At early third instar (C), different 

domains that will give rise the distinct adult structures (D) are detected within the eye imaginal disc. 

Retinal differentiation (red domain) and antennal segmentation (blue domain) processes occur. During 

this phase, ocelli (green domain) and maxillary palps (yellow domain) start to differentiate. Phalloidin 

staining (grey) allows the visualization of cellular morphology and the global structure of the imaginal 

disc.  

During the first (L1) and second (L2) larval stages (also known as instars), the eye-

antennal imaginal disc grows by asynchronous proliferation (Figure 2A, B). It is 

during L2 that the antennal and eye fields are specified in the ME. These fields are 

seen as two lobes in the disc (Figure 2B and Figure 11A, B). The anterior lobe 

becomes specified as antenna (antennal disc) and expressed the antennal-specific 

gene, cut (ct). The posterior lobe becomes specified as eye (eye disc) and retains 

the expression of the eye selector gene, eyeless (ey) (Kenyon et al., 2003) ( Figure 

11B). Once the cells are committed to become the eye primordium, signals from 

the most posterior cells in the disc are responsible for the induction of retina 

development in this primordium. Then, the differentiation of the retina progresses 

in a posterior-to-anterior direction in a wave-like fashion, so undifferentiated cells 

begin to assemble into ommatidial preclusters and to differentiate retinal cells 

(Figure 3B). This wave of differentiation that sweeps across the eye disc is marked 

by an apical constriction of the ME and is called morphogenetic furrow (MF) (Ready 

et al., 1976; Tomlinson and Ready, 1987) (Figure 3C). Indeed, August Weisman 

(1864) was the first to describe the MF, but he did not notice that it moved as 

development proceeds. The MF functions as a boundary that separates the 

pluripotent progenitor cells, anterior to it, from differentiating cells, behind it 

(Heberlein and Moses, 1995). Thus, eye development is a progressive process that 

includes, first the specification of the eye field, and then retina differentiation. This 

latter proceeds through two steps: retinal induction (or retinal triggering) and 

progression of the retinal differentiation. 
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terior to it (E). 

Figure 3. The wave 

of differentiation 

and the formation 

of the 

morphogenetic 

furrow. (A, A’) Early 

third instar (L3) eye-

antennal imaginal 

disc where actin is 

labelled with 

phalloidin (phall). 

Each imaginal disc is 

a flattened epithelial 

sac with two 

opposing epithelial 

layers show here in 

two different confocal plans: the main epithelium (ME, A) and the squamous, peripodial epithelium (PE, 

A’). Retinal differentiation occurs in the ME and starts in more posterior cells of eye domain. (B) An 

apical optical section of the most posterior region of a mid L3 where the differentiating ommatidia are 

detected: hh-expressing (red), differentiating photoreceptors express the neuronal marker Elav (blue). 

Cellular constriction (high levels of polymerized actin, phall in green) detected ahead of the 

differentiated region determines the position of the morphogenetic furrow (MF) and separates this region 

from the undifferentiated domain, which lies anterior to it. (C) In the cross section of this portion of the 

disc (B) it is possible to detect the distinct morphologies of both epithelia that form the imaginal disc: 

the columnar main epithelium versus the squamous peripodial epithelium. The formation of the MF 

depends on the coordination of three different cell processes: apical constriction, basal contraction and 

nuclear migration. These processes are accomplished along with gene expression changes. 

Differentiating photoreceptors express hh (B, C), which diffuses anteriorly and activates dpp within the 

MF (D). Hh is also responsible of the induction of the expression of the proneural gene, atonal (ato) at 

the MF and just an

 

3. Eye Specification 

3.1. The Retinal Determination Gene Network– Establishment of 

retinal fate 

In Drosophila, the eye primordium is specified as a sub-domain of the Pax6-

expressing cells in the center of the eye disc, by the co-expression of a set of 

retinal determination genes (Dominguez and Casares, 2005; Pappu and Mardon, 

2004). These genes form a network called the retinal determination gene network 

(RDGN) due to their role in Drosophila eye specification, although they work in 

several other different developmental processes as well. In addition, this network 

has been shown to be evolutionary conserved (Donner and Maas, 2004; Silver and 

Rebay, 2005). In Drosophila, the core of this network is composed of a group of 

nuclear factors: two Pax6-like paired-type homeodomain proteins (eyeless, ey and 
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toy, twin of eyeless), eyes absent (eya), the Six family transcription factor, sine 

oculis (so) and a novel nuclear protein with a putative DNA-binding ability, 

dachshund (dac). However, other genes important for eye specification are 

members of this RDGN: the Pax genes, eyegone (eyg) and twin of eyegone (toe); 

the Six family gene, optix (opt); homothorax (hth) and teashirt (tsh) (Dominguez 

and Casares, 2005; Pappu and Mardon, 2004). 

A key characteristic of RDGN genes is that they are fundamental for eye 

development: loss of their function results in reduced or completely absent eyes [ey 

(Quiring et al., 1994), eya (Bonini et al., 1993), dac (Mardon et al., 1994) and so 

(Cheyette et al., 1994; Serikaku and O'Tousa, 1994)]. Also, the ectopic expression 

of some of these genes, alone or in combination, results in the formation of ectopic 

eye structures [ey (Halder et al., 1995), eya (Bonini et al., 1997), dac (Shen and 

Mardon, 1997)]. 

Guided by the studies in Drosophila, gene families of the vertebrate homologues of 

the RDGN were discovered, and shown to be expressed during vertebrate eye 

development: Pax6, Eya1-3, Six3 and Dach1 and 2 (Davis et al., 2001; Hammond 

et al., 1998; Oliver et al., 1995; Walther and Gruss, 1991; Walther et al., 1991; Xu 

et al., 1997).  

Evolution has maintained the use in eye development of the entire genetic cassette, 

rather than simply conserving the use of individual RDGN elements (Wawersik and 

Maas, 2000). This evolutionary conserved eye patterning cassette, where genes of 

the RDGN gene families participate, was incorporated into the development of 

others sensory organs, such as lens and nasal placodes (Purcell et al., 2005) and 

muscle (Heanue et al., 1999). 

 

3.1.1. Retinal Determination Genes: Pax6, Eya, Six and Dach 

In Drosophila, two homologues of vertebrate Pax6 were identified: ey and twin-of-

eyeless (toy) that function in eye development (Czerny et al., 1999; Quiring et al., 

1994). These are highly related transcription factors that harbour a paired-type 

homeodomain (HD) as their DNA binding domains. However, only the HD of ey, but 

not that of toy, is able to downregulate Distal-less (Dll), which is a key process in 

the eye specification cascade. This indicates that the DNA-binding domains of Toy 

and Ey have different functions (Punzo et al., 2004). Different results indicate that 

toy positively regulates ey expression. toy is expressed earlier than ey in the eye 

anlagen and ectopic expression of toy activates ey expression, inducing ectopic eye 

formation (Czerny et al., 1999). This, together with the fact that an ey enhancer 

has several Toy binding sites (Czerny et al., 1999; Hauck et al., 1999), indicates 

that toy acts upstream of ey. Both toy (Czerny et al., 1999)  and ey (Quiring et al., 
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1994) are expressed in the eye anlagen as early as these structures can be 

detected, with their expression during subsequent larval stages becoming restricted 

to cells anterior to the MF. Different data suggest that toy and ey behave like eye 

selector genes. Indeed, based on their characteristics, they were named as ‘master 

control gene for eye development’ (Gehring, 2002).  

Epistasis analysis indicate that toy and ey act upstream of so, eya and dac (Bonini 

et al., 1997; Chen et al., 1999; Halder et al., 1998; Pignoni et al., 1997).  

The Six family genes are transcription factors that contain a highly conserved 

homeodomain (HD) and a second motif, the Six domain, a 110 aa region 

immediately 5’ of the HD, required for protein-protein interaction with Eya and 

other proteins (Pignoni et al., 1997). Drosophila Six genes, so and optix, are both 

expressed in the developing eye but have different expression patterns, showing 

coexpression in the furrow and in adjacent cells; whereas the expression of dsix4, 

another family member, has not yet been reported in the eye (Cheyette et al., 

1994; Seimiya and Gehring, 2000). Toy and Ey proteins act in a concerned manner 

to directly regulate so transcription through an eye-specific enhancer (Niimi et al., 

1999; Punzo et al., 2002). On the other hand, optix is directly regulated by Ey 

(Seimiya and Gehring, 2000). 

Eya belongs to a novel family of proteins identified in many animals: flies, worms 

and vertebrates. Four Eya homologs, Eya1-4, were identified in the mouse, while in 

Drosophila only one single gene exists, although with two isoforms originated by 

alternative splicing, which differ by 23 aa at the N-terminus (Bonini et al., 1993; 

Leiserson et al., 1998). Analysis of the vertebrate Eya gene product shows that Eya 

domain (ED) (Xu et al., 1997) is a highly conserved 271 aa C-terminal motif. In 

Drosophila Eya binds both So and Dac through this domain (Chen et al., 1997; 

Pignoni et al., 1997). At the N-terminus of Eya lies the Eya domain 2 (ED2), a 

moderately conserved domain, which contains a non-conserved proline-, serine-, 

threonine-rich (PST) region (Zimmerman et al., 1997) required for Eya’s 

transcriptional activator function (Silver et al., 2003; Xu et al., 1997). The 

expression of Drosophila eya is first detected during second instar larval (L2) in the 

eye domain restricted to its posterior region (Bonini et al., 1993). 

The Dach family proteins, encoded by vertebrate Dach1 and Dach2 and Drosophila 

dac genes share 2 highly-conserved domains with ski proto-oncogene and sno, a 

ski-like gene: Dach Domain 1 (DD1): N-terminal domain known as ski domain, and 

Dach Domain 2 (DD2): C-terminal domain which contains an unusual extended 

helical coiled-coil motif (Davis et al., 2006; Davis et al., 1999; Hammond et al., 

1998; Mardon et al., 1994). Drosophila Dac binds directly to Eya protein through 

the C-terminal fragment (DD2), which contains DachC box and the coiled-coil motif 
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(Chen et al., 1997). DD1 contains the DachN box, which may be involved in 

transcriptional activation (Chen et al., 1997). Genetic epistasis analysis has placed 

dac as the most downstream element among the known components of RDGN. dac 

expression depends primary on Ey, Eya and So (Anderson et al., 2006; Chen et al., 

1997; Kenyon et al., 2005; Pignoni et al., 1997). 

Ectopic expression of eya and dac induce ectopic eyes at lower frequency than ey. 

When coexpressed, they act synergistically, increasing dramatically the penetrance 

of ectopic eyes (Chen et al., 1997) and inducing ey expression. The same occurs 

when eya is expressed together with so (Bonini et al., 1997). Thus, the induction of 

ectopic eyes by eya, so and dac induces ey expression and requires ey function, but 

does not induce toy expression (Bonini et al., 1997; Chen et al., 1997; Halder et 

al., 1998; Pignoni et al., 1997; Shen and Mardon, 1997). Eya and either So or Dac 

form protein complexes (Chen et al., 1997; Pignoni et al., 1997), and these 

protein-protein interactions might explain the synergistic effect of their 

coexpression on the induction of ectopic eyes. ey induction is not necessary 

inconsistent with the idea that ey is upstream of a regulatory hierarchy of genes 

that control eye development (Halder et al., 1995). Indeed, these genes form a 

network with complex series of positive feedback loops (Chen et al., 1997). The 

fact that ey is unable to induce ectopic eyes in the absence of either dac or eya or 

so and that misexpression of ey strongly induces dac expression (Halder et al., 

1998; Shen and Mardon, 1997) indicates that ey acts upstream of dac and eya, 

suggesting that ey is upstream of this genetic hierarchy involved in eye formation, 

and that later on in development the expression of eya, so and dac locks in the eye 

fate through positive feedback loops that mutually reinforce their expression 

(Desplan, 1997). 

 

3.2. Interactions between RDGN and signaling pathways 

The RGDN is not only composed by nuclear factors that regulate eye development. 

Different signaling pathways are known to interact with the members of this 

network. Additionally, these interactions occur bidirectionally: signaling pathways 

influence the expression of RDGN genes and, on other hand, the activity of RDGN 

products are required for the activity of those signaling pathways (Donner and 

Maas, 2004; Silver and Rebay, 2005). 

The proper expression of RDGN genes is established by the positive input of Hh and 

Dpp signaling pathway and the repressor effect of wg signaling pathway. The 

regulation of RDGN genes by these pathways is at the transcription level, whereas 

EGFR signaling pathway contributes positively at the protein level. 
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ey, so, eya and dac are expressed in domains that overlap with dpp and hh prior to 

the start of differentiation (Desplan, 1997). Eye-specific mutations that disturb Hh 

and Dpp signaling pathways (Figure 5) present a reduced eye phenotype similar to 

the one of RDG mutants (Heberlein et al., 1993; Ma et al., 1993; Masucci et al., 

1990) and these pathways are required for the initiation of R differentiation (Borod 

and Heberlein, 1998; Burke and Basler, 1996; Wiersdorff et al., 1996). hh and dpp 

play no role in regulating ey, but are required for eya, so and dac expression, which 

is important for MF initiation. Even so, the expression of these genes is independent 

of Dpp once the MF is in motion (Curtiss and Mlodzik, 2000).  

Furthermore, functional Eya protein seems to be required to maintain expression of 

dpp  and can induce hh expression in the eye imaginal disc (Hazelett et al., 1998; 

Pignoni et al., 1997).  

Hh signaling positively regulates eya expression. Removal of the repressor form of 

ci leads to the de-repression of eya (Pappu et al., 2003). Moreover, Dpp together 

with Eya, but not Dpp alone, can rescue the eye phenotype of the removal of hh 

signal. On the other hand, mutant clones of Hh receptor, smoothened (smo), 

downregulate eya and dac expression at MF initiation (Curtiss and Mlodzik, 2000; 

Pappu et al., 2003). In addition, the efficient induction of ectopic eyes upon 

misexpression of RDGN members requires active Dpp and Hh signaling pathways 

(Chen et al., 1999; Pappu et al., 2003).  

Wg regulates eya expression and appears to be regulated by Eya itself, since Wg 

levels are upregulated in eya mutant clones (Hazelett et al., 1998). Indeed, Wg 

seems to maintain separated the retina and the adjacent head structures by 

inhibiting the expression of eya, so and dac (Baonza and Freeman, 2002). 

Moreover, eya seems to act downstream of EGFR pathway (Rebay et al., 2000). In 

addition, Eya protein displays two MAPK phosphorylation sites and Eya 

phosphorylation, in response to EGFR/Ras/MAPK signal, positively regulates Eya 

activity in vivo (Hsiao et al., 2001). 

 
4. Retinal induction 

4.1. Eye margin as the ‘signaling center’ for furrow induction 

Eye specification takes place during second larval instar (L2) (Kenyon et al., 2003; 

Kumar and Moses, 2001a). These ‘eye primordium’ cells remain undifferentiated 

and proliferating randomly until the beginning of third instar (L3). During L2, two 

signaling molecules are key in promoting the proliferation of the primordium and in 

the establishment of the different axes with the eye disc. The expression of wg 

from the dorsal anterior eye disc organizes the dorso-ventral (DV) axis by indirectly 

setting a line of Notch activation at the DV midline of the disc (Blair, 1999; Irvine, 
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1999). Notch, in turn, induces proliferation by establishing an organizing center 

required for eye growth (Dominguez and de Celis, 1998; Papayannopoulos et al., 

1998). The Notch target gene, eyegone (eyg), is activated along the DV axis (Chao 

et al., 2004; Dominguez et al., 2004) and is required downstream of N for eye 

growth. wg expression is somehow required for proliferation although this function, 

although its potential interaction with Notch has not been fully explored 

(Dominguez and Casares, 2005). It has been proposed that only after enough 

growth has happened during L2 a wg-free domain is generated (Figure 2B). It could 

be in this domain where retinal differentiation might start (Kenyon et al., 2003). 

The point of intersection between the DV axis (Notch signaling domain) and the 

most posterior cells of the eye disc determines the point where the MF initiates, 

called ‘firing point’ (Silver and Rebay, 2005). This point coincides with the position 

of the optic stalk, which serves as scaffold for the formation of the optic nerve. 

The ‘firing point’ is formed by the most posterior cells of the margin. The margin is 

a row of cells that surround the eye domain (Figure 4A). These cells are not eye-

committed cells but play an essential role for retinogenesis, since they are 

responsible for sending the necessary signals to induce furrow initiation. In 

addition, these margin cells give rise to the adult head cuticle that surrounds the 

eye, the posterior head capsule (phc) (Haynie and Bryant, 1986) (Figure 4B). 

Margin cells are specialized PE cells, of cuboidal morphology. Squamous to cuboidal 

morphological transition occurs seamlessly. On the contrary, margin cells and ME 

are separated by a fold (Bessa, 2007). Lineage experiments using an odd-Gal4 

(odd-skipped Gal4) line have shown that a restriction border between PE and ME 

exists (see Figure 3 in Chapter I (Bessa, 2007)). This means that cells originated in 

the PE rarely appear in the ME. Thus, this compartment border physically lies in the 

fold separating ME and the margin. Indeed, the posterior margin plays a key role as 

the site of production of retinal inducing signals (Treisman and Heberlein, 1998). 

More recently, a study has also demonstrated that the margin functions as a non-

autonomous inducer of planar cell polarity within the eye primordium (Lim and 

Choi, 2004). However, genes required for the functionally specification of the 

margin as signaling center were not known.  
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ults, C). 

Figure 4. Characterization of the eye-

surrounding margin. (A) The margin, a row of 

cells that surround the eye field, is characterized 

by the expression of odd (odd reporter, oddZ, 

red). This margin is a specialized signaling center 

that promotes retinal induction. The retinal 

determination gene, dac (green), is expressed in 

the eye field, where photoreceptors cells 

differentiate (neuronal marker, Elav, blue). (B) In 

the adult head, these margin cells give rise to the 

posterior-ventral rim of head cuticle abutting the 

adult eye (red), the posterior head capsule (phc, 

blue) and maintains the expression of odd 

(arrows mark the X-gal histochemical stain in 

heads of odd-Z pharate ad

 

4.2. Furrow initiation 

Ommatidial assembly is initiated in the MF, a dorsal-ventral indentation in the ME 

epithelium which moves anteriorly during L3. The MF coincides with four classes of 

cellular events: coordinated changes in cell shape (apical constriction- greatly 

reduced apical surfaces; apical-basal contraction; basal nuclei migration, Figure 3C) 

(Tomlinson, 1985; Wolff and Ready, 1991); changes in gene expression; 

synchronization of the cell cycle; and specification of a regular array of ommatidial 

founder cells. Along the length of the furrow, a column of ommatidia begins to 

assemble and the furrow subsequently moves anteriorly, leading to one new 

ommatidial column every 2 hours (Basler and Hafen, 1989a). 

Once the furrow is triggered, it sweeps across the disc being continuously 

reinitiated along the lateral margins (Ma et al., 1993). The reinitiation of the MF 

from the lateral margin is known as MF ‘reincarnation’. This process depends on 

positive signals from the Hh, Dpp, EGFR, Notch and JAK/STAT pathways and 

negative signals from the Wg pathway (Baonza and Freeman, 2001; Borod and 

Heberlein, 1998; Chanut and Heberlein, 1997; Curtiss and Mlodzik, 2000; 

Dominguez and Hafen, 1997; Kumar and Moses, 2001b; Pignoni and Zipursky, 

1997; Wiersdorff et al., 1996). A description of the Hh and Dpp signaling pathways 

can be found in Figure 5. 
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Figure 5. The Hh and Dpp signaling pathways. (A) The binding of the Drosophila BMP-like ligand, 

Decapentaplegic (Dpp) brings together both type I (Tkickveins, Tkv) and type II (Punt, Pnt) coreceptosr 

serine&threonine kinases. This complex is activated by the phosphorylation of Tkv by its partner Pnt. As 

a consequence, Mad (Mother against dpp) is directly phosphorylated and activated by the activated Tkv, 

type I receptor. Phosphorylated Mad forms complex with Medea (Med) that is translocated to the 

nucleus, where it regulates target gene transcription. (B) In the absence of Hedgehog, the 12 

transmembrane spanning protein, Patched (Ptc), prevents Smoothened (Smo), a 7 transmembrane 

spanning protein, from activating downstream components. Upon Hh reception, inhibition of Smo by Ptc 

is released, leading to activation of the Hh pathway, that blocks the proteolysis of the transcription 

factor Cubitus interruptus (Ci), which normally leads to a short repressor Ci (CiR). The block of the 

proteolytic event yields a long Ci form that behaves as a transcriptional activator in cells receiving Hh. 

Domínguez and Hafen described for the first time the initial expression pattern of 

Hh, before retinal induction, along the posterior eye disc margin (Dominguez and 

Hafen, 1997). Before that study, it was believed that hh was not involved in the 

triggering of the furrow, since hh expression was only detected in developing 

photoreceptors, i.e., after the differentiation had started. Hence, hh has a critical 

role in the initiation of retinal differentiation (Borod and Heberlein, 1998; 

Dominguez and Hafen, 1997). Accordingly, the onset of hh expression precedes the 

beginning of retinogenesis (Cavodeassi et al., 1999; Cho et al., 2000). The activity 

of the Notch pathway along the prospective DV border is required to increase the 

levels of hh transcription at the firing point (Cavodeassi et al., 1999). Once retinal 

differentiation starts, hh is expressed in R cells. Hh produced at these R cells 

diffuses at short-range anteriorly, activating the BMP2/4 gene decapentaplegic 

(dpp) anterior to them, within the furrow (Blackman et al., 1991). Dpp in turn acts 

as a long-range signaling molecule. Moreover, dpp positively regulates its own 

expression in the eye disc: dpp is not expressed in mad mutant clones (Chanut and 

Heberlein, 1997; Wiersdorff et al., 1996). In addition, a positive regulatory loop 
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between Dpp and Hh was described as being essential for the MF initiation. In fact, 

dpp expression pattern can be divided into domains: hh-dependent dpp expression 

along the posterior margin and at the advancing MF (Borod and Heberlein, 1998; 

Dominguez and Hafen, 1997), and hh-independent dpp expression along the lateral 

margin (Chanut and Heberlein, 1997; Wiersdorff et al., 1996), which is repressed 

by wg in the anterior disc margin (Baker, 1988; Ma and Moses, 1995; Treisman and 

Rubin, 1995). dpp is genetically downstream of hh (Chanut and Heberlein, 1997; 

Heberlein et al., 1993; Ma et al., 1993)  and it is partially redundant with it during 

MF progression (Greenwood and Struhl, 1999). 

The initiation of retinal differentiation fails in either Hh or Dpp signaling mutants, 

while its progression is only slowed down (Curtiss and Mlodzik, 2000). Dpp seems 

to be required for furrow initiation: blocking Dpp signaling pathway, differentiation 

fails to initiate and wg is expressed ectopically (Chanut and Heberlein, 1997; 

Wiersdorff et al., 1996) and, in addition, dpp misexpression along the margin 

blocks wg expression and induce the triggering of ectopic furrow (Chanut and 

Heberlein, 1997; Pignoni and Zipursky, 1997) and missexpression of dpp in the 

anterior margin is sufficient to activate hh, even in the absence of ectopic 

photoreceptor differentiation (Borod and Heberlein, 1998; Dominguez and Hafen, 

1997). 

Epistatic analysis suggests that EGFR acts upstream of Notch and upstream of Hh 

signaling during MF initiation and that EGFR and Notch act upstream of dpp function 

during MF reincarnation (Kumar and Moses, 2001b). 

 

4.3. Hh and Dpp signaling pathway: requirement for furrow 

propagation 

After many years of contradictory data about the signaling pathways necessary and 

sufficient for furrow progression, work by Fu and Baker (Fu and Baker, 2003) 

clarified the role of Hh, Dpp and Notch by clonal analysis where they removed the 

receptor and the nuclear effector of one, two or all three pathways. They concluded 

that either Dpp or Hh signals are sufficient for eye differentiation, but neither is 

absolutely required, due to their partial redundancy. In addition, they showed that 

Notch potentiates Dpp signaling. It was already known that cells must be able to 

respond to either Hh or Dpp in order to differentiate (Curtiss and Mlodzik, 2000; Fu 

and Baker, 2003; Greenwood and Struhl, 1999; Heberlein et al., 1993) and that 

Notch also contributes to this process (Baker and Yu, 1997; Li and Baker, 2001). 

Other authors argued that Hh is required for furrow progression (Heberlein et al., 

1993; Ma et al., 1993).  
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This model of Hh having a primary role for MF progression was further supported by 

experiments of activation of Hh signaling pathway by ectopic Hh expression: Hh is 

sufficient to induce ectopic furrows in the anterior undifferentiated region 

(Heberlein et al., 1995; Strutt et al., 1995) as well as loss of pka-C1  (Pan and 

Rubin, 1995; Strutt et al., 1995) or of ptc (Chanut and Heberlein, 1995; Ma and 

Moses, 1995; Strutt and Mlodzik, 1995; Wehrli and Tomlinson, 1995), which causes 

a cell autonomous, ligand-independent signaling of the hh pathway. 

Initially, it had been proposed that the major role for Hh signaling is the 

stabilization of full length Ci (Ciact, the activator form of Ci), preventing the 

production of Cirep (its repressor form) (Pappu et al., 2003). This model is based on 

the observation that smo mutant clones lack retinal differentiation in contrast with 

ci mutant clones where retinogenesis occurs as normal (Fu and Baker, 2003). 

However, it seems that this analysis was not correct. Indeed, smo mutant clones 

can differentiate in response to Dpp, although they show a delay in PR 

differentiation (Curtiss and Mlodzik, 2000; Dominguez, 1999; Fu and Baker, 2003; 

Greenwood and Struhl, 1999; Strutt and Mlodzik, 1997). Dpp and Notch signaling 

are dispensable for differentiation (mad and Su(H) double mutant clones - (Fu and 

Baker, 2003) and Dl and medea (med) double mutant clones - (Baonza and 

Freeman, 2001)) if ci gene was not removed. This means that hh signaling does not 

function only to prevent Ci cleavage, but requires the active form to drive 

differentiation (Fu and Baker, 2003). 

dpp signaling is sufficient to induce differentiation in the absence of Hh and N 

pathways (removal of ci and Su(H)), nevertheless this differentiation is delayed. 

