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Abstract

A theoretical study on the HSO2 molecular system is presented in this thesis: starting

from the construction of a global potential energy surface for its ground electronic

state, to dynamical studies of collisions taking place on it. The double many-body

expansion (DMBE) method is employed in the construction of such six-dimensional

function. The topology of the new surface is characterized in detail. A comparison

between the properties of the stationary points obtained here with those reported in the

literature is given, new structures are also characterized. Three bi-molecular reactions

are then studied using quasi-classical trajectories method and the new potential. For

the first time these reactions are studied in their full dimensionality. Main attributes

of these molecular collisions are discussed and compared with available information in

the literature.
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Foreword

Sulfur has been known since the beginning of history. It occurs uncombined in

nature, and it is a major global pollutant when oxidized to sulfur dioxide (SO2).

Sulfur compounds are used extensively in the modern industrialized world [1].

Hydrogen sulfide (H2S) and organic sulfides are found in a variety of feed-stocks

and crude oil. Other anthropogenic sources of sulfur include: (i) industrial gas

streams (ii) natural and refinery gases which contain sulfur as mercaptans (also

named thiols: any organic compound containing the group SH bonded to a car-

bon atom like thiophene C4H4S) and carbonyl sulfide (COS); (iii) synthesis gases

(CO+H2) containing sulfur as COS and carbon disulphide (CS2); and (iv) emis-

sions from vehicle exhausts [1, 2].

There are also substantial natural reserves of sulfur, the most important of

which are biogenic sources, sea spray and volcanoes. The biogenic sources orig-

inate from bacterial reduction of sediments to H2S in the sea and release of

dimethyl sulfide ((CH3)2S) from sea organisms. Volcanoes are the main natural

source of SO2 [1].

Other species found in the atmosphere include H2S, (CH3)2S, dimethyl disul-

phide ((CH3)2S2), COS and CS2. H2S, (CH3)2S and (CH3)2S2 are rapidly oxidized

to SO2, remaining only a few days in the atmosphere. COS and CS2 are much

longer lived species also found in the troposphere [3]. In the atmosphere, H2S,

COS and CS2 react with hydroxide radicals to form mercapto radicals (HS) [3]:

OH + CS2 → COS + HS (1)

OH + COS → CO2 + HS (2)

OH + H2S → H2O + HS (3)

Hydroxyl (OH) radical comes into the atmosphere from different sources [2, 4, 5].
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HS may also be formed by photo-dissociation of H2S in the troposphere [3, 6].

Oxidation of HS radicals take place involving species such as hydroxysulfinyl1

(HSO2) [2, 3]. The latter is also associated to reactions taking place during com-

bustion process [7, 8]. There, sulfur molecular systems act as oxidation inhibitors

of the fuel. Properties of HSO2 radicals have been reported in the literature [9–19],

while chemical reactions, taking place on its ground state potential energy surface

had also been studied [8, 9, 15, 18, 20–26].

In the literature however, a potential energy surface (PES) for the title system,

describing all its possible configurations, has not been reported previously. To

carry out molecular dynamics studies to get information on the mechanism and

properties of the products at the same time, a global potential energy surface is

needed [27, 28]. Being a tetratomic system with six internuclear distances, 33

electrons and also containing an element of the third row of the periodic table,

ab initio calculations of the electronic energies are quite demanding.

The construction of such a PES for further use in modeling molecular collisions

is the principal aim of this thesis.

This thesis is organized as follows: Part I deals with potential energy surfaces,

presenting a theoretical background in chapter 1 and reporting a global PES of

HSO2 in chapter 2. Part II refers to molecular dynamics, with a theoretical

introduction in chapter 3. Three reactions that have been studied using the new

PES are presented in chapters 4, 5 and 6. Finally the main achievements are

summarized and further possible applications are outlined.
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Part I

Potential energy Surfaces





Chapter 1

Theoretical Framework

The potential energy surface (PES) concept is a cornerstone in theoretical studies

of chemical processes [1–4]. Its definition comes from applying quantum mechan-

ics to a molecular system within the Born-Oppenheimer approximation [5]. These

functions are needed for any (quantum or classical) dynamical study of molecules,

including rate constants of chemical reactions, molecular beam scattering cross

sections and ro-vibrational spectroscopy [2, 3]. Detailed discussions on poten-

tial energy surfaces may be found elsewhere [1, 4, 6–8]; in the following, main

ideas related to molecular PES are briefly reviewed. First the origin of its con-

cept is introduced, and then ideas leading to its construction, representation and

characterization will be discussed.

1.1 Born-Oppenheimer Approximation

From a quantum mechanical description of matter [7], motion of atomic particles

is governed by the Schrödinger equation, with the stationary form:

ĤΨ = EΨ (1.1)

being Ĥ the Hamiltonian operator of the studied system, Ψ the wave function

and E the energy of the system. Atomic units [9] will be used in this chapter.

For a general molecular system consisting of electrons and nuclei, the Hamil-

tonian can be written as:

Ĥ(r,R) = T̂N(R) + Ĥe(r,R) (1.2)
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where T̂N represents nuclear kinetic operator, Ĥe is the electronic Hamiltonian,

r and R are the electron and nuclear coordinates respectively. The electronic

Hamiltonian, depending also on nuclear coordinates, can be written as:

Ĥe = T̂e + Vee + VeN + VNN (1.3)

being T̂e the electrons kinetic energy operator, Vee includes all the electron-

electron interactions, VeN stands for electron-nucleus interactions and VNN in-

cludes all nuclei-nuclei interactions. For a system with N nuclei and ne electrons,

the above presented terms are given by:

T̂N = −
N∑

k

(
1

2Mk

)

∇2
k, T̂e = −1

2

ne∑

i

∇2
i (1.4)

Vee =
1

2

ne∑

i6=j

1

rij
, VeN = −

N∑

k

ne∑

i

Zk

|Rk − ri|
, VNN =

1

2

N∑

k 6=k′

ZkZk′

Rkk′

(1.5)

where Mk and Zk are the mass and charge number of the kth nucleus respectively,

rij = |ri − rj |, and Rkk′ = |Rk −Rk′|

If all nuclei were fixed in the space, the motion of the electrons would be

governed by the equation:

Ĥe(r;R)Φn(r;R) = εn(R)Φn(r;R) (1.6)

where Φn(r;R) and εn(R) are the adiabatic eigenfunctions and eigenvalues of

the electronic Hamiltonian (1.3) parametrically depending on R, for a given n

electronic state. Since adiabatic eigenfunctions are a complete basis set, the mole-

cular wave function Ψ(r,R), fulfilling the whole system stationary Schrödinger

equation:

Ĥ(r,R)Ψ(r,R) = EΨ(r,R), (1.7)

can be expanded as [10]:

Ψ(r,R) =
∑

n

χn(R)Φn(r;R) (1.8)
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where χn(R) is the nuclear wave function in the adiabatic representation. Sub-

stituting (1.8) into (1.7) and integrating over the electronic coordinates, the fol-

lowing coupled equations are obtained:

[T̂ (R) + εm(R)]χm(R) +
∑

n

Λ̂mn(R)χn(R) = Eχm(R) (1.9)

being Λ̂mn the elements of the coupling matrix operator Λ̂ given by:

Λ̂mn = −
∑

i

1

Mi

(

A(i)
mn

∂

∂Ri
+

1

2
B(i)

mn

)

(1.10)

where the elements of matrices A(i) and B(i) are:

A(i)
mn =

∫

Φ∗
m

∂

∂Ri

Φnd3r, B(i)
mn =

∫

Φ∗
m

∂2

∂R2
i

Φnd3r (1.11)

In order to solve the coupled equations (1.9), off-diagonal coupling terms Λ̂mn

(m 6= n) are often disregarded. This idea is justified by the fact that nuclear

mass is much larger than the mass of the electrons; it is called adiabatic approxi-

mation [10].

If non-adiabatic coupling is neglected, which is equivalent to keep only one

term in the expansion (1.8), the wave function becomes:

Ψ(r,R) = χn(R)Φn(r;R). (1.12)

The adiabatic approximation for nuclear wave function assumes the form:

Ĥad
n χn(R) = Eχn(R) (1.13)

where the nuclear adiabatic Hamiltonian is given by:

Ĥad
n = T̂N + εn(R) + Λ̂nn(R) (1.14)

In most situations involving molecular species, the dependence of Λ̂nn(R) on nu-

clear coordinates R is relatively weak compared to that of the adiabatic potential

εn(R). Thus, the term Λ̂nn(R) is often neglected in the adiabatic approximation

and the Born-Oppenheimer approximation (BOA) [5] is then obtained:

[T̂N + Vn(R)]χn(R) = Eχn(R) (1.15)



10 Theoretical Framework

where εn(R) was replaced by Vn(R), to remark that the electronic energy becomes

an interaction potential in the nuclear problem. Hence, in the adiabatic BOA, a

complete separation of electronic and nuclear motion is achieved; one first solves

the electronic problem getting the eigenvalues εn(R) at a given R and defined

electronic state characterized by the quantum number n, then solves the nuclear

dynamics using such Vn(R) as the interaction potential for nuclei. Thus, Vn(R) is

a potential energy surface on which atomic nuclei of the molecular system move.

1.2 Ab initio calculations

For a molecular system consisting of ne electrons and N nuclei, the electronic

Hamiltonian for a fixed nuclear configuration can be written as:

Ĥe =
ne∑

i

ĥ(i) +
1

2

∑

i6=j

1

rij

(1.16)

where the second term represents the electron-electron interaction Vee and the

one electron Hamiltonian is given by:

ĥ(i) = −1

2
∇2

i +
N∑

k

Zk

Rik
(1.17)

Rik = |ri − Rk| and rij have the same meaning as in previous section. Thus,

equation (1.6) becomes:
(

n∑

i

ĥ(i) +
1

2

∑

i6=j

1

rij

)

Φn(r) = εnΦn(r) (1.18)

where dependence of ĥ(i), εn and Φn on R has been omitted for clarity and

nuclear-nuclear interactions have been excluded.

To obtain the eigenvalues and eigenfunctions of the equation (1.18) is usually

called ab initio calculations. This task is, at present times, exactly feasible only

for hydrogen-like systems. Thus, usually further approximations are needed.

1.2.1 Hartree-Fock approximation

When calculating the ground state energy of a molecular system, the use of

variational methods is convenient [7]. In that case, the wave function can be
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determined by finding the extremal of the functional:

J =

∫

Φ∗ĤΦdτ (1.19)

where Φ is assumed to be normalized:
∫

Φ∗Φdτ = 1 (1.20)

The success of the variational method depends on the choice of the trial function.

It is possible to construct the system wave function as the simple product of

different electrons wave functions:

Φ = ψ1(1)ψ2(2) · · ·ψn(n) (1.21)

Such a selection correspond to the assumption that electrons move independently.

Substituting (1.21) into (1.19), with Ĥ given by (1.16) it is obtained:

J =
∑

i

∫

ψ∗
i ĥ(i)ψid

3ri +
1

2

∑

j 6=i

∫

ψ∗
i ψ

∗
j (

1

rij
)ψiψjd

3rid
3rj (1.22)

the wave function of the ground state is then obtained by the solution of the

variational problem:

δJ = δ

∫

Φ∗ĤΦdτ =
∑

i

∫

δψ∗
i {ĥ(i) +

∑

j 6=i

∫

ψ∗
j (

1

rij

)ψjd
3rj}ψid

3ri = 0 (1.23)

the orthonormal character of the ψi functions allows to introduce the Lagrangian

multipliers ǫi:

δJ =
∑

i

∫

δψ∗
i {ĥ(i) +

∑

j 6=i

∫

ψ∗
j (

1

rij

)ψjd
3rj − ǫi}ψid

3ri = 0 (1.24)

as the δψi are linearly independent, it is then obtained:

[

ĥ(i) +
∑

j 6=i

∫

ψ∗
j (

1

rij
)ψjd

3rj − ǫi

]

ψi = 0 i = 1, 2, · · · , N (1.25)

The set of equations (1.25) for determination of single electron wave functions

ψi and energies ǫi was first proposed by Hartree [11] on the basis of the average
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field produced by the electrons. Fock [12] obtained such equations by using a

variational principle as here presented.

To solve equations set (1.25) Hartree applied the method of successive ap-

proximations. As zeroth approximation he used the hydrogen-like functions ψ
(0)
i

and then evaluate the sum:

V(0)
i =

∑

j 6=i

∫

ψ
(0)∗
j (

1

rij
)ψ

(0)
j d3rj (1.26)

which is the average Coulomb interaction energy of the ith electron when inter-

acting with all other electrons whose states are given by ψ
(0)
j . Substituting V(0)

i

in (1.25) is possible to determine the functions ψ
(1)
i in the first order approxima-

tion:
[

ĥ(i) + V(0)
i − ǫi

]

ψ
(1)
i = 0 (1.27)

then, assuming each electron in an state given by ψ
(1)
i the new potential V(1)

i is

obtained:

V(1)
i =

∑

j 6=i

∫

ψ
(1)∗
j (

1

rij
)ψ

(1)
j d3rj (1.28)

which can be used to evaluate the wave function:

[

ĥ(i) + V(1)
i − ǫi

]

ψ
(2)
i = 0 (1.29)

if the process converges, it can be continued until obtain a potential energy:

Vi =
∑

j 6=i

∫

ψ∗
j (

1

rij
)ψjd

3rj (1.30)

which, by substitution in the set of equations:

[

ĥ(i) + Vi − ǫi

]

ψi = 0 (1.31)

will lead to almost the same wave functions ψi than the used to evaluate the

potential energy (1.30). The potential energy so obtained is called self consistent

Hartree field.

The above approximation is based upon representation of the system’s wave

function as a product (1.21) of single electron wave functions. However such

a choice does not account the fermionic character of the electrons. A proper
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wave function of electrons set must be antisymmetric. A self consistent field

(SCF) which correctly account the symmetry of the electronic wave function was

obtained by Fock [12]. In Fock’s method the trial function is constructed by

means of the Slater determinant:

Φ =
1√
n!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

· · · ·
· · · ·
· · · ·

ψN (1) ψN(2) · · · ψN (N)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(1.32)

which can be expressed as:

Φ = Â[ψ1(1)ψ2(2) · · ·ψn(n)], (1.33)

where the anti-symmetrization operator Â is given by:

Â =
1√
n!

n!∑

k=1

(−1)kP̂

where P̂ is the bi-particular permutation operator, Â fulfill the following rela-

tionships:

Â2 =
√
n!Â, Â† = Â, Â(

1

rij

) = (
1

rij

)Â, Âĥ(i) = ĥ(i)Â (1.34)

with the trial function (1.32) the equation (1.22) becomes:

J =
1√
n!

∑

i

∫

Â∗[ψ1(1)ψ2(2) · · ·ψn(n)]∗ĥ(i)Â[ψ1(1)ψ2(2) · · ·ψn(n)]dτ

︸ ︷︷ ︸

I1

+

+
1

2

1√
n!

∑

i6=j

∫

Â∗[ψ1(1)ψ2(2) · · ·ψn(n)]∗(
1

rij
)Â[ψ1(1)ψ2(2) · · ·ψn(n)]dτ

︸ ︷︷ ︸

I2

using the properties (1.34) and bearing in mind that
∫
ψi(i)ψj(i)d

3ri = δj
i , I1 and

I2 becomes:

I1 =

ne∑

i=1

∫

ψi(i)ĥ(i)ψi(i)d
3ri =

ne∑

i=1

ǫHF
i (1.35)
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I2 =
1

2

ne∑

i,j

[∫

ψi(i)
∗ψj(j)

∗ 1

rij
ψi(i)ψj(j)d

3rid
3rj −

−
∫

ψi(i)
∗ψj(j)

∗ 1

rij
ψi(j)ψj(i)d

3rid
3rj

]

=
1

2

ne∑

i,j

[Jij −Kij]

then, the Hartree-Fock energy becomes:

EHF =

ne∑

i=1

ǫHF
i +

1

2

ne∑

i,j

[Jij −Kij ] (1.36)

The first term in equation (1.36) is just the sum of the mean values of the mono-

particles energies. The second term contains two parts: Jij represents the elec-

trostatic interaction of two electrons in states i and j, while Kij is the so called

Hartree-Fock exchange energy, having no analogue in the classical physics. It is a

consequence of the fermionic character of the electrons. To calculate the Hartree-

Fock energy, the wave functions ψi (usually called orbitals) are needed, thus,

a similar iterative method as previously described for Hartree approximation is

used.

1.2.2 Post Hartree-Fock methods

Although HF calculations give very useful and even accurate results for quantities

like equilibrium geometries of the molecules, the HF approach is a very approxi-

mate method to solve electronic problems [13]. The HF method, essentially, is a

mean field approximation in which each electron move under the influence of the

mean interaction due to all other electrons. As a result, it neglects the instanta-

neous or correlated motions of the electrons. It is useful to define the difference

between the exact energy (Eexact) of the electronic system and the HF as the

electronic correlation energy:

Ecorr = Eexact − EHF (1.37)

Even when the HF energy represents the major part of the total energy, usually

around 95 to 99 %, correlation energy [13] is very significant in most chemical
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problems (molecular collisions, properties calculations, etc.): interest is not in

the absolute value of the energy but in the differences between values for given

configurations. Such a difference (e.g. between two vibrational levels of a diatom)

can be of the same order than Ecorr. Thus, these “small” contributions may be

significant [14].

In order to recover the correlation energy it is necessary to go beyond the

HF approximation. The general approach for the electronic correlation energy

calculation is to include more than one Slater determinant in the expansion of

the electronic wave function.

Φ =
∑

k

ckDk (1.38)

where D0 is the Slater determinant for the ground state wave function, com-

posed of the N lowest molecular orbitals and Dk(k > 0) are Slater determinants

with one or more electrons in excited orbitals. This approach is called configu-

ration interaction or CI [14]. Configuration interaction calculations are classified

by the number of excitations used to make each determinant. If only one elec-

tron has been moved for each determinant, it is called a configuration interaction

single-excitation (CIS) [15] calculation. CIS calculations give an approximation

to the excited states of the molecule, but do not change the ground state en-

ergy. Single-and double-excitation (CISD) [15] calculations yield a ground-state

energy that has been corrected for correlation. Triple-excitation (CISDT) [15]

and quadruple-excitation (CISDTQ) [15] calculations are done only when very-

high-accuracy results are desired. The configuration interaction calculation with

all possible excitations is called a full CI (FCI). The full CI calculation using an

infinitely large basis set will give an exact quantum mechanical result. However,

full CI calculations are very rarely done due to the immense amount of computer

power required. Thus, accurate calculation of correlation energy for electrons in

a molecular system is a very difficult task and further methods and/or truncation

of the CI expansion are needed. Some type of calculations begins with a HF

approximation and are then corrected to include electronic correlation.

Some of these methods [16] are Møller-Plesset perturbation theory (MPn,

where n is the order of correction), the generalized valence bond (GVB) method,

multiconfigurational self-consistent field (MCSCF), and coupled cluster theory
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(CC). As a group, these are referred to as correlated calculation methods. In the

following some of them will be introduced.

1.2.2.1 Multiconfigurational self consistent field method

The multiconfigurational self consistent field (MCSCF) [15] wave function is a

truncation of the CI expansion (1.38) in which both factors of the expansion,

the coefficient and the molecular orbitals of the configurations, are variationally

optimized. The molecular orbital is optimized by means of the coefficients of the

basis set (see section 1.4) in which it is expanded. Simultaneous optimization of

orbitals and coefficients is a difficult task, as it is needed to account the two sets

of parameters defining the wave function. Then, a compromise appears between

generation of a configuration space sufficiently flexible to describe the molecular

system and the number of variables to be computationally tractable.

The MCSCF wave function is well suited to study systems involving degen-

erate or nearly degenerate configurations, where the static correlation is impor-

tant [15]. These situations are usually encountered in the description of reaction

process where chemical bonds are being broken, but also in ground-state mole-

cular systems at the equilibrium geometry.

An approach to select the MCSCF configurations is to partition the molecular

orbital space into three subspaces, containing inactive, active and virtual (or un-

occupied) orbitals respectively [17]. Typically, the core orbitals of the system are

treated as inactive and the valence orbitals as active. Thus, the complete active

space (CAS) consists in all configurations obtained by distributing the valence

electrons in all possible ways in the active orbitals, keeping the core orbitals dou-

bled occupied in all configurations. This is referred to as full valence complete

active space (FVCAS) [17]. FVCAS method is implemented in MOLPRO [18],

an ab initio package used to study the title molecular system of this work.

Since the configuration expansion that can be managed within the framework

of CASSCF theory corresponds to small active spaces, it is in general impossible to

recover the dynamical correlation by MCSCF wave functions. For high accuracy

and treatment of dynamical correlation, additional calculations must be carried

out based on the initial MCSCF description.
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1.2.2.2 Perturbation Methods

In order to apply perturbation theory [7] to the calculation of the correlation

energy, the unperturbed Hamiltonian must be selected. The most common choice

is to take this as a sum over Fock operators [16], leading to Møller Plesset (MP)

Perturbation theory [19]. In this way, the electron repulsion is counted twice.

This choice is not consistent with the assumption that perturbation should be

small when compared with Ĥ0 [7]. However, it does fulfill the requirement that

solutions of the unperturbed Schrödinger equation should be known.

Ĥ0 =
n∑

i=1

F̂i =
n∑

i=1

(

ĥi +
n∑

j=1

(Ĵij − K̂ij)

)

(1.39)

Subtracting the unperturbed Hamiltonian from the total one, the perturbation

becomes:

Ŵ = Ĥ − Ĥ0 =
n∑

i=1

ĥi + Vee −
n∑

i=1

(

ĥi +
n∑

j=1

(Ĵij − K̂ij)

)

= Vee − 2〈Vee〉 (1.40)

Thus, the Hartree-Fock energy (1.36) is recovered only in the first order of the

perturbation:

MP1 = MP0 + E(MP1) = E(HF) (1.41)

electron correlation energy starts at order 2 with this choice.

One can go further to higher orders of perturbations MP3, MP4 and so on. In

the ideal case the HF, MP2, MP3 and MP4 results show a monotonic convergence

towards a limiting value, with the corrections being of the same sign and numeri-

cally smaller as the order of the perturbation increases. Unfortunately this is not

the typical behavior. Even in systems where the reference is well described by a

single determinant, oscillations in a given property as a function of perturbation

order are often observed [20].

In practice only low orders of perturbation theory can be carried out and it is

often observed that HF and MP2 results differs considerably, the MP3 moves back

towards the HF and the MP4 moves away again. In despite of such a behavior MP

offers a cheaper method to account the electronic correlation energy, compared

with other approximations [16]. Besides, perturbation methods are size extensive

i.e. the calculated energy of two fragments placed infinitely farther away is the
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same than the sum of the energies of each fragment [15], a significant advantage

compared to variational methods.

Perturbation methods can also be used with multireference functions. This

is the case of CASPTn [15, 21–23] in which perturbation theory calculations (of

nth-order) are carried out using CASSCF wave function as zeroth order approxi-

mation.

A difficulty of this method is that the CASSCF wave function is not an eigen-

function of the non-perturbed Hamiltonian (1.39). Then, Ĥ0 must be redefined

to restore the eigenfunction property. A solution, first proposed by Andersson et

al. [22] was to project the Ĥ0 operator onto the space of configuration interaction

functions. This is done with help of projection operators: P̂0 projecting onto the

reference wave function space (V0), P̂K project onto an space VK , defined by the

orthogonal complement to V0 in the restricted subspace used to generate the CAS

wave function, P̂SD project onto the space VSD, spanned by all single and double

replacement states generated from V0 and P̂TQ projecting onto the space VTQ,

the space containing all higher order excitations not included in the previously

mentioned spaces. Thus, the unperturbed Hamiltonian can be written:

ĤCASPT
0 = P̂0F̂ P̂0 + P̂KF̂ P̂K + P̂SDF̂ P̂SD + P̂TQF̂ P̂TQ (1.42)

where F̂ is the CASSCF Fock operator [22]. With this idea and a rather com-

plicated mathematical formalism, a significant part of the correlation energy can

be recovered in CASPT2 energy.

The CASPT approach is almost size extensive [15]. For a CASSCF reference

wave function dominated by a single determinant, the contributions to the energy

from the terms that are not size-extensive is expected to be small, while for a wave

function in which several determinants have large weights, larger non-separable

contribution is expected.

The importance of CASPT lies in the fact that, it represents the only generally

applicable method for the ab initio calculation of dynamical correlation effects of

open and closed-shell multiconfigurational electronic systems [15].
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1.3 Other methods

When studying molecular structure, either to obtain a potential energy surface or

to calculate molecular properties, different methods, besides those presented in

the previous section are also used. We can hardly select one of them as a better

one, in such a case, it would be only to deal with certain problem or system. In

the following some of them are very briefly presented.

The Gaussian theories (Gn), developed in the 1980’s [24] have shown great

utility in calculating accurate energies [25]. In these theories energy is composite,

assembled from a variety of different quantum methods, using basis sets of dif-

ferent sophistication to yield effective energies at high level and large basis sets.

The means by which this is achieved may be illustrated with the equation:

E(Gn) = E[MP2/SP] + ∆E(+) + ∆E(2df, p) + ∆E(QCI) +

+∆E(MP2/large) + E(HLC)

where each term represents the corresponding contribution to the energy at the

specific level, E(HLC) stands for the “higher level correction” depending [24] on

the number of α and β (spin up and down) valence electrons.

In Gaussian theories the accuracy can be extremely good for systems similar

to those for which they were parametrized, the ground state of organic molecules.

However, for other systems, such as transition structures or clusters, these me-

thods often are less accurate than some less computationally intensive ab initio

methods [13].

The premise behind Density Functional Theories (DFT) is that the

ground state electronic energy is completely determined by the electron density

ρ instead of the wave function [16]. There exists a one-to-one correspondence be-

tween the electron density of a system, and the energy. The origin of this theory

comes from a theorem by Hohenberg and Kohn [26] proving the above statement.