This defect is overcome if N pathway is restituted (ci mutant clones). In the 

presence of others signaling pathways, dpp function is not required for furrow 

progression (Wiersdorff et al., 1996). Different data suggest that dpp signaling 

alone is not sufficient to induce ectopic differentiation everywhere in the eye disc 

(Baonza and Freeman, 2001; Greenwood and Struhl, 1999; Pignoni and Zipursky, 

1997). This could be due to the repressor activity of Su(H) (Hsieh and Hayward, 

1995; Morel and Schweisguth, 2000), that in the absence of N signaling slows down 

the wave of differentiation (Li and Baker, 2001). Thus, dpp signaling is sufficient to 

promote eye differentiation or furrow progression (Chanut and Heberlein, 1997) but 

does not seem to be required for neither of the two processes (Greenwood and 

Struhl, 1999; Strutt and Mlodzik, 1997). Blocking the reception of Dpp by removing 

the type I or II receptor (punt or tkv, respectivelly), the furrow progresses and 

ommatidial development occurs normally (Burke and Basler, 1996; Greenwood and 

Struhl, 1999). Based on experiments of ectopic expression and hypomorphic 

mutant analysis, different data attribute to Dpp a crucial role for normal MF 
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initiation, taking in account its capability of activating its own expression and 

repressing wg transcription (Chanut and Heberlein, 1997; Pignoni and Zipursky, 

1997).  

Notch on its own (removal of smo or ci and tkv) cannot drive differentiation (Fu and 

Baker, 2003; Greenwood and Struhl, 1999). Notch potentiates differentiation in 

response to Dpp signaling but is not required for differentiation in response to Hh 

(Baonza and Freeman, 2001; Fu and Baker, 2003). Thus, Notch signaling is neither 

required nor sufficient for differentiation.  

 

4.4. wg: the opposite force of furrow progression 

The Wnt-1 homologue, wingless (wg), is expressed at the anterior edges of eye disc 

where it functions as an antagonist of furrow initiation and progression (Baker, 

1988; Ma and Moses, 1995; Treisman and Rubin, 1995) by inhibiting dpp activity. 

It has been shown that Wg blocks dpp function in the eye development not only by 

repressing dpp transcription, but also by blocking retinogenesis downstream of dpp 

receptor within the presumptive eye domain (Hazelett et al., 1998).  

Anterior-lateral margin, especially the one at the anterior-dorsal side, fires the 

furrow precociously when wg function is removed during larval stage using a wg 

temperature-sensitive allele (Baker, 1988; Ma and Moses, 1995; Treisman and 

Rubin, 1995). The induction of differentiation by the removal of wg requires hh 

function, i. e., the absence of wg is not sufficient for retinogenesis (Borod and 

Heberlein, 1998). 

On the other hand, the elimination of Dpp signaling pathway (mad mutant clones) 

in regions near the eye margin autonomously allows wg expression (Wiersdorff et 

al., 1996). Thus, it seems that the primary function of Dpp is the repression of wg 

and thereby it is required for MF initiation (Chanut and Heberlein, 1997; Dominguez 

and Hafen, 1997; Pignoni and Zipursky, 1997; Wiersdorff et al., 1996).  

 

5. Retinal differentiation 

Based on observations in the ant and the precise lattice arrangement of the insect 

retina, Bernard (1937) proposed that it develops by precise cell linage, i. e., it was 

thought that each ommatidium was clonally derived from a single precursor cell 

(Bernard, 1937 cited in (Lawrence and Green, 1979)). Later on, different studies 

demonstrated a clear absence of repeatable lineage relationship between cells of an 

ommatidium, and that photoreceptors and accessory cells differentiate from a pool 

of equivalent cells (Hotta and Benzer, 1970; Lawrence and Green, 1979; Ready et 

al., 1976). From the nonclonal origin for the ommatidium, it was inferred that cells 

choose their differentiation pathways depending on the environmental cues.  
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The morphogenetic furrow (MF) sweeps across the eye domain during two days, 

leaving behind a new column of precisely spaced ommatidial founder cells 

(photoreceptor cell 8, R8) approximately every two hours (Basler and Hafen, 

1989a; Basler and Hafen, 1989b; Ready et al., 1976; Tomlinson, 1988; Wolff, 

1993). Photoreceptors differentiate in a fixed and sequential order: R8 is the 

founder photoreceptor, followed by the pair of photoreceptors R2/R5, R3/R4, R1/R6 

and finally R7 (Tomlinson and Ready, 1987). Then, the accessory cells differentiate: 

cone cells, pigment cells and bristle.  Cone cells star to differentiate during larval 

stages but the correct ommatidial maturation occurs during pupal stages. 

Ommatidia exist in two chiral forms disposed along a line of mirror-image 

symmetry, the equator, that divides the eye domain in the dorsal and ventral 

domain (Ready et al., 1976). 

Thus, during L3, different domains can be distinguished within the eye domain: 

proliferation, determination and differentiation domain (Figure 6A). In the most 

anterior domain, cells proliferate asynchronously. When they receive the signals 

coming from the furrow, these cells undergo a synchronous mitosis (First Mitotic 

Wave, FMW) to then arrest temporarily their cell cycle in G1 phase. These G1-

arrested cells become eye-determined by acquiring a so-called preproneural (PPN) 

state (Greenwood and Struhl, 1999). Posterior in this determination domain, cells 

close to the furrow acquire a proneural fate. Behind the furrow, cells start to 

differentiate and cluster into forming ommatidia. However, in this differentiation 

domain, an extra round of mitosis is required to ensure the correct number of 

progenitor cells. Thus, cells that do not belong to the differentiating ommatidial 

precluster enter synchronously in S phase (Second Mitotic Wave, SMW). (For a 

detailed characterization of the different domains please go to Figure 6B, C.) 
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Figure 6. Characterization 

of the distinct domains 

within the eye field. Once 

the retina starts to 

differentiate, three different 

domains can be distinguished 

within the eye domain. In the 

anterior region cells proliferate 

asynchronously, and 

accumulates the G2-cyclin, 

CyclinB (CycB). This 

proliferating domain is 

characterized by the 

expression of homothorax 

(hth). Signals coming from the 

furrow induce these cells to 

synchronously perform a 

round of mitosis (marked by 

phosphohistone3, pH3), the 

so-called First Mitotic Wave 

(FMW, arrow) to then arrest in 

G1 phase. Hth is 

transcriptionally 

downregulated by the Dpp 

signal coming from the furrow. 

The activation of the dpp 

pathway is visualized by the 

detection of the 

phosphorylated form of Mad 

(pMad). Another effect elicited 

by the dpp signal is the activation of h (hairy). Together, these gene regulation events induce cells to 

acquire a preproneural (PPN) state. The retinal determination gene (RDG), dachshund (dac) presents a 

complementary expression pattern to that of hth. In the posterior region, where retinogenesis is taking 

place, the downregulation of dac coincides with the expression of hth in non-neuronal cells. Just ahead 

of the furrow, highest levels of pMad, together with the contribution of the Notch pathway downregulate, 

h and activate atonal (ato), inducing the acquisition of a proneural state. Immediately behind the furrow, 

within the differentiating domain, Notch pathway acts to restrict the expression of ato until it is 

expressed in just one cell, R8, which is the founder cell of each ommatidium. During this process, 

senseless (sens) expression is activated in R8 and maintained throughout retinal development. After the 

formation of the precluster, cells that do not form part of it, enter synchronously in S phase and undergo 

one more round of mitosis, the Second Mitotic Wave (SMW, arrow). Differentiating photoreceptors 

express the neuronal marker Elav. The Glass Multimer Reporter (GMR) Gal4 driver is specifically active in 

all cells within the retinal differentiating domain. 

5.1. Cell cycle regulation ahead of the MF 

During development, patterning and growth are tightly associated. Cell proliferation 

and differentiation are regulated spatially and temporally. During retinal 
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development, highly ordered cell fate specification and differentiation events are 

associated with patterned cell proliferation (Wolff, 1993). The way to ensure 

coordinated regulation of pattern formation and cell cycle synchronization is to 

regulate them using the same regulatory signaling pathways (Hh, Dpp, N, EGFR). 

The induction of eye differentiation results in the formation of the MF that is a basal 

contraction of the epithelium, which is a physical consequence of the constriction of 

the apical actin cytoskeleton rings (Corrigall et al., 2007; Escudero et al., 2007; 

Ready et al., 1976; Wolff and Ready, 1991). At the same time, all cells that read 

signals from the furrow withdraw from the cell cycle (first mitotic wave – FMW) and 

remain in G1 phase. This means that furrow formation is coincident with a band of 

G1 cell cycle arrest (Baker and Yu, 2001; de Nooij and Hariharan, 1995; Thomas et 

al., 1994). This process seems to be, at least partially, under the control of Dpp (de 

Nooij et al., 2000; Dong et al., 1997; Horsfield et al., 1998; Penton et al., 1997). 

Gain- and loss-of-function experiments have demonstrated that Dpp signaling 

pathway is sufficient and required for hth repression (Bessa et al., 2002), which 

together with Tsh and Ey, is required for the proliferating of the undifferentiated 

cells anterior to the furrow (Bessa et al., 2002). Therefore, in the absence of dpp, 

hth plus ey and tsh could maintain cells proliferating. However, Firth and Baker 

proved, by clonal analysis, that cell-cycle arrest in G1 ahead of the MF is not only 

dependent on Dpp signal: if cells cannot respond to Dpp they arrest later in 

response to Hh. Although this process depends primarily on Dpp, Dpp and Hh are 

partially redundant in inducing a cell cycle arrest (Firth and Baker, 2005). These 

data are coherent with the study of the role of Hh, Dpp and Raf pathways in furrow 

progression performed by Greenwood and Struhl (Greenwood and Struhl, 1999). 

They conclude that Hh controls the rate of furrow progression by inducing dpp 

expression that acts long-range and induces, in turn, cells to shift from an 

undifferentiated state to a ‘pre-proneural’ (PPN) state. In the absence of dpp signal, 

the rhythm of this shift is decreased, which leads to a delay in the advance of the 

furrow. Thus, Dpp signal is sufficient but not absolutely required to establish the 

PPN state (Greenwood and Struhl, 1999).  

G1 is a critical phase of the cell cycle. Cells developmentally maintained in this 

phase can respond to extracellular signals to initiate another round of cell division, 

to withdraw temporarily from the cell cycle or to differentiate. 

Different targets of Hh and Dpp are necessary for cell-cycle synchronization. stg, 

the mitotic inducer cdc25 homolog (Edgar and O’Farrell, 1990), and rux (Thomas et 

al., 1994) are thought to contribute to cell cycle synchronization, acting on different 

points of the cycle: stg force cells in G2 to enter mitosis, ensuring that they reach 

the G1 phase (Heberlein et al., 1995; Mozer and Easwarachandran, 1999); on the 

27



Introduction 
 

 

other hand, rux prevents cells in G1 phase from re-entering in S phase (Avedisov et 

al., 2000; Dong et al., 1997; Escudero and Freeman, 2007; Foley et al., 1999; 

Foley and Sprenger, 2001; Sprenger et al., 1997; Thomas et al., 1994; Thomas et 

al., 1997).  

So, Hh and Dpp signaling pathways are both involved in cell-cycle control, forcing 

cells to arrest in G1 phase and in the process of differentiation, contributing for R8-

founder cell specification and for ommatidial differentiation through the activation 

of ato expression (Heberlein and Moses, 1995; Heberlein et al., 1995; Heberlein et 

al., 1993; Ma et al., 1993). The combination of these pathways with other 

regionalized inputs separates these processes in time and space: G1 arrest always 

occurs before differentiation.  

 

5.2. Proneural Genes and the R8-founder cell (Figure 7)  

G1-arrested cells express the proneural gene, atonal (ato), a basic helix-loop-helix 

(bHLH) transcription factor (Jarman et al., 1994; Jarman et al., 1995). ato 

expression is activated by Hh signal coming from the developing photoreceptors. 

Therefore, hh signaling not only activates dpp in the furrow but also is responsible 

for the neuronal commitment of the cells in front of the furrow, by inducing ato 

expression (Heberlein and Moses, 1995; Heberlein et al., 1995; Heberlein et al., 

1993; Ma et al., 1993). ato functions together with Daughterless (Da) (Brown et 

al., 1996; Brown et al., 1995; Jarman et al., 1994; Jarman et al., 1995; White and 

Jarman, 2000), a dimerization partner that is uniformly expressed. On the other 

hand, Atonal is functionally inhibited by Hairy (H) and Extramacrochaetae (Emc) 

(Brown et al., 1991; Brown et al., 1995; Ohsako et al., 1994). H and Emc, both 

HLH proteins are expressed anterior to the furrow to avoid precocious neuronal 

differentiation ahead of the furrow. Binding of H or Emc to Ato blocks its 

transcriptional function. Removal of both H and Emc results in ectopic ato 

expression anterior to the furrow (Brown et al., 1995). On the other hand, even 

when Hairy is maintained in cells lacking both N and Hh pathway, differentiation 

could occur (Fu and Baker, 2003). Although Dpp does not appear to be essential for 

the activation of h, it seems to contribute to elevate its expression (Fu and Baker, 

2003; Greenwood and Struhl, 1999). Notch and Hh activation are independently 

sufficient to downregulate h expression (Baonza and Freeman, 2001; Fu and Baker, 

2003). Thus, ahead of the furrow, the PPN domain is characterized by the 

transduction of Dpp signaling that contributes to the high levels of expression of 

both transcriptional repressors, h and emc (Greenwood and Struhl, 1999), and 

plays a role in cell cycle synchronization (Penton et al., 1997). This region is also 

defined by the upregulation of da (Brown et al., 1996; Brown et al., 1995).  
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ato  has three phases of expression, with two steps of spatial restriction in the 

developing eye (Dokucu et al., 1996; Greenwood and Struhl, 1999; Sun et al., 

1998) (Figure 7). The first phase occurs just anterior to the furrow and is 

characterized by uniform ato-expression. Gradually, this uniform expression is 

reduced to small ‘intermediate group’ (IG) and then to single cells. The IGs 

probably coincident with the ‘rosettes’ described by Wolff and Ready (Wolff and 

Ready, 1991) are detected just posterior to the furrow, in the first column, and are 

the first distinguishable clustering of cells, formed by four or five cells in the core 

plus approximately fifteen surrounding-cells (Baker and Zitron, 1995; Wolff and 

Ready, 1991). Only IG maintains the expression of ato. (Baker et al., 1996; Baker 

and Yu, 1997; Dokucu et al., 1996; Jarman et al., 1995). At this step, all cells of 

the IG are functionally equivalent (also called ‘equivalent group’). The refinement of 

ato expression is achieved in the third column, where ato remains expressed in just 

one cell, the R8 founder cell. Inside the five-cell cluster, called precluster (PC), the 

most posterior cell is the founder R8. ato expression in the R8 cell is maintained 

until the sixth or seventh column (Baker et al., 1996; Baker and Yu, 1997; Dokucu 

et al., 1996; Jarman et al., 1995). Since ato expression is transient, the 

differentiation of R8 cells can be followed by senseless (sens) expression, which is 

maintained throughout the eye disc thereafter (Nolo et al., 2000) (Figure 6B, B’).  

 

 

Figure 7. Ommatidial differentiation. The bHLH transcription factor atonal (ato) is the proneural 

gene required for the specification of the first photoreceptor of each ommatidium, R8, which is the 

ommatidium’s founder cell, since it is required for the recruitment of the other ommatidial cells. ato 

expression, as indicated in the diagram (adapted from Zhang et al., 2006), is under the positive control 

of Dpp, Notch and Hh signaling and the determination genes eyeless (ey) and sine oculis (so). In 

contrast, Wg signaling and the HLH transcription factors Hairy (H) and Extramacrochaetae (Emc) are 
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responsible for the repression of ato expression. ato has three distinct phases of expression with two 

steps of restriction. Ahead of the furrow, all cells express ato. Once the furrow passes, ato expression is 

downregulated in some group of cells, being maintained in cells of an ‘equivalent group’. In a second 

step of restriction, ato expression is restricted to R8s. These R8 cells are precisely spaced and function 

as the organizing center for ommatidial development. The R8 founder cells express the EGFR ligand, 

Spitz (Spi) that activates in the neighbouring cells the EGFR pathway. Cells that receive this signal are 

recruited to the ommatidium: first the pair of photoreceptors R5 and R2, followed by the pair of 

photoreceptors R4 and R3. In contrast, cells that do not receive the EGF signal activate the Notch 

pathway through receiving its ligand Delta (Dl), which induces a synchronously entry in S phase. Further 

reiterative cycles of EGFR and N signaling pathway allows the recruitment of the other photoreceptors 

cells: the R1 and R6 pair, and the last photoreceptor, R7; and, in addition, the accessory cells (cone 

cells, pigment cells and bristle cells) later in pupal stage 

 

The first phase of ato expression is dramatically affected when Hh signal pathway is 

removed. In fact, Hh signaling pathway seems to be a direct activator of ato 

transcription (Dominguez, 1999) and hh loss-of-function results in the failure of IG 

specification (Heberlein and Moses, 1995; Ma et al., 1993). Hh is secreted by the 

developing ommatidia and acts anterior to the furrow (Dominguez, 1999; 

Greenwood and Struhl, 1999; Heberlein and Moses, 1995; Heberlein et al., 1995; 

Heberlein et al., 1993; Ma et al., 1993; Strutt and Mlodzik, 1997).  

Cagan and Ready (1989) proposed a simple model for early eye patterning where 

the precise and dispersed pattern of founder ato-expressing cells is obtained by the 

balance between the Hh inductive signal and the Notch inhibitory signal acting 

through lateral inhibition (Cagan and Ready, 1989). Indeed, Notch, together with 

the Hh signaling pathway, modulates the IG formation and consequently the 

spacing between R8-founder cells that ultimately is reflected on the ommatidial 

array. In addition, the removal of N or its ligand Delta (Dl) suggests that Notch 

signaling is required for ato restriction and IG spacing (Baker and Zitron, 1995; 

Cagan and Ready, 1989). However, more exhaustive studies have revealed that 

Notch enhances proneuronal competence of ato-expressing cells, induced by Hh, 

before inhibiting ato expression through lateral inhibition  (Baker et al., 1996; 

Baker and Yu, 1997; Ligoxygakis et al., 1998). However, Notch only induces ato 

expression in the PPN region signated by Dpp, through the downregulation of the 

ato repressors h and emc. The upregulation of ato and  downregulation of h and 

emc induce cells to acquire the proneuronal state (Baonza and Freeman, 2001).  

The initial uniform expression of ato in the MF is controlled by cis-regulatory 

sequences that lie 3’ to the ato coding sequence, whereas the following expression, 

first in IGs and then in the R8 founder cells, depends on regulatory elements that 

lie 5’ to it and requires ato function. 3’ ato enhancer analysis has revealed binding 

sites for the RDG, Ey and So, and for the effectors of Dpp and Notch signaling 
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pathway, Mad and Suppressor of Hairless (Su(H)), respectively (Sun et al., 1998; 

Zhang et al., 2006). The diagram in Figure7 shows the genes and the pathways 

involved in the regulation of ato expression. 

 

5.3. EGF receptor and Notch signaling pathway: the yin&yang of 

retinal differentiation 

The signal transduction pathway downstream of tyrosine kinase receptors (RTK) 

involving Ras and Raf has been shown to have many roles in cell fate specification 

during the development of the Drosophila eye, most notably in mediating signals by 

the Sevenless and EGF receptor (EGFR). EGFR and Notch pathways interact in 

different ways, such that cells integrate and interpret these signals in time and 

space (see schematic representation of both pathways in Figure 8). Thus, these 

pathways are often involved in the same processes, where they may cooperate or 

antagonize each other (Doroquez and Rebay, 2006; Sundaram, 2005).  

 

 

Figure 8. Notch and EGFR signaling pathways. (A) Notch pathway activation. Following binding of a 

ligand, Notch is proteolytically cleaved on its extracellular side. Further cleavages permit the release of 

NICD (Notch intracellular domain) into the cytoplasm. In unstimulated cells, Su(H) (Supressor of Hairless) 

mediates transcriptional repression in association with a Smrter (Smr) or a Hairless (H)/Groucho (Gro) 

repressor complex. Stimulation of the pathway promotes conversion of Su(H) into an activator by NICD 

and Mastermind (Mam), recruiting an activator complex. (Skip, Ski-interacting protein; HAT; histone 

acetyl transferase). (B) EGFR pathway activation. In non-stimulated cells, Ras exists in a GDP-bound, 

inactive state. The phospho-binding-protein 14-3-3 binds to phosphorylated Raf and Ksr (Kinase 

suppressor of Ras), retaining them in the cytoplasm. In this situation, Yan, a Notch-target gene and Ets 

transcriptional regulator, represses target gene transcription. EGFR activation by Spitz (Spi) leads to its 

activated, GTP-bound state. PP2A (Protein Phosphatase 2A) dephosphorylates Raf and Ksr and displaces 

14-3-3. This permits Raf and Ksr to re-localize with Ras near the membrane to activate the kinase 

cascade that results in the double phosphorylation of MAPK (Mitogen Activated Protein Kinase). The 

dpMAPK (di-phosphorylated MAPK) translocates into the nucleus promoting, by phosphorylation, the Ets 
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transcriptional regulator PntP2 (Pointed-P2) to activate target gene transcription and the concomitant 

exporting of Yan from the nucleus. (DrK, Downstream of Receptor Kinase; Sos, Son of sevenless; MEK, 

Map/Erk Kinase). (Adapted from Doroquez and Rebay, 2006) 

R8 photoreceptor cell is responsible for the recruitment of the other photoreceptors 

into the growing cluster (Tomlinson and Ready, 1987). Episodic activity of EGFR 

and Notch signaling pathways allows the staggered recruitment of all retinal cells to 

one of the precursor cell fate (Freeman, 1997; Voas and Rebay, 2004).  

The ato-expressing R8 is responsible of the recruitment of two pairs of 

photoreceptors: R2/R5 and R3/R4 that form the precluster (Figure 7). This 

recruitment is achieved by the activation of the EGFR pathway in the presumptive 

R2/R5 and R3/R4 by the ligand Spitz (Spi), which is secreted by R8 cell. Thus, R8 

cells are required for the EGFR-dependent recruitment of other cell types of each 

ommatidium (Dominguez et al., 1998; Jarman et al., 1994; Kumar et al., 1998; 

Lesokhin et al., 1999; Tio and Moses, 1997). Accordingly, the removal of spi does 

not affect R8 specification, but does prevent specification of all other 

photoreceptors (Tio and Moses, 1997). The activation of EGFR in the precluster 

ensures that these cells do not re-enter the cell-cycle by inducing the 

transcriptional upregulation of the cycE/cdk2 antagonist Dacapo (Dap) (Firth and 

Baker, 2005). The effector of the EGFR pathway, Pointed (Pnt), which is required 

for the differentiation and cell cycle arrest (Yang and Baker, 2003), directly 

regulates dap expression (Sukhanova et al., 2007). 

Cells that are neither R8 cells nor recruited by them, which comprise the remaining 

65% of the cells, synchronously re-enter the cell cycle, in the second mitotic wave 

(SMW) (Figure 7). Through this process more cells are produced to add up to 

fifteen more cells per ommatidium. Accordingly, most ommatidia are incomplete 

when the SMW is blocked by the expression of the p21CIP1/WAF1 homologue, dap. 

However, even under this condition all fates still occur, indicating that the SMW is 

not required for any particular fate specification (de Nooij and Hariharan, 1995).  

The remaining cells, that do not have EGFR activity, are activated by Dl which leads 

to trigger G1/S transition. Indeed, Dl expression is activated by EGFR pathway in 

the precluster. Thus, Notch activated by its ligand Dl and concomitant EGFR 

inactivation is required for cells to progress in the cycle through the G1 to S 

transition. Cells cannot enter into S phase in the absence of Notch signal (Baonza 

and Freeman, 2005; Firth and Baker, 2005). Once in S-phase, cells progress 

through the cycle until G2-phase.  Entry into mitosis depends on an EGFR-

dependent signal coming from differentiating Rs. In this way, cells born in the SMW 

are also in G1 when they differentiate.  
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6.  Drosophila appendage development 

As it is the case for the antenna in the head, all of the Drosophila adult appendages 

develop from primordia called imaginal discs (Cohen, 1993). 

Besides their very different structure and function, Snodgrass (1935) proposed that 

arthropod segmented appendages are homologous on the basis of their 

development and anatomy, and that the evolutionary ground state of arthropod 

limbs was composed of two segments: a basal segment, the coxopodite and a distal 

segment, the telopodite (Snodgrass, 1935).  

Drosophila antennae, legs, genitalia and analia are serially homologous 

appendages, despite their morphological differences, are thought to share a 

number of basic developmental mechanisms. These ventral appendages depend on 

different selector genes for their unique identity, that is, their specific structure and 

function. The activity of different selector genes acting upon a common ground 

state gives rise to different appendage morphologies. The loss of selector gene 

activity results in a leg-like appendage that would represent the developmental 

ground state. For example, the removal of both Antennapedia (Antp) and 

homothorax (hth) from T2 leg and only hth function from the antenna originates an 

appendage with the same structure that would represent this ground state (Casares 

and Mann, 2001; Struhl, 1981). However, this structure is only formed by two 

segments along the PD axis: proximal segment and distal tarsus (Casares and 

Mann, 2001), while WT legs are formed by five distinct segments. Surprisingly, the 

loss of selector gene function does not affect the underlying positional information 

along the proximo-distal (PD) axis (Casares and Mann, 2001). 

Although ventral homologous appendages, leg and antenna have very different 

structure and function. Legs are composed by 10 segments and are required for 

locomotion, while the antenna is composed by only three segments and an arista 

and performs a variety of sensory function, including olfaction, audition, 

hygrosensation and thermosensation (Carlson, 1996; Eberl, 1999; Gopfert and 

Robert, 2001; Sayeed and Benzer, 1996; Snodgrass, 1935) (Figure 9A). 

Based on the homology between leg and antenna segments (Postlethwait and 

Schneiderman, 1971), it has been shown that genes involved in generating the PD 

axis of these appendages have different expression patterns in each one, indicating 

that the PD axis of legs and antenna are differentially subdivided (Dong et al., 

2001) (Figure 9B, C). However, it seems unlikely that these relative differences in 

their expression pattern are due to variations in dpp and wg expression. Indeed, 

comparative analysis of leg and antenna development suggests that only some of 

the pattern-forming genes have leg and antenna expression patterns that coincide 

with the homology regions described by Postlethwait and Schneiderman (1971). 
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D ist

r, trochanter. 

Figure 9.  Comparison 

between the two ventral 

homologues appendages, leg 

and antenna. (A) 

Correspondence map of antenna 

and leg structures based on 

position-specific transformations 

in homeotic antennae of 

Antennapedia mutants (adapted 

from Cummins et al., 2003). (B, 

C) Expression of proximo-distal 

(PD) domain genes in (B) 

antenna and (C) leg of Drosophila 

(hth, homothorax; dac, 

dachshund; ll, D al-less; sal, 

spalt; ss, spineless; dan, distal 

antenna; danr, distal antenna 

related) (adapted from Angelini 

and Kaufman, 2005). 