A wave function for an ne-electron system contains 3ne coordinates, whereas the

electron density is the square of the wave-function integrated over ne −1 electron

coordinates and depends just on three coordinates independently on the size of

the system. The “only” problem is that although it has been proven that each

different density yields a different ground state energy, the functional connecting
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these two quantities is not known. The goal of DFT is to design functionals

connecting the electron density with energy.

Perdew and Wang [27] reported its PW86, while Becke [28] presents a widely

used correction (B88) to this one. Lee, Yang and Parr [29] proposed the LYP

functional, also very used in the literature while the Becke’s gradient-correlated

exchange correlation density functional B3LYP [29, 30] is perhaps, the most popu-

lar. Weak interactions due to dispersion (van der Waals type) are poorly described

by the so far used functionals [16]. Hydrogen bonding, however, is mainly elec-

trostatic, which is reasonably well accounted by DFT methods. At the present,

such methods are not well suited for excited states of the same symmetry as

the ground state. The absence of a wave function makes it difficult to ensure

orthogonality between the ground and excited states [16].

Multireference Perturbation theory (MRMP2) is another way of ac-

counting electronic correlation using multireference wave functions and the Møller-

Plesset Perturbation theory [31, 32]. Basically the idea is similar to picture pre-

sented in CASPT methods. The MR-MP2 is based upon applying the generalized

Independent electron-pair approximation (IEPA) [33], consisting in approxima-

ting the total correlation energy as a sum of pair contributions, independently

calculated, to an MCSCF reference function. The use of IEPA for the study of

dynamical correlation, warrant a rapid convergence of the perturbation series.

However, perturbation series either show very slow convergence or divergence at

intermediate and large internuclear distances.

1.4 Basis sets

One of the approximations inherent to all essentially ab initio methods is the

introduction of a basis set [16]. To expand the unknown function, such as a

molecular orbital, in a set of known functions is not an approximation, if the

basis set is complete. However, a complete basis means that an infinite number

of functions must be used, which is impossible in practical calculations. The

smaller the basis set, the poorer the representation. The type of basis functions

used has also influence on the accuracy. The better a single basis function is able

to reproduce the unknown function, the fewer basis functions are necessary to
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achieve a given level of accuracy. In this section brief ideas on the types of basis

sets are given.

There are two types of basis functions (also called Atomic Orbitals, AO, even

when they are not in general, solutions of the Schrödinger equation) used in

electronic structure calculations: Slater Type Orbitals (STOs) and Gaussian type

Orbitals (GTOs). Slater type orbitals [34] are the solutions of the Schrödinger

equation for the hydrogen atom. The electron integrals of these functions can

not be solved analytically. Thus, STOs are only used for atomic and diatomic

systems where high accuracy is needed. When using GTOs [35] more functions are

needed to represent the orbitals, however, electronic integrals can be analytically

performed, which is faster than numerical integration of the STOs.

Once the type of function (STO or GTO) is selected, the next step is to

choose of the number of functions to be used. The smallest number of functions

possible, to contain all the electrons in a neutral atom, is called minimum basis

set. Thus, for hydrogen (and helium) it means a single s-function, for the first

row elements of the periodic table it requires two s-functions (1s, 2s) and one

set of p-functions (2px, 2py, 2pz) and so on. The next improvement is to double

all basis functions, producing a double zeta (DZ) type basis. Then, a DZ basis

employs two s-functions for hydrogen (1s and 1s′), four s and two p-functions

for the elements on the first row, and so on. One can also go further to Triple

Zeta (TZ), Quadruple Zeta (QZ) and Quintuple Zeta (5Z). In actual calculations

doubling the number of core orbitals would rarely be considered. Often the

valence functions are doubled, producing a VDZ basis set.

The differences in the electron distributions along a bond and in the perpen-

dicular direction, led to the introduction of polarization functions in basis sets.

Adding a single set of polarization functions (p-function hydrogen atoms and d-

functions on heavy atoms) to the DZ basis, forms a Double Zeta plus Polarization

(DZP) basis set.

The fact that many basis sets go into describing the energetically important,

but chemically unimportant core electrons is the foundation for contracted basis

sets. An energy optimized basis set which gives a good description of the outer

part of the wave function is required to be very large. However, contracted basis

sets can lead to better description of the outer part with a smaller number of
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functions. A contracted basis set is obtained by combining the full basis set

functions, known as primitive GTOs, into a smaller set of functions by forming

fixed linear combinations. The resulting functions are called contracted GTOs.

An attempt to a better description of the wave function far from the nucleus

is done by the introduction of diffuse functions, basis functions with small expo-

nents. Diffuse functions are needed to describe interactions at long distances or

whenever loosely bound electrons are present. Basis sets with diffuse functions

are called augmented basis sets.

There is a family of correlation consistent basis sets (aug-cc-pVXZ, X=D,T,Q,5)

created by Dunning and coworkers [36, 37]. The “aug” denotes an augmented ba-

sis. The “cc” denotes that this is a correlation-consistent basis, meaning that the

functions were optimized for best performance with correlated calculations. The

“p” denotes that polarization functions are included on all atoms. The “VXZ”

stands for valence X (double, triple...) zeta. These sets have become popular for

high-accuracy correlated calculations.

Commonly, basis sets are implemented in ab initio packages for electronic

structure calculations. However, when selecting a basis set, some of the above

presented details should be accounted for, as well as the accuracy desired for the

calculation, bearing in mind the computing power available.

1.5 Representing a Potential Energy Surface

Results from ab initio electronic structure calculations are given mostly in form

of tables of energy values for special geometries. Even when such a calculations

might also provide the first and second derivatives, a full analytic or numerical

representation of the potential energy is commonly needed [3, 38].

For spectroscopy studies, only relatively small regions around some partic-

ular configurations are needed to be explored. Extended areas, however, are

required for dynamical calculations [2]. In both cases one has a given set of data

(inter-atomic distances, internal coordinates, etc. and the corresponding poten-

tial energy values) wishing to be condensed by fitting into a model describing the

potential energy surface that depends on adjustable parameters.

For local approximations, interpolating functions (splines), polynomial or ra-
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tional expansions are frequently used. Functional forms that are special and si-

mulate the topography of the PES (e.g. Morse functions, many-body expansions)

are used for local and global interpolations [38, 39].

In global methods, the function depends upon the entire set of data, whereas

in local methods a restricted number of data values is used. The interpolating

functions can cover exactly or approximately the given data points. In some

applications, the PES is searched only along the intrinsic reaction coordinate,

from the transition state to the product and/or to the reactant configuration [39].

A successful representation of a global PES for dynamical calculations should

satisfy certain criteria, as discussed by Wright and Gray [40] and remarked by

Varandas [3]:

1. “It should accurately characterize the asymptotic reactant and product

molecules (or more generally any fragment of the full system).”

2. “It should have correct symmetry properties of the system.”

3. “It should represent the true potential energy surface in interaction regions

for which experimental or non-empirical theoretical data are available (in-

cluding, in principle, the very short-range and long-range regions associated

with various asymptotic channels [39])”

4. “It should behave in a physically reasonable manner in those parts of the

interaction region for which no experimental or theoretical data are avail-

able.”

5. “It should smoothly connect the asymptotic and interaction region in a

physically reasonable way.”

6. “The function and its derivatives should have as simple an algebraic form

as possible consistent with the desired quality of the fit.”

7. “It should require as small a number of data points as possible to achieve

an accurate fit.”

8. “It should converge to the true surface as more data become available.”
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9. “It should indicate where it is most meaningful to compute the data points.”

10. “It should have a minimal amount of ad hoc or ’patched up character’.”

Criteria from 1 to 5 must be obeyed in order to obtain reasonable results in

subsequent calculations using the function. Criteria from 6 to 10 are desirable

for practical reasons. Finding a function that meets these criteria requires skill

and experience, and considerable amount of patience [13].

The aim of this thesis is to construct a potential energy surface to be used for

dynamical calculations. Thus, a global representation is needed, bearing in mind

the above mentioned conditions for the obtained function. For such a purpose

the double many-body expansion method was used.

1.5.1 The double many-body expansion method

Starting from the work of London, Eyring, Polanyi and Sato (LEPS) [41] and the

“diatomics in molecules” (DIM) method [42] a many-body expansion (MBE) was

developed by Murrell and co-workers [1]. The essential idea of the MBE method

is to describe the total interaction of the polyatomic system by adding all the

many-body interactions of each fragment.

The many-body expansion for a single-valued potential energy surface of an

n-atomic system is written as follows [43]:

VABC···N(R) =
∑

V
(1)
A +

∑

V
(2)
AB (RAB) +

∑

V
(3)
ABC(RAB, RAC, RBC) + · · ·

+V
(n)
ABC···N(R)

Summation indicates addition of all terms of the corresponding m-body fragments

(1 ≤ m ≤ n). V
(1)
A is the energy of the atom A in the state which is produced by

adiabatically removing this atom from the cluster.
∑
V

(1)
A is the sum of all the

one-body terms. If the reference energy is taken as the energy of all the atoms

in their ground states, then V
(1)
A will be different from zero if, on dissociation,

atom A is in an excited state. V
(2)
AB (RAB) is a two-body energy term, depending

on the distance separating the two atoms, and which goes to zero as RAB tends

to infinity. V
(3)
ABC(RAB, RAC, RBC) is a three-body energy which depends on the

three distances of the triangle ABC. All of these three-body terms, should be zero
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if one of the atoms is removed away from the other two. The last term in the

expansion V
(n)
ABC···N(R) is the n-body energy. Such a term will become zero if any

of the atoms is moved to infinity. It depends, as the total potential function, on

the 3N − 6 internal coordinates (inter-atomic distances).

Thus far, there seems to be no simplification of the problem, once to get the full

potential, a function depending on the whole set of variables is required. However,

when there is a rapid convergence of the series or exist simple functional forms

for high-order terms of the expansion such a representation becomes attractive.

As a matter of fact, in all tetratomic system studied by this means (see Ref. 1

and references therein) the main features of the surface appear to be contained in

the two- and three-body energy terms, and the four-body term can be regarded

as fine tuning to give a desired chemical accuracy.

Even though there is no rapid convergence in the many-body expansion, the

potential is designed to satisfy all dissociation limits, and it also provides a stra-

tegy for building up larger polyatomic systems.

MBE method is proposed to provide an analytical representation of potential

energy surfaces for all possible configurations of the system. Then, its functional

form must properly reproduce all the regions, from short range interactions to long

range ones. However, the method fails in keeping only one function to reproduce

both ranges. Thus, the idea of splitting each many-body terms into two parts

arise. In such spirit Varandas [4, 39, 44, 45] extended the many-body expansion to

the double many-body expansion (DMBE) in which each many-body term is split

into two parts: one accounting for the long range or dynamical correlation energy

and the other describing the short range or extended-Hartree-Fock energies.

In DMBE method, the extended-Hartree-Fock energy is essentially built up by

the first-order exchange and electrostatic energy contributions, together with the

second-order induction energy [39]. In turn, dynamical correlation energy includes

all cases of double and multiple excitations in one of the atoms (intraatomic

correlation) as well as single and multiple excitations in more than one atom

(interatomic correlation and intra-inter coupling terms) [39].

The advantage of the DMBE model over other representations lies on the pos-

sibility to describe the region in the short range, of large interest when comparing

with spectroscopic results, with accurate polynomial representation while long
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range interactions, of interest for dynamics calculations, are phenomenologically

described by multipolar expansions [46, 47]. Furthermore, and also significant, is

the fact that once DMBE is a many-body expansion, each n-body energy terms,

once deduced, can be used in all the polyatomics in which such n-body systems

are contained.

In a series of papers Varandas and co-workers [39, 44, 46–49] presented general

expressions for n-body dynamics correlation energy term, to reproduce the proper

asymptotic behavior of the potential energy surface. Extended Hartree-Fock ap-

proximate correlation energy for two- and three-body interactions (EHFACE2

and EHFACE3) have also been proposed [46] while EHFACE2U was introduced

to properly represent the united atom limit for diatoms [47].

The DMBE method has been successfully applied to numerous triatomic sys-

tems, particularly to those of interest in this thesis [50–52], tetratomic [53, 54]

and larger polyatomic systems [55, 56]. With such a preceding experience, and

the extensive use of these DMBE PESs for dynamical calculations (Ref. 2 and

references therein), we believe DMBE offers a reliable method to construct a

global potential energy surfaces for the HSO2 molecular system.

1.6 Properties of potential energy functions

Once a potential energy function (PES) has been properly represented, it must

be analyzed to determine information about the chemical system. The PES is

the most complete description of all the conformers, isomers, and energetically

accessible motions of a system [1, 16]. Minima on this surface correspond to

optimized geometries, any movement away from a minimum gives a configuration

with higher energy. The lowest-energy minimum is called the global minimum.

There can be many local minima, such as higher-energy conformers or isomers.

The transition structure between the reactants and products of a reaction, or

the highest energy configuration between them, is a saddle point on this surface.

A PES can be used to find both saddle points and reaction coordinates, and,

as done in this work, to subsequently study reaction dynamics. The vibrational

properties of the molecular system can also be obtained from the PES [16].

Let us represent the potential energy function as f(x) depending on a set of
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variables x = (x1, x2, ..., xN ). Optimization is a general term for finding statio-

nary points of a function i.e. points where all the first derivatives are zero.

Stationary points condition can be written in terms of the gradient g, a vec-

tor formed by the first order derivatives of f , and the Hessian H, a symmetric

matrix with the second derivatives as elements. By means of orthogonal trans-

formations [57] the matrix H can be diagonalized, becoming in H′. When all

the diagonal elements of H′ are positive, the stationary point correspond to a

minimum configuration, i.e. if:

g(x0) = 0, H′
ii(x0) > 0, (1.43)

at given x0 the function will reach a local minimum. If the function value at

this point is the smallest one of all the minima, then x0 stands for the global

minimum configuration. When one of diagonal elements of H′ is negative, then

the configuration x0 correspond to a saddle point.

Hessian, once diagonalized gives not only a condition to define whether a con-

figuration is a minimum or a saddle point, but also the normal modes frequencies,

whose values are proportional to the square root of the diagonal elements. There-

fore, a saddle point will be an stationary point with an imaginary frequency. Such

an imaginary frequency will characterize the coordinate connecting the two min-

ima. Stationary points also exist which have more than one imaginary frequency.

However, in general these do not have any special meaning.

To find those configurations corresponding to minima and saddle points, opti-

mization techniques are required [58]. In the optimization of the PES presented in

this thesis a package [59] available at the Coimbra Theoretical & Computational

Chemistry group was used. This code uses a mixture of optimization methods,

and it has been specifically designed for potential energy functions of molecular

systems, once the function has been given.

The dissociation products of a polyatomic system correspond to regions at

infinity where the potential energy surface is flat in one or more dimensions.

Thus, gradient of the PES is zero. The asymptotic regions can be referred as

valleys. The slope of the valley gradually changes when the atoms approach each

other. If they moves towards a saddle point the slope will be positive while a

negative value indicate the approximation towards a minimum.
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The term path is used to name the curve (hyper-curve, to denote its mul-

tidimensional character) defined by the energy function where the coordinates

change from one configuration to another. Thus a reaction path is a path lead-

ing from the reactants valley the to products configuration. A minimum-energy

reaction path follows the optimum way, it means, of all the possible paths, that

corresponding to the steepest descent from saddle point to both products and

reactants limits [60]. The saddle point is the maximum energy configuration in

the minimum-energy reaction path.

Due to the current level of constantly increasing computing power, cons-

truction of potential energy surfaces might produce a feeling of an obsolete idea.

An strong temptation comes from the desire to carry direct or on the fly dy-

namics i.e. obtain ab initio energies, gradients and force constants once required

for a given configuration of the trajectory [61, 62], therefore, with no need of a

function representation. Besides, by using large computational facilities to think

in a very dense grid of ab initio points instead of a continuous function could be

the trend [63]. However, it should be kept in mind that ab initio calculations

are not the exact solution of the Schrödinger equation neither within the Born-

Oppenheimer approximation. Actually, as was mentioned in previous sections, a

large number of approximations was used for such a goal. Thus, even at the state

of the art level of theory one might eventually get inappropriate solutions for

the real problem. On the other hand, representations of PESs through functions

provides a global view [2]; besides, once the selected method to represent the

interaction comes with real physical meaning, it is possible to guarantee appro-

priate behavior in the range or regions were ab intio calculations could fail [39].

Furthermore, and as final words on this topic, a function representing a PES can

be further corrected with experimental evidences [56] and, as in DMBE method,

such a function may be used in the representation of larger systems. While, for

example, in one on-the-fly-trajectory, once it is finished the calculated electronic

energies can hardly be used for other studies.
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Abstract

A global potential energy surface is reported for the ground electronic state of HSO2

by using the double many-body expansion (DMBE) method. It employs realistic

DMBE functions previously reported from accurate ab initio calculations (in some

cases, fine tuned to spectroscopic data) for the triatomic fragments, and four-body

energy terms that were modelled by fitting novel ab initio FVCAS/AVTZ calculations

for the tetratomic system. In some cases, FVCAS/AVDZ energies have been employed

after being scaled to FVCAS/AVTZ ones. To assess the role of the dynamical correla-

tion, exploratory single-point Rayleigh-Schrdinger perturbations calculations have also

been conducted at one stationary point. All reported calculations are compared with

previous ab initio results for the title system. The potential energy surface predicts

HOSO to be the most stable configuration, in good agreement with other theoretical

data available in the literature. In turn, the HSO2 isomer with H bonded to S is de-

scribed as a local minimum, which is stable with respect to the H + SO2 dissociation

asymptote.
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1 Introduction

Sulfur has long been recognized as a major contaminant in the atmosphere. It

comes both from natural and anthropogenic sources, having significant implica-

tions in environmental issues such as acid rain, air pollution, and global climate

changes. Although a significant part of sulfur containing molecules reacts with

water in the troposphere and eventually precipitates as sulfur aerosols, some (such

as COS) may reach the stratosphere and have implications in the ozone budget.1

Among the sulfur compounds, the HSO2 isomers are supposed to play an impor-

tant role in atmospheric and combustion chemistry.2–13 In particular, the HSO2

adduct is thought to be responsible for the catalytic removal of atomic hydrogen

in flames14–16 through the following reactions:

H + SO2 + M → HSO2 + M (1)

HSO2 + H → SO2 + H2 (2)

In turn, the thylperoxyl radical (HSOO) has been pointed out to play a role in

the atmosphere via oxidation of sulfur species,17 including the action as a sink of

SH through the addition reaction:18

SH + O2 + M → HSOO + M (3)

Table 1 compiles the energetics of all exothermic processes that may occur on the

title potential energy surface, as extracted from experimental sources quoted in

cited references.

Despite some theoretical studies of the HSO2 isomers using ab initio MO calcu-

lations3–12 and DFT13 theory, no global potential energy surface has thus far been

reported for the electronic ground state of HSO2. Such a scarcity of electronic

structure calculations on the full six-dimensional configuration space of HSO2

has prompted us to model a global potential energy surface for the title species

by using double many-body expansion (DMBE) theory.19–21 This approach has

been successfully applied to a wealth of triatomic systems (including all ground-

state triatomic fragments of HSO2, namely, HO2,
22 SO2,

23 and HSO24) as well as

tetratomic (O4
25, 26 and HO3

27) and even larger polyatomic (HO4
28 and HO5

29)

systems. Of course, an alternative to the use of a global potential energy surface,
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Table 1. Energetics of the exothermic processes occurring on the ground-state
HSO2 potential energy surfacea.

Process classical exothermicityb Refs.
(kcal mol−1)

HS + O2 → H + SO2 51.7 24,42,43
HS + O2 → OH + SO 24.1 24,42,23
OH + SO → H + SO2 27.6 24,43,24,23
H + SOO → S + HO2 30.6 22,23
H + SOO → HS + O2 63.3 23,24,42
H + SOO → OH + SO 87.5 23,24,43
H + SOO → H + SO2 115.0 23
O + HSO → HS + O2 21.7 24,42
O + HSO → OH + SO 45.8 24,43
O + HSO → H + SO2 73.4 24,23
S + HO2 → O + HSO 11.0 22,24
S + HO2 → HS + O2 32.8 22,24
S + HO2 → OH + SO 56.9 22,43,24
S + HO2 → H + SO2 84.4 22,23

aExcept where indicated in the original papers, the reported energies are mostly

experimental, and are reproduced by the DMBE potential energy surface of the present

work.
bThe quantum mechanical zero-point energy of the reactants and products is not taken

into account.
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would be to carry out dynamics studies where the latter is calculated on the fly

(for a review see, e.g., Ref. 30). Although the potential energy surface generated

from such calculations could eventually be employed for further dynamics studies,

it is hard to anticipate whether a sufficiently accurate function can be generated

via such a scheme. There are two major reasons for our worry. First, if the elec-

tronic structure calculations were done purely ab initio (for a semi-empirical, yet

expensive, scheme based on the scaling of the dynamical correlation energy, see

Ref. 31), this would in principle require an awful amount of computational time

to achieve sufficient accuracy for the dynamics studies, as it involves many elec-

trons with a second-row sulfur atom. Second, as discussed later, the reaction path

may evolve through the HOSO deep chemical well (with a well depth of about

70 kcal mol−1) and hence exploratory dynamics calculations have shown that the

trajectories generating the potential energy surface might involve typically 105

solutions of the electronic Schrdinger equation (to calculate the energy, gradients,

and eventually force constants) per trajectory for proper conservation of the total

energy and angular momentum. Thus, the DMBE approach definitely stands as

a viable one, particularly having in mind its fair predictive character when the

cluster expansion is truncated at the three-body energy terms for which realistic

DMBE functions have already been reported (see section 3.1).

The paper is organized as follows. Section 2 describes the results of new ab initio

calculations carried out for HSO2, while the DMBE methodology is discussed

and applied in section 3 by focusing on the title system. The characterization of

the most relevant stationary points of the novel HSO2 DMBE potential energy

surface is then presented in section 4. Section 5 gathers the major conclusions.

2 Ab initio calculations

The results of ab initio calculations3–12 for ground state HSO2 differ across the

various studies reported in literature. In order to get further information, we have

performed our own ab initio calculations at the FVCAS (full valence complete

active space) level aiming at characterizing the most relevant stationary points

of the electronic ground state of HSO2. The aug-cc-pVDZ (AVDZ) and aug-cc-

pVTZ (AVTZ) basis sets of Dunning32, 33 have been employed on the framework
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of the MOLPRO34 code. We are aware that the choice of such basis sets may be

problematic when second-row atoms are involved. In fact, it has been argued35, 36

that the original Dunning’s32, 33 correlation consistent basis sets for the third

row elements lack proper core polarization functions to be reliable. Although

schemes35, 36 have been suggested to overcome such a limitation, the calculations

would still be rather expensive and hence such basis sets have not been employed

here. In fact, calculations on the tetratomic have been mostly used to calibrate

the saddle point for the reaction H + SO2 ⇀↽ HOSO, for which our AVDZ calcu-

lations scaled to AVTZ ones have shown a satisfactory agreement with the best

attributes reported in the literature.8, 10 In fact, such an agreement will be shown

later to be extensive to all characterized stationary points when compared with

a wealth of theoretical data from other sources. As starting guesses for the ge-

ometry optimizations, we have employed the results reported by Goumri et al.10

from MP2 calculations. Following a recommendation in the MOLPRO manual,

the rational functional approach has been used as the search algorithm for the

minima, while the quadratic steepest descent method has been employed for tran-

sition state optimizations. To obtain the dissociation energy, we have calculated

the energy of H + SO2 by keeping SO2 frozen at its optimum FVCAS/AVTZ

geometry while moving away the hydrogen atom until convergence was reached

(see Table 2). Due to computational limitations, and because the final results

will hopefully not differ drastically, we have characterized the transition states

only at the FVCAS/AVDZ level. The Z-matrix format for geometries has been

used throughout the calculations.

Table 2 collects the ab initio results from the present work. Considering that

there has not been a review of the results appeared recently in the literature,

we compile the available theoretical properties in two tables, including (for com-

pleteness) our results: Unfortunately, only the geometries and absolute energies

are compiled in most cases, which may prevent a realistic judgment of the rele-

vant energetics. Table 3 gathers the reported minima, and Table 4 the transition

states. In turn, Figure 1 defines the various coordinates: from left to right, γ

is the dihedral angle formed by the planes defined by OSO and HOS, OSO and

HSO, and SOO and HSO. As seen from Table 2, the global minimum is predicted

to have a cis-HOSO structure. Note that the calculated S − O and O − H bond
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Table 2. Properties of the stationary points in the ab initio HSO2 potential energy surface.