Abreviations: a1, a2 and a3: first, 

second and third antenna 

segments; ar, arista; cl, claw 

organ; cx, coxa; fe, femur; ti, 

tibia; t, 1-5 first to fifth tarsal 

segments; t

 

The developmental choice between leg and antennal development lies in a single 

selector gene, the Hox gene Antennapedia (Antp), function (Postlethwait and 

Schneiderman, 1971): Antp seems to limit the overlap between the domains of hth 

and dll expression in the leg disc, avoiding hth expression in distal and medial leg 

cells (Casares and Mann, 1998) and in that way promotes leg development instead 

of antennal development.  

hth encodes a TALE (three amino acid loop extension) class homeodomain 

transcription factor (Burglin, 1997) that is required for antennal development and 

sufficient to induce antennae when ectopically expressed in domains expressing Dll. 

Hence, hth is consider to be an antenna selector gene (Casares and Mann, 1998; 

Dong et al., 2000). Indeed, the removal of hth function is sufficient to cause the 

transformation of antennal into leg-like appendages, without de-repression of Antp 

or any other HOX gene. The same occurs with the loss of extradenticle (exd) 

function (Casares and Mann, 1998; Gonzalez-Crespo et al., 1998; Gonzalez-Crespo 

and Morata, 1996). The PBC class homeodomain protein, Exd, is broadly 

transcribed and translated (Rauskolb et al., 1993) and forms complexes of 

relatively high specificity with Hth and Hox proteins by direct binding (Mann and 
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Chan, 1996). The Hth-Exd interactions promote the Exd nuclear localization that 

otherwise remains in the cytoplasm (Aspland and White, 1997; Kurant et al., 1998; 

Mann and Abu-Shaar, 1996; Pai et al., 1998; Rieckhof et al., 1997). On the other 

hand, Exd is necessary to prevent the degradation of the Hth protein (Abu-Shaar 

and Mann, 1998). Exd is an obligatory partner of Hth, and therefore the loss of 

either hth or exd results in similar developmental defects. 

Dll encodes a HD-containing transcription factor that function as a selector gene for 

all ventral appendages (Gorfinkiel et al., 1997), which includes all  limbs (Cohen et 

al., 1989). Lineage studies demonstrate that all segments, except the most 

proximal one, the coxa, derive from Dll-expressing cells, even if later during 

development Dll expression becomes restricted to distal segments. This reflects 

different temporal requirements for Dll along the PD axis of the leg: medial cells 

lose their requirement for Dll earlier than distal cells do (Campbell and Tomlinson, 

1998). Dll expression is lost from presumptive proximal cells during either 

embryogenesis or L1, while its loss from medial leg cells happens either before or 

during the L2. Dll is continually expressed in presumptive distal cells throughout leg 

development (Weigmann and Cohen, 1999). In the antenna, by analogy to the leg, 

it is thought that proximal-most Dll expression is lost during either embryogenesis 

or the L1. Dll is not only required to specify distal cell fates, but also to specify 

antennal versus leg fates together with hth (Panganiban, 2000).  

Antp is expressed in the cells that give rise to all three leg disc during 

embryogenesis and its expression persists during early leg disc development. 

However, later on, Antp expression is restricted to more proximal regions because 

it represses its own transcriptional activator, hth (Casares and Mann, 1998). In 

contrast, the antenna develops in the absence of Antp function (Struhl, 1981). 

Indeed, Antp seems to block the acquisition of the antennal fate by repressing 

genes essential for its identity like hth (Abu-Shaar and Mann, 1998; Casares and 

Mann, 1998). Nevertheless, Antp and hth are coexpressed in presumptive proximal 

leg, indicating that Antp may need a cofactor to repress hth. Dll is likely to be this 

cofactor, since it is expressed in distal leg, where Antp represses hth, and Dll is 

known to repress hth in legs (Abu-Shaar and Mann, 1998; Casares and Mann, 

1998; Gonzalez-Crespo et al., 1998). Accordingly, the absence of Antp expression 

in the presumptive antenna enables the coexistence of Hth and Dll. hth and Dll are 

independently regulated during antenna development (Dong et al., 2000).  
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6.1. PD axis formation 

Signaling mechanisms responsible for anterio-posterior (AP), dorso-ventral (DV) 

and proximo-distal (PD) patterning appear to be identical in the developing leg and 

antenna primordia (Brook et al., 1996; Campbell, 1995; Lecuit and Cohen, 1997). 

The first and fundamental subdivision occurs between A and P compartments and is 

established. In legs, this happens during embryogenesis, before the discs are 

formed (Garcia-Bellido et al., 1976; Lawrence and Morata, 1977). During early 

embryogenesis, P cells from each segment express Hh that diffuse and reach A cells 

that along AP boundary compartment activate wg expression. Later on, wg 

expression becomes restricted to a dorsal patch and a ventral stripe in each 

segment. The limb primordia are allocated as clusters of cells that include wg-

expressing cells at the dorsal edge of the ventral stripe and dpp-expressing cells 

positioned further dorsally (Campbell et al., 1993; Cohen et al., 1993). 

Nevertheless, in the antenna, the establishment of an effective AP restriction occurs 

much later during development (in L2)– and, actually, it happens in the eye-

antennal imaginal disc (Morata and Lawrence, 1979). 

In all Drosophila appendages, during larval stages, the  P compartment is 

characterized by the activity of the selector gene engrailed (en) that programs 

these posterior cells to express and secrete Hh while, simultaneously, blocks Hh 

signaling in these en-expressing cells. Thus, only anterior cells are capable to read 

and transduce the Hh signal (Dahmann and Basler, 2000; Lawrence and Struhl, 

1996). This AP subdivision is kept by ‘clonal boundary’: cells born in the anterior 

compartment never gives rise to posterior cells and vice-versa.  

The DV and PD subdivisions appear during postembryonic development of the disc 

(Abu-Shaar and Mann, 1998; Lecuit and Cohen, 1997; Morata, 2001), however, 

unlike the AP subdivision, they are not maintained by a cell lineage mechanism in 

ventral appendages (Mann and Morata, 2000). 

In the wing disc, Hh is known to activate dpp in anterior cells along the AP 

boundary, which can diffuse to both sides, acting at long range. Hence, Hh, 

indirectly through Dpp, controls growth and patterning in both compartments 

(Dahmann and Basler, 2000; Lawrence and Struhl, 1996). In both antenna and leg, 

this mechanism is more complex. dpp and wg are activated similarly by Hh, 

showing similar relative expression patterns and exhibiting similar mutual 

antagonism in both appendage primordia (Figure 10). Thus, DV subdivision results 

from the localization of Dpp and Wg signals: dpp and wg are expressed in opposite 

wedges along the AP compartment boundary in response to Hh signal (Basler and 

Struhl, 1994; Diaz-Benjumea et al., 1994). Complementary patterns of dpp and wg 

expression are maintained by mutually repressive interactions (Brook and Cohen, 
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1996; Jiang and Struhl, 1996; Penton and Hoffmann, 1996). The antagonism 

between the Dpp and Wg pathways ensures that the two domains (D and V) are 

kept developmentally segregated, i. e., the dorsalizing and the ventralizing 

activities of Dpp and Wg, respectively, are restricted to opposite sides of the leg 

primordium. However, dpp and wg expression domains are not strictly exclusive 

and overlap at the center of the primordium, where they jointly specify the distal 

tip of the future appendage. Further, the combination of Dpp and Wg signals 

induces growth and activates distinct genes along the PD axis (Basler and Struhl, 

1994; Campbell et al., 1993; Campbell, 1995; Diaz-Benjumea et al., 1994). 

 
Figure 10. 

Establishment of 

the proximo-

distal (PD) axis 

of the antenna. 

(A) A second instar 

(L2) eye-antennal 

disc shows the 

expression of 

hedgehog (hhZ, blue) in the anterior domain of the antenna (arrowhead), along the margin (arrow) and 

in the ocellar domain (asterisk). The expression of patched (ptc, yellow), the Hh receptor, reflects the 

activation of hh signaling. (B, C) As a short-range morphogen, Hh (hhZ, blue) diffuses and activates wg 

(Wg, red) in dorsal domain of the antenna (B) and in ventral domain of leg (C) discs. Note this apparent 

inversion of dorsal (D)/ ventral (V) domains in the antenna. It is just the result of assigning D or V 

position relative to the eye disc. Nevertheless, the wg- and dpp-expressing domains of antennae and 

legs are homologous. (D) Hh activates dpp (dpp>GFP, GFP expression driven by dppGal4 driver reflects 

dpp expression, green) in the ventral domain of the antenna, which results in opposing wedges of dpp 

and wg activation (wgZ, red). The mutual repression between Wg and Dpp signaling maintains 

separated the dorsal and ventral domains, except in the center of the disc, where wg and dpp are 

coexpressed. This domain of dpp and wg coexpression establishes the distal tip of the antenna and 

triggers the concomitant formation of the P/D axis. The TALE-homeodomain gene, homothorax (hth, 

blue), required for antennal specification, is initially expressed throughout the antennal disc, but 

becomes absent from the its most distal portion during L3. (E) Schematic representation of the 

establishment of the PD axis in the antennal disc.  

Studies on late larval leg development have shown that PD patterning becomes 

Wg- and Dpp-independent after 84h AEL. Downregulation of Wg or Dpp pathways 

after this time point results in a normal PD organization, despite ventral or dorsal 

patterning defects, respectively (Galindo et al., 2002).  

 

6.2. Leg Vs Antenna 

An essential difference between leg and antenna development is their 

developmental origin. Leg derives from independent imaginal disc, whereas the 
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antenna derives from the eye-antennal imaginal disc complex (Figure 11A-C). In 

addition, while leg imaginal discs are formed from cells that belong to the same 

embryonic thoracic segment, the eye-antennal imaginal disc derives from the fusion 

of different groups of cells originated in distinct embryonic head segments (Cohen 

et al., 1993; Younossi-Hartenstein, 1993). 

 
Figure 11. Differential 

gene expression along 

the proximo-distal (PD) 

axis of the antenna. (A, 

B) During second instar 

(L2), all cells from the eye-

antennal imaginal disc 

express homothorax (hth, 

blue). Two lobes are 

morphologically and 

genetically distinguishable: 

the anterior lobe or 

antennal disc expresses the 

gene cut (ct, green). The 

posterior lobe, the eye disc, 

expresses the eye selector 

gene eyeless (ey, red). (C) 

drumstick (drm) in situ 

hybridization (blue) reveals 

that, in addition to its 

expression along the 

margin, drm is also 

transcribed in the ventral 

region of the antenna disc, 

while  wingless (wgZ, 

orange) has a dorsal expression. (D) After the establishment of the PD axis, the antennal selector gene 

hth (purple) is downregulated in the most distal domain, which corresponds to the arista (ar) in the 

adult antenna (hthZ, F), while the gene required for the specification of all ventral appendages, Distal-

less (Dll>GFP, green) is expressed in the whole primordium except for its most proximal  region, which 

corresponds to the segment 1 (a1) of the adult antenna (DllZ, E). In response to different levels of Wg 

and Dpp signals, different genes are expressed along the PD axis. spalt (sal) is expressed specifically in 

the primordium of the segment 2 (a2) in late third instar (green, G) and in the adult a2 (salZ, H). 

eyegone (eyg) is expressed in both a2 and a3 (antenna segment 3) (blue, G). odd-skipped (odd) is 

expressed in two concentric rings (oddZ, red, G) that correspond to the joints between the head capsule 

(light blue, J) and a1 and between the a1 and a2 (oddZ, I, K). In addition, odd (oddZ, red, G) is 

expressed in the maxillary palp primordium in the disc (mp, blue, J). (J, K) Schematic representation of 

a late third instar antennal disc (J) and an adult antenna (K). 

The similarity between the actions of the Hh/Dpp/Wg pathways had lead to believe 

that the PD axes of the antenna and leg as constructed in a similar way. 
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Nonetheless, genes that are regulated by Dpp and Wg in the developing leg like Dll, 

hth and dac show different relative patterns in the antennal and the leg discs (Dong 

et al., 2001).  

In the leg, Wg and Dpp opposite gradients initiate the leg PD patterning by: 1) 

activating Dll distally (Lecuit and Cohen, 1997); 2) repressing dac distally (Lecuit 

and Cohen, 1997); and 3) repressing hth in the presumptive distal and medial leg 

(Abu-Shaar and Mann, 1998). Dll is activated in the central part of the disc (the 

future limb’s distal tip), where the wg and dpp are expressed at high levels and 

suppresses hth/exd activity (Abu-Shaar and Mann, 1998; Gonzalez-Crespo et al., 

1998). The activity of hth/exd remains in the periphery of the disc (the prospective 

proximal leg), where they block the response to Dpp and Wg target genes (Abu-

Shaar and Mann, 1998; Gonzalez-Crespo et al., 1998), that were activated at lower 

concentration of Dpp and Wg signals than Dll (Lecuit and Cohen, 1997). The mutual 

antagonism between hth/exd function and the Hh/Dpp/Wg pathways ensure the 

maintenance of the two distinct domains (P and D). Hth/Exd downregulate the 

activity of Wg and Dpp pathways in the proximal region neither by reducing 

transcription levels (Abu-Shaar and Mann, 1998; Gonzalez-Crespo et al., 1998; Wu 

and Cohen, 1999) nor affecting signal diffusion. Indeed, the analysis of the distinct 

functions of hth in leg development has shown that hth interferes with the function 

of Dpp pathway by two different mechanisms (Azpiazu and Morata, 2002). First, 

hth appears to regulate the levels of Mad phosphorylation, which can be used as an 

indicator of the levels of Dpp transduction (Tanimoto et al., 2000). Second, hth 

may also interfere with the activity of genes secondarily regulated by Dpp. In 

addition, dac and Dll repress each other, maintaining medial and distal leg as 

distinct domains (Dong et al., 2001). tsh, a Zn-finger-encoding gene, co-expressed 

with hth in the proximal leg disc, is sufficient to repress dac (Dong et al., 2001; 

Erkner et al., 1999), while hth is  neither required nor sufficient to repress dac 

(Dong et al., 2001; Wu and Cohen, 1999). The expression of tsh is determined by 

the convergence of Dpp and Wg signals and have no effect on development of distal 

leg segments (Erkner et al., 1999; Wu and Cohen, 2000). Tsh reinforces the action 

of both Dpp and Wg to prevent the expansion of Dll expression into more proximal 

regions (Lecuit and Cohen, 1997) and represses dac in the developing leg (Erkner 

et al., 1999; Wu and Cohen, 2000). On the other hand, dac is responsible for the 

maintenance of the distal limit of the hth-proximal domain, but does not regulate 

tsh expression (Abu-Shaar and Mann, 1998; Dong et al., 2001). Thus, proximal and 

medial leg are kept as distinct domains via the repression of dac by tsh and the 

repression of hth by dac, respectively.  
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In the antenna, dac is not responsible for hth and Dll repression, given that first, 

dac expression pattern coincides with the area of hth and Dll coexpression (Figure 

11 D-F) and second, that dac null mutant clones do not de-repress hth or Dll (Dong 

et al., 2001). Thus, contrary to what occurs in the leg, the mutual antagonism 

between these genes is not present in the antenna. Moreover, as reported by 

Mardon and colleagues, dac null flies do not show antennal defects, although have 

shortened legs, with their intermediate segments missing (Mardon et al., 1994). 

Accordingly, the expansion of dac expression domain in the antenna leads to the 

differentiation of medial leg structures in a 100% of antennae (Dong et al., 2001). 

Together these results indicate that dac functions in the specification of leg fates 

and seems to play no role in antenna development. In addition, the analysis of Dll 

null clones indicates that dac expression requires Dll (Dong et al., 2001). 

Dll and hth specify antenna fates via multiple genes (Dong et al., 2002). Both are 

required for the antennal expression of spineless (ss), dac, ato and sal (spalt, 

Figure 11G, H), whereas Dll is required independently for the activation of arista-

less (al), Bar and bric-a-brac (bab) (Campbell and Tomlinson, 1998; Chu et al., 

2002; Gorfinkiel et al., 1997; Kojima et al., 2000) and hth is required 

independently for the activation of cut (ct) (Dong et al., 2002). 

distal antenna (dan) and distal antenna related (danr) (also known as hernández 

and fernández) genes, which encode novel nuclear proteins, are required for distal 

antenna specification, acting downstream of genes that control the differentiation of 

distal antenna structures, such as hth and Dll (Emerald et al., 2003; Suzanne et al., 

2003). Indeed, Hth and Dll regulate dan and danr expression through the 

regulation of ss and ct. Inactivation of both genes partially transforms distal 

antenna into leg and ectopic expression of either of the genes results in 

transformation of distal leg into antenna. dan and danr seem to act as effectors of 

ss to specific distal antenna. ss encodes bHLH-PAS transcription factor and is the 

closest homolog of the mammalian dioxin receptor (Duncan et al., 1998). This gene 

is expressed early in both distal antenna and leg, but persists only in the antenna 

later in development. Consistent with its expression pattern, loss of function alleles 

are characterized by transformation of distal antenna to leg and deletion of distal 

leg structures. In addition, ectopic ss expression in distal leg transforms it into 

distal antenna (Duncan et al., 1998). Thus, ss functions in the control of antenna 

identity, being its regulation dependent on both Dll and Hth activity: removal of 

either Dll or hth functions results in the downregulation of ss expression (Dong et 

al., 2002; Duncan et al., 1998). Like ss, ct is also expressed differentially in leg and 

antenna. During antennal development ct expression is restricted to proximal 
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domains of the antenna, whereas in the leg ct is expressed in small clusters. 

However, unlike ss, ct is only regulated by Hth (Dong et al., 2002). 

In conclusion, both hth and Dll are required for antennal identity (Casares and 

Mann, 1998; Dong et al., 2000; Dong et al., 2001) and function by, for example, 

activating the antenna-specific transcription of sal (Casares and Mann, 1998; Dong 

et al., 2000; Dong et al., 2001).  

 

6.3. Segmentation: formation of articulations 

Segmentation is a developmental mechanism that subdivides a tissue into 

repeating functional units, which can then be further elaborated during 

development. In the leg, segmentation must be coordinated with tissue growth and 

PD axis specification. 

The leg anlage is divides in concentric segments along the PD axis (Couso and 

Bishop, 1998). The articulated joints localize at the boundaries between these 

segments (Fristrom, 1993). 

Notch signaling pathway localizes the presumptive joint areas between segments. 

Moreover, spatially restricted activation of the Notch pathway is required for joint 

development, i. e., segment formation depends on localized expression of the 

Notch ligands Dl and Ser, that activate Notch pathway in the domain where joins 

will form (Bishop et al., 1999; de Celis et al., 1998; Rauskolb and Irvine, 1999). In 

this process, in contrast to Dl-N lateral inhibition described for R8 specification, N 

receives signals from several ligands (Fleming et al., 1997): Serrate (Ser) and Dl. 

In addition, Fringe (Fng) has been proposed to bind N and to modulate its 

sensitivity to the ligands (Panin et al., 1997).  

Notch activation through a combined Ser and Dl signaling induces joints formation, 

activating the expression of E(spl) complex genes and disconnected (disco) in the 

presumptive joint areas (Bishop et al., 1999). Removal of Notch or one of Notch 

ligands reduces or completely eliminates the joins, whereas ectopic expression of 

any of these genes provokes the expansion of joints regions or the formation of 

ectopic joints, with associated disco expression activation. Ser and Dl are expressed 

in rings, their expression partially overlap near the distal end of each leg segment 

and induce joint development in the cells immediately distal to their expression 

domains.  

The work by Rauskolb (2001) demonstrates that some PD patterning genes are 

required to establish the segmental pattern of Notch ligand and fng expression. 

However, these genes act in different ways: hth and dac positively regulate the 

segmentation genes, while Dll inhibits their expression (Rauskolb, 2001). Regarding 

the distinct expression patterns of the PD patterning genes, these findings indicate 
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that each segmental ring of Notch ligand and fng expression is independently 

regulated.   

As mentioned, the antenna is dramatically different in its shape, number of 

segments and size relative to the leg. Although the signals involved in the 

patterning of leg and antenna appear to be identical (Brook et al., 1996; Campbell, 

1995; Lecuit and Cohen, 1997), still it is not completely understood to what extent 

the mechanisms operating during leg development are the same in the antenna, 

and if that were not the case, where the differences lie. In addition, while leg discs 

derive from a single embryonic thoracic segment (Cohen et al., 1993), the eye-

antennal disc derives from several embryonic segments (Younossi-Hartenstein, 

1993). This more complex developmental origin of the eye-antennal primordia also 

poses questions as to how these different cell groups coalesce and coordinate their 

development or how the highly modified structures of the head of dipterans have 

arisen during evolution.  

 

7. Odd family genes 

Odd-skipped family of proteins (Odd in Drosophila and Osr in vertebrates) are 

evolutionarily conserved zinc-finger (Zn-f) transcription factors, although the 

number of Zn-fs varies among them (Goldstein et al., 2005). 

In Drosophila, odd is the founder gene of this gene family and was first identified as 

pair-rule segmentation gene (Nusslein-Volhard and Wieschaus, 1980). odd together 

with other pair-rule genes is required to specify the anterior domain of odd-

numbered segments (Coulter and Wieschaus, 1988). Further analysis has detected 

odd expression in the heart, CNS and distinct regions of the gut, including the 

posterior region of the midgut and the proximal Malpighian tubules (Ward and 

Coulter, 2000), indicating that odd could have functions other than embryonic 

epidermal patterning. 

In addition to odd, three other genes, brother of odd with entrails limited (bowl), 

drumstick (drm) and sister of odd and bowl (sob) belong to this family. All four 

genes are clustered on the left arm of the second chromosome (Figure 12A). 

Molecular analysis of Odd has revealed that the protein contains four tandem C2H2 

(Cys-Cys/His-His) Zn-f repeats, suggesting that it could function as a DNA binding 

protein and transcriptional regulator (Coulter et al., 1990). sob and bowl were 

described as odd paralogues (Hart et al., 1996; Wang and Coulter, 1996). As 

expected for paralogous genes, they exhibit high conservation within the Zn-f 

putative DNA binding regions and diverge appreciably in other regions. In addition, 

Sob and Bowl have an extra Zn-f, located at the C-terminus. Besides this feature, 

sob shows a similar embryonic expression pattern to odd and drm, while bowl has a 
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more widespread pattern. Thus, odd, drm and sob may have overlapping functions 

(Hart et al., 1996). drm was first identified in a screen for genes controlling 

Malphigian tubules and other epithelia morphologies and implicated in fore- and 

hindgut morphogenesis (Liu et al., 1999). In contrast to the other members of this 

family, Drm presents only two Zn-fs: one C2H2 and one C2HC (Figure 12B, C) 

(Green et al., 2002).    

 

 

Figure 12. odd family genes: comparison between the four elements of the family and their 

relative expression in the antenna and the leg discs.  (A) All four odd-family genes map within a 

region of approximately 250kb on the second chromosome (from Flybase). The green line marks a 

deficiency (Df drmP2) that removes the sob, odd and drm loci, plus a number of other genes (described 

in Green et al., 2002). (B, D) odd is the founder member of this gene family and encodes a protein that 

contains four C2H2 Zn-fingers. Bowl and Sob have a fifth Zn-finger domain. The more divergent gene of 

this family is drm that encodes a protein with one C2H2 Zn-finger and a divergent C2HC Zn-finger. Zn-

finger domains are represented by white ovals and the divergent Zn-finger domain by a yellow oval (C). 

drm (drm in situ hybridization, blue, D), bowl (anti-Bowl antibody, green, F, F’) and odd (oddZ reporter, 

red, F, F’’) show two rings of expression in the antenna. In the leg, drm (drm in situ hybridization, blue, 

E), bowl (anti-Bowl antibody, green, G, G’) and odd (oddZ reporter, red, G, G’’) show six rings of 

expression. bowl (green) and odd (red) show extensive co-expression in the antenna (yellow, F) and in 

the leg (yellow, G). 

drm and bowl, together with lines (lin) were shown to be required for normal 

hindgut morphology (Iwaki et al., 2001). Removal of any of these genes causes 

shorter and wider hindguts that show defects in cell arrangement. However, the 

distinct intestine domains are differentially affected: drm together with bowl are 

required for small intestine development, whereas lin represses small intestine fate 

and favors large intestine and rectum development (Iwaki et al., 2001). Further 

investigation in hindgut development revealed that drm and lin interact genetically 

and that lin is epistatic to drm (Green et al., 2002). In the dorsal epidermis, Lin 

seems to act in parallel to the Wg pathway to specify a specific cell type, while 

interactions with Hh are thought to be responsible for the determination of other 
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cell type (Bokor and DiNardo, 1996). In addition, Lin was proposed to interact with 

Wg transducer effectors during dorsal epidermal patterning, being required for late 

Wg signaling activity (Hatini et al., 2000). Hh signaling seems to regulate lin 

function, since in Hh-reading cells Lin localize in the cytoplasm, whereas in Wg-

reading cells it localzes in the nucleus. Based on this, Hatini and colleagues (2000) 

hypothesize that Lin might act as a transcriptional regulator. Indeed, this seems to 

be the way lin functions in the specification of the small intestine of the hindgut. 

The proposed model reveals a relief-of-repression mechanism where Drm binds to 

Lin, through the first zinc finger (C2H2), allowing the expression of genes required 

for small intestine fate (Green et al., 2002). Nevertheless, a recent study show that 

bowl is epistatic to lin in the development of the posterior foregut and anterior 

hindgut, meaning that these fates are regulated by a Drm-Lin-Bowl genetic 

hierarchy based on protein-protein interactions (Johansen et al., 2003). Indeed, 

competitive protein-protein interactions between Drm and Lin and between Lin and 

Bowl regulate the steady-state accumulation of Bowl (Hatini et al., 2005). This 

competition leads to the redistribution of Lin to the cytoplasm in the presence of 

Drm, allowing the accumulation of Bowl. Moreover, this mechanism is affected by 

Hh and Wg signaling, since Hh promotes drm expression, while Wg represses its 

expression (Hatini et al., 2005). Bowl protein is detected in the nucleus in fore- and 

hindgut where drm is expressed. In drm mutant embryos, nuclear Bowl 

accumulation is barely detected, whereas lin mutant embryos look like drm lin 

double mutant embryos, where Bowl accumulates nuclearly throughout the fore- 

and hindgut primordium. This mechanism seems to be conserved in imaginal discs, 

where Bowl is detected in the nucleus where drm is expressed. Indeed, lin mutant 

clones in leg disc causes the accumulation of Bowl in a cell-autonomous manner 

(Hatini et al., 2005).  