Feature R1/a0 R2/a0 R3/a0 α/deg β/deg γ/deg E/Eh ∆E frequencies/cm−1

HOSO (FVCAS/AVDZ), min. 2.861 3.137 1.795 108.4 109.7 0.0 −547.91646579 3897 1744 1307
1013 487 396

HOSO (FVCAS/AVTZ), min. 2.802 3.055 1.790 108.6 111.2 12.8 −547.98517652 −43.1a 4074 1215 1131
853 421 63

HSO2(FVCAS/AVDZ), min. 2.846 2.846 2.612 123.3 106.0 122.1 −547.85381505 39.3a 2329 1149 955
949 777 429

HSO2(FVCAS/AVTZ), min. 2.763 2.763 2.589 123.1 106.7 123.7 −547.93165522 33.6b 2370 1149 1042
−6.0c 1024 842 471

HSOO(FVCAS/AVTZ), min. 2.517 3.280 2.551 91.1 112.3 87.1 −547.87753994 67.5b 2833 1025 956
650 402 221

HOSO ⇀↽ H + SO2(FVCAS/AVDZ), TS1 2.834 2.910 2.959 115.5 117.7 79.0 −547.82524579 57.2a 1130 937 583
−3.3d 463 259 2178i

HOSO ⇀↽ H + SO2(FVCAS/AVTZ), TS1 −547.89447282e 56.9b

17.4c

HOSO ⇀↽ H + SO2(CASPT2/AVDZ), TS1 −548.25528270e 7.9f

HOSO ⇀↽ H + SO2(CASPT2/AVTZ), TS1 −548.44894745e 9.2g

HOSO ⇀↽ HSO2(FVCAS/AVTZ), TS2 2.840 3.165 2.809 116.0 53.2 60.1 −547.88598339 62.2b 2058 1120 750
666 381 1854i

aEnergy in kcal mol−1 referred to the AVDZ global minimum. bEnergy in kcal mol−1 referred to AVTZ global minimum. cEnergy

in kcal mol−1 referred to the H + SO2 AVTZ asymptote (E = −547.92217966 Eh).
dEnergy in kcal mol−1 referred to AVDZ H + SO2

asymptote (E = −547.8199366 Eh).
eEnergy calculated with at the geometry optimzed using FVCAS/AVDZ. fEnergy in kcal mol−1

referred to the CASPT2/AVDZ H + SO2 asymptote (E = −548.2679272 Eh).
gEnergy in kcal mol−1 referred to the CASPT2/AVTZ

H + SO2 asymptote (E=−548.46365757 Eh).
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distances are found to be in good agreement (within 3% or so) with those reported

by Qi et al.8 from MP2/6-311G∗∗ calculations. In addition, the well depth of the

FVCAS/AVTZ global minimum (referred to the H+SO2 dissociation asymptote)

is predicted to be 37.8 kcal mol−1, a value that lies close to the DFT estimate13

of ∆fH
o =(−42.6 ± 2) kcal mol−1 for the reaction

HOSO → H + SO2 (4)

Two local minimum with H bound to S are also predicted (see the third and

fourth entries of Table 2). Of these, the HSO2 isomer has been previously re-

ported4–6, 8, 10, 12 as being a stable species with respect to the dissociation asymp-

tote in reaction (4), although there are important differences in the reported

relative energies. The optimum geometry of this isomer is found to lie only

4.2 kcal mol−1 below the H + SO2 dissociation limit. It corresponds to an almost

undisturbed SO2 molecule with a hydrogen bound to sulfur such as to form a

structure with C2v symmetry. The other isomer reported in the fifth entry of Ta-

ble 2 corresponds to a HSOO structure. This has also been previously reported

in the literature,5, 37 and judged to be a possible sink of SH in the atmosphere

via reaction (3). Note that the H + SO2 recombination process to form HOSO

has to overcome an energy barrier (transition state TS1) of 7.9−17.4 kcal mol−1.

Such a result agrees with the commonly accepted fact12 that the reverse of re-

action (4) is a highly energetic process. Similarly, the transition state (TS2) for

the isomerization reaction HOSO ⇀↽ HSO2 (see tenth entry of Table 2) shows a

barrier height of 62.2 kcal mol−1, also in agreement with experiment.12

Except for the global minimum calculated at the FVCAS/AVDZ level, the har-

monic frequencies of all reported stationary points have been computed using the

program FREQUENCIES implemented in MOLPRO. For the former, they have

been determined by fitting a grid of 972 ab initio points to a complete cubic poly-

nomial. We emphasize that geometry optimizations of saddle points are carried

out only at the FVCAS/AVDZ level. To show that such saddle points are actual

transition states, we depict in Figure 2 the vibrational normal modes associated

with the corresponding imaginary frequencies. Despite the good agreement with

previously reported values in the literature, a higher level of ab initio calculations

including dynamical correlation will naturally be required for additional accu-
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Table 3. Properties of ab initio minima reported in the literature for HSO2.

Feature R1/a0 R2/a0 R3/a0 α/deg β/deg γ/deg E/Eh

HOSO 2.765 3.054 1.788 108.2 112.4 61.1 −547.8133 HF/6-311G∗∗8

2.782 3.127 1.831 106.7 109.7 0.0 −548.3392 MP2/6-311G∗∗8

2.774 3.067 1.801 108.2 111.5 59.5 HF/6-31G∗3

2.801 3.139 1.858 109.8 106.9 0.0 MP2/6-31G∗5

2.853 3.069 1.833 107.5 115.2 74.7 −545.0903 HF/3-21G∗3

2.797 3.141 1.892 111.4 111.0 0.0 −545.4553 MP2/3-21G∗3

2.772 3.069 1.799 107.1 111.5 UHF/DZP4

2.814 3.156 1.861 109.6 109.7 MP2/DZP4

2.806 3.154 1.833 108.8 105.9 0.4 −548.4601 MP4/6-311++G(2d,2p)11

2.861 3.137 1.795 108.4 109.7 0.0 −547.916466 FVCAS/AVDZa

2.802 3.055 1.790 108.6 111.2 12.8 −547.985177 FVCAS/AVTZa

HSO2 2.706 2.706 2.557 123.3 126.8 −547.7546 HF/6-311G∗∗8

2.770 2.770 2.602 125.3 105.6 −548.2933 MP2/6-311G∗∗8

2.719 2.719 2.532 123.6 106.6 HF/6-31G∗3

2.734 2.734 2.532 122.5 106.8 −545.0213 HF/3-21G∗3

2.797 2.797 2.606 125.1 106.4 −545.4125 MP2/3-21G∗3

2.734 2.734 2.549 106.6 UHF/DZP4

2.812 2.812 2.615 106.0 MP2/DZP4

2.784 2.784 2.593 124.4 105.6 122.0 −548.418867 MP4/6-311++G(2d,2p)11

2.846 2.846 2.612 123.3 106.0 122.1 −547.853815 FVCAS/AVDZa

2.763 2.763 2.589 123.1 106.7 123.7 −547.931655 FVCAS/AVTZa

HSOO 2.506 3.177 2.476 96.5 113.3 86.2 HF/6-31G∗5

2.534 3.281 2.659 97.3 110.7 86.2 MP2/3-21G∗5

2.538 3.313 2.481 94.6 112.7 83.7 MP2/6-31G∗5

2.517 3.280 2.551 91.1 112.3 87.1 −547.877540 FVCAS/AVTZa

gauche 2.530 3.275 2.457 94.7 113.0 84.0 −548.36285 MP2/cc-pVTZ37

anti 2.428 3.315 2.425 91.1 110.4 178.0 −548.36134 MP2/cc-pVTZ37

aThis work.
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Table 4. Properties of ab initio transition states reported in literature for HSO2.

Feature R1/a0 R2/a0 R3/a0 α/deg β/deg γ/deg E/Eh Calculation level

H + SO2 ⇀↽ HOSO 2.700 2.729 2.819 120.2 127.8 77.7 −548.2440 MP2/6-311G∗∗8

2.723 2.772 2.929 120.5 124.9 81.8 −545.3616 MP2/3-21G∗3

2.723 2.797 2.848 120.2 125.2 78.2 MP2/6-31G(d)10

2.748 2.806 3.042 117.0 121.7 78.8 QCISD/6-311G(d,p)10

2.834 2.910 2.959 115.5 117.7 79.0 −547.894447 FVCAS/AVTZa

HOSO ⇀↽ HSO2 2.702 3.002 2.538 113.6 60.3 104.8 −547.7100 HF/6-311G∗∗8

2.755 2.969 2.695 117.1 57.9 107.5 −548.2409 MP2/6-311G∗∗8

2.717 3.020 2.553 114.0 60.6 104.9 HF/6-31G∗5

2.736 3.069 2.583 113.8 60.7 105.3 −544.9725 HF/3-21G∗3

2.799 3.078 2.630 118.1 57.4 106.5 −545.3579 MP2/3-21G∗3

2.780 2.993 2.670 118.1 58.5 MP2/6-31G(d)10

2.840 3.165 2.809 116.0 53.2 60.1 −547.885984 FVCAS/AVTZa

HS + O2 ⇀↽ HSOO 2.239 4.382 2.513 115.3 87.3 101.0 −548.39245 MRMP2(9,10)/cc-pVTZ37

aThis work.
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Figure 1. Coordinates used to describe the stationary points of HSO2 potential
energy surface: HOSO, HSO2, HSOO, and HOOS geometries.

racy. For example, perturbation calculations using the CAS wave function (i.e.,

CASPT2 with AVXZ, X = 2, 3) have been found38 to give good results for SO2,

and hence such an approach may be recommendable for the title system. Since

such data is here used only to characterize the stationary points, we believe that

the current level of theory may have no serious implications on the quality of the

global DMBE potential energy surface reported in the present work.

3 The double many body expansion formalism

The DMBE method has been reviewed in detail elsewhere,19–21 and hence we

review only the basic details. It has also been used to construct the potential

energy surfaces of all triatomic fragments of relevance in the present work,22–24

with the reader being referred to the original papers for details. In DMBE theory,

the energy is partitioned into its dynamical correlation (dc) and extended Hartree-

Fock (EHF) components, with each term being developed as a cluster (many-

body) expansion. For a N-atom system, a single-sheeted potential energy surface

assumes the form:

V (RN) =

N∑

n=2

∑

Rn⊂RN

[V
(n)
EHF(Rn) + V

(n)
dc (Rn)] (5)

where

Vx(R
N) =

∑

αβ

V (2)
x (R2) +

∑

αβγ

V (3)
x (R3) +

∑

αβγρ

V (4)
x (R4)... x=EHF, dc (6)

In Eq. (5), Rn specifies any set of n(n−1)/2 interatomic distances referring to n-

atoms while, in Eq. (6), V
(2)
x , V

(3)
x and V

(4)
x are two-, three-, and four-body terms
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H

Figure 2. Geometry of ab initio saddle points TS1 and TS2. The arrows indicate
the force constants associated with the imaginary frequencies.

of the x-energy component, respectively; RN denotes the full set of interatomic

coordinates RN ≡ R1, R2, ..., RN(N−1)/2. Note that the summations over αβ and

αβγ imply all diatomic and triatomic fragments, and so on. In the following,

we focus on the two and three-body energy terms used to construct the HSO2

DMBE potential energy surface.

The two-body EHF energy assumes the form:

V
(2)
EHF(R) = DR−1

(

1 +
3∑

i=1

air
i

)

exp(−γ(r)r) + χexc(R)V asym
exc (R) (7)

where

V asym
exc (R) = −ÃRα̃(1 + ã1R+ ã2R

2) exp(−γ̃R), (8)

is the asymptotic exchange energy, and χexc(R) a convenient damping function

to account for charge overlap effects (this is usually expressed as the dispersion

damping function χn for the lowest n-th power in the dynamical correlation ex-

pansion; see later): Ã, ãi (i = 0 − 2), α̃, and γ̃ are usually taken39 as a priori

theoretical parameters. In turn, the range determining exponent in the short-

range contribution is expressed as39

γ = γ0[1 + γ1 tanh(γ2r)] (9)

where r = R− Re is the displacement coordinate from the equilibrium diatomic

geometry, and γi (i = 0 − 2) are coefficients to be determined to fulfill specific
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requirements.39

The two-body dynamical correlation is in turn written as:

V
(2)
dc (R) = −

∑

n

Cnχn(R)R−n (10)

with the associated damping functions χn assuming the form

χn(R) =

[

1 − exp

(

−An
R

ρ
− Bn

R2

ρ2

)]n

(11)

where An = α0n
−α1 and Bn = β0 exp(−β1n) are auxiliary functions defined by

the following dimensionless universal parameters: α0 = 16.36606, α1 = 0.70172,

b0 = 17.19338, β1 = 0.09574. Moreover, for a given pair of atoms XY, one

has ρ = 5.5 + 1.25
(
〈r2

X〉1/2 + 〈r2
Y 〉1/2

)
. The remaining coefficients appearing in

Eqs. (7)-(11), including the expectation values of the squared radii 〈r2
X〉 of the

outermost electrons in atom X used to define40 R0 [and, eventually, the order of

the exchange damping function in Eq. (7)], are chosen to reproduce available the-

oretical and experimental data in the diatomic. When available, the long-range

(electrostatic and induction) components of the extended Hartree-Fock energy,

are also modelled19–21 using a formalism similar to that employed for the dynam-

ical correlation.

To represent the three-body dynamical correlation and electrostatic energies, we

use the general form:41

V
(3)
ele (R3) =

∑

i

∑

n

fi(R
3)C(i)

n (Ri, θi)χn(ri)r
−n
i (12)

where i labels the I − JK channel, and (ri,Ri,θi) are the corresponding Jacobi

coordinates. In turn, C
(i)
n (Ri, θi) are long range coefficients, which assume the

values n=4, 5, respectively for the dipole-quadrupole and quadrupole-quadrupole

interactions. For n= 6, 8, and 10, C
(i)
n (Ri, θi) represent atom-diatom dispersion

coefficients. As already noted, χn are damping functions defined in Eq. (11) for

each specific value of n, while the switching functions fi assume the form:

fi(R
3) =

1

2
{1 − tanh[ξ(ηsi − sj − sk)]} (13)
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where si = Ri − Rref
i (i=1 − 3) is the displacement from a reference geometry.

Finally, the three-body extended Hartree-Fock energy assumes the form:

V
(3)
EHF(R3) =

n∑

i

P
(3)
i (R3)T

(3)
i (R3) (14)

where P
(3)
i is a three-body polynomial, T

(3)
i a range-determining function, and n

the number of distributed24 three-body polynomials used for the fit (the number

and degree of such polynomials depend on the fitting requirements that were

actually imposed on modelling the various triatomic systems).