In the leg, odd family genes are required downstream of Notch to promote leg 

segmentation. Their expression is dependent on Notch activity, showing a 

segmentally repeated pattern in rings (Figure 12E, G) (de Celis Ibeas and Bray, 

2003; Hao et al., 2003).  Accordingly, odd genes may instruct the formation of 

folds during the process of leg joint development: ectopic expression of odd, sob or 

drm induces invagination in the leg disc epithelium that in adult leg is revealed as 

ectopic joins (Hao et al., 2003). odd and drm have been proposed to act 

redundantly during leg segmentation, since odd or drm single mutant clones do not 

affect leg segmentation (Hao et al., 2003). On the other hand, the removal of bowl 

impedes the development of the joints, without affecting the expression of N 

ligands (de Celis Ibeas and Bray, 2003; Hao et al., 2003). In the antenna, the 

expression of those ligands apparently does not seem to correlate with the rings of 
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odd expression (Casares and Mann, 2001). In the eye disc, the odd gene is 

expressed along the margin and never in eye developing cells (Figure 4A). In 

addition, odd can be detected in phc in adult heads (Figure 4C). This feature raises 

the question of whether odd is required in the posterior margin cells for their 

function as the firing point for retinal differentiation onset. 

In addition, bowl seems to have a role in tarsal development, controlling the 

acquisition of tarsal fate through the regulation of bab expression. bowl mutant 

clones induce the expansion of bab expression domain and repress dac and BarH1 

expression (de Celis Ibeas and Bray, 2003; Hao et al., 2003). Indeed, Bowl helps 

resolving the pattern of these genes by promoting dAP-2 expression and repressing 

Nubbin (Nub) expression. Moreover, mutual repression between dAP-2 and Nub 

further refines the pattern and maintains the subdivision of the field into non-

overlapping and adjacent territories (Greenberg, 2007). 

In addition, results from the Hatini lab (Hatini, 2007; Kula-Eversole, 2007) revealed 

that lin acts as a tumor suppressor gene, since the removal of lin function from the 

wing disc, that results in bowl activation, induces ectopic epithelial growth 

characterized by cells with increased size and division rate. In addition, ectopic 

expression of bowl or drm induces hyperplastic growth that is reverted when wg 

function or JAK/STAT pathway is blocked. 

Odd and Bowl proteins present an Engrailed homology 1 (eh1) like domain that 

recruits the Groucho co-repressor to downregulate target genes during embryonic 

segmentation (Goldstein et al., 2005). Although Groucho does not bind DNA, it is 

recruited to target promoters by associating with a large number of DNA-binding 

transcriptional regulators (Chen and Courey, 2000). Indeed, in zebrafish and in 

Xenopus, both Osr1 and Osr2 genes have been shown to be required for normal 

kidney development, acting as transcriptional repressors. This function seems to be 

conserved in Drosophila, where odd genes are required for proper development of 

the Malpighian (renal) tubules (Tena et al., 2007). 

Two mammalian odd-skipped related genes, Osr1 and Osr2, have been described 

each containing three Zn-fs, except the mammalian OsrA splice variant that 

contains five (Goldstein et al., 2005). Both genes show a very dynamic expression 

pattern during mouse embryogenesis that includes expression in kidneys and limbs 

(Lan et al., 2001; So and Danielian, 1999). In mice, Osr1 seems to function in 

heart and kidney development (Wang et al., 2005), whereas its paralogue Osr2 is 

an important regulator of secondary palate development (Lan et al., 2004; Stricker 

et al., 2006). In chicken, Osr1 and Osr2 are expressed in the developing kidney, 

heart, gut, eye, branchial arches, the trunk dermis and the limbs (Lan et al., 2004; 

Stricker et al., 2006). Thus, the domains of expression Osr genes seem to be 
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conserved between chick and mouse. In C. elegans, two odd genes have been 

identified and characterized (Buckley et al., 2004). odd1 and odd2 play essential 

and distinct roles during gut development.  
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Chapter I  

 

Odd-skipped genes specify the signaling 

center that triggers retinogenesis in 

Drosophila. 

 

In this study we tried to identify the gene(s) required 

for the functional specialization of the posterior 

margin of the eye disc as retinal firing point. The 

mechanism of retinal induction upon the activity of hh, 

that, in parallel and through the activation of dpp, is 

responsible for the instruction of the neighbour eye-

committed cells to differentiate as eye cells, is well 

understood. However, less is known about the 

upstream mechanism that activates hh expression 

specifically at the posterior margin. Here, we show 

that the odd family genes fulfil the three requirements 

to be considered as ‘margin specification genes’: all 

the four genes are expressed along the margin before 

the trigger of the MF; the Drm-Odd/Lin/Bowl cassette 

is active in the margin, where Drm together with Odd 

are responsible for the relief of Lin repression on 

Bowl, which then activates hh expression; and, in 

addition, when ectopically expressed within the eye 

field, Drm and Odd are sufficient to induce ectopic 

eyes (Bras-Pereira et al., 2006). 
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INTRODUCTION
In Drosophila, the eye primordium is specified as a subdomain of
the Pax6-expressing cells in the center of the eye disc, by the co-
expression of a set of retinal determination genes (Bonini et al.,
1993; Cheyette et al., 1994; Dominguez and Casares, 2005; Halder
et al., 1998; Mardon et al., 1994; Pappu and Mardon, 2004). Then,
retinogenesis is triggered by the hedgehog (hh) and the hh target
decapentaplegic (Dpp/Bmp4) signals that are produced by the
surrounding posterior margin cells (Fig. 1A), at the so-called ‘firing
point’ (Treisman and Heberlein, 1998). These margin cells abut the
eye primordium and give rise to part of the adult head capsule
surrounding the eye (Haynie and Bryant, 1986). Once initiated,
retinal differentiation propagates in a posterior-to-anterior wave
(Fig. 1B,C), with the differentiation wavefront marked by an
epithelial indentation: the morphogenetic furrow (MF) (Treisman
and Heberlein, 1998). The gene(s) responsible for this specialization
of the posterior margin are unknown.

MATERIALS AND METHODS
Drosophila strains
odd5, drm6, bowl1, wg1-16 (wgCX3), oddrK111 (oddZ), hhP30 (hhZ), dppBS3.0
(dppZ), P{en1}wgen11 (wgZ), P{GAL4}hhGal4 (hh-GAL4) are described
in FlyBase. Df(2L)drmP2 (Green et al., 2002; Hao et al., 2003) deletes from
tim to odd, and uncovers ~30 predicted genes, including drm, sob and odd.
UAS strains were UAS-odd(A) and UAS-sob(6) (Hao et al., 2003), UAS-
bowl(1.1) (de Celis Ibeas and Bray, 2003), UAS-drm (on the III) and UAS-
lines (Green et al., 2002; Hatini et al., 2000), and UAS-Src-GFP
(Kaltschmidt et al., 2000). odd-GAL4 faithfully reproduces odd expression
(a gift from G. Morata and M. Calleja, CMB, Spain). drm6 was recombined
onto a FRT40A chromosome.

Loss-of-function clones:
odd5, drm6 and bowl1 mitotic clones were induced between 24 and 48 hours
after egg laying (AEL) by a 45 minute 37°C heat-shock in larvae from the
crosses of odd* FRT 40A/balancer males to yw hsFLP 122; Ubi-GFP
FRT40A females (odd* represents each of the alleles used). DfdrmP2 cells
do not survive unless given a growth advantage, for which we used the
‘Minute technique’ (Morata and Ripoll, 1975). Clones were induced
between 24 and 72 hours AEL by a 20 minute 37°C heat-shock in larvae

from the crosses of odd* FRT40A males to yw, hsFLP122; M armZ FRT40A
females. In some experiments, we used yw ey-FLP as flipase source
(Newsome et al., 2000) to maximize the amount of mutant tissue in eye
discs. Mutant cells were identified by the absence of �-galactosidase (armZ).

Ectopic-expression (‘flip-out’) clones of odd-family genes and lines
These clones were induced between 24 and 48 hours AEL (L1 stage) in
larvae from the crosses between UAS-odd* (where odd* means odd, drm,
sob or bowl) or UAS-lines males and y, hsFLP122, actinP>hsCD2>Gal4
females (Basler and Struhl, 1994). Clones were marked negatively by the
absence of CD2 (CD2 was induced by a 45 minute 37°C heat-shock,
followed by 45 minutes recovery at room temperature). The hhZ, dppZ or
oddZ reporters were introduced in the genotypes of some experiments. The
overexpression of drm in bowl– cells was achieved using the MARCM
technique (Lee and Luo, 2001). UAS-drm was balanced over TM6B, Tb, so
drm-expressing larvae were Tb+. Clones were marked positively by
expression of GFP.

Antibodies
We used rabbit anti-�-gal (Cappel), mouse anti-�-gal (Sigma), rabbit anti-
GFP (Molecular Probes), mouse anti-CD2 (Serotec), guinea pig anti-Odd
(Kosman et al., 1998) and mouse ant-Ptc (Nakano et al., 1989). Rat anti-
Elav, mouse anti-Wg (4D4) and mouse anti-Eya are from the Iowa
University Studies Hybridoma Bank. RNA probes for odd, drm, sob and
bowl were as described previously (Hao et al., 2003). Phalloidin-FITC
was used to mark filamentous actin. Appropriate fluorescent secondary
antibodies were from Molecular Probes. Anti-mouse-HRP (Sigma) was used
for immunoperoxidase staining.

RESULTS AND DISCUSSION
bowl, odd, drm and sob are expressed in the
margin-peripodial cells in early eye discs, but
their expression patterns differ later on in
development
The eye disc is a flat epithelial sac. By early third larval stage
(L3), columnar cells in the bottom (disc proper: Dp) layer are
separated by a crease from the surrounding rim of cuboidal
margin cells. Margin cells continue seamlessly into the upper
(peripodial; Pe) layer of squamous cells (Fig. 1C-G). The Dp will
differentiate into the eye, while the margin and Pe will form the
head capsule (Haynie and Bryant, 1986). In addition, the posterior
margin produces retinal-inducing signals (Treisman and
Heberlein, 1998).

By examining gene reporters we found that the zinc-finger gene
odd-skipped (odd) is expressed restricted to the posterior margin and
Pe of L3 eye discs (Fig. 1). As the odd family members drumstick
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(drm), brother of odd with entrails limited (bowl) and sister of odd
and bowl (sob) are similarly expressed in leg discs (de Celis Ibeas
and Bray, 2003; Hao et al., 2003), we examined them in eye discs.
In L2, before retinogenesis has started, odd and drm are transcribed
in the posterior Pe-margin (Fig. 1H,I), and this continues within the
posterior margin after MF initiation (Fig. 1L,M). bowl is transcribed
in all eye disc Pe-margin cells of L2 discs (Fig. 1J), but retracts
anteriorly along the margins and Pe after the MF passes (Fig. 1N).
In addition, bowl is expressed weakly in the Dp anterior to the
furrow. sob expression in L2 and L3 is mostly seen along the lateral
disc margins (Fig. 1K,O). Therefore drm, odd and bowl are co-
expressed at the posterior margin prior to retinal differentiation
initiation.

bowl is required for hedgehog expression in
margin cells and for triggering retinal
differentiation
Odd family genes regulate diverse embryonic processes, as well as
imaginal leg segmentation (de Celis Ibeas and Bray, 2003; Green
et al., 2002; Hao et al., 2003; Hatini et al., 2005; Johansen et al.,
2003). Bowl is required for all these processes (Green et al., 2002;
Hao et al., 2003). In embryos, the product of the gene lines (Bokor
and DiNardo, 1996) binds to Bowl and represses its activity, while
Drm relieves this repression in drm-expressing cells (Hatini et al.,
2005). As drm/odd/bowl expression coincides along the posterior
margin around the time retinal induction is triggered, we asked
whether they controlled this triggering. First, we removed bowl
function in marked cell clones induced in L1. bowl– clones
spanning the margin, but not those in the DP, cause either a delay
in, or the inhibition of, retinal initiation (Fig. 2A,B) and the
autonomous loss of hh-Z expression (Fig. 2C,E). Correspondingly,
there is a reduction in expression of the hh-target patched (ptc)
(Fig. 2D). These effects on hh and ptc are not due to the loss of

margin cells, as drm is still expressed in the bowl– cells (not
shown). The requirement of Bowl for hh expression is margin
specific, as other hh-expressing domains within the disc (Royet
and Finkelstein, 1997) are not affected by the loss of bowl (not
shown). As expected from the bowl-repressing function of lines
(Green et al., 2002; Hatini et al., 2005), the overexpression of lines
along the margin phenocopies the loss of bowl (Fig. 2F).
Nevertheless, the overexpression of bowl in other eye disc regions
is not sufficient to induce hh (not shown). This suggests that, in
regions other than the margin, either the levels of lines are too high
to be overcome by bowl or bowl requires other factors to induce
hh, or both.

drm and odd are required for and sufficient to
initiate retinogenesis
drm and odd are expressed together along the posterior disc margin-
Pe (Fig. 1), and drm (at least) is required for Bowl stabilization in
leg discs (Hatini et al., 2005). Nevertheless, the removal of neither
drm (Fig. 3A) nor odd (not shown) function alone results in retinal
defects. odd and drm may act redundantly during leg segmentation
(Hao et al., 2003) and this may also be the case in the eye margin.
To test this, we induced clones of DfdrmP2, a deficiency that deletes
drm, sob and odd, plus other genes (Green et al., 2002). When
DfdrmP2 clones affect the margin, the adjacent retina fails to
differentiate, suggesting that drm and odd (and perhaps sob, for
which no single mutation is available) act redundantly to promote
bowl activity at the margin (Fig. 3B,C) (although we cannot exclude
that other genes uncovered by this deficiency also contribute to the
phenotype). To test the function of each of these genes, we
expressed drm, odd and sob in cell clones elsewhere in the eye disc.
Only the overexpression of drm or odd induced ectopic
retinogenesis (Fig. 3D and not shown), and this was restricted to the
region immediately anterior to the MF, which is already eye

RESEARCH REPORT Development 133 (21)

Fig. 1. Expression of the odd-genes is associated to the
margin-peripodial cells of the eye disc during
development. (A,B) Schemes of late L2/early L3 (A) and late
L3 (B) eye discs. (A) Posterior margin cells trigger
retinogenesis in the adjacent eye primordium (ep) by
producing Hh. (B) Once triggered, retinal differentiation
progresses anteriorly (eye). (C) Cross-section through the line
in B shows the peripodial and margin cells (green) overlaying
the differentiating eye primordium. (D,E) Confocal images of
the posterior region of a third larval stage (L3) disc through
the peripodial (Pe, D) and disc proper (Dp, E) layers, stained
with phalloidin-FITC and Elav (a photoreceptor marker used in
this and following figures). The margin (ma) is a thin strip of
cells adjacent to the posterior-most row of photoreceptors.
(F) Confocal z-section through the same disc showing the
three cell types (schematized below). (G) Confocal z-section
through the posterior region of a L3 odd-GAL4>GFP disc, co-
stained with Eya. odd is restricted to the Pe and margin.
(H-O) Patterns of expression of the four odd genes in L2 (H-K)
and L3 (L-O). Expression of odd is monitored by the odd-
GAL4 reporter (H, left; L) or with an anti-Odd antibody (H,
right), and that of drm (I,M), bowl (J,N) and sob (K,O) by RNA
in situ hybridization. The patterns of drm and odd seem
identical. (H, left) Propidium iodide marks nuclei. (H, right)
Rhodamine-phalloidin stains actin. (L) Arm expression marks
cell membranes. Arrowheads indicate the margins. Discs are
oriented with posterior towards the right and dorsal upwards.
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committed. Interestingly, bowl is also expressed in this region of L3
discs (Fig. 3E). The retina-inducing ability of drm requires bowl,
because retinogenesis is no longer induced in drm-expressing
clones that simultaneously lack bowl function (Fig. 3F). Therefore,
it seems that in the eye, drm (and very likely also odd) also
promotes bowl function.

The expression of hh (Heberlein et al., 1995) or activation of its
pathway (Chanut and Heberlein, 1995; Dominguez and Hafen,
1997; Ma and Moses, 1995; Pan and Rubin, 1995; Strutt and
Mlodzik, 1995; Wehrli and Tomlinson, 1995) anterior to the furrow
is sufficient to generate ectopic retinal differentiation. As (1) bowl
is required for hh expression at the margin, (2) this hh expression is

4147RESEARCH REPORTodd genes and retinogenesis

Fig. 2. bowl is required specifically at the margin for retinal
triggering and hh expression. Clones are marked by the absence of
GFP (A-E) or CD2 (F). (A-E) bowl– clones spanning the posterior
margin. (A, inset in B) Defective retinal initiation is associated with
bowl– mutant margin (arrow). Retinal initiation is partially rescued non-
autonomously by neighboring tissue (clone outlined in B). (C,C�) bowl–

clone spanning the margin loses hh-Z autonomously (arrow; clone
outlined in C�). (D,D�) The expression of Ptc is also reduced in a bowl–

clone (arrow). (E,E’) Internal bowl– clone abutting, but not including,
the margin develops retina normally (clone outlined in E�). The hh-Z
margin expression (arrow) is normal. (F,F�) lines-expressing clone at the
margin resembles loss of bowl, causing loss of margin hh-Z and retinal
failure (arrow). The hh-Z ocellar expression is not affected (asterisk).
Discs are oriented with posterior towards the right and dorsal
upwards.

Fig. 3. drm and odd regulate hh expression, probably through
enabling bowl function. (A,B) Eye discs containing M+ clones mutant
for (A) drm6 or (B) DfdrmP2 (marked by absence of lacZ). (A) No effect
on retinogenesis or Ptc expression is seen adjacent to drm-mutant
margin. (Similar results were obtained for odd5.) (B) Retinogenesis fails
when the adjacent margin is mutant for DfdrmP2. White and red
arrows indicate mutant and wild-type margin, respectively. (C) Adult
head from the DfdrmP2, M+ experiment showing severely reduced
eyes. (D,D’) drm-expressing clone (absence of CD2, and outlined in D�)
induces an ectopic furrow (marked by dpp-Z) and associated
retinogenesis (detected by Elav). The line indicates the position of the
endogenous furrow (D). (E) Disc proper (Dp) expression of bowl mRNA
is detected anterior to the furrow (line) in late L3 discs. (F-F”) drm+

bowl– clones (blue) do not induce ectopic retinal differentiation anterior
to the morphogenetic furrow (arrow; line indicates the furrow).
Phalloidin stains actin. A drm+ bowl– clone located immediately after
the furrow (boxed) shows Elav-positive neurons (inset). (G-G”) L2 eye
disc from oddZ/UAS-GFP; hh-GAL4 larvae shows extensive overlap of
hh and odd at the posterior margin. Asterisk indicates the hh ocellar
domain, which, at this stage, does not express odd-Z. (H-H”) Most
drm-expressing clones (absence of CD2, outlined in H� and H�) induce
hh-Z expression just anterior to the morphogenetic furrow (line). Discs
are oriented with posterior towards the right and dorsal upwards.
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largely coincident with that of odd and drm (Fig. 3G), and (3) drm
(and possibly odd) functionally interacts with bowl, we checked
whether drm- and odd-expressing clones induced the expression of
hh. In both types of clones hh expression is turned on autonomously,
as detected with hh-Z (shown for drm in Fig. 3H), which would thus
be responsible for the ectopic retinogenesis observed. That the
normal drm/odd/bowl-expressing margin does not differentiate as
eye could be explained if margin cells lack certain eye primordium-
specific factors.

wingless represses drm transcription along the
anterior dorsal eye disc margin
Our results indicate that the expression of odd and drm defines
during L2 the region of the bowl-expressing margin that is
competent to induce retinogenesis. How is their expression
controlled? wingless (wg) is expressed in the anterior margin, where
it prevents the start of retinal differentiation (Ma and Moses, 1995;

Treisman and Rubin, 1995). drm/odd are complementary to wg
(monitored by wgZ) during early L3, when retinal differentiation is
about to start, and also during later stages (Fig. 4A,C,E). In
addition, when wg expression is reduced during larval life in
wgCX3 mutants, drm transcription is extended all the way
anteriorly (Fig. 4B,D). This extension precedes and prefigures the
ectopic retinal differentiation that, in these mutants, occurs along
the dorsal margin (Fig. 4B,D,F). Therefore, wg could repress
anterior retinal differentiation by blocking the expression of odd
genes in the anterior disc margin, in addition to its known role in
repressing dpp expression and signaling (Hazelett et al., 1998;
Treisman and Rubin, 1995).

Interestingly, the onset of retinogenesis in L3 is delayed relative
to the initiation of the expression of drm/odd (this work) and hh
(Cavodeassi et al., 1999; Cho et al., 2000) in L1-2. This delay can
be explained in three, not mutually exclusive, ways. First, the
relevant margin factors (i.e. drm/odd, hh) might be in place early,
but the eye primordium might become competent to respond to
them later. In fact, wg expression domain has to retract anteriorly
as the eye disc grows, under Notch signaling influence, to allow the
expression of eye-competence factors (Kenyon et al., 2003).
Second, building up a concentration of margin factors sufficient to
trigger retinogenesis might require some time. In fact, the activity
of the Notch pathway along the prospective dorsoventral border is
required to reinforce hh transcription at the firing point (Cavodeassi
et al., 1999). Third, other limiting factors might exist whose activity
becomes available only during L3. Such a factor might be the EGF
receptor pathway, which is involved in the triggering and
reincarnation of the furrow along the margins during L3 (Kumar
and Moses, 2001).

In addition to hh, other genes are required for retinal triggering,
including dpp (Burke and Basler, 1996; Pignoni and Zipursky,
1997; Wiersdorff et al., 1996), eyes absent (eya) (Bonini et al.,
1993) and the target of eya dachshund (dac) (Mardon et al., 1994;
Pignoni et al., 1997). These genes are expressed in both the
posterior region of the eye primordium and the posterior margin. In
addition to their role in eye specification, they might also specify
the margin. Although the regulatory relationships between hh and
dpp, or dpp and eya are obscured by cross-regulatory interactions
(Borod and Heberlein, 1998; Chen et al., 1999; Curtiss and
Mlodzik, 2000; Hazelett et al., 1998; Pignoni and Zipursky, 1997),
recent functional data indicate that dpp and eya are functionally
downstream of hh (Pappu et al., 2003). The possibility that the odd
genes control the expression or function of dpp and eya at the
margin remains to be tested.
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Chapter II  

 

 

An antennal-specific role for bowl in 

repressing supernumerary appendage 

development in Drosophila. 

 

Based on the homology between the ventral 

appendages, legs and antenna, we decided to 

investigate the function of odd family genes in 

antennal development. These genes were known to 

play an essential role in leg segmentation. Besides, 

bowl seems to have an additional function in the leg 

PD patterning. Our results reveal that odd family 

genes, despite their segmented expression pattern, 

may not be necessary for joint formation in the 

antenna. However, we describe a role for bowl in the 

establishment of the PD axis. Before PD patterning is 

established, bowl function is required in the ventral 

antennal disc to ensure that these cells, along the AP 

compartment boundary, respond to Hh signal by 

activating dpp instead of wg expression (Bras-Pereira 

and Casares, submitted).  
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ABSTRACT 

In Drosophila, antennae and legs are serially homologous appendages, and yet they 

develop into organs of very different structure and function. This implies that 

different genetic mechanisms operate onto a common developmental ground state 

to produce antennae and legs. Still few such mechanisms have been uncovered. 

During leg development, bowl, a member of the odd-skipped gene family, has been 

shown to participate in the formation of the leg segmental joints. Here we report 

that, in the antennal disc, bowl has a dramatically different role: bowl is expressed 

in the ventral antennal disc to prevent inappropriate expression of wg early during 

development. The removal of bowl function leads to the activation of wg in the dpp-

expressing domain. This ectopic intersection of wg and dpp results in a new 

proximo-distal axis that promotes non-autonomous antennal duplications. The role 

of bowl in suppressing a supernumerary PD axis is maintained even when the 

antennal disc is homeotically transformed into a leg-like appendage. Therefore, 

bowl is part of a genetic program that suppresses the formation of supernumerary 

appendages specifically in the fly’s head. 

 

INTRODUCTION 

In Drosophila, antennae, mouthparts, legs and genitalia are considered to be 

serially homologous ventral appendages (Cohen, 1993). This means that despite 

their very different structure and function, they are thought to develop from a 

common developmental ground state. It is the segment-specific selector gene 

expression that, acting upon this ground state, defines their specific morphologies 

(Casares and Mann, 2001; Duncan et al., 1998; Estrada and Sanchez-Herrero, 

2001; Joulia et al., 2006). Of these ventral appendages, the development of leg is 

best understood (Kojima, 2004; Morata and Sanchez-Herrero, 1999). The leg 

primordium is set aside as a cluster of epidermal cells, composed of a distal 

population, that expresses Distal-less (Dll) and a proximal one, expressing 
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homothotax (hth), teashirt and escargot (Kojima, 2004). This early genetic 

subdivision would correspond to the proximo-distal (PD) telopoditecoxopodite 

subdivision of the insect appendages proposed by Snodgrass on 

comparative/evolutionary grounds (Gonzalez-Crespo and Morata, 1996; Snodgrass, 

1935). hedgehog (hh), expressed by posterior cells within the leg primordium, 

triggers the expression of the decapentaplegic (dpp) and wingless (wg) signaling 

molecules in anterior cells (Basler and Struhl, 1994; Campbell et al., 1993; Diaz-

Benjumea et al., 1994) which, through mutual repression, become expressed in a 

dorsal and a ventral wedge, respectively (Brook et al., 1996; Jiang and Struhl, 

1996; Johnston and Schubiger, 1996; Theisen et al., 1996). wg and dpp 

expressions only coincide at the center of the leg disc and it is this confluence of 

maximal signaling that defines the distal tip of the future leg and triggers growth 

(Jiang and Struhl, 1996; Lecuit and Cohen, 1997). The larval development of the 

leg primordium– called leg imaginal disc then progresses by the successive 

definition of intermediate domains of gene expression and it is through this 

combinatorial of genes that the segments of the leg (coxa, trocanter, femur, tibia 

and tarsus) are defined (Kojima, 2004). During late larval life, leg development 

becomes wg/dpp-independent, and the distal disc tip becomes a source of EGFR 

signaling, which is responsible of the further segmentation of the tarsus into the 

five tarsomeres and the terminal claw (Campbell, 2002; Galindo et al., 2002). 

Growth and segmentation of the leg also depends on Notch signaling. The 

activation of Notch by its ligands Delta (Dl) and Serrate (Ser) is necessary for the 

disc growth, and the overlapped expressions of Dl and Ser in concentric rings define 

the position of the joints of the leg segments as the cells immediately distal to 

these rings (Bishop et al., 1999; de Celis et al., 1998; Rauskolb and Irvine, 1999). 

The odd-skipped family of genes, odd-skipped (odd), drumstick (drm) and sister of 

odd and bowl (sob) are among the Notch targets in legs. These genes are 

expressed in concentric rings at the prospective leg joints, just distal to the Dl/Ser 

ring domains (de Celis Ibeas and Bray, 2003; Hao et al., 2003). A fourth member 

of the family, brother of odd with entrails limited (bowl), has a more widespread 

expression pattern (de Celis Ibeas and Bray, 2003; Hao et al., 2003). Genetic data 

indicate that bowl is required for the segmentation of the leg, and that the localized 

co-expression of the other family members allows (probably in a redundant fashion) 

the activation of bowl at the prospective joints (de Celis Ibeas and Bray, 2003; Hao 

et al., 2003). Further molecular and genetic experiments show that, at least during 

embryogenesis, the product of the gene lines blocks bowl function by directly 

binding to Bowl and preventing its nuclear accumulation. Drm and likely Odd are 

able to competitively displace Lines from Bowl, thus allowing Bowl to become 
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nuclear and function (Hatini et al., 2005). The distinct antennal development is 

promoted by the distal maintenance of hth expression in the antennal disc, 

resulting in the co-expression of hth and Dll. This co-expression selects the 

antennal fate (Casares and Mann, 1998; Dong et al., 2000). Compared to the leg, 

the antenna is a much shorter appendage, with four segments (antennal (a) 

segments 1 to 3, plus a distal arista), and functions in olfaction, through the 

specialization of its a3 segment (Figure 1). The antennal disc does not develop as 

an independent disc, like the leg one, but forms part of the eye-antennal disc 

complex. This disc comprises cells derived from several embryonic head segments 

and the unsegmented acron (Jurgens and Hartenstein, 1993). All the eye-antennal 

disc complex cells express the Pax6 genes eyeless (ey) and twin-of-eyeless during 

first larval stage (L1), but during L2, only the posterior two-thirds of the complex 

express Pax6 genes, while the anterior third expresses cut (ct). The L2 ct and Pax6 

domains correspond to the antennal and eye discs, respectively (Kenyon et al., 

2003). The smaller size and fewer segments of the adult antenna when compared 

to the leg correlate with a different expression of the Dl and Ser ligands in antennal 

and leg discs (Casares and Mann, 2001). Accordingly, the antennal disc has only 

two odd-expressing rings, instead of the six present in leg discs (Casares and 

Mann, 2001). The different control of growth and segmentation in the antenna 

indicates that there must be mechanisms operating differently in antennal and leg 

discs. The fact that bowl has been placed downstream of Notch signal in the 

elaboration of distal leg patterning (de Celis Ibeas and Bray, 2003; Hao et al., 

2003) prompted us to test whether bowl had any function during antennal 

development, and if it did, whether it was similar to its role during leg 

segmentation. Our results indicate that, during antennal disc development, bowl 

has a dramatically different role: bowl is expressed at early stages in the ventral 

antennal disc, where it prevents inappropriate expression of wg. If bowl is 

removed, the activation of wg results in non-autonomous antennal duplications. 

bowl is still required to prevent PD axis duplication in homeotically-transformed 

antennal discs, which indicates that there are genetic differences between head and 

thorax discs that are selector gene independent. The site of bowl expression, the 

composite nature of the antennal disc and evolutionary considerations lead us to 

hypothesize that bowl might be suppressing the development of appendages from a 

“silenced” primordium present in the antennal, but not in the leg discs of 

Drosophila. 
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EXPERIMENTAL PROCEDURES 

Drosophila strains and genetic manipulations 

bowl1 (a null bowl allele), tkva12, Antp73b, oddrK111 (odd-Z), hhP30 (hh-Z), 

P{en1}wgen11 (wgZ), P{dpp-lacZ.Exel.2}3 (dppZ) and ey-FLP (III) are described 

in FlyBase. A third-chromosome insertion of the wg2.4-Z regulatory construct 

(Pereira et al., 2006) is also used as wg reporter. y, hsFLP122, actin P>hsCD2> 

Gal4 (Basler and Struhl, 1994) was used in mosaic missexpression. ey-FLP (on the 

III chromosome) (Newsome et al., 2000) drives flip-recombinase in the eye-

antennal disc from L1 stage. 

Loss-of-function clones: 

Bowl1 and tkva12 mitotic clones were induced between 24-48h after egg laying (AEL) 

by a 45’, 37°C heat shock, in larvae from the crosses of bowl1 FRT 40A/balancer or 

tkva12 FRT 40A/balancer males to yw hsFLP 122; Ubi-GFP FRT40A females (for 

imaginal disc analysis) or to yw hsFLP 122; y+ FRT40A females (for adult cuticle 

analysis) (Bras-Pereira et al., 2006). In some experiments, appropriate gene 

reporters were introduced in the genotype. The analysis of the antennal phenotypes 

caused by loss of bowl in an Antp gain-of-function genetic background was 

analyzed in yw hsFLP 122; Ubi-GFP, FRT40A/ bowl1 FRT 40A; Antp73b late third 

instar larvae subject to a 45’,37°C heat shock at 24-48h AEL. 

To generate bowl-mutant antennae, bowl- clones were induced in f; bowl1 FRT 

40A/M(2L)Z, f+, FRT40A; ey-FLP larvae. In this genotype, the flip-recombinase is 

expressed throughout the early eye-antennal disc. These clones are given a growth 

advantage, as they are generated in a Minute-heterozygous background (Morata 

and Ripoll, 1975). As a result, most eye-antennal disc-derived tissue is mutant and 

is marked in the adult by the forked (f) bristle marker. 

Targeted missexpression was achieved using the UAS/GAL4 system (Brand and 

Perrimon, 1993). Lines used were: P{arm.S10} (UAS-armS10, a non-degradable, 

constitutively-active Arm), P{UAS-lin.H} (UAS-lines), drmScer\UAS.cGa (UAS-drm) 

(described in FlyBase), UAS-tkvQD (a constitutively-active form of the dpp-receptor 

tkv) (Nellen et al., 1996), UAS-bowl(1.1) (de Celis Ibeas and Bray, 2003), UAS-Src-

GFP (Kaltschmidt et al., 2000), dpp-GAL4 (Staehling-Hampton et al., 1994), ptc-

GAL4 (Speicher et al., 1994). 

Mosaic expression of ArmS10 and was induced in “flip-out” clones in larvae of the 

genotype y, hsFLP122, actin P>hsCD2> GAL4/UAS-armS10, by a 35,5°C heat shock 

at 24-48h AEL. Clones were marked negatively by the absence of CD2 (CD2 was 

induced by a 45’ 37°C heat shock, followed by 45’ R.T. recovery prior to 

dissection). Expression of bowl or drm in tkva12 mosaics was induced, using the 

MARCM technique, in larvae of the genotype yw hsFLP122, tub-GAL4, UAS-GFP; 
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tkva12 FRT40A/ tub-GAL80 FRT40A; UAS-bowl (or UAS-drm) by a 37°C, 30’ heat 

shock at 24-48 after egg laying. tkv-mutant cells overexpressing either bowl or drm 

were marked by GFP expression. 

In situ hybridization and Immunostainings 

RNA probes for drm and bowl and in situ hybridization were as in Hao et al., 2003. 

Antibodies used: Rabbit anti-Bowl (de Celis Ibeas and Bray, 2003), rabbit anti- ß-

gal (Cappel), mouse anti- ß-gal (Sigma), mouse anti-CD2 (Serotec), rat anti-Dan 

(Emerald et al., 2003), mouse anti-Dll (Panganiban et al., 1994), rat anti-Ey (gift 

from P. Callaerts), rabbit anti-GFP (Molecular Probes), guinea pig anti-Hth (Casares 

and Mann, 1998), guinea pig anti-Odd (Kosman et al., 1998), rat anti-

phosphorylated Mad (Aldaz et al., 2003), mouse ant-Ptc (Nakano et al., 1989). 

Mouse monoclonals anti Ct, Dac, Eya, and Wg (4D4), and rat monoclonal anti Elav 

are from the Iowa Univ. Developmental Studies Hybridoma Bank. Guinea pig anti-

Eyg (Aldaz et al., 2003) recapitulates the expression of eyegone (eyg) in the 

antenna as analyzed by in situ hybridization or through an eyg-GAL4 insertional 

reporter (Jang et al., 2003). We first detect Eyg expression in mid-L3 antennal 

discs in a medial-distal domain (not shown). Appropriate fluorescent secondary 

antibodies were from Molecular Probes. Imaging was performed on a Leica SP2 

confocal system. 

X-gal histochemical staining of adult cuticle 

Pharate adults of the odd-Z genotype were dissected and processed as in (Casares 

and Mann, 2000). 

 

RESULTS 
Bowl is expressed in the ventral antennal disc early during development. 

We first analyzed the expression pattern of bowl by in situ hybridization and protein 

distribution. (In this work, we use the terms “dorsal” and “ventral” antenna 

according to the dorsal and ventral territories of the eye disc, adopting the 

nomenclature most frequently used when referring to the eye-antennal imaginal 

disc. This results in that the domains of wg and dpp are apparently inverted along 

the dorsal/ventral axis in the antennal disc relative to the leg disc). bowl transcripts 

and protein show a similar distribution, and are detected in the ventral antennal 

discs through L2 to mid-L3 (Figure 1A,B). This domain roughly spans the future 

maxillary palp, ventral antenna, and the intervening region between these two 

prospective appendages, extending posteriorly to the ventral limit between the 

antennal and eye lobes (Figure 1G, H). The ventral expression of bowl is similar to 

the ventral-most expression domain of the signal activated form of Mad 

(Phosphorylated-Mad: P-Mad) (Figure 1D), the intracellular transducer of the dpp 
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pathway (Newfeld et al., 1997; Wiersdorff et al., 1996). P-Mad, in addition, is 

expressed in a ventral wedge in the prospective antenna that opposes the dorsal 

domain of wg expression (Figure 1D). The pattern of expression of odd, as reported 

by the odd-Z enhancer trap, is coincident with Bowl at early as well as at later 

stages (Figure 1 C,F). Due to this coincidence, and since in early discs the 

ßgalactosidase signal of the odd-Z reporter is much more robust than that of the 

anti-Bowl antiserum, we used odd-Z as a correlate of bowl expression. To check 

whether bowl/odd-Z expression overlapped P-Mad, we doubly stained late L2 discs 

from odd-Z larvae. There is extensive overlap between P-Mad and odd-Z (and by 

correlation, with bowl), although odd-Z expression extends further anterior (Figure 

1E). A corresponding early accumulation of bowl in the dpp signaling domain is not 

seen in developing leg discs (de Celis Ibeas and Bray, 2003; Hao et al., 2003). In 

late L3 larvae bowl expression resolves into two antennal rings, plus a stripe in the 

prospective maxillary palp, that also coincide with odd-Z (Figure 1F). Identical 

expression patterns in the antenna are seen for drm (not shown). Histochemical 

staining of adult heads of the oddZ reporter strain shows that these two rings likely 

map to the head capsule:a1 and a1:a2 joints in the adult antenna (Figure 1G,H). 
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Figure 1. bowl is 

expressed in the ventral 

antennal disc during 

early development. Late 

L2/early L3 (A-E) and late 

L3 (F) discs. bowl 

expression is detected by 

in situ hybridization (A; 

dark blue signal) or with a 

specific antiserum (B,C,F) 

while that of odd is 

monitored using an odd-Z 

reporter (C,E,F). bowl is 

expressed along the ventral 

antennal disc (A,B: 

arrowhead) and extend to 

the joint between the 

antennal and eye disc lobes 

(“a” and “e”, respectively) 

in late L2/early L3. This 

ventral expression predates 

the full specification of a 

PD axis, as neither Dac nor 

Eyg, two markers of medial 

and medial-distal fates, 

respectively, are not yet 

activated (not shown). (C) 

A detail of the ventral 

region of a late L2 odd-Z 

co-stained with ß-galactosidase and anti-Bowl. Merged and individual signals are shown. There is 

extensive overlap between odd-Z and Bowl expression (visualized as yellow in the merged panel). (D) 

Immunodetection of Wg and P-Mad in an early L3 disc. Merged and individual signals are shown. In the 

antennal disc (a, encircled in yellow) Wg is expressed dorsally (D). pMad is detected in the propective 

antenna and along the ventral (V) antennal rim (arrowhead). In addition, P-Mad signal is present along 

the posterior margin of the eye disc (e). (E) Late L2/early L3 odd-Z disc co-stained with ß-galactosidase 

and anti-PMad, with merged and individual signals shown. odd-Z and P-Mad overlap in the ventral rim of 

the antennal disc (seen as yellow signal in the merged panel). There is also overlap along the posterior 

margin of the eye disc, where bowl has been shown to be transcribed (Bras-Pereira et al., 2006). (F) 

Late L3 odd-Z antennal disc showing coexpressing of Bowl and odd-Z in two concentric rings 

(arrowheads), plus a stripe in the maxillary palp primordium (mxp). Merged and individual signals are 

shown. These rings likely map to the joints between the head capsule (hc) and the first antennal 

segment (a1), and between a1 and a2 in the adult head of odd-Z animals stained with Xgal (H; 

arrowheads). (G) is a schematic representation of the eye antennal disc including the different primordia 

that form it. “a”: antenna; “e”: eye; “mxp”: maxillary palp; “md”: mandibular primordium; “ic”: 

intercalary primordium; “hc”: head capsule tissue. “a1-3”: antennal segments 1 to 3; “ar”: arista. All 

discs are oriented with posterior to the left and dorsal up in this and following figures. The scheme in (G) 

and the contribution of the intercalary and mandibular segments to the adult head (in H) have been 

adapted from Jurgens and Hartenstein, 2003. 
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Removal of bowl function causes non-autonomous duplications of the 

antenna. 

To analyze the role of bowl expression during antennal development, we induced 

mosaic loss of bowl during L1 through mitotic recombination (see Materials and 

Methods). Clones of bowl-mutant cells could be recovered throughout the antennal 

disc, but those located on its ventral half induced antennal duplications (Figure 2), 

as marked by the generation of new domains of PD genes, such as ct, Dll or 

eyegone (eyg) (Figure 2A-C). These duplications can also include both anterior and 

posterior (hh-expressing) territories (Figure 2D, E). Very often, these duplications 

are non-autonomous and comprise mutant and wild type tissue (for example, see 

Figure 2B, E). These clones result in the duplication of antennal structures, ranging 

from arista duplications to wholly duplicated antennae (Figure 2F,G; I), including 

proximal a1 and a2 segments, a3 segment characterized by its high density of 

olfactory sensillae and arista. Although we cannot mark the adult antennal joints, 

we performed two experiments to test if bowl was required for their formation. 

First, we induced y-marked bowl- mosaics and assumed that joints flanked by 

marked bowl-mutant tissue are in most cases also mutant. In all such cases (n>10) 

the a1:a2 joint always developed normally (Figure 2H). Second, in order to make 

sure that bowl- clones spanned the joints, we generated large bowl- clones in f; 

bowl- FRT40/f+ M FRT; ey-FLP individuals (see Materials and Methods). Using this 

method, adult heads are almost completely mutant for bowl, as marked by forked 

(f) bristles (not shown). These flies often showed antennal duplications, but joints 

were always normal (Figure 2I). This indicates that in the antennal disc, and in 

contrast with its role in the legs, bowl is not required for the formation of joints, 

despite its joint associated expression during mid to late L3. 
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Figure 2. bowl mutant cells induce non-autonomous ventral antennal duplications. In this 

figure, the normal disc or antenna is marked by an arrow, while the duplicated structure is marked by an 

arrowhead. (A-E) Late L3 antennal discs containing bowl1 mutant clones, marked by the absence of GFP 

(green) signal. Only ventral clones cause duplicated PD axes. (A, A’) The clone expresses the proximal 

PD axis marker ct and includes two novel odd rings, as detected with a specific antibody. (B, B’) Two 

sibling discs containing bowl1 clones showing either a separate (left) or a bifurcated (right) domain of Dll 

expression. Ectopic Dll expression is seen both within and outside the bowl-mutant tissue, indicating a 

non-autonomous induction. (C, C’) bowl1 clone showing a partial antennal duplication and the 

concomitant duplication of the eyg expression domain. (D,D’) Ventral bowl1 clone spanning the hh-Z 

expression domain. The clone partially duplicates the hh-Z domain (outlined with the dashed line). A 

dorsal clone (asterisk) is normal. (E) bowl-mutant cells in the disc’s anterior compartment (that includes 

the anterior stripe of hh-induced ptc expression) induces a non-autonomous antennal duplication 

involving also posterior cells. In (B, B’) and (E,E’) the white line marks the antennal duplication as 

detected morphologically to highlight its non-autonomous nature. (F-G) Adult heads containing bowl1 

clones (unmarked) showing duplicated antennae. (H) Antenna containing bowl1-mutant tissue on both 

sides of a normal a1-a2 joint. The bowl1-mutant territory is marked by the yellow bristles (red 

arrowheads). (I) Antenna from a whole bowl-mutant head. All antennal bristles are marked with f. All 

joints are normal. In addition, there is a duplication of the a3 segment (one a3 is partly covered by the 

other a3 in this micrograph) and the arista (arrowhead). 
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The role of bowl in preventing the development of antennal supernumerary 

appendages is independent of homeotic information. 

We have seen that bowl plays different functions in antennal and leg discs. If all 

developmental differences between antennae and legs were solely due to their 

differential expression of selector genes, we would then expect bowl to no longer be 

required to repress supernumerary antennal development if the antenna has been 

homeotically transformed into a leg-like appendage. Such a transformation can be 

achieved in gain-of-function mutations of Antp (Jorgensen and Garber, 1987; 

Schneuwly et al., 1987), in which the ectopic expression of Antp in the antennal 

disc results in the repression of one of the antennal selector genes, hth (Casares 

and Mann, 1998; Yao et al., 1999). Surprisingly, this is not the case. When ventral 

bowl- clones are induced in an Antp73b background, which normally results in a 

variable, but usually close to complete, antenna-to-leg transformation (Kaufman et 

al., 1980; Schneuwly et al., 1987) we still observe supernumerary appendages 

(Figure 3A, B). In late L2 discs from Antp73b we still detect Bowl expression in the 

ventral antennal disc (not shown), ruling out a direct regulation of Antp on bowl. 

Therefore, the antennal function of bowl reveals a cephalic-specific program that 

operates in the antennal disc independently of the final appendage identity 

assigned by homeotic gene expression. Interestingly, eyg, which is normally 

expressed in antennal but not in leg discs, remains to be expressed in Antp73b 

antennal discs that are homeotically transformed into legs (Figure 3A). This is not 

due to low Antp expressivity, since the antennal-specific marker dan (Emerald et 

al., 2003; Suzanne et al., 2003) is repressed in sibling Antp73b discs (not shown). 

 

 
Figure 3. bowl clones result in antennal duplications in homeotically transformed Antp discs. 

(A,B) Antp73b antennal discs stained for Dac and Eyg. The disc in (B) contains a bowl1 ventral clone 

(absence of GFP, green) that results in an ectopic ventral appendage (arrowhead) characterized by a 

medial domain of Dac (red) and a distal one of Eyg (blue). Strong and expanded Dac expression 

resembles Dac expression in legs. A second partial duplication can be seen in this disc (asterisk). 
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bowl is required to repress wg expression in the ventral antennal disc. 

The region where bowl clones produce antennal duplications, and which 

corresponds with bowl’s expression domain in early antennal discs, correlates with 

the realm of dpp signaling (Figures 1D,E and 4A, B). If the establishment of the PD 

axis in the antenna required maximal levels of both wg and dpp signaling, as it has 

been shown to happen in the leg disc (Lecuit and Cohen, 1997), then the 

duplications caused by bowl-mutant cells could be explained by the derepression of 

wg in the dpp-signaling region. We tested this prediction by analyzing wg 

expression, using either a reporter of wg transcription or an anti-Wg antibody, in 

bowl-mutant cell clones. All bona fide wg transcriptional reporters, such as wgen11 or 

wg-GAL4, are insertional enhancer traps that are, in addition, mutant for wg (Fly 

Base). We then used the wg2.4- regulatory construct reporter, which recapitulates 

most of the wg expression domain (Pereira et al., 2006) (compare Figure 4B and 

C). bowl- clones in the ventral antenna derepress wg transcription and protein 

production (Figure 4C, D). Wg signal can be detected in some wild type cells 

surrounding the bowl- clones, likely due to the diffusible nature of the Wg protein. 

Dorsally-located clones (that is, in the wg territory) do not have any effect. The 

cause of the duplications associated with bowl-mutant clones seems to be the 

derepression of wg, as the sole expression of a constitutively active form of the wg 

signal transducer Armadillo (ArmS10) in the ventral antenna, either in cell clones or 

driven by a dpp-GAL4 line, causes similar antennal duplications (Figure 4E,F). 

These results indicate that, during normal development, the ventral expression of 

bowl is required for repressing the establishment of a supernumerary appendage in 

the antennal disc by preventing the ventral misexpression of wg. In contrast, bowl- 

clones induced simultaneously in the leg discs do not result in wg derepression, but 

cause abnormal disc folds (not shown), which prefigure the joint defects reported 

earlier (de Celis Ibeas and Bray, 2003; Hao et al., 2003). 
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Figure 4. bowl mutant cells derepress wg expression in the ventral antenna. Late L3 antennal 

discs are shown. (A) hh-Z eye antennal disc. hh is expressed in posterior cells (“P”, blue), and Wg 

protein (red) is detected in a dorsal wedge in anterior (“A”) cells. (B) wgZ; dpp-GAL4/UAS-GFP antennal 

disc. wg and dpp are transcribed in a dorsal (“D”) and a ventral (“V”) anterior stripe, respectively, 

overlapping in the disc’s center, which corresponds to the distal-most tip of the prospective antenna 

(yellow signal). Hth marks the proximal and medial PD axis territories. In the antennal disc the wg 

expression domain is designated “dorsal” (D) and the dpp-expressing one, “ventral” (V), to make it 

concordant with the D and V territories of the eye disc. This nomenclature results in an apparent 

inversion of the DV domains relative to the leg, where the wg and dpp domains are assigned V and D 

identity, respectively. (C, D) Antennal discs containing bowl1-mutant clones (marked by the absence of 

GFP, green). Both wg transcription, monitored by the wg reporter wg2.4Z (C, C’), and Wg protein (D, D’) 

are derepressed in ventral clones (arrowheads). These clones contain duplicated medialdistal structures 

(marked by Eyg: C, C’). (E) Flip-out clones expressing ArmS10 (arm*) (marked by the lack of CD2, 

green) induce antennal duplications in the ventral disc (arrowhead). Eyg (blue) marks antennal medial-

distal domains. The normal antennal primordium is marked by an arrow. (F) dpp-GAL4>ArmS10 L3 

antennal disc. drm is detected by in situ hybridization. A new set of drm rings is observed (arrow) in a 

morphologically duplicated antenna (arrowhead). 

 

bowl is insufficient to prevent wg misexpression in the absence of dpp 

signaling. 

It has been previously shown for leg discs that the establishment of the opposing 

wedges of wg and dpp expression depends on their mutual repression (Brook et al., 

1996; Jiang and Struhl, 1996; Johnston and Schubiger, 1996; Theisen et al., 

1996). We verified that this paradigm holds true during antennal disc development, 

because the loss of dpp signaling in ventral clones mutant for the dpp receptor 

thick veins (tkv) result also in wg derepression (Figure 5A). Therefore, one possible 

mechanism to explain the wg derepression caused by loss of bowl is if dpp 

expression and/or signaling were dependent on bowl function. We tested this point 

by inducing bowl- clones in a dpp-Z background. In bowl- clones that cause 
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antennal duplication, as monitored by ectopic domains of the distal antennal 

marker eyg, dpp-Z expression is still detected within the mutant tissue (Figure 5B), 

suggesting that bowl is not required for dpp expression. Still, it might be that, even 

though dpp continues to be expressed, the Dpp signal is not properly transduced in 

bowl-mutant cells. This seems not to be the case, as bowl- cells express 

phosphorylated-Mad at similar levels as their wild type neighboring cells do (Figure 

5C). The fact that the domains of bowl transcription and P-Mad expression are 

similar (Figure 1) might indicate that the dpp signaling pathway controls bowl 

expression. In order to test this point, we ectopically activated the dpp pathway by 

driving a constitutively active form of tkv with ptc-GAL4. In these discs we detect 

ectopic bowl transcription in the dorsal antenna (Fig. 5D). Therefore, these results 

place bowl transcription downstream of dpp. Since the dpp pathway represses wg 

transcription and bowl expression seemed to lie downstream of dpp, we asked next 

if bowl was sufficient to repress wg, even in the absence of dpp signaling. We 

performed two experiments to answer this question. First, using the ptc-GAL4 line, 

we drove bowl expression in the wg domain. In these discs, the ectopic Bowl 

protein was detected in the nuclei and at high levels, and yet wg expression 

remained unaltered (Fig. 5E). Second, we induced bowl expression in cell clones 

simultaneously mutant for the dpp receptor tkv. In ventral bowl+ tkv- clones wg 

was derepressed as in tkv- clones (Fig. 5A, F). Therefore, both experiments 

indicated that bowl, albeit required, is not sufficient to repress wg in the antennal 

disc. One possibility to explain this insufficiency was that the experimentally 

induced bowl levels were not enough to overcome the inhibitory function of 

endogenous Lines. To counteract this possible inhibition, we drove drm, which is 

capable of inducing high levels of nuclear Bowl when expressed ectopically in 

antennal discs and elsewhere (not shown) and outcompetes Lines in binding to 

Bowl (Hatini et al., 2005), in tkv- clones. In these drm+ tkv- cells, wg was still 

derepressed (Fig. 5G). These experiments rule out the lack of nuclear localization of 

Bowl or its functional inhibition by Lines as simple explanations for the insufficiency 

of bowl to repress wg in the absence of dpp signaling. 
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Figure 5. bowl acts downstream of the dpp signaling pathway to repress wg. (A,A’) tkva12 clones 

(marked by the absence of GFP, green). In ventral (arrowhead), but not dorsal, clones Wg becomes 

derepressed, similarly as in bowl clones (Figure 4). (B-C) bowl1 clones (marked by the absence of GFP, 

green). In (B,B’), dpp expression, monitored by a dppZ reporter, is still detected within the clone 

(arrowhead), which is forming a new PD axis [as indicated by a new domain of eyg expression (blue)]. 

(C, C’) In a similar clone, the active form of the Dpp signal transducer Mad (P-Mad) is detected at 

normal levels (arrowhead). Hth is included as a counter stain. (D) Antennal disc from a ptc-GAL4; UAS-

tkvQD (tkv*) late L3 larva, hybridized with a bowl anti-sense RNA probe. Ectopic bowl expression is 

detected in the dorsal antenna (arrowhead). (E) ptc-GAL4; UAS-bowl antennal disc. Bowl protein (red) is 

strongly detected in the nuclei of cells along the AP axis. In the dorsal disc, Bowl overlaps the Wg 

domain (green). The inset shows the Wg expression of the region boxed with dashed lines, which is not 

affected. Hth is included as a counterstain. (F, F’) Ventral antenna bowl-expressing tkva12 clone (GFP). 