3.1 Two-body and three-body energy terms in HSO2

Using for the coefficients in Eq. (7) to Eq. (14) the numerical data reported in

the literature,22–24, 42, 43 one may write a two plus three-body DMBE potential

energy surface for the ground state of HSO2 as:

V (R4) =

6∑

i=1

V(2)(R2
i ) +

4∑

j=1

V(3)(R3
j ) (15)

where R2
i ≡ Ri is the interatomic distance of the i-th diatomic pair, and R3

j de-

notes a collective variable of the three bond distances which specify the geometry

of the j-th triatomic fragment.

As pointed out elsewhere,41 due to an overcounting of the two-body dynamical

correlation energy, each V
(2)
dc (R2

i ) term in the DMBE potential energy surfaces

of HSO24 and SO2
23 has been multiplied by a switching function like Eq. (13),

which transforms such contributions into three-body like ones. Thus, an extra

three-body energy term should be added to Eq. (15). Taking into account the

properties of fi(R), such an additional term may be written as follows:

V
(3)
add =

9∑

i=1

V
(2)
dc (R2

i )
[
fi(R

3
i ) − 1

]
(16)

which, when taken into account, reproduces all the asymptotic limits of the

tetratomic potential energy surface (i.e., if one of the atoms is placed far away

from the remaining triatomic, the resulting potential energy surface matches ex-

actly that of the triatomic fragment). We should note that such considerations
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do not apply to the HO2 DMBE potential energy surface, which has been con-

structed using an earlier formalism. A final remark to point out that the diatomic

potentials (OH and O2) originally employed in HO2 are somewhat simpler (and

hence somewhat less accurate) than those used for HSO and SO2 (see Tables 1

and 2 of Ref. 24, and Table 1 of Ref. 38). For consistency, we have replaced

them by corresponding updated diatomic curves.44 As shown in Table 5, such

an update does not affect significantly the attributes of the HO2 potential energy

surface in comparison with those of the original form.

3.2 Four-body electrostatic energy term

To represent the four-body electrostatic energy, we have generalized the form41

employed for the three-body energy in Eq. (12) by using the expression:

V
(4)
ele (R4) =

∑

i

∑

n=3,4,5

fi(R
4)C(i)

n (Ri, Ri+3, θi, θi+3, φi)χn(ri)r
−n
i (17)

where R4 is now a collective variable for the six distances defining the tetratomic.

Thus, (ri, θ, φ) are the intermolecular coordinates illustrated in Figure 3, while

fi(R
4) are switching functions similar to those in Eq. (13) but expressed in terms

of the generalized coordinates Si =si + si+3,

fi(R
4) =

1

2
{1 − tanh[β(ηSi − Sj − Sk)]} (18)

with si =Ri−Rref
i being the displacement coordinate from the equilibrium dis-

tance in the i-th diatomic fragment, Rref
i ; corresponding definitions apply to the

indexes j and k. The values of the β and η parameters are chosen from the re-

quirement that fi(R
4) must vanish when one of the atoms is placed infinitely far

apart from the remaining triatomic. Moreover, it must be equal to unit at the

diatom-diatom dissociation limit; for the equilibrium distances of all diatomics,

see Table 7. In turn, χn(ri) are the damping functions defined in Eq. (11), while

R0 is here calculated from R0 = 2
(

〈r2
AB〉

1
2 + 〈r2

CD〉
1
2

)

, where 〈r2
X1X2

〉 is the ex-

pectation value of the squared radius for the outermost electrons in the united

atom that originates from the coalescing diatomic X1X2 when the internuclear

separation approaches zero.

To represent the electrostatic long range coefficients as a function of the inter-
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Table 5. Attributes of HO2 DMBE potential energy surface22 before and after
replacing the diatomic potentials with their updated versions

Classification Property DMBE-IV DMBE-IV-modified

Global Minimum R1 2.5143 2.5206
R2 1.8345 1.8315
R3 3.4590 3.4516
E −0.2790 −0.2786
ω1 1100.38 1071.51
ω2 1352.94 1320.97
ω3 3484.28 3479.76

Saddle point for R1 2.8062 2.8069
HO2 isomerization R2 2.2715 2.2758

R3 2.2715 2.2758
E −0.2141 −0.2157
ω1 2235.8i 2217.9i
ω2 925.62 962.97
ω3 2719.46 2726.48

van der Waals R1 2.2819 2.2820
H· · ·O2 structure R2 9.8289 9.4606

R3 7.5470 7.1786
E −0.1916 −0.1917
ω1 4.74i 8.78i
ω2 40.42 59.50
ω3 1576.21 1542.12

Hydrogen-bond R1 5.6632 5.7511
OH· · ·O structure R2 3.8211 3.9084

R3 1.8421 1.8427
E −0.1738 −0.1728
ω1 237.83 247.92
ω2 156.59 117.76
ω3 3694.92 3671.13
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Figure 3. Intermolecular coordinates used to define four-body electrostatic en-
ergy term.

molecular coordinates (Figure 3), we use the well established forms:45

C3 = −µAB(RAB)µCD(RCD)(2 cos θa cos θb − sin θa sin θb cosφ) (19)

C4 =
3

4
{µAB(RAB)ΘCD(RCD)[cos θa(3 cos2 θb − 1) − 2 sin θa sin θb cos θb cosφ]} −

− µCD(RCD)ΘAB(RAB)[cos θb(3 cos2 θa − 1) − 2 sin θa sin θb cos θa cosφ]} (20)

C5 =
3

16
ΘAB(RAB)ΘCD(RCD)[1 − 5 cos2 θa − 5 cos2 θb − 15 cos2 θa cos2 θb +

+ 2(cos θa cos θb − sin θa sin θb cosφ)2] (21)

where µ(RX1X2) and Θ(RX1X2) are the permanent dipolar and quadrupolar electric

moments of the X1X2 pair as a function of diatomic distance RX1X2 . To express

the angles in terms of the more convenient set of bond distances, we have used

approximate expressions reported elsewhere:27

cos θa ≈ RBD +RBC − RAC − RAD

2RAB

(22)

cos θb ≈
RBD +RAD −RAC −RBC

2RCD

(23)

sin θa sin θb cos φ ≈ (RBD − RBC +RAC −RAD)(RAD +RAC)

2RABRCD
(24)

Note that this should not have significant implications in the least-squares fit

used in the calibration procedure (see later), as this is done subsequently to the
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replacement of the trigonometric functions. A final remark to point out that the

quadrupole moments are specified using the convention of Hirschfelder et al.:46

Θ = Θzz =
∑

i

ei(3z
2
i − r2

i δ
β
α) (25)

This is a relevant issue, since the potential energy surfaces of SO2
23 and HSO24

have followed the Buckingham45 convention which includes a multiplicative factor

of 1/2. The four-body electrostatic energy calculated from Eq. (17) is illustrated

in panels (a) of Figures 4-7, which show an atom moving around the remaining

triatomic. The most salient feature from such plots is possibly the fact that the

electrostatic energy may change sign with the geometrical arrangement of the

four atoms, and hence can play a significant role especially at low energies. Also

shown is the fact that V
(4)
ele (R4) vanishes when one atom is removed to infinitely

far away from the remaining triatomic fragment.

3.3 Four-body extended Hartree-Fock energy term

As a first step in the construction of the four-body extended Hartree-Fock energy

term V
(4)
EHF, we have first analyzed the features of the potential energy surface that

is obtained by using only the two-body, three-body and four-body electrostatic

terms (hereafter referred to as 2 + 3 + 4ele DMBE potential energy surface). By

comparing the 2 + 3 + 4ele DMBE potential energy surface so obtained with the

theoretical results reported in the literature and our own ab initio calculations,

we have established the major differences that require being corrected. They are

a too deep well predicted by the 2+3+4ele DMBE potential energy surface for the

HSO2 isomer [see Figure 4(b) and properties of HSO2 in Table 3 at different levels

of calculation], the absence of a barrier for formation of HOSO from H + SO2

[see Figure 8(a)], and a too deep minimum obtained when SH approaches O2

to form a HSOO structure [see Figure 9(a)]. Thus, we have found satisfactory

to employ simple local four-body EHF forms that could bring the final DMBE

surface into agreement with such ab initio data (namely, at the regions close to the

TS1 transition state and local minima of HSOO and HSO2). These functions are

further required to die-off quickly as one moves away from the regions surrounding

such stationary points. One should note that the geometry of the HSO2 isomer
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(c)

Figure 4. Contour plot for H moving coplanarly around a partially relaxed SO2.
Panel (a) shows the four-body electrostatic energy term, with contours starting
at −0.01 Eh, equally spaced by 0.003 Eh. The dashed contour indicates the zero
of energy. Shown in panel (b) is the potential energy surface including only
the four-body electrostatic energy terms, while panel (c) shows the full DMBE
surface. Contours in panels (b) and (c) start at −0.4770 Eh, and are equally
spaced by 0.017 Eh. The dashed contours shown in panels (b) and (c) indicate
the H + SO2 dissociation limit (−0.4132 Eh). Note that, except in the case of the
electrostatic energy where such contours correspond to the change of sign of this
energy contribution, they refer in these and subsequent plots to the indicated
energies which are quoted to four significant figures. Thus, they may differ by as
much as 0.1 mEh from the true asymptote; apparent barriers should therefore be
checked against Figure 11, and the text.
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(b)

Figure 5. Contour plot for O moving coplanarly around a partially relaxed HSO
molecule. Panel (a) shows the four-body electrostatic energy term, with contours
starting at −0.031 Eh, equally spaced by 0.005 Eh. The dashed contour indicates
the zero of energy. Panel (b) shows the full DMBE potential energy surface;
contours start at −0.4420 Eh, and are equally spaced by 0.017 Eh. The dashed
contour in panel (b) indicates the HSO dissociation limit (−0.2962 Eh).
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Figure 6. Contour plot for O moving coplanarly around a partially relaxed HOS
molecule. Panel (a) shows the four-body electrostatic energy term, with contours
starting at −0.037 Eh, equally spaced by 0.005 Eh. The dashed contour indicates
the zero of energy. Panel (b) shows the full DMBE potential energy surface;
contours start at −0.4600 Eh, and are equally spaced by 0.017 Eh. The dashed
contour in panel (b) indicates the HOS dissociation limit (−0.2947 Eh).
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(b)

Figure 7. Contour plot for S moving coplanarly around a partially relaxed HO2

molecule. Panel (a) shows the four-body electrostatic energy term, with contours
starting at −0.026 Eh, equally spaced by 0.008 Eh. The dashed contour indicates
the zero of energy. Panel (b) shows the full DMBE potential energy surface;
contours start at −0.3560 Eh, and are equally spaced by 0.017 Eh. The dashed
contour in panel (b) indicates the HO2 dissociation limit (−0.2986 Eh).

lies, in the 2 + 3 + 4ele DMBE potential energy surface, very close to that of the

TS2 transition state for the isomerization process HOSO ⇀↽ HSO2. Thus, the

local function to be added at the HSO2 geometry should not significantly affect

the energy of this transition state. Moreover, the ab initio calculations (see Table

2) and the 2 + 3 + 4ele DMBE potential energy surface predict the energy of the

above mentioned transition state to lie below the energy of OH + SO, allowing

the isomerization process HOSO ⇀↽ HSO2 to take place without any translational

energy requirements in OH + SO collisions. Thus, an additional constraint in

choosing the necessary correction term is that such a TS should be kept below

the energy of OH + SO isolated reactants. A convenient four-body EHF energy

term that satisfy the above requirements is

V
(4)
EHF = V

(4)
S + V

(4)
T + P (4)T (4) (26)
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Figure 8. Contour plot for the channel OH+SO ⇀↽ HOSO ⇀↽ H+SO2. Contours
start at −0.4831 Eh, and are equally spaced by 0.017 Eh. The SO distance, α, β,
and dihedral angles are partially relaxed. Indicated by the dashed line is the
H + SO2 dissociation energy (−0.4132 Eh). Panel (a) shows the 2 + 3 + 4ele

DMBE surface, while panel (b) shows the full DMBE potential energy surface.
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Figure 9. Contour plot for the channel HS+O2 ⇀↽ HSOO ⇀↽ HSO+O. Contours
start at −0.3350 Eh, being equally spaced by 0.01 Eh. The HS distance, α, β and
dihedral angles are partially relaxed. Indicated by the dashed line is the HS+O2

dissociation energy (−0.3307 Eh). Panel (a) shows the 2+3+4ele DMBE surface,
while panel (b) refers to the full DMBE potential energy surface.
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where V
(4)
S and V

(4)
T are four-body Gaussian-type functions defined by

V
(4)
S = CS

0 exp[−
6∑

i=1

CS
i (Ri − RS,ref

i )2] (27)

V
(4)
T = CT

0 exp[−
6∑

i=1

CT
i (Ri −RT ,ref

i )2] (28)

In turn, P (4) is a 2nd-order polynomial,

P (4) = a0 +

6∑

i=1

ai(Xi −Xref
i ) +

6∑

i,j=1

bibj(Xi −Xref
i )(Xj −Xref

j ) (29)

and T (4) is a range-determining factor also chosen to be of the Gaussian-type:

T (4) = exp

[

−
6∑

i=1

gi(Xi −Xref
i )2

]