Wg (red) is derepressed within the clone. (G, G’) Ventral antenna drm-expressing tkva12 clone (GFP). Wg 

(red) is derepressed within the clone. In F and G dan (blue) marks the distal antenna. 

 

Bowl is also required for the autonomous repression of eye fate in a small 

domain of the eye antennal disc. 

Some bowl- clones result in the autonomous de-repression of the retinal 

determination gene eyes absent (Bonini et al., 1993; Voas and Rebay, 2004) and 

the differentiation of the mutant patch as elav-positive photoreceptors (Figure 6B). 

Frequently, adults carrying bowl-clones show ventral eyelets (Figure 6C), which 

likely derive from the eya, elav-positive patches we observe in the discs. This effect 

is seen only when the clones affect the ventral-posterior rim of the antennal disc 
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lobe (Figure 6), close to the stem that joins the antennal to the eye disc. We 

analyzed this “eye-sensitized” region in detail and found that it co-expresses both 

the antennal marker ct (Kenyon et al., 2003) as well as the eye selector gene ey 

(Halder et al., 1998) (Figure 6A).  

 
Figure 6. bowl silences 

eye development 

autonomously in a 

small ventral domain 

of 
the eye-antennal disc. 

(A) Late L3 eye-antennal 

disc co-stained for Ct and 

Ey. The confocal section 

is focused on the basal 

side of the disc that 

corresponds to the most 

proximal segments of the 

antennal disc. Ey signal 

can be detected in the 

anterior domain of the eye disc, although not as strongly as in more apical sections. (A1) and (A2) are 

two confocal sections corresponding to the area outlined in (A). Ct and Ey coexpression is seen in yellow 

(arrowheads). Unmerged channels are also shown. (B) Antennal disc containing bowl1 clones. Mutant 

cells in the posterior clone (arrowhead) autonomously derepress eya expression and differentiate as 

Elav-expressing photoreceptors. (C) Adult head of an individual carrying bowl1 clones. An eyelet 

develops ventral and adjacent to the normal eye, shown at higher magnification in the inset 

(arrowhead). 

 

In this region, bowl is required autonomously to repress eye identity and to allow 

ventral head capsule development instead. Interestingly, when the bowl inhibitor 

Lines (Hatini et al., 2005) is expressed in the ventral antennal disc, using the dpp-

GAL4 driver, either of two phenotypes could be detected, both in discs and in 

pharate adults: antennal duplication (Fig. 7A,C) or formation of ventral eyelets in 

the head capsule (Fig. 7B,D). These results reinforce the idea of a specific 

requirement of bowl in the ventral antennal disc. 
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Figure 7. Ventral expression of Lines 

causes either antennal duplication or 

ventral ectopic eyelets. Eye-antennal 

imaginal discs (A, B) or adult heads (C,D) of 

dpp-GAL4; UAS-lines individuals. The wg-Z 

transgene has been introduced in the 

genotype to monitor wg transcription. (A) 

Duplicated antennal disc, detected 

morphologically (arrowhead), with an ectopic 

wg-Z wedge. The endogenous antennal disc is 

marked with an arrow. (B) Disc of the same 

genotype showing a ventral cluster of Elav-

positive photoreceptors (red arrowhead). The 

discs are counterstained with 

rhodaminephalloidin that marks cell outlines. 

dpp-GAL4; UAS-lines flies show either 

duplicated antennae (C, arrowhead; arrow marks the normal appendage) or ventral eyelet (D, red 

arrowhead). 

 
 

DISCUSSION 

During the development of the antennal disc, bowl has two phases of expression: 

an early expression in the ventral disc, required to maintain wg repressed, and a 

later one in concentric rings. Both phases have antennal-specific properties. The 

early bowl expression and function is unique to the antenna. And the expression in 

rings associated to prospective joints, and which recapitulates the ring expression 

in leg discs, does not seem required for joint formation in the antenna, contrary to 

the legs. In addition, bowl is still required to repress a ventral supernumerary PD 

axis even if the antenna has been homeotically transformed into a leg-like 

appendage by overexpression of the leg selector Antp. All these results indicate 

that the development of the head structures deriving from the antennal disc 

depends not only on the activity of selector genes, but also on a cephalic-specific 

genetic program. Supporting this claim, we find that the expression of eyg, an 

antennal-specific marker, is maintained in homeotically transformed antennal discs. 

These cephalic vs. thoracic differences might reflect the very different 

developmental histories of antennal and leg discs. While each leg disc primordium 

is formed from cells derived from just two adjacent parasegments (or one 

embryonic segment), the antennal disc is part of a composite disc, the eye-

antennal disc, which forms by the fusion of imaginal primordia derived from several 

embryonic head segments [the labial, antennal, intercalary, mandibular and 

maxillary segments plus the unsegmented acron (Cohen, 1993; Jurgens and 

Hartenstein, 1993)]. The origin of the ectopic ventral antennae that form in the 
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absence of bowl can be explained in two, non-mutually exclusive, ways. First, the 

new antennal primordium could result from the bifurcations of the normal one. We 

have noticed that the more proximal the clone, the more complete the duplicated 

appendage, as detected by PD markers such as eyg, dac or odd. This observation 

agrees with a model in which the developing appendage re-specifies more or fewer 

positional values depending on whether the ectopic source of wg is generated 

farther or closer, respectively, to the endogenous domain (Bryant, 1993). A second 

possibility, though, is that in some cases the ectopic antenna derives from a “silent” 

primordium contained within the disc and normally suppressed by bowl, especially 

in cases when the ectopic antenna is clearly spatially separated from the normal 

one, as in (Figure 2E). The hypothesis that the ectopic antenna might derive from a 

non-antennal primordium is supported by a number of facts: first, bowl- clones give 

rise in many instances not to a bifurcated antenna, but to a fully duplicated 

antennae, leaving the endogenous one intact. In these cases, the maxillary palp is 

also normal. Therefore, the new antenna does not develop at the expense of 

neither of these appendage types; second, the duplicated antennae originate from 

the proximal-most region of the ventral antennal disc. This region might contain, in 

addition to antennal segment derivatives, imaginal cells coming from the 

mandibular and intercalary segments (Jurgens and Hartenstein, 1993). In fact, the 

intercalary segment, very reduced in insects, is thought to be homologous to a 

second antennal-bearing segment, present in extant crustacea and likely ancestral 

in the hypothetical mandibulate ancestor (Abzhanov and Kaufman, 1999; Telford 

and Thomas, 1998). In this scenario, loss of bowl would result in the expression of 

wg and the generation of a new PD axis from one of these reduced, appendage-

less, head primordia. That the resulting appendage is an “antenna” could be the 

result of the selector information available –i.e. ct and hth expression- on top of the 

de novo induction of PD axis determinants, such as Dll. A similar situation has been 

described in the case of labial palps which, if devoid of pb and Scr Hox selector 

information, develop as antennae (Joulia et al., 2006). 

The putative “silencing” function of bowl might extend to other parts of the eye-

antennal disc. bowl- clones in the ventral region of the stem that connects the 

antennal and eye disc lobes develop autonomously into eye tissue. In contrast to 

the antennal suppressing function, bowl is required autonomously to repress eye 

development. This autonomy indicates that either the signals normally operating to 

spread retinal differentiation in the normal eye (Treisman and Heberlein, 1998) are 

not produced in these ectopic retinal patches, or that the wild type tissue is 

refractory to these signals. At present, we cannot favor either of the two 

hypotheses. We have noticed, however, that the overexpression of the bowl 
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inhibitor Lines driven by the dpp-GAL4 driver leads to two phenotypic outcomes: 

antennal duplication or ectopic ventral eyelet. Interestingly, only in one case out of 

more than 20 discs analyzed these two phenotypes co-occurred. This suggests that 

the cells in the sensitive region adopt collectively only one of either fate, antenna or 

eye, and that deciding upon one excludes the other. In addition, we note that this 

ct, ey-expressing region is particularly prone to develop into eye upon genetic 

perturbations. For example, it is this region that is preferentially transformed into 

eye when hth function is removed (Pai et al., 1998; Pichaud and Casares, 2000) or 

when tsh is ectopically expressed (Bessa and Casares, 2005; Pan and Rubin, 1998). 

Perhaps, the unique fact that this region co-expresses antennal and eye 

determinants makes its fate more ambiguous. In the absence of bowl, hth might tilt 

the equilibrium towards head capsule or antennal development, while the opposite 

fate –eye- would be adopted in the presence of tsh and ey. It will be interesting to 

determine whether functional relationships between bowl and these factors exist to 

determine specific fates within the eye disc.  

Mechanistically, bowl function seems to lie downstream of hh and dpp. In bowl- 

cells associated with an antennal duplication, hh is still expressed (Figure 3D) and 

the Hh coreceptor patched is normally up-regulated in anterior cells abutting the 

hh-expressing domain (Figure 3E), which indicates correct hh-signaling (Capdevila 

et al., 1994; Ingham et al., 1991). Accordingly, wg derepression in bowl- cells 

occurs closest to the P cells, as expected for a hh target gene. In the embryo, bowl 

has also been placed downstream of hh during the process of epidermal 

differentiation (Hatini et al., 2005).  

In the antenna, as in the leg disc, the dpp and wg signaling pathways repress each 

other to establish two opposing wedges of dpp and wg expression (Johnston and 

Schubiger, 1996; Theisen et al., 1996). In bowl-clones, though, dpp expression, 

monitored by a lacZ-expressing reporter, is not turned off. Although this might be 

due to the perdurance of the LacZ product, bowl- cells accumulate normal levels of 

phosphorylated-Mad. This indicates that bowl-mutant cells transduce the dpp 

signal, regardless of whether dpp is expressed or not. Therefore, it seems that in 

the antennal disc, bowl is required to prevent the inappropriate expression of wg in 

the dpp domain even if the dpp pathway is still active. Nevertheless, bowl is not 

sufficient to repress wg. We have ruled out simple explanations for this fact, such 

as low levels of the induced Bowl protein, or its retention in the cytoplasm. We also 

show that this insufficiency is not due to the inhibition by Lines, because even in 

the presence of Drm, which prevents Lines from binding to Bowl, this latter is still 

unable to repress wg. Although further work is required to identify which other 

factor or factors collaborate with bowl during ventral antennal disc development, 
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one possibility is that this factor may be the dpp signaling itself. This is because 

bowl cannot block the ectopic wg expression in ventral antennal cells devoid of dpp 

signal. We have shown that bowl transcription roughly coincides with the domain of 

maximal dpp-signaling is the antennal disc, as visualized by P-Mad, and that dpp 

signaling can activate bowl transcription in this disc. These results suggest that high 

levels of dpp induce bowl which, in turn, is required to prevent inappropriate 

expression of wg in the antennal disc together with the dpp pathway. Two are the 

likely sources of Dpp: the wedge of dpp that can be visualized using the dpp-disc 

enhancer reporters (Blackman et al., 1991) in the antenna, and a ventral disc 

expression that is controlled by a separate enhancer (Stultz et al., 2006). This 

enhancer drives dpp expression in the prospective ventral head region (Stultz et 

al., 2006), close to the region where bowl is transcribed in early discs (not shown). 

bowl and the related genes odd and drm show a late pattern of expression in rings, 

similar to the one deployed in leg discs. But contrary to their requirement for leg 

segmentation, bowl seems to be dispensable for antennal segmentation. A similar 

situation has been described for the gene dachshund (dac). dac is expressed in the 

medial segment of both leg and antennal discs, but while loss of dac in the leg 

leads to the loss of intermediate adult leg structures, the antenna develops 

normally (Dong et al., 2001; Mardon et al., 1994). These results might reflect the 

fact that, although antennal and leg discs have specific developmental programs, 

the mechanisms for generating the PD axis are shared by both appendages. This 

mechanism would call a similar battery of genes, even if only a subset of them is 

effectively used for the development of each appendage. 

In summary, our results show that the zinc-finger encoding gene bowl is part of a 

cephalic-specific program that represses appendage formation in the ventral eye-

antennal disc. Here, bowl is required to repress wg, downstream of dpp, to prevent 

the generation of supernumerary antennae. These extra appendages might arise 

from some silenced primordium in the proximal part of the antenna, which would 

be normally fated to become part of the head capsule. In addition, bowl also 

silences the development into eye of another cell population of the prospective 

head that presents mixed expression of antenna and eye selector genes. The 

silencing of appendage development might have been essential for the coalescence 

of cells deriving from several different embryonic cephalic segments into a single 

imaginal disc, as well as for the formation of the head structures of adult 

cyclorraphan flies, such as Drosophila. 
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General discussion 

In this thesis, through the study of the functions of the odd family genes, I have 

investigated processes such as tissue specification, signaling and patterning. 

Pattern organ formation depends on the correct coordination between proliferation 

and differentiation. If any of these parameters is affected the resulting pattern 

could result aberrant. Thus, the development of an organ can be disrupted if cells 

proliferate more or less than normal, if cells are wrongly specified and as a 

consequence differentiate incorrectly, or if both of these aspects are impaired. The 

different studies we performed reflect how important the precise control of these 

aspects is in order to ensure normal organ development: 

 

1- The initiation of retinal development in Drosophila is an inductive process, in 

which a specialized signalling center, the posterior margin, secretes the 

inducer molecules, most notably hh, to trigger retinal differentiation and 

patterning in the adjacent eye-competent cells. In this thesis I show that the 

differential expression and activity of odd family genes is required to specify 

this signalling center. odd genes function through a genetic cassette that is 

deployed in several other developmental contexts during Drosophila 

development.  Key to the coordination of retinal differentiation is the spatial 

restriction of the signalling center through the regulated expression of odd 

genes. Here I show that wg is required for the anterior repression of odd 

genes along the eye disc margin. (Chapter I). 

 

2- The antenna is a highly derived ventral limb. As such, it is believed that it 

shares most basic patterning mechanisms with other limbs, such as walking 

legs, despite their anatomical and functional differences. One of these 

mechanisms is proximodistal (PD) axis establishment, which is responsible 

for the patterning and growth of limbs. Hox selector genes would impinge 

upon the shared generalized limb-forming genetic program to confer each 

limb type its specific traits. Here I show that bowl is required for repressing 

wg specifically in the ventral antennal disc. If bowl is removed, the wg 

derepression is likely the cause of the formation of an ectopic PD axis and 

the development of an extranumerary antenna. I also argue that this 

antennal specific role of bowl might be indicative of basic differences 

between cephalic and thoracic limb developmental programs. I further 

discuss that the extranumerary antennae formed in the absence of bowl 

might have two origins within the antennal disc: a new wg maximum in the 

dpp-expressing domain and, thus, a new PD axis, or the “derepression” of a 
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normally silent limb primordium that would be part of the ventral antennal 

disc, possibly an intercalary segment. (Chapter II). 

 

Margin cells behave as a signaling center, being responsible of the expression of the 

diffusive signals required for the induction of retinal differentiation within the eye 

field (Treisman and Heberlein, 1998). Which are the gene(s) required for the 

functional specification of the margin as a signaling center? 

 In Chapter I, we present a genetic mechanism taking place along the margin that 

drives the key expression of hh. odd genes are specifically expressed in the PE and 

margin cells and act as ‘margin specification genes’ that are responsible for hh 

expression. Margin cells are specialized PE cells that give rise to the adult head 

capsule that surrounds the eye, the posterior head capsule (Figure 4, Introduction).  

In addition, we demonstrate genetically that they work in a cassette Drm/Lin/Bowl 

that was before described to function in the patterning of the embryo’s epidermis 

and gut (Hatini et al., 2005; Johansen et al., 2003). In the presence of Drm or Odd, 

which seem to act redundantly, Lin, Bowl´s inhibitor, is blocked and Bowl can 

regulate the transcription of downstream genes. In the eye margin, we propose 

that bowl is required for the activation of hh expression. Clearly, wg controls the 

functional specification of the margin that is under the control of odd family genes. 

wg is required to prevent premature expression of drm (and presumably of odd) in 

anterior lateral margins of the disc, which otherwise correlates with premature 

retinal differentiation triggered from lateral and anterior regions. lin could be, 

together with wg, involved in restricting the ability of the margin to signal, since it 

has been proposed that Lin acts in parallel or downstream of the Wg signaling 

pathway (Hatini et al., 2000). Moreover, we have observed that ectopic expression 

of lin, using a margin driver, represses odd and drm transcription and as a 

consequence the eye does not develop (Figure 1A and B). This suggests that lin is 

involved in restricting the domain of expression of odd genes. 

As mentioned before, the fact that wg and drm/odd expression patterns are 

mutually exclusive, and the removal of wg from the margin leads to anterior 

expansion of drm, points to wg as drm/odd repressor (Figure 4, Chapter I). 

However, ectopic expression of a constitutively activated form of the Wg effector, 

armadillo (arm*), in clones is not sufficient to repress drm/odd expression (Figure 

1D and E). Still, when driven with a margin driver (dpp driver), arm* causes the 

downregulation of odd genes, but not their complete repression (Figure 1C). This 

raises several possibilities: that wg represses odd genes through non-canonical 

pathways or that other factors or signals yet unidentified are required to repress 

odd/drm along the margin. On the other hand, ectopic expression of drm or odd 
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ahead of the MF causes the activation, not the repression, of wg in the eye (Figure 

1F and G) and wing discs, which results in flies with ectopic bristles in the head and 

in the notum. The results indicate that, the regulatory relationship between wg and 

odd genes still needs further investigation. 

Once the expression of hh is activated, a positive feedback loop is established, 

where hh is responsible for the maintenance of odd expression. Indeed, ectopic 

expression of a form of ptc that acts as a constitutive repressor of the hh pathway 

(ptcΔloop2) (Briscoe et al., 2001) downregulates odd expression (Figure 1I). 

Supporting this idea, in embryonic epidermis, it was described that Hh promotes 

odd genes expression (Hatini et al., 2005). 

Probably Odd and Bowl, that harbour an eh1 domain that recruits the 

transcriptional co-repressor Groucho (Goldstein et al., 2005), regulate hh 

expression indirectly by repressing a hh inhibitor. 

 
Figure 1. 

Supplementary 

data. odd and drm 

transcriptions are 

detected using a 

lacZ reporter or by 

in situ 

hybridization, 

respectively. (A, B) 

Ectopic expression 

of lin, using the 

dppblk driver, blocks 

both odd (oddZ 

reporter, A) and 

drm (in situ 

hybridization, B) 

transcriptions along 

the posterior 

margin. Their late 

expression in the 

ocelli region 

(asterisk) functions 

as an internal 

control, since the 

dppblk driver is not 

expressed in this 

region. (C) Ectopic 

expression of a 

constitutively 

activated form of 
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the Wg effector, arm (arm*), driven by dppblk downregulates the levels of drm transcription. (D, E) In 

clones, the constitutive activation of wg pathway is not sufficient to regulate odd and drm transcription. 

(D) Ectopic expression of arm* (negative cells for Cd2) blocks retinogenesis in the ME, as expected, but 

not odd transcription along the margin. Mutant posterior margin still expresses odd (arrows, D’). A 

cross-section along the yellow line in D (D’’) shows an arm* clone that comprises the margin and that 

does not affect odd expression. (E) Ectopic expression of arm* (Cd2negative cells ) does not affect drm 

transcription along the margin. (F, G) drm ectopic expression ahead of the MF causes the formation of 

folds and activates wg transcription (X-Gal staining using a wgZ reporter, F), which results in the 

accumulation of Wg protein (green, G). (H) Removal of drm and bowl, which is equivalent to only bowl 

loss of function,  from the PE causes the activation of eya (red) with concomitant development of 

photoreceptors (blue, neuronal marker, Elav). Mutant cells are negative for GFP. A cross-section along 

the clone (H’) reveals the change of morphology of the upper PE within the eya-positive mutant clone. 

Similar results were obtained in bowl- clones. (I) Ectopic expression of an Hh-insensitive form of ptc 

(GFP-positive cells) blocks photoreceptor differentiation (blue, Elav) and inhibits odd transcription in the 

margin (arrow, I’). (J) Ectopic expression of the Notch ligand, Dl, in the ventral antennal disc (dppblk 

driver) activates drm expression (arrow). 

 

One important aspect of organogenesis is the separation of “labor” between cell 

populations. In the eye disc, PE and margin cells express odd genes and in this 

manner, they become competent to trigger eye development in the adjacent discs 

cells, although they are refractory themselves to those signals. Are odd genes 

somehow involved in conferring PE cells that refractoriness? tsh is known to 

coordinate eye development and to be sufficient to induce ectopic eyes in the PE 

(Bessa and Casares, 2005). tsh expression starts during L2 and restricted to the 

ME, although no gene has been described to regulate its expression. Curiously, 

removal of bowl from the PE results in the expression of the RDGN gene, eya, with 

the subsequent development of photoreceptor cells (Figure 1H). Therefore, the 

initiation of tsh expression during L2 could be restricted to the ME due to the 

presence of odd genes in the PE. In this way, odd genes could be indirectly 

responsible of the specification of the eye domain. If odd genes were involved, 

directly or indirectly, in restricting where within the eye disc tsh expression starts, 

this would be an eye-specific function, because, for example, in the wing disc odd, 

drm and tsh are all co-expressed in the PE of the wing disc (Wu and Cohen, 2002) 

(data not shown). Still a repressor function of odd/drm/bowl on tsh in the PE has to 

be demonstrated. 

The cuboidal morphology of margin cells allows the transition between PE 

squamous and ME columnar epithelia. odd genes that are expressed in the PE (PE 

itself and the specialized PE, the margin) might be involved in the control of cell 

morphology or organization. This function of drm could be independent of their 

action on bowl: drm+ bowl- clones in the eye disc, although incapable of inducing 

eyes, induce dramatic changes in the morphology of the epithelium with the 
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formation of folds (Figure 3F, Chapter I). Indeed, in leg discs and in the gut, odd 

genes have been implicated in cell morphology control. Ectopic expression of odd, 

sob and drm induce invaginations in leg discs, which in adult legs results in the 

development of ectopic joints (de Celis Ibeas and Bray, 2003; Hao et al., 2003). 

Moreover, removal of drm or bowl causes shorter and wider hindguts, due to 

defects in cell arrangement (Iwaki et al., 2001). 

 

Despite the fact that leg and antenna are homologous ventral appendages, both are 

dramatically different in structure and function. The antenna is composed of three 

segments and the arista, and serves as olfaction and audition organ, while the leg 

is formed by ten segments, and has a locomotory function. Are the mechanisms 

operating during antennal development the same of in the leg? 

The signals involved in the patterning of leg and antenna appear to be identical 

(Brook and Cohen, 1996; Campbell, 1995; Lecuit and Cohen, 1997). The shared 

use of the Hh/Dpp/Wg pathways suggests that the PD axis is constructed in a very 

similarly way. However, there are significant differences in the way their PD axes 

are subdivided. Genes regulated by Dpp and Wg like Dll, hth and dac show different 

relative patterns in the antennal and leg discs (Dong et al., 2001). Our results 

reveal a molecular mechanism involved in antennal patterning that has been also 

shown to operate in the segmentation of the leg (de Celis Ibeas and Bray, 2003; 

Hao et al., 2003). In chapter II, we showed that the molecular machinery involved 

in the establishment of the DV subdivision differ from antenna to leg. Our work 

demonstrated that, in the antenna, bowl is required for the correct DV patterning 

and subsequently the proper establishment of a single PD axis. Accordingly, bowl 

and the other members of the family are expressed early in the ventral region of 

the antennal disc and seem to be required to guarantee the repression of wg in this 

domain. bowl mutant clones de-repress wg but do not affect the levels of 

phosphorylated Mad (pMad). Thus, the de-repression of wg creates a new point 

where the high levels of Wg and Dpp signaling originate an ectopic PD axis.  

Moreover, our work shows that Dpp signal activates the odd family genes: ectopic 

expression of a constitutively activated form of the Dpp receptor, thickveins (tkv), 

induces drm expression. Our data fits with a model where the odd genes are 

activated by Dpp signaling and, at same time, are required downstream this 

pathway to avoid the misexpression of wg in the dorsal antenna. 

Furthermore, axis duplication caused by removal of bowl is independent of the 

homeotic transformation of the antenna by Antp, known to block the acquisition of 

the antennal fate by repressing genes essential for its identity, like hth. In Antp-

expressing antennae, that develop as leg–like appendages, the same duplication of 
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appendage occurs if bowl function is removed, meaning that the role of bowl is 

independent of the homeotic genes-induced context. In addition, the Antp-

transformed antenna retains the expression of antennal specific genes, like eyg and 

dan (Figure 3A, Chapter II). Altogether, this suggests that there are a number of 

gene regulatory steps in the antennal disc that are Hox selector independent and 

whose control seems to rely on a cephalic specific genetic program. 

Another crucial difference between leg and antennal discs are their developmental 

origin. The leg disc derives from a single embryonic thoracic segment (Cohen et al., 

1993), while the eye-antennal disc complex derives from several embryonic head 

segments (Younossi-Hartenstein, 1993). This begs the question of how these 

different cell groups coalesce and coordinate their development in the eye-antennal 

imaginal disc? The composite nature of the disc implies fusion of many segments. 

But in Drosophila, as characteristic of Diptera, the head is very simplified. Other 

insects have a more complex head structure, in which the embryonic primordia 

contribute with conspicuous structures– many harbouring appendages- to the adult 

head (Snodgrass, 1935). Nevertheless, these insects usually are more direct 

developers (not using imaginal primordia as developmental intermediaries between 

embryo and adult) and therefore were not “faced” with the necessity to fuse their 

several head primordia in a single imaginal disc. Multiple primordia within a single 

epithelial sac are, in principle, exposed to a milieu of signals and yet, they must 

retain certain independence. Perhaps, this integrated mode of development 

required some primordia to be suppressed and thus avoid developmental 

interference. Based on this argument, another possibility arises to explain our 

results. Taking in account the described role for bowl in repressing eye fate in the 

‘neck’ region of the imaginal disc, characterized by the coexpression of ey and ct 

(Figure 6, Chapter II),  at least some of the ectopic antennae originated by the 

removal of bowl could represent the development of a new appendage instead of a 

duplication of the antenna. In this hypothesis, bowl would function by maintaining 

silenced the development of other appendages in those cells coming from 

embryonic segments that do not result in conspicuous structures. 