(30)

where RS,ref
i and RT ,ref

i are respectively the geometries of the HSO2 and HSOO

minima in the 2 + 3 + 4ele DMBE potential energy surface; see Table 7. The

coefficients CS
i , CT

i (i= 0−6) in Eqs. (27) and (28) have been calculated using

a trial and error procedure by imposing the conditions discussed in the previous

paragraph. Their numerical values are reported in Table 6. Note that {Xi} is a

set of valence-bond type coordinates: three distances, two planar angles, and one

dihedral angle (expressed in radians), all calculated for each set of the six inter-

atomic distances; see Figure 1. Note further that {Xref
i } is a reference geometry

(Table 7), namely the ab initio geometry of TS1. Finally, the linear coefficients

appearing in Eq. (29) have been calibrated from a least-squares fitting procedure

to our own ab initio points. Specifically, a grid of 945 ab initio energies referring

to geometries in the vicinity of the transition state TS1 has been employed. Note

that such points (calculated at FVCAS/AVDZ level, and subsequently scaled to

simulate AVTZ results) have been referred to the ab initio H + SO2 dissociation

energy. It was the difference between such values and those calculated using the

2 + 3 + 4ele DMBE potential energy surface (also referred to its own H + SO2

dissociation energy) that were actually fitted to the above mentioned four-body

EHF-type functions. The gi parameters in Eq. (30) have themselves been chosen

via a trial and error procedure. Table 6 summarizes the linear coefficients so
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obtained, while the nonlinear gi appear in Table 7. Finally, we recall that the

ab initio calculations used for the calibration procedure may suffer from several

deficiencies, namely due to employing a relatively modest basis set and missing

the dynamical correlation (see later). Despite such limitations, they are believed

to be accurate enough to reliably define the shape of the potential energy sur-

face in the vicinity of the transition state. Thus, we have obtained two variants

of the complete DMBE potential energy surface. One, shows a barrier height

of 17.4 kcal mol−1 for the transition state of the reaction HOSO ⇀↽ H · · ·OSO, as

predicted from our own FVCAS/AVTZ calculations. In the other, we have down-

scaled the barrier height to about a half of that value (9.1 kcal mol−1) such as to

reproduce the estimate of Goumri et al.10 from G2 calculations. Unless specified

otherwise, it is to this surface that we refer in the remaining of this work.

4 Characterization of DMBE potential energy

surface

Figure 11 shows a schematic diagram of the energetics of the title system accord-

ing to the DMBE potential energy surface reported in the present work, while

Table 8 summarizes the properties of its major stationary points; for the coor-

dinates, see Figure 1. Several views of the potential energy surface for an atom

moving coplanarly around a partially relaxed triatomic are displayed in Figures 4-

7. Also shown are two-dimensional contour plots for the most relevant reactions

that may occur on the title potential energy surface; Figures 8-10. Note that

minima and saddle points in these views may not necessarily correspond to such

attributes in the full configuration space of the tetratomic. Ball and stick draw-

ings of the most relevant stationary points are shown in Figures 12 and 13. These

structures will be discussed in the following.

Global minimum

This corresponds to a staggered HOSO configuration, with the hydrogen atom

connected to one of the oxygen atoms of SO2; its attributes are summarized in the

first entry of Table 8. Although ab initio calculations at the Hartree-Fock (HF)

level using 6-311G∗∗,8 6-31G∗∗5 and 3-21G∗∗3 basis sets report a global minimum
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Table 6. Coefficients in four-body extended Hartree-Fock energy defined in Eqs. (27)-(30).

CS
0 =0.033 CT

0 =0.06 a0=0.03217616 b11=0.44635187 b23=0.26529542 b36=−0.00364268
CS

1 =0.70 CT
1 =1.00 a1=0.00051323 b12=−0.05997085 b24=0.11395901 b44=0.34579546

CS
2 =0.700 CT

2 =1.00 a2=−0.00021041 b13=0.08443367 b25=0.07185930 b45=−0.01833119
CS

3 =0.250 CT
3 =1.00 a3=−0.00034408 b14=0.08828140 b26=0.00002378 b46=−0.00142153

CS
4 =0.700 CT

4 =1.00 a4=0.00015197 b15=0.02477545 b33=−0.00938667 b55=0.18064411
CS

5 =0.250 CT
5 =0.20 a5=0.00120912 b16=0.00228627 b34=−0.07207120 b56=−0.01020253

CS
6 =0.250 CT

6 =0.20 a6=0.00027423 b22 = 0.25454764 b35 =−0.03282833 b66=0.04777738
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Table 7. Parameters and reference geometries used in four-body switching func-
tions of Eq. (18) (first column), and four-body EHF term of Eqs. (27)-(30).

Rref
SO =2.7988 g1 = 3.0 RS,ref

1 =2.7053 RT ,ref
1 =4.6928 Xref

1 =2.83405

Rref
SH =2.5334 g2 = 3.0 RS,ref

2 =2.7053 RT ,ref
2 =4.6928 Xref

2 =2.91075

Rref
OO=2.2818 g3 = 3.0 RS,ref

3 =3.0630 RT ,ref
3 =2.5996 Xref

3 =2.95889

Rref
OH=1.8344 g4 = 3.0 RS,ref

4 =4.5812 RT ,ref
4 =2.1891 Xref

4 =115.52o

η=3.5 g5 = 3.0 RS,ref
5 =4.8379 RT ,ref

5 =5.8152 Xref
5 =117.71o

β=2.5 g6 = 1.0 RS,ref
6 =4.8379 RT ,ref

6 =5.8152 Xref
6 =78.952o
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Figure 10. Contour plot of the full HSO2 DMBE potential energy surface for the
channel O + SOH ⇀↽ HOSO ⇀↽ OH + SO. Contours start at −0.4830 Eh, being
equally spaced by 0.017 Eh. The OH distance, α, β, and dihedral angles have
been partially relaxed. Indicated by the dashed line is the O + HOS dissociation
energy (−0.2947 Eh). The corresponding plot for the 2+3+4ele DMBE potential
energy surface is nearly indistinguishable, and hence is not shown.
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with a similar configuration, correlated Moller-Plesset (MP2) calculations using

6-311G∗∗,8 6-31G∗∗5 and 3-21G∗∗3 basis sets predicted a planar structure. Simi-

larly to these, our own ab initio calculations predict a planar HOSO geometry as

indicated in Table 2. Unfortunately, to our knowledge, there is no experimental

evidence concerning the structure of such a species. However, all such studies

agree on the fact that this HOSO structure should be the global minimum of

the title potential energy surface. We emphasize that the well depth of such a

minimum is predicted to be 44.2 kcal mol−1 (relative to the H + SO2 dissociation

limit) in excellent agreement with the DFT calculations of Denis and Ventura.13

In turn, we predict the OH stretching frequency in the DMBE HOSO minimum

to be 3710 cm−1 while Isoniemi et al.12 report a value of 3554cm−1 from spec-

troscopic measurements in an argon matrix. Indeed, the same work reports two

other stretching frequencies for this isomer, which differ by less than 15% from the

DMBE values here reported. Such differences are acceptable in view of the an-

harmonicity of the potential energy surface and sensitivity of the force constants

to numerical determination from a set of discrete points.

HSO2 isomer

The attributes of the corresponding local minimum, referred to as HSO2 (with

C2v symmetry), are given in the second entry of Table 8. As panels (b) and

(c) of Figure 4 clearly show, both the DMBE 2 + 3 + 4ele and DMBE potential

energy surfaces predict this structure to be stable with respect to the H + SO2

dissociation asymptote. However, by inclusion of the four-body EHF energy term

in the full DMBE potential energy surface, its well depth has been decreased such

as to lie 21.9 kcal mol−1 below the H + SO2 dissociation limit at a geometry close

to our ab initio prediction.

HSOO isomer

Shown in the third entry of Table 8 are the geometric and energetic properties

of the HSOO minimum, which are very similar to those recently reported by

Resende et al.37 As noted above, such an isomer is possibly related to the sink

of SH via the three-body recombination reaction (3). The contour plot in panel
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OH+ SOHS+O2

HOSO
TS01TS1TS2HSOO

HSO2

TS5TS3
H+ SO2

TS4 HSO � � �O HOS+OHSO+O
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Figure 11. Energetics of full HSO2 DMBE potential energy surface. For ball
and stick three-dimensional views of the various structures, see Figures 12 and 13.
Shown by the dotted line is the path based on the FVCAS/AVDZ scaled to
FVCAS/AVTZ calculations from the present work, while the interrupted solid
line shows the barrier-free path connecting O+SOH to the deep HOSO minimum.
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(b) of Figure 9 shows that such a structure is the intermediate for the reactions

HS + O2 ⇀↽ HSO + O.

HSO · · ·O van der Waals minimum

When the terminal oxygen in HSO is attacked by another oxygen atom, an in-

termediate HSO · · ·O van der Waals species may be formed (such weakly bound

species are heretofore indicated by the usual triple dot notation). Its properties

are collected in the fourth entry of Table 8, while the contour plot of Figure 9

shows such a process to be barrier free.

H · · ·OSO van der Waals minimum

The fifth entry of Table 8 summarizes the properties of this van der Waals species,

also shown in panel (a) of Figure 8. Note that it has an energy below the disso-

ciation limit H + SO2, which arises already at the 2 + 3 + 4ele body level of the

DMBE potential energy surface. Panel (c) of Figure 4 shows the position of such

a minimum.

O · · ·SOH, S · · ·OOH, and SO · · ·OH van der Waals minima

Three van der Waals type minima correlate with the O + SOH asymptote, being

their attributes summarized on the sixth to eighth entries of Table 8. The former

two minima correspond to T-shaped structures with the O (S) atom attacking

the middle atom of HOS (HOO), as one might anticipate from the interaction

between their permanent electric moments: atomic quadrupoles and triatomic

dipoles. The third of those minima involves two interacting diatomic species

having permanent electric dipole moments, namely SO and OH. In all cases, the

well depths have several kcal mol−1 with respect to the appropriate asymptote.

To our knowledge, no accurate ab initio data or empirical information is available

that might allow an assessment on the reliability of such predictions.

Transition state for the reactions HOSO ⇀↽ H · · ·OSO, TS1

As observed from panel (a) of Figure 8, there is only a small energy barrier of

about 2 kcal mol−1 for the H + SO2 reaction to occur in the 2 + 3 + 4ele DMBE
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Table 8. Properties of stationary points of the full DMBE potential energy surface of HSO2.

Feature R1/a0 R2/a0 R3/a0 α/deg β/deg γ/deg E/Eh ∆E frequencies/cm−1

HOSO, min. 2.742 3.027 1.865 119.9 112.7 83.1 −0.4837 −44.2a 445 686 852
1264 1329 3710

HSO2, min. 2.716 2.716 2.857 115.1 112.7 131.1 −0.4482 22.3b 381 668 1013
−21.9a 1103 1316 1381

HSOO, min. 2.405 3.222 2.662 114.6 110.9 76.7 −0.3293 96.9b 347 484 652
0.9c 1136 1231 2541

HSO · · ·O, min. 3.988 2.881 2.521 112.6 99.5 42.6 −0.3274 2.1c 129 302 437
801 1064 2643

H · · ·OSO, min. 2.727 2.680 3.598 118.0 122.1 73.6 −0.4181 −3.1a 368 616 871
1205 1520 1897

HOS · · ·O, min. 6.221 3.253 1.925 44.8 110.4 102.2 −0.3124 −10.2d 192 268 612
710 1124 3255

HOO · · ·S, min. 5.300 2.504 1.853 72.2 102.9 95.6 −0.2980 −12.2e 217 250 854
993 1298 3440

SO · · ·OH, min. 2.865 4.691 1.914 114.1 96.0 38.1 −0.3847 −9.7f 82 166 272
847 1006 3384

H · · ·OSO ⇀↽ HOSO, TS1 2.776 2.852 2.987 116.6 119.2 77.5 −0.3987 9.1a,g 588 768 1372
53.4b 1522 1887 2595i

HOSO ⇀↽ HSO2, TS2 2.762 2.962 2.887 110.1 57.0 62.5 −0.3697 71.5b 209 731 1043
49.2h 1402 1989 1919i

HS + O2 ⇀↽ HSOO, TS3 2.269 4.246 2.638 104.9 104.4 150.5 −0.3179 8.0c 144 439 841
1456 2497 262i

HSO · · ·O ⇀↽ HSO2, TS4 4.236 2.819 2.581 81.1 104.1 92.8 −0.3159 83.0h 433 574 947
7.2i 1018 2555 322i

HSO · · ·O ⇀↽ HSOO, TS5 3.095 2.934 2.615 112.1 107.5 77.5 −0.3159 7.2i 377 503 1015
8.4j 1072 2426 548i

HOS · · ·O ⇀↽ HOO · · · S, TS6 5.948 3.196 1.946 41.4 97.7 105.4.5 −0.2810 19.7j 309 332 1041
10.7l 1477 3290 418i

HOO · · ·S ⇀↽ SO · · ·OH, TS7 4.092 2.479 1.853 101.5 103.0 90.8 −0.2875 6.6l 370 761 993
1284 3387 377i

aEnergy in kcal mol−1 referred to H+SO2 (−0.4132 Eh).
bEnergy in kcal mol−1 referred to global minimum HOSO. cEnergy in

kcal mol−1 referred to HS+O2 (−0.3307 Eh).
dEnergy in kcal mol−1 referred to HOS+O (−0.2947 Eh). eEnergy in kcal mol−1

referred to HO2 + S (−0.2786 Eh).
fEnergy in kcal mol−1 referred to OH + SO (−0.3692 Eh).

gIf the energy calculated in this
work is used (see dotted line in Figure 11), one gets from left to right in the above units: 2.772, 2.849, 2.972, 116.7, 119.5,
76.4, −0.3837, 18.5, 455, 712, 1251, 1368, 1816, and 3049i. hEnergy in kcal mol−1 referred to local minimum HSO2.

iEnergy
in kcal mol−1 referred to local minimum HSO · · ·O. jEnergy in kcal mol−1 referred to local minimum HSOO. kEnergy in
kcal mol−1 referred to local minimum HOS · · ·O. lEnergy in kcal mol−1 referred to local minimum HOO · · · S.
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potential energy surface, being such a barrier located at large H − O distances.