In the leg, odd family genes were already known to be required downstream of 

Notch function in segmentation. Notch activates odd family genes in cells adjacent 

to those where the joint is going to be formed (de Celis Ibeas and Bray, 2003; Hao 

et al., 2003). This raises the question of whether, as in the case of leg 

segmentation, odd genes are also required for antennal segmentation in addition to 

their role in early antennal development? We showed that despite the fact that odd 

genes are expressed in rings in the disc and fate map to some of the antennal 

joints (Figure 11G and I, Introduction) they are not required for antennal 
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segmentation. The relationship to the Notch pathway is not clear either. While in 

the legs Serrate (Ser) and Delta (Dl) are coexpressed in rings abutting the odd-

expressing prospective joints, Ser and Dl are not co-expressed in the antennal disc 

(Casares and Mann, 2001). Nevertheless, the fact that Dl expression is sufficient to 

induce odd/drm in antenna (Figure 1J) might indicate that Dl/Ser co-expression is 

not absolutely necessary for Notch signaling and the concomitant activation of odd 

genes’ expression. Still, the fact that joint-associated odd/drm/bowl expression is 

not involved in segmentation could be a reflection of the shared developmental 

program with the leg discs. 
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Abstract

Odd-skipped family of proteins (Odd in Drosophila and Osr in vertebrates) are evolutionarily conserved zinc finger transcription factors.
Two Osr genes are present in mammalian genomes, and it was recently reported that Osr1, but not Osr2, is required for murine kidney
development. Here, we show that in Xenopus and zebrafish both Osr1 and Osr2 are necessary and sufficient for the development of the
pronephros. Osr genes are expressed in early prospective pronephric territories, and morphants for either of the two genes show severely
impaired kidney development. Conversely, overexpression of Osr genes promotes formation of ectopic kidney tissue. Molecularly, Osr proteins
function as transcriptional repressors during kidney formation. We also show that Drosophila Odd induces kidney tissue in Xenopus. This might
be accomplished through recruitment of Groucho-like co-repressors. Odd genes may also be required for proper development of the Malpighian
tubules, the Drosophila renal organs. Our results highlight the evolutionary conserved involvement of Odd-skipped transcription factors in the
development of kidneys.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Drosophila; Odd-skipped; Kidney; Repressor; Xenopus; Zebrafish
Introduction

During vertebrate development, three renal structures of
increasing complexity form successively from the intermediate
mesoderm: pronephros, mesonephros and metanephros (Saxén,
1987). Each of these develops by an inductive process mediated
by the previous structure. In mammals, the pronephros is not
functional but is required for mesonephros formation, which
will execute renal functions in the embryo. Later in develop-
ment, the mesonephros will be replaced by the metanephros, the
adult functional kidney. In fish and amphibians, the pronephros
is the functional embryonic kidney, being replaced in the adults
⁎ Corresponding authors. J.L. Gómez-Skarmeta and F. Casares are to be
contacted at Centro Andaluz de Biología del Desarrollo, Consejo Superior de
Investigaciones Científicas/Universidad Pablo de Olavide, Carretera de Utrera
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E-mail addresses: fcasfer@upo.es (F. Casares), jlgomska@upo.es
(J.L. Gómez-Skarmeta).
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by the mesonephros. In these organisms, a metanephros does
not develop. The three kidney types differ in their organization,
but share the same structural unit, the nephron. The number of
nephrons varies from 1 to 50 in simple kidneys to a million in
the mammalian ones. The nephron is divided in three basic
segments: the corpuscle, the tubules and the duct. The corpuscle
or glomerulus filters the blood, the tubular epithelium is the site
of selective re-absorption and secretion and the duct collects and
excretes the urine (Brandli, 1999; Burns, 1955; Saxén, 1987;
Vize et al., 1997).

In Xenopus and in zebrafish (D. rerio), the pronephros is
formed by a pair of unique non-integrated nephrons, symmet-
rically localized in the embryo (Brandli, 1999; Burns, 1955;
Saxén, 1987; Vize et al., 1997). Most of the genes necessary for
the formation of the Xenopus and zebrafish pronephros are also
crucial for the formation of the more complex mammalian
kidneys (reviewed in Carroll et al., 1999; Ryffel, 2003). These
similarities at the molecular level correlate with physiological
homologies. Thus, the tubules of all nephrons have similar
5
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subdivisions along the anterior–posterior axis with an analo-
gous distribution of transporters of small molecules and ions
along this axis (Zhou and Vize, 2004).

In Xenopus, the transcription factors XPax8 and Xlim1 are
the earliest known genes to be expressed in the pronephric
primordium. Their expression in the intermediate mesoderm at
early neurulation stage precedes any morphological indication
of pronephros formation (Carroll and Vize, 1999; Heller and
Brandli, 1999). Both genes are essential for tubule and duct
formation (Carroll and Vize, 1999; Chan et al., 2000).
Moreover, only the combined overexpression of XPax8 (or
the partially redundant XPax2) and Xlim1 efficiently forms
ectopic renal tissue (Carroll and Vize, 1999). Early expression
of Lim1 and Pax2/8 in the pronephric territory and functional
requirement for at least Pax2 have been reported in zebrafish
(Majumdar et al., 2000; Pfeffer et al., 1998; Toyama and Dawid,
1997). Consistently with these results, mice lacking Lim1 or
Pax2/8 have severe kidney malformations (Bouchard et al.,
2002; Porteous et al., 2000; Shawlot and Behringer, 1995;
Torres et al., 1995).

In Drosophila, the renal (or Malpighian) tubules are the
major excretory and osmoregulatory organs. They originate
from the embryonic proctodeum, a posterior region of the
ectoderm that gives rise to the hindgut. After specification, they
proliferate and evaginate from the gut epithelium as four buds,
which later extend by cell rearrangement to form the four slim
renal tubules (Jung et al., 2005). In addition, cells from the
caudal visceral mesoderm migrate into the tubules to give rise to
the stellate cells (Denholm et al., 2003). Stellate cells transport
water and chloride anions, while the rest of the tubule's cells
(so-called ‘principal cells’) transport organic solutes and
cations. The transcription factors Kruppel (Kr) and Cut mark
the renal tubules primordium within the proctodeum, and both
are required for normal proliferation and eversion of the renal
tubules. Still, Kr and cut mutant embryos form uric acid
excreting cells – therefore with renal tubules characteristics –
on the hindgut wall (reviewed in Ainsworth et al., 2000). This
suggests the existence of other genes involved in renal tubule
specification in Drosophila.

Despite major differences in embryonic origin, general
organization and physiology, vertebrate kidneys and Droso-
phila renal tubules share certain developmental and genetic
aspects. For instance, in Drosophila, renal tubules arise from
the hindgut primordium, which expresses brachyenteron
(Singer et al., 1996). Its vertebrate homologue, Brachyury,
is required to specify mesoderm and is thus necessary for
kidney development (Technau, 2001). The Kr and cut
homologues Glis2 and Cux-1, respectively, also play a role
in kidney formation in mammals (Sharma et al., 2004;
Vanden Heuvel et al., 1996; Zhang et al., 2002). The Wnt
pathway is required for the specification and proliferation of
the renal tubules (Wan et al., 2000), while Wnt-4 knock-out
mice develop small and dysgenic kidneys (Stark et al., 1994).
Moreover, hibris, a fly homologue of vertebrate nephrin
(Kestila et al., 1998), is expressed in prospective stellate cells
and is required for their colonizing of the tubules (Denholm
et al., 2003).
106
In Drosophila, the odd-skipped (Odd) family of genes
comprises four transcription factors with high homology in their
zinc finger domains: Odd, Sob, Drm and Bowl (Hart et al.,
1996; Iwaki et al., 2001). odd, sob and drm are similarly
expressed in the segment of the gut where midgut–hindgut join,
and in the ureters of the mature tubules (Ward and Coulter,
2000), while bowl is expressed along the hindgut (Hart et al.,
1996; Iwaki et al., 2001; Ward and Coulter, 2000). No renal
tubules phenotype has been described for odd-family mutants.
Two mammalian odd-skipped related genes, Osr1 and Osr2,
have been described (Lan et al., 2001; So and Danielian, 1999).
In the mouse, Osr1 expression starts early (E8.0) in the
intermediate mesoderm, from where renal structures derive (So
and Danielian, 1999), and is maintained until kidney organo-
genesis occurs. Osr2 is activated at stage E9.25 in the
mesonephros, and later (stage E14.5) in the mesenchyme that
surrounds the ducts of the mesonephros and metanephros (Lan
et al., 2001). Osr1 knock-outs lack renal structures (Wang et al.,
2005; James et al., 2006), while Osr2 mutants have normal
kidney development (Lan et al., 2004).

Here we report that both Osr1 and Osr2 function as
transcriptional repressors required for pronephros development
in Xenopus and zebrafish. When overexpressed, both lead to
formation of ectopic renal tissue. Moreover, Drosophila Odd
genes may be also necessary for renal tubule formation and can
generate renal tissue when overexpressed in Xenopus. There-
fore, Odd/Osr genes are utilized to generate filtration organs in
both insects and vertebrates.
Materials and methods

Plasmid constructions

The following cDNA clones were obtained from the I.M.A.G.E. Lawrence
Livermore National Laboratory Consortium: XOsr2 (IMAGE 4405046), zOsr1
(IMAGE 7226990) and zOsr2 (IMAGE 7406070). The XOsr1 cDNA clone
(Mochii XL211m14) was a kind gift from N. Ueno and the NIBB/NIG Xenopus
laevis EST project. The pCS2-XOsr1 construct was generated by inserting the
full-length cDNA into EcoRI site of pCS2+ (Turner and Weintraub, 1994). The
pCS2-XOsr2 construct was generated by inserting the full-length cDNA into
EcoRI and XhoI sites of pCS2+. To generate the pCS2-zOsr1 and pCS2-
zOsr2 constructs, we cloned the corresponding cDNAs into EcoRI and XbaI
sites of pCS2+. To generate the MT-Osr and Osr-MT constructs, we PCR-
amplified the corresponding Osr coding regions with the following pairs of
primers: 5′-GAATTCGATGGGGAGCAAGACGCTTCC-3′ and 5′-
CTCGAGGCATTTGATTTTGGAAGGCTTGAGTTC-3′ for XOsr1; 5′-
GAATTCGATGGGCAGCAAAGCTCTTCCAG-3′ and 5′-CTCGA-
GAATCGCAATTTCTCCGGAAAACTTTTC-3′ for XOsr2; 5′-GAATTCG-
GAATTAGTCATGGGTAGTAAGACG-3′ and 5′-CTCGAGCTTTATCTTGG
CTGGCTTGAG-3′ for zOsr1; 5′-GAATTCTGCACCGGGAATGG-3′ and 5′-
CTCGAGGACTGTGGCGCCGC-3′ for zOsr2. The corresponding EcoRI and
XhoI sites are shown in bold. The different PCR fragments were subcloned in
pGEMT-Easy (Promega) and sequenced. For generating theMT-Osr or the Osr-
MT constructs, we cloned the PCR fragments between the EcoRI and XhoI sites
of pCS2 MT or the pCS2p+MTC2, respectively. These vectors were kindly
provided by D. Turner. To generate the MT-XOsr-EnR and MT-XOsr-E1A
constructs, we removed a XhoI and SacII fragment containing SV40 polyA
region from the MT-XOsr construct and replaced it with a XhoI and SacII
fragment containing the EnR or E1A and the SV40 polyA region. These
fragments were obtained from the pCS2-MT-NLS-EnR and pCS2-MT-NLS-
E1A plasmids kindly donated by N. Papalopulu. The complete open reading
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frame (ORF) from the Drosophila drm gene was excised with XhoI and XbaI
from the drm cDNA and cloned into the XhoI and XbaI sites from pCS2+ vector
to generate the drm construct. To generate the odd construct, we amplified the
ORF from the Drosophila odd gene with the following primers: 5′-
GAATTCAATGTCTTCCACATCGGCCTC-3′ and 5′-TCTAGA-
TATCTGCTCATGATCTCATCGATG-3′. The PCR fragment was subcloned
into pGEMT-Easy (Promega), sequenced and then transferred to pCS2 MT
between the EcoRI and XbaI sites. The oddΔeh1 construct was generated by
subcloning an EcoRI–XhoI fragment from the Drosophila odd gene into the
EcoRI and XhoI sites from the pCS2+ vector. This fragment encodes a
truncated Odd protein that lacks the last 19 amino acids (SSEKPKRMLGFTI-
DEIMSR), which include the eh1 domain (underlined).

DNA sequencing

DNA sequencing was performed with ABI chemistry in an automatic DNA
sequencer using T3 and T7 oligonucleotides. Custom synthesized oligonucleo-
tides were obtained from Sigma.

Xenopus, zebrafish and Drosophila in situ hybridization, X-Gal and
antibody staining

Antisense RNA probes were prepared from cDNAs using digoxigenin or
fluorescein (Boehringer Mannheim) as labels. Xenopus, zebrafish and Droso-
phila specimens were prepared, hybridized and stained as described (Hao et al.,
2003; Harland, 1991; Jowett and Lettice, 1994). Xenopus and Drosophila X-
Gal staining was performed according to Coffman et al. (1993). Xenopus,
zebrafish and Drosophila antibody staining was performed as described
(Gómez-Skarmeta et al., 2001; Hernandez et al., 2005; Sanchez-Herrero,
1991). Antibodies used in this study were rabbit anti-β-galactosidase (Cappel),
rabbit anti-GFP (Molecular Probes) and guinea pig anti-Odd (Kosman et al.,
1998). The monoclonal antibody 3G8 were kindly provided by E. Jones. The
monoclonal antibodies 12/101 and 2B10 (developed by J. P. Brockes) and
Mouse anti-Cut (developed by I. Rebay, G. Dailey, K. Lopardo and G. Rubin)
were obtained from the Developmental Studies Hybridoma Bank developed
under the auspices of the NICHD and maintained by The University of Iowa,
Department of Biological Science, Iowa City, IA 52242.

In vitro RNA synthesis and microinjection of mRNA and morpholinos

All DNAs were linearized and transcribed as described (Harland and
Weintraub, 1985) with a GTP cap analog (New England Biolabs), using SP6,
T3 or T7 RNA polymerases. After DNAse treatment, RNA was extracted with
phenol-chloroform, column purified and precipitated with ethanol. mRNAs for
injection were resuspended in water. X. laevis and Xenopus tropicalis embryos
were injected in the marginal region at the 2-cell stage using a volume of 10 or
2–5 nl, respectively. V2.2 blastomeres of X. tropicalis 8–16 cell stage
embryos were injected with 1–2 nl of morpholino solution. In these
experiments, embryos were co-injected with Dextran-Fluorescein (10,000
MW, Molecular probes). Embryos showing fluorescence in the prospective
kidney domain but not in the somites were selected under a fluorescent
dissecting scope and further processed for in situ hybridization. The
localization of Fluorescein was later determined with anti-Fluorescein antibody
coupled to alkaline phosphatase (Roche). The following morpholinos were
used in this study: MOXOsr1: 5′-TGCTGGAAGGGTCTTGCTCCCCATC-3′,
MOXOsr2: 5′-GGCTGGAAGAGCTTTGCTGCCCATT-3′, MOzOsr1: 5′-
GCGTCTTACTACCCATGACTAATTC-3′ and MOzOsr2: 5′-AGAGTCT-
TACTGCCCATTCCCGGT-3′. The Xenopus morpholinos were designed to
target Osr1 or Osr2 genes from both X. laevis and X. tropicalis. X. tropicalis
embryos were injected with 10–20 ng of morpholinos at the two cell stage and
with 2 ng at the 8–16 cell stage. Zebrafish embryos were injected in the yolk at
1–2 cell stage with 10–20 ng of morpholinos.

Drosophila strains and genetic manipulations

The following mutant alleles are described in Flybase (http://flybase.org/):
odd5, bowl1, drm6. Deficiency drmP2 (Green et al., 2002) deletes from tim to
10
odd and uncovers approximately 30 predicted genes, including drm, sob and
odd. Mutant chromosomes were balanced over the 2nd marked balancer
chromosomes CyO, Kr-GFP; homozygous mutant embryos were detected as
GFP-negative. To trace the lineage of odd-expressing cells in the RTs, we
crossed odd-Gal4 (a Gal4 insertion in odd that faithfully recapitulates its
expression, gift from M. Calleja and G. Morata, CBM, Madrid) into UAS-flip;
act>Draf>LacZ (Campbell and Tomlinson, 1998). In the resulting odd-Gal4/
UAS-flip; act>Draf>LacZ cells derived from odd-expressing cells are
constitutively marked by the expression of lacZ. The expression of the odd
lineage (odd>lineage) was compared to the actual expression of UAS-lacZ; odd-
Gal4 larvae.

To overexpressOdd-family genes in the RT primordial and hindgut, we used
a brachyenteron (byn)-Gal4 driver (Iwaki et al., 2001). byn-Gal4/TM3, ftz-Z
females were crossed to homozygous UAS-bowl (de Celis Ibeas and Bray,
2003), UAS-sob or UAS-odd/TM6B (Hao et al., 2003) or UAS-drm (Green et al.,
2002) males. Embryos carrying byn-Gal4 were detected as LacZ (β-
galactosidase)-negative. Those expressing odd were detected using an anti-
Odd specific antibody. UAS-src-GFP is described in Kaltschmidt et al. (2000).

Results

Osr genes are expressed in the renal primordium of Xenopus
and zebrafish

A search in databanks identified two X. laevis and two
zebrafish EST clones that correspond to genes encoding
orthologues of human and mouse Osr1 and Osr2 (Supple-
mentary Fig. 1). We named these genes XOsr1, zOsr1,
XOsr2 and zOsr2. No additional Osr genes were detected by
Blast searches in these species, suggesting that, as in
mammals, they have two Osr genes. Both XOsr genes are
initially detected during early gastrulation in the involuting
mesoderm and endoderm (Figs. 1A, E). At the end of
gastrulation, XOsr2 is detected in the intermediate mesoderm
(inset in Fig. 1F) preceding the activation of the early
pronephric markers XPax8 and Xlim1 (not shown and inset in
Fig. 1I). During neurulation, this expression resolves in a
broad domain largely overlapping that of Xlim1 and XPax8
(Figs. 1F, G, I–K, M–O) (Carroll and Vize, 1999). XOsr1 is
similarly expressed although at lower levels (Figs. 1B, C).
During tailbud (stage 35), XOsr1 is expressed in the rectal
diverticulum and in the ducts (Fig. 1D). At this stage, XOsr2
mRNA is also expressed in the duct but in a broader domain.
In addition, XOsr2 is also expressed in the tubules (Fig. 1H).
See for comparison the expression of Xlim1 and XPax8 in the
tubules and duct at this stage (Figs. 1L, P).

In zebrafish, zOsr1 also precede the expression of the early
pronephros marker zlim1 and zPax2, while the expression of
zOsr2 appears at the 8-somite stage, once zlim1 and zPax2
are transcribed but prior to any sign of pronephros
histogenesis (see Fig. 2 for a full description of zOsr1 and
zOsr2 expression patterns). The staggered expression of
Osr1 and Osr2 we observe in zebrafish is similar to that
recently described in mice and chicken (So and Danielian,
1999; Lan et al., 2001; Wang et al., 2005; James et al., 2006;
Stricker et al., 2006). This situation is reversed in Xenopus,
where Osr2 expression in the prospective renal territory seems
to precede that of Osr1, even if both genes are co-expressed
by the time the early renal markers XPax8 and Xlim1 begin to
be expressed.
7
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Fig. 1. Expression pattern of XOsr genes. Panels A, E are vegetal and panels B–D, F–P are lateral views. Insets in panels A, C, D, E, G, H, L, M and N are transverse
vibratome sections through the dashed lines in the main panels. (A) Early gastrula stage (stg). XOsr1 is expressed in the involuting mesoderm and endoderm
(arrowhead and arrow in inset, respectively). (B, C) During neurulation, XOsr1mRNA is detected in the pronephric territory. (D) At tailbud, XOsr1 is expressed in the
ducts (arrowhead in inset) and in the rectal diverticulum (arrow). (E–G) Expression of XOsr2 is similar, but stronger. In the prospective kidney territory, XOsr2 is
detected earlier than XOsr1 (stage 11.5–12, inset in panel F; arrowhead marks the prospective kidney domain), and earlier than other pronephric markers (see inset in
panel I for the expression of Xlim1 at this stage; arrowhead marks the prospective kidney domain). (H) At tailbud, XOsr2 is expressed in the tubules (arrow) and in a
broad domain adjacent to the ducts (arrowhead in inset). (I, J, M, N) During neurula, expressions of XOsr2 and Xlim1 (I, M) largely overlap in the pronephric region
(double in situ hybridization, J, N). (K, O) During neurula, XPax8 is also detected in the pronephric territory. (L, P) At tailbud, Xlim1 and XPax8 are expressed in the
tubules and ducts. Inset in panel L show Xlim1 expression in the duct (arrowhead).
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Morpholino knockdown of Osr1 and Osr2 impairs renal
development in Xenopus and zebrafish

In mouse, Osr1, but not Osr2, is essential for kidney
development (Lan et al., 2004; Wang et al., 2005). We have
examined whether Osr genes are required for pronephric
development in X. tropicalis and zebrafish by blocking the
translation ofOsr1 andOsr2mRNAs with specific morpholinos
(MOs) (Supplementary Fig. 2A).

X. tropicalis embryos injected with 10–20 ng of XOsr1 or
XOsr2 MOs show similar downregulation of the early pro-
nephric territory markers Xlim1 and XPax8 (84% and 71%,
n=68 and 66, respectively; Figs. 3A–I, M). This down-
regulation was not associated with an expansion of muscle
tissue as determined by the muscle specific antibody 12/101
(Figs. 3A–I, M). Indeed, in some cases, muscle size was reduced
(see Fig. 3M). Moreover, a strong defect in, or the disappearance
of, the differentiated embryonic kidneys was observed, as
determined by the pronephros monoclonal antibody 3G8 (Vize
et al., 1995) (92 and 78%with reduced kidneys, n=175 and 166,
108
respectively; Figs. 3J–L, N–P and not shown). To avoid
possible kidney defects caused by altered muscle development,
we co-injected the XOsr MOs with Dextran-Fluorescein in a
single blastomere (V2.2) of 8–16 cell stage embryos, and
analyzed tailbud-stage embryos showing Fluorescein signal
restricted to the kidney territory, but not in the somites. In these
embryos, injection of XOsr1 or XOsr2 MOs promoted a clear
downregulation of XSGLT1K and XNKCC2 (Figs. 3Q–T), two
genes encoding pronephric epithelial transporters that are
specifically expressed in the proximal and distal tubule,
respectively (Zhou and Vize, 2004), without any visible effect
on somites formation.

In zebrafish, MOs targeting zOsr1 or zOsr2 genes caused
downregulation of the early pronephric markers zlim1 (76% and
46%, n=85 and 93, respectively; Figs. 4A, E, I) or zPax2.1
(73% and 38%, n=81 and 77, respectively; Figs. 4B, F, J) and
induced defects in the differentiated renal structures (Figs. 4C,
G, K). The observed downregulation of zlim1 at 4-somite stage,
though, was more pronounced in MOzOsr1 morphant embryos
(compare Figs. 4E and I). In addition, at 72 hpf these morphant



Fig. 2. Expression pattern of zOsr genes. Dorsal views are shown, except (A), a vegetal view and (K, O) and insets and (I, M, P), transverse sections through the
pectoral fin buds or the posterior spinal cord, respectively. (A) At shield stage, zOsr1 mRNA is detected in the shield and in a ventro-lateral ring. (B, E, F) At tailbud,
zOsr1 (B) is expressed in the pronephric territory (arrowhead), preceding the expression of zlim1 (E) and zPax2.1 (F) (arrowheads mark the prospective pronephric
territory at this stage). (C, G, H) During early somitogenesis, zOsr1 (C), zlim1 (G) and zPax2.1 (H) show similar expression domains within the pronephros territories,
although zOsr1 seems to extend more rostrally. (D, L) At the 8-somite stage, both zOsr1 (D) and zOsr2 (L) mRNAs are expressed in the pronephros, zOsr2 being a
transcription domain weaker and shorter. In addition, zOsr2 also shows a weak generalized expression. (I, M) At 24 hpf, the expression of zOsr1 in the pronephros
starts to be downregulated (I, red arrowhead). At this stage, zOsr2 is detected in the tubules and in the anterior duct (M, red arrowhead). In addition, zOsr1 is expressed
in two rows that run parallel to the pronephros (I, black arrowheads and inset) while zOsr2 is found in the gut (M, black arrowheads and inset). (J, K, N, O) Expression
of zOsr1 (J, K) and zOsr2 (N, O) at 60 hpf. zOsr1 is detected in the glomerulus, in some patches in the eye and brain, and weakly in the pectoral fin buds (J). The
expression in the glomerulus is clearly visible in a transverse section (arrowhead in panel K). zOsr2 is expressed in the tubules and the pectoral fin buds (N). The
expression in the tubules is more evident in a transverse section (arrowhead in panel O). (P) Expression of zPax2 at 24 hpf. The expression in the pronephros is pointed
at by an arrowhead and can be visualized in a transverse section in the inset.
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embryos showed pericardial edemas and kidney cysts (Figs. 4D,
H, L), defects characteristic of renal failure (Drummond et al.,
1998; Hostetter et al., 2003).

In zebrafish and Xenopus, we have compared the effect of
targeting both Osr genes at the same time (with half the dose of
each MO) with reducing individual Osr gene function. No
synergistic effect was observed by reducing Osr1 and Osr2
function simultaneously (not shown). Thus, in contrast to mice
(Lan et al., 2004; Wang et al., 2005; James et al., 2006), in
Xenopus and zebrafish, both Osr genes seem to be required
for development of kidney structures.

Osr1 and Osr2 gain of function promotes ectopic renal tissue

We next examined the effects of overexpressing Osr genes
on Xenopus kidney development. Either wild-type or Myc-
10
tagged versions of either Xenopus or zebrafish Osr1 and Osr2
mRNAs yielded similar results. Many of the Xenopus Osr-
injected embryos showed gastrulation defects that were the
more severe the higher the doses of mRNA. However, in
embryos injected with 100 pg of mRNA, about 30% showed no
gastrulation defects. In most of these (75%, n>200; Figs. 5A–
F), Xlim1 and XPax8 were expressed in ectopic patches of cells.
Other pronephric markers such as XNHF1β or Gata3 were
similarly ectopically expressed, but not the glomerulus marker
XWt1 (not shown). We also examined the effect of Osr
overexpression on genes encoding pronephric epithelial
transporters. Late neurula injected embryos showed ectopic
patches of XSGLT1 and XNKCC2 expression at similar
frequencies (Figs. 5G, H). These patches differentiate as
pronephric structures later, as determined by the tubule-specific
monoclonal antibody 3G8 (Figs. 5I, J). Morpholino-insensitive
9



Fig. 3. Xenopus Osr morphant embryos have severely impaired kidneys. (A–H) Lateral views of stage 25 Xenopus tropicalis embryos injected with 20 ng of
MOXOsr1 (A–D) or 20 ng of MOXOsr2 (E–H) and 300 pg of LacZ mRNA to determine the injected side. Purple staining shows the expression of Xlim1 (A, B, E,
F) or XPax8 (C, D, G, H), and brown staining the somitic muscles, labeled with the monoclonal antibody 12/101. The MO injected embryos show a reduced
expression of the kidney markers on the injected sides (arrows in panels B, D, F and H; compare with the control sides shown in panels A, C, E and G). (I, M)
Transverse section of stage 25 MOXOsr1 (I) or MOXOsr2 (M) injected embryos triple labeled for Xlim1 (pronephros, purple), muscles (brown) and Sox2 (neural
tissue, cyan). Note the strong reduction of the pronephric tissue in the injected sides (arrows). (J–L and N–P) Stage 37 Xenopus tropicalis embryos injected with
MOXOsr1 (J–L) or MOXOsr2 (N–P) and stained with the monoclonal antibody 3G8. Note the strong reduction of the kidney tissue in the injected sides (arrows in
panels K, L, O, P). Insets are closer views. This reduction is clearly visible in transverse sections (arrow in panels L and P). (Q–T) Lateral views of stage 35
Xenopus tropicalis embryos co-injected with MOXOsr1 (Q, R) or MOXOsr2 (S–T) and Dextran-Fluorescein in the V2.2 blastomere at the 8–16 cell stage.
The expression of XSGLT1K (Q, S; purple) and XNKCC2 (R, T; purple) is impaired in the injected side (Fluorescein distribution is visible in cyan). Brown staining
in panels Q and T shows the somitic muscles labeled with the monoclonal antibody 12/101. Insets show the control un-injected side. (U) Target sequences for
Xenopus Osr Morpholinos (MOs). In all sequences, the first methionine of the corresponding gene is underlined. Identical bases are in blue and mismatches in
red. Note that the MOs for each Xenopus Osr gene have one mismatch with the corresponding Xenopus laevis and Xenopus tropicalis target sequences. In contrast,
the MO against one of the paralogues has five or more mismatches with the sequence of the other gene. MOs with only one mismatch can efficiently block
translation while five or more mismatches make an MO inactive.
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Fig. 4. Zebrafish Osr morphant embryos have severely impaired kidneys. (A–D) Wild-type zebrafish embryos. Embryos injected with 20 ng of MOzOsr1 (E–H) or
20 ng of MOzOsr2 (I–L). These injected embryos show a reduction of the pronephric markers zlim1 at the 4-somite stage (A, E, I; arrowheads), zPax8 at 24 hpf
(B, F, J; arrowheads) and reduced kidney tissue at 48 hpf, as determined by the staining with the monoclonal antibody 3G8, which labels tubules and anterior ducts
(C, G, K; arrowheads). At 70 hpf, pericardial edemas (arrowheads) and kidney cysts (arrow) are visible (D, H). These are characteristic of renal failure. (M) Target
sequences for zebrafish Osr Morpholinos (MOs). As in Fig. 3 in all sequences, the first methionine of the corresponding gene is underlined. Identical bases are in
blue and mismatches in red.
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MT-XOsr1 and MT-XOsr2 could also rescue the impaired
development of renal tissue of embryos injected with XOsr1
and XOsr2 MOs, respectively (50% or 37% with rescued
kidneys, Figs. 5K, L). We also examined the effect of
overexpressing Osr genes in transverse sections of stage 22–
25 embryos triply stained for pronephros, somitic muscle and
neural ectoderm. The ectopic renal tissue was always found
close to the neural tube, which in some cases was strikingly
enlarged in the direction of the ectopic pronephros. The somitic
muscles were normal or slightly reduced (Figs. 5M, N). At stage
38, we also observed a clear enlargement of the endogenous
renal tissue and ectopic pronephric structures in the proximity of
the spinal cord (Figs. 5O, P).

In zebrafish embryos, both Osr mRNAs promoted enlarge-
ment of the pronephric domains of zlim1 and zPax2.1 markers
(Figs. 5Q–S and not shown). At later stages, the differentiated
kidney tissue was also expanded (Fig. 5T). In addition, some
embryos displayed ectopic renal tissue (Fig. 5T).

Osr proteins function as transcriptional repressors during
renal development

Two Drosophila Odd proteins, Odd and Bowl, harbor an
eh1-like motif that helps recruiting the Groucho co-repressor
11
to downregulate target genes during embryonic segmentation
(Goldstein et al., 2005). Therefore, in this context, Odd
proteins work as repressors. In contrast, the molecular function
of mammalian Osr proteins is unclear. Osr2 mRNA generates
two protein splicing variants, one containing three zinc fingers
and the other five, that function as activator and repressor,
respectively, in cell culture assays (Kawai et al., 2005). To
further investigate this question, we injected X. laevis embryos
with mRNAs (100 pg) encoding Osr proteins fused to either
the Engrailed repressor domain (EnR) or the E1A activation
domain. Similarly to wild-type Osr mRNAs, XOsr1-EnR or
XOsr2-EnR mRNAs induced patches of ectopic expression
of Xlim1 and XPax8 (Figs. 6A, B and not shown) that
differentiated into renal tissue (Fig. 6C). In contrast, XOsr1-
E1A or XOsr2-E1A mRNAs (500 pg) downregulated Xlim1
and XPax8 and strongly reduced differentiated kidney
structures (Figs. 6D–F, and not shown). Thus, vertebrate Osr
proteins appear to act as transcriptional repressors during
kidney development.

The zinc fingers of Drosophila and vertebrate Odd/Osr
proteins are largely identical in sequence, although the number
of zinc fingers varies among them. Vertebrate Osr proteins
contain three (except the mammalian Osr2A splice variant that
contains five), while Drosophila Drm contains two, Odd four
1



Fig. 5. Overexpression of Osr genes promotes ectopic kidney development. (A–L) Lateral views of stage 25 (A–F), stage 30 (G, H) or stage 37 (I–L) Xenopus
embryos, or 48 hpf zebrafish embryo (T). (M–P) Transverse sections of stage 25 (M, N) or stage 37 (O, P) Xenopus embryos. (Q–T) Dorsal views of four somites (Q)
or 24 hpf (R, S) zebrafish embryos. Embryos were injected with 50–100 pg of Xenopus or zebrafish Osr mRNAs. Xenopus embryos were co-injected with 300 pg of
LacZ mRNA as a lineage tracer. (A–D) Embryos injected with XOsr1 mRNA showed ectopic patches of Xlim1 (A, B) or XPax8 (C, D) expression in the injected
sides (arrowheads in panels B, D). In addition, many embryos have enlarged pronephros (arrows in panels B and D; compare with control sides in panels A and C).
(E, F) Stage 25 Xenopus embryos injected with XOsr2 (E) or zOsr1 (F) mRNAs and doubly hybridized for Xlim1 and XPax8. The first chromogenic reaction, to
detect Xlim1 expression, is shown in the main panels (cyan), and the second chromogenic reaction, to detect XPax8, in the insets (purple). Note that the same cells
express ectopically both markers (arrowheads). (G, H) Embryos injected with 100 pg of Xenopus Osr1 mRNA showed ectopic patches of XSGLT1K (G, arrowheads)
and XNKCC2 (H, arrowhead). Note that these embryos have gastrulated properly. (I, J) Enlarged (arrow) and ectopic (arrowhead) kidney tissue, as determined by
3G8 staining, in stage 37 Xenopus embryos injected with XOsr1 (I) or XOsr2 (J) mRNAs. Insets show magnification of ectopic renal tissue in other injected embryos.
(K, L) Stage 37 Xenopus embryos co-injected with MOXOsr1 and MTXOsr1 mRNA (K) or MOXOsr2 and MTXOsr2 mRNA (L) and stained for 3G8 monoclonal
antibody. Note that these MO insensitive mRNAs rescue the MO-induced kidney marker reduction (arrow) (see panels K and O in Fig. 3 for comparison) and promote
ectopic renal tissue (arrowhead). (M–P) Transverse sections on stage 25 (M, N) or stage 37 (O, P) Xenopus embryos injected with XOsr1 (M, O) or XOsr2 (N, P)
mRNAs. The embryos in panels M and N show a triple staining for Xlim1 (pronephros, purple), monoclonal antibody 12/101(somitic muscles, brown) and Sox2
(neural tube, magenta). The embryos in panels O, P show differentiated kidneys labeled with the monoclonal antibody 3G8. Note that the ectopic renal tissue is
always found close to the neural tube (arrowhead). In addition, these embryos show a clear enlargement of the neural tube and the endogenous pronephros (arrows).
(Q–T) Zebrafish embryos injected with zOsr1 (Q, R) or zOsr2 (S, T) mRNAs showing zlim1 expression at 4-somite stage (Q), zPax2.1 expression at 24 hpf (R, S)
and differentiated renal structures, as determined by 3G8 monoclonal antibody staining (T). Note the enlarged pronephros (arrowheads) and the ectopic renal tissue
(T, arrow). Insets in panels Q, R and T show control non-injected embryos.
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Fig. 6. Osr proteins function as repressors during kidney development. All panels show lateral views of late neurula (left and middle panels) or tailbud (right panels)
Xenopus embryos. The left, middle and right panels show Xlim1, XPax8 and 3G8 staining, respectively. Cartoons on the left indicate the proteins encoded by the
injected mRNAs. (A–C) Injection of 100 pg of XOsr2-EnRmRNA promotes ectopic pronephros (arrowheads). In contrast, injection of 500 pg of XOsr2-E1AmRNA
downregulates pronephric markers (D–F). Inset in panel F shows the control non-injected side. (G–I) Overexpression of Drosophila odd mRNA (500 pg) promotes
ectopic renal tissue (arrowheads). This activity depends on its eh1 domain (orange) as the deletion of this motif (oddΔeh1) impairs its ability to activate renal markers
(J–L). (M–O) Drosophila drm mRNA (1 ng) is unable to promote kidneys when overexpressed in Xenopus.
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and Bowl and Sob five. In addition, Drosophila Odd and Bowl
function in some contexts as repressors by recruiting Groucho,
but Sob and Drm do not bind this co-repressor (Goldstein et al.,
2005). We examined whether Drosophila Odd proteins promote
ectopic kidney differentiation in Xenopus. odd, but not drm
mRNA, promoted ectopic renal tissue (Figs. 6G–I, M–O). This
ability depended on the eh1 domain as its removal abolished it
(Figs. 6J–L). These data strongly suggest that, to function in
renal development, vertebrate Osr proteins may also require a
Groucho-like co-repressor.
11
Drosophila Odd genes are expressed during RT formation and
may be required for their formation

The ability of odd to promote renal tissue in Xenopus
prompted us to determine whether this family of genes is
required for renal tubules formation in Drosophila. We re-
examined the expression of the different Odd genes in
embryogenesis. The similar expression of odd, drm and sob
in the gut suggested that the three genes might also be
expressed in the renal tubules ureters. This was the case, as
3
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detected by coexpression with Cut along the proximal ureteric
tubes (Figs. 7A–C, I). This expression was detected at least
from embryonic stage 12 as a stripe of cells at the base of the
budding RT primordia (not shown). We did not detect bowl
transcription at significant levels in the Cut-expressing cells at
any stage.

The expression pattern of drm, sob and odd argues against
a role in early stages of renal tubules specification, but
suggests a redundant function later in renal tubules
development. To test this hypothesis, we examined the
renal tubules in odd, drm and bowl single mutants, and in
embryos homozygous for a large deficiency (DfdrmP2), that
uncover at least 30 predicted genes, including drm, sob and
odd (Green et al., 2002). (No sob single mutation is
available, which prevented analysis of its individual mutant
phenotype.) None of the three individual mutants affected
renal tubules specification, growth or extension. Nevertheless,
in DfdrmP2 embryos, renal tubules were singled out as Cut-
expressing buds, but failed to grow or extend further (Fig.
7D). The secretory activity of the remaining rudiments in
these mutant embryos, monitored by the production of uric
acid, was greatly reduced when compared with normal
tubules (Figs. 7E, F).

The general defective development of renal tubules was not
anticipated by the localized expression of odd genes in just the
ureters primordia. If odd, sob and drm genes were indeed
responsible for the phenotype observed in DfdrmP2 embryos,
this might be explained if odd genes were controlling the
production of non-autonomous growth signals. In addition, the
odd-expressing cells could contribute to the tubules them-
selves. We tested the second possibility by following the
lineage of odd-expressing cells by using a lineage tracing
system (see Materials and methods). While in odd>lacZ
larvae, X-gal positive cells were confined to the ureters, in
odd>lineage-lacZ embryos, positive cells were found along the
distal tubules, indicating that drm/sob/odd-positive ureteric
cells give rise to tubule cells that lose expression of odd genes
(Figs. 7G, H).
Fig. 7. Odd genes expression and requirement for renal tubule development in
Drosophila. (A) Schematic representation of the late embryonic RTs. The
domains of expression of cut (orange) and of odd, sob and drm (blue) are
shown. cut and drm/sob/odd overlap in the ureters, shown in gray. Mg: midgut;
hg: hindgut; rt: renal tubules; u: ureter. (B, C, I) Expressions of sob (B), drm
(C) and odd (I) are similar and co-localize with Cut in the ureters (arrows). (B,
C) sob and drm expression is detected by in situ hybridization (purple) and
that of cut by immunohistochemistry (orange). Overlap is seen as dark gray. (I)
Odd (green) and Cut (red) expression is detected by immunofluorescence.
Overlap is seen in yellow. Ureters are marked by arrows. (D) DfdrmP2 mutant
embryo (labeled as drm− sob− odd−), showing rudimentary Cut-expressing
tubules. (E, F) Uric acid excretion in wild-type (E) and DfdrmP2 (F) late
embryos, observed under phase contrast optics. (G, H) Histochemical X-Gal
staining of RTs of odd>LacZ (G) and odd>lineage (H; see Materials and
methods) L3 larvae. Nuclei of X-Gal positive cells (blue) are seen along the
distal tubules in odd>lineage (arrows; H) but not in odd>lacZ tubules. (J)
byn>odd late embryo, co-stained for Odd (green) and Cut (red). Tubules
(red) and ureters (yellow) are wider, and tubules are shorter. (K, L, M) Early
stage 13 byn>srcGFP (green) embryo, co-stained for Cut (red). The Cut-
positive RT buds are included within the byn domain. (*) marks the Cut-
expressing posterior spiracles in all panels.
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When overexpressed, none of the four odd genes induced
or expanded the renal tissue. Only the overexpression of odd
(Figs. 7I–K), and to a lesser extent that of sob (not shown),
resulted in a widening and shortening of the tubules and larger
ureters, consistent with an alteration of tubule extension. Our
results suggest that drm, odd and sob may be required for
proper renal tubules development. This requirement is likely
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to occur after the Malpighian tubule primordia have been
specified.

Discussion

Osr1 and 2 genes function at the top of the genetic hierarchy
controlling pronephric development

Here we show that the two paralogues Osr1 and Osr2 are
expressed at early stages in the intermediate mesoderm. Osr1 in
zebrafish and Osr2 in Xenopus are first detected before the
earliest markers of kidney development. This is similar to what
was described for mouse Osr1 (So and Danielian, 1999; Wang
et al., 2005; James et al., 2006). However, in contrast to the
situation found in mammals, where Osr2 seems dispensable for
kidney development (Lan et al., 2004), our morpholino
experiments indicate that both Osr1 and Osr2 are required for
proper pronephros development in Xenopus and zebrafish. In
Xenopus, both genes are coexpressed just at the time the
pronephros territory is being defined, as determined by the
expression of Xlim1 and Pax8. This is consistent with both
genes being required for the early specification of the kidney
anlage. The fact that we do not detect synergistic defects when
impairing simultaneously both genes indicates that Osr1 and
Osr2 are required additively for this specification. In contrast,
in zebrafish, Osr1 precedes the activation of early kidney
markers while the onset of Osr2 expression is delayed until the
8-somite stage, when the early kidney markers are already
activated but still there is no histological sign of kidney tissue
(Drummond et al., 1998). In mice, the onset of Osr2 is further
delayed, only appearing at the 18-somite stage, when
mesonephros are already differentiating (Lan et al., 2001).
The degree of delay in the activation of Osr2 expression
correlates with the functional requirement of these genes: while
in zebrafish knockdown of Osr2 mildly affects the expression
of early pronephric markers, but severely impairs differentiation
of the kidney, the knock-out of Osr2 in mice seems not to have
any effect (Lan et al., 2004). Recent experiments show that the
overexpression of Osr1 is able to induce ectopic kidney
markers in chicken (James et al., 2006). It will be interesting
to assay if overexpression of Osr2 can also promote kidney
formation in chick to determine whether the Osr2 gene of
higher vertebrates retains the functional capabilities of its
paralogue Osr1.

In both Xenopus and zebrafish, the expression of both
genes diverges during pronephros formation, one paralogue
being expressed in more proximal segments than the other.
Thus, Osr genes may provide distinct late functions during
pronephric organogenesis. This functional diversification
seems to have proceeded further in the lineage leading to
mammals as Osr1 has an additional role in heart development
(Lan et al., 2004).

The knockdown of Osr1 and Osr2 results in the loss of all
pronephric structures, including the glomerulus. However,
their ectopic expression activates several early and late
markers, but not the glomerulus-specific marker Wt1 (not
shown). Hence, this structure seems to be missing in the
11
ectopic renal tissue. Osr proteins activate Pax2/8, which can
downregulate Wt1 (Majumdar et al., 2000). Therefore,
strategies devised at inducing functional renal tissue by
making use of Osr expression should overcome this problem.
A transient Osr expression might solve it as it would allow
early specification of the whole pronephric primordium, and
not interfere with the later formation of the glomerulus.

Our results showing that Osr genes can drive the
development of ectopic pronephros, together with the expres-
sion and functional data, suggest that they lay atop the kidney
genetic program. Nevertheless, only the dorsal region of the
embryo was competent to develop ectopic renal tissue upon Osr
mRNA injection. Similar results were found with Xlim1 and
Pax8 co-injection experiments (Carroll and Vize, 1999). In
chick embryos, a gradient of BMP activity patterns mesodermal
fates with highest signaling levels at the lateral mesoderm
inhibiting intermediate fates, including Osr1 expression and
renal development (James and Schultheiss, 2005). Intermediate
levels would allow acquisition of intermediate mesoderm fates
indirectly, through the relief of a transcriptional repressor
activity on intermediate mesoderm genes, such as Osr1 (James
and Schultheiss, 2005). Therefore, intermediate and medial
(dorsal) regions would be competent to develop renal tissue.
This coincides with the regions in Xenopus where Osr mRNA
injection widens the endogenous pronephros or induces ectopic
pronephric tissue. There was no correlation between ectopic
pronephros and muscle loss (a derivative of dorsal mesoderm),
arguing against a muscle-to-kidney transformation. In zebrafish,
injected zOsr mRNAs enlarged the pronephros, but only
occasionally induced ectopic tissue. This suggests strong
restrictions in the competence of the dorsal mesoderm in
zebrafish.

The ectopic renal tissue was patchy, while the distribution of
ectopic Osr protein was broader and continuous (not shown).
Possibly, a lateral inhibition process prevents subsets of Osr
expressing cells from differentiating as kidney tissue. Evidently,
some sort of signaling, of unknown nature, occurs between the
ectopic developing pronephros and the neighboring cells, as
shown by the neural tube overgrowths associated with the
ectopic renal tissue.

Osr proteins act as transcriptional repressors during kidney
development

Native XOsr proteins and the constitutive repressors XOsr-
EnR similarly induced ectopic kidney tissue in Xenopus, which
indicates that vertebrate Osr proteins function as transcriptional
repressor in vivo. Drosophila Odd also acts as a transcriptional
repressor during embryonic segmentation by directly binding to
the Groucho co-repressor (Goldstein et al., 2005). This inter-
action occurs through, and requires the C-terminal “engrailed
homology 1” (eh1) motif. In Xenopus, we show that oddmRNA
also induces ectopic nephrogenesis, an ability that depends on
the eh1 domain. This suggests that some member(s) of the
vertebrate Transducin-like Enhancer of Split (TLS) family of
Groucho homologues (Chen and Courey, 2000) is recruited by
Odd. Moreover, the repressor activity of vertebrate Osr products
5
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may similarly require interaction with TLS co-repressors.
Indeed, we identified a putative eh1 motif in vertebrate Osr1
andOsr2 (Supplementary Fig. 1) that is located N-terminal to the
zinc fingers, instead of at the C-terminal end as in Odd.

That the activation of the kidney genes Pax8 and lim1
requires the repressor activity of Osr proteins implies the
existence of at least one additional intermediate repressor in the
cascade. Foxc1 and/or Foxc2 are possible candidates. These
transcription factors are required for somites development
(Topczewska et al., 2001) and are necessary and sufficient to
repress intermediate mesoderm markers, such as Osr1 and lim1
(Wilm et al., 2004). Still, we do not favor this hypothesis as
Osr1 and Osr2 morphants did not show expanded somites
associated to the loss of pronephros.

Odd genes are expressed in the renal organs of Drosophila and
may be required for their development

We find that Odd genes may also be required for the
development of the renal organs of Drosophila. drm, odd and
sob are expressed in the ureters of the Malpighian tubules,
and embryos homozygous for a deficiency that removes at least
30 predicted genes, including drm, odd and sob, form
rudimentary renal structures with impaired excretory activity,
a phenotype reminiscent of that seen in Kr and cut mutants
(Harbecke and Janning, 1989). While this may reflect a
requirement for these genes in Drosophila renal development,
other genes within this deficiency may also contribute to the
phenotype. We have found that cells born in the drm/sob/odd
expression domain are incorporated into the tubules. Neverthe-
less, a failure in this cell contribution does not seem to explain
the dramatic reduction of Cut cells in the DfdrmP2 mutants and
therefore it is likely that, in these embryos, an additional cell
non-autonomous growth signal is defective.

Renal organs, in charge of nitric waste excretion and
osmoregulation, are pervasive among metazoans. Although it
is conceivable that a kidney precursor existed in the common
ancestor of both insects and vertebrates, embryological studies
indicated otherwise. Vertebrate kidneys have a mesodermal
origin, while insect renal tubules are formed mostly as an
ectodermal derivative. Nevertheless, recent work raises again
the subject of homology. Cells of mesodermal origin undergo a
mesenchymal to epithelial transition and then give rise to the
stellate cells (Denholm et al., 2003). Mesenchymal to epithelial
transition is also characteristic of mesoderm mesenchymal cells
while forming the vertebrate kidney. In addition, several fly
renal tubules genes such as Kr, cut and hibris have vertebrate
homologues (Glis2, Cux-1 and nephrin, respectively) either
expressed or having a role in kidney development (Sharma et
al., 2004; Vanden Heuvel et al., 1996; Zhang et al., 2002).
However, these genes are expressed too late to play a role in the
specification of vertebrate renal organs. Therefore, Odd/Osr
genes are the first ones that seem to participate during early
stages of renal development in both vertebrates and inverte-
brates. This molecular conservation might underlie a deep
evolutionary homology between different kidney types. Alter-
natively, Odd/Osr genes might be used in a conserved
116
molecular cassette engaged in forming and/or patterning tubular
organs, as they do during foregut, hindgut (reviewed in Lengyel
and Iwaki, 2002) and renal tubules (this work) development in
Drosophila, or nephron formation in vertebrate kidneys.
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Abbreviations 
 

A Anterior 

A(1,2,3) Antenna segment (1,2,3) 

AP Antero-posterior 

aa amino acid 

AEL After egg laying 

Antp Antennapidea 

Ar Arista 

Arm Armadillo 

Ato Atonal 

bHLH Basic Helix-Loop-Helix 

BMP Bone Morphogenetic Protein 

Bowl Brother of odd-skipped with entrails limited 

C2H2 Cysteine-Cysteine/Histidine-Histidine 

C2HC Cysteine-Cysteine/Histidine/Cysteine 

CC Cone cell 

Cdk Cyclin-dependent kinase 

Ci Cuibitus interruptus 

Cl Claw 

Ct Cut 

Cx Coxa 

Cyc Cyclin 

D Dorsal 

DV Dorso-ventral 

Dac Dacshund 

Dan Distal antenna 

Danr Distal antenna related 

DD Dach Domain 

Di Distal 

Disco Disconnected 

Dl Delta 

Dlg Disc-large 

Dll Distal-less 

DNA Deoxyribonucleic acid 

Dpp Decapentaplegic 

Drm Drumstick 

E(spl) Enhancer of split 

ED Eya Domain 

EGFR Epithelial Growth Factor Receptor 

Emc Extramacroachaetea 

En Engrailed 

Exd Extradenticle 

Ey Eyeless 

121



Abbreviations 
 
Eya Eyes absent 

Eyg Eyegone 

F Forked 

Fe Femur 

FGF Fibroblast Growth Factor 

FLP Flipase 

FMW First Mitotic Wave 

FRT Flipase Recombination Target 

GFP Green Fluorescent Protein 

GMR Glass Multimer Reporter 

H Hairy 

HD Homeodomain 

Hh Hedgehog 

Hth Homothorax 

IG Intermediate Group 

JO Johnston’s Organ 

kb Kilo base 

L Instar larvae 

Lin Lines 

M Minute 

Mad Mothers against decapentaplegic 

MAPK Mitogen-Activated Protein Kinase 

MARCM Mosaic Analysis with a Repressive Cell Marker 

ME Main Epithelium 

Med Medea 

MF  Morphogenetic Furrow 

Mp Maxilary Palps 

N Notch 

Odd Odd-skipped 

Opt Optix 

P Posterior 

PD Proximo-distal 

PC Pigment cell 

PE Peripodila Epithelium 

pH3 phosphoHistone 3 

Pka cyclic AMP-dependent protein kinase A 

pMad phosphorylated Mothers against decapentaplegic 

Pnt Punt 

PPN Preproneural 

Pr Proximal 

Ptc Patched 

R Photoreceptor cell 
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Abbreviations 
 

RDG Retinal Determination Genes 

RDGN Retinal Determination Genes Network 

RNA Ribonucleic Acid 

Rux Roughex 

Sal Spalt 

Sens Senseless 

Ser Serrate 

Smo Smoothened 

SMW Second Mitotic Wave 

So Sine oculis 

Sob Sister of odd-skipped and drumstick 

Spi Spitz 

Ss Spineless 

Stg String 

Su(H) Suppressor of hairless 

Ta Tarsus 

TGF Transforming Growth Factor 

Ti Tibia 

Tkv Thickveins 

Toy Twin of eyeless 

Tr Trochanter 

ts Temperature-sensitive 

Tsh Teashirt 

UAS Upstream Activating Sequence 

V Ventral 

W White 

Wg Wingless 

Y  Yellow 

Zn-f Zinc-finger 
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