The addition of the four-body EHF energy term has transformed this low-barrier

process for formation of HOSO into a high-barrier one. In fact, the full DMBE

potential energy surface is shown in panel (b) of Figure 8 to have a barrier of

9.1 kcal mol−1 lying at somewhat shorter H − O separations; see also the ninth

entry of Table 8 where the properties of the TS1 transition state are collected.

Recall that the barrier height predicted from our FVCAS/AVTZ calculations is

17.4 kcal mol−1. Note also that no particularly good experimental data relating

to TS1 is available in the literature. Indeed, a comparison of the temperature

and pressure dependences with master equation calculations seem to suggest47

an increase of the energy of this transition state from 2.1−3.2 kcal mol−1 relative

to the above estimate based on the G2 calculations of Goumri et al.,10 thus nar-

rowing slightly the gap relative to our own ab initio FVCAS/AVTZ prediction

for this attribute. Of course, the FVCAS calculations lack an account for the

dynamical correlation, and hence one wonders about the effect of the latter on

such a value. With a view to explore this issue we have conducted exploratory

single-point Rayleigh-Schrdinger perturbation-theory calculations from the FV-

CAS reference wave function (CASPT2) at this stationary point. We have ob-

tained barrier heights of 7.9 and 9.2 kcal mol−1 with the AVDZ and AVTZ basis

sets (respectively), which compare well with the G2 estimate10 of 9.1 kcal mol−1.

Since our CASPT2 estimates may still be considered to be preliminary, we have

found no reason to alter the two values here considered for the modelling pro-

cedure, although this may trivially be done by fine tuning a0 in Eq. (29) such

as to reproduce any accurate information that becomes available. An additional

remark to note that panel (b) of Figure 8 also shows that the HOSO formation

from OH + SO is an essentially barrier free process, and hence is likely to be

controlled by the leading long range forces associated to the permanent electric

moments of the reactants.

Transition state connecting HSO2 to HOSO, TS2

The properties of the transition state for the isomerization process HSO2 ⇀↽

HOSO are reported in the tenth entry of Table 8. Clearly, such an isomerization

implies important structural transformations, as manifested by the high energy
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barrier that must be overcome for such a reaction to occur. All ab initio calcula-

tions available in the literature agree with such an expectation, and so does the

DMBE potential energy surface here reported. Specifically, it predicts a barrier

height for the forward process of 49.2 kcal mol−1, while for the reverse process is

71.5 kcal mol−1. Note that HSO2 lies 22.3 kcal mol−1 above HOSO.

Transition state for the reaction HS + O2
⇀↽ HSOO, TS3

The addition of SH and O2 to form HSOO is seen to involve a 8.0 kcal mol−1 energy

barrier (TS3), whose properties are collected in the eleventh entry of Table 8.

Although Resende et al.37 predict a barrier of 12.3 kcal mol−1 for this process from

their multireference (MRMP2) calculations, the geometries of the corresponding

transition state (referred to as37 TS1) are (except for the low-frequency torsional

modes) similar to the one here reported. Note that, for the reaction OH + O2 ⇀↽

HO3, the equivalent barrier height has been predicted to lie between 1.4 and

3.9 kcal mol−1 (see Ref. 48, and references therein).

Transition state connecting HSO · · ·O to HSO2, TS4

According to the diagram in Figure 11, we may distinguish two regions in the

HSO2 potential energy surface: an upper-energy region including the HS + O2

channel, the HSOO structures, and the HSO + O dissociation channel; a lower-

energy region including the two more stables isomers HOSO and HSO2, as well as

the dissociation channels OH + SO and H + SO2. Such regions are connected via

the transition state TS4 for the isomerization process HSO · · · O⇀↽HSO2. The

corresponding attributes are summarized in entry twelve of Table 8. As shown,

the barrier for the direct isomerization process is of 7.2 kcal mol−1 and for the

reverse one 83.0 kcal mol−1. To our knowledge, no ab initio data concerning this

process has been reported thus far. Yet, in Figure 1 of their paper, Goumri et

al.10 suggest from their schematic drawing a simple connection between HSO+O

and HSO2. Clearly, our DMBE potential energy surface shows such a transition

state to naturally link HSO · · · O to HSO2.
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Transition state connecting HSO · · ·O to HSOO, TS5

The thirteenth entry of Table 8 gathers the properties of the transition state

connecting the HSO · · · O and HSOO isomers, which is graphically illustrated in

Figure 9. The energy of this TS5 is nearly the same as for TS4. Thus, in the

absence of further information, one may conjecture that both competing processes

are likely to occur with an equal frequency.

Transition states connecting O · · ·HOS, S · · ·HOO, and SO · · ·OH: TS6

and TS7

The attributes of these transition states are given on the last two entries of

Table 8. The transition state TS6 connects the O · · ·HOS and S · · ·HOO van der

Waals minima, and lies 10.7 kcal mol−1 (19.7 kcal mol−1) above the latter (former).

In turn, TS7 connects the S · · ·HOO and SO · · ·OH van der Waals minima, being

6.6 kcal mol−1 above the former. Of them, TS6 is expected to be the determinant

transition state for the reaction O + SOH → OH + SO, with a classical barrier

height of about 8.6 kcal mol−1. Note that the reaction O + SOH → S + HO2 is

slightly endothermic, with a classical endothermicity of about 10.14 kcal mol−1,

i.e., the products channel lies 1.51 kcal mol−1 above TS6. We further note that the

reaction O + SOH → OH + SO may evolve through the deep HOSO minimum, a

rather exothermic process that involves no reaction barrier. The relevant DMBE

contour plot for this reaction is shown in Figure 10; the corresponding plot for

the 2+3+4ele DMBE potential energy surface is omitted, since this is essentially

indistinguishable from the former. Note that, similarly to the associated van der

Waals minima, no ab initio or empirical information exists that may allow an

assessment of the accuracy of the above saddle points. A final remark to observe

that HOS + O asymptote lies less than 1 kcal mol−1 above the HSO + O one.

Thus, although one might intuitively think that both could be connected to the

HS + O2 and OH + SO asymptotes, this turns out to be possible only in the case

of HSO + O. For HOS + O to evolve to HS + O2, one requires in principle that

the isomerization HOS ⇀↽ HSO will firstly occur, which involves an energy of

45.7 kcal mol−1.24
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5 Conclusions

A singled-sheeted DMBE potential energy surface has been reported for the

ground electronic state of HSO2, partly based on FVCAS/AVDZ(AVTZ) cal-

culations for the tetratomic also reported in the present work. These have been

shown to be in fair agreement with previously reported ab initio results. The

attributes of the most relevant stationary points have also been presented. As in

previous studies, the most stable isomer is predicted to have a HOSO structure,

while the HSO2 isomer (having the hydrogen and middle sulfur atoms connected)

corresponds to a local minimum. It has further been shown that the global mini-

mum can be reached from the H+SO2 reactants by overcoming an energy barrier

that is likely to be of the order of 9 kcal mol−1 (the value actually used for the

DMBE calibration procedure). An HSOO isomer has additionally been found

and characterized, as well as the paths connecting this minimum to other struc-

tures. Furthermore, a barrier of 8 kcal mol−1 has been predicted to separate such

a minimum from the SH + O2 asymptote. Finally, our results suggest that a

high energy is required for the isomerization reaction HSO2 ⇀↽ HOSO to occur.

Of course, the accuracy limitations encountered in the theoretical work and the

topological intricacies of the potential energy surface leave it clear that the HSO2

DMBE potential energy surface from the present work may not be definite. This

can only be answered through dynamics studies of the various chemical reactions

occurring in it.
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Part II

Molecular Dynamics





Chapter 3

Theoretical Framework

Once the electronic problem is solved, resulting in an appropriate representation

of the potential energy function as referred in the previous part, a chemical reac-

tion may be understood as the motion of atomic nuclei trough such a potential.

Thus, classical or quantum mechanical methods can be used to characterize the

chemical reaction. For the study of reactions presented in this thesis a quasiclas-

sical trajectory (QCT) method [1–4] was used. The basis of QCT as well as some

features of molecular reaction dynamics are briefly reviewed in this chapter.

3.1 Classical Trajectories

Classical trajectories are the limits of high particle masses and high energies of

quantum-mechanical scattering process [1, 5]. They are used when dealing with

a molecular process in all the complexity and reality. They provide a feasible

connection between experimental observations and the interaction potential of

the atoms. When using classical trajectories one question arises: are chemical

reactions close to classical simplicity or do they require the detailed attention of

quantum considerations? The answer is that we usually think of these processes

as classical ones, with quantum corrections required under certain conditions

[6]. A qualitative argument is that de Broglie wavelength are short enough and

that so far has not been shown that tunneling corrections are very important to

classical interpretations [1]. Besides, as remarked in a series of works by Karplus

et al. [3, 7, 8], in a classical and quantum treatment of the same molecular system,

no significant differences have been obtained. Of course, some discrepancies might
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appear for low translational energy processes when quantum effects are expected

to be significant [1].

In a classical trajectory study the motions of the individual atoms are simu-

lated by solving classical equations of motion, usually in the form of Hamilton’s

equations [9]:
∂H

∂qi
= −dpi

dt
,
∂H

∂pi

=
dqi
dt

(3.1)

where the Hamiltonian function of the system, H , is the sum of the kinetic T (p,q)

and potential V (q) energies:

H = T (p,q) + V (q) (3.2)

The potential energy function V (q) is the already mentioned potential energy sur-

face. Hamilton’s equations (3.1) are solved numerically and numerous algorithms

have been developed for this task [1]. When a set of trajectories is completed,

the final values of momenta and coordinates are transformed into quantities, like

reaction rate constant, which may be compared with experiment.

A significant aspect of a trajectory simulation is the choice of the initial co-

ordinates and momenta. These initial conditions are chosen such that results

from an ensemble of trajectories may be compared with experiment and theory

and be used for predictions about the system’s molecular dynamics. Monte Carlo

methods are commonly used [2–4] for sampling appropriate distributions of initial

values of coordinates and momenta.

In the molecular collisions studied in this thesis, the VENUS [10] code was

utilized. Such a package uses Monte Carlo method for selecting initial conditions

of the reactants. Integration of the classical equations of motions is carried out

in a combination of fourth-order Runge-Kutta and sixth-order Adams Multon

algorithms [1]. Some details are presented in the following.

3.1.1 Quasiclassical model for bi-molecular reactions

As was mentioned in preceding paragraphs, a dynamical study of a molecular

collision can be carried out by means of classical equations. However, once con-

figurations of the separated reagents are described by their vibrational and rota-

tional (ro-vibrational) quantum states, initial conditions of the collision should be
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generated accounting for them. This is the idea of quasiclassical trajectories [7]:

to solve classical equations of motion considering the initial conditions of the re-

actants according to their quantum states. Similarly, the states of the product

molecules can be assigned by determining the quantum numbers describing the

best their ro-vibrational motion.

In order to introduce some basic concepts of collisions, let us consider two

reactant molecules A and B. The reactants approach with a relative velocity

vrel (with module vrel), which may be oriented such that the reactants approach

head-on (along a line connecting the center of masses) or with a glancing blow

collision. The difference between these two encounters is quantified by the impact

parameter of the collision b, which is defined as the distance of closest approach

of the reactants in the absence of any interactions between them. Thus, head-on

collision occurs when b = 0, and b > 0 stands for oblique direction or glancing

blow collision. The maximum value of b which leads to reaction is called max-

imum impact parameter, bmax. Beyond bmax the collisions are so glancing that

probability of reaction is vanishingly small.

A measure of the effective collision area is given by the cross section. The

cross section for the reaction between A and B to form products:

A + B → products (3.3)

may be given as a function of the A + B relative translational energy Etr and

the ro-vibrational energy levels of both species [11]. A reactive cross section may

be expressed as: σR = σR(Etr, v, J) where v and J denotes the vibrational and

rotational quantum numbers of the reactants respectively. It is usually referred

to as specific reactive cross section to remark that it comes from an specific or

fixed ro-vibrational configuration of the reactants [12, 13]. If specific values are

not selected but a distribution of values is used according to some temperature-

dependent function, the reactive cross section becomes:

σr(Etr, T ) =
∑

v

∑

J

σR(Etr, v, J)Pv(T )PJ(T ) (3.4)

where Pv(T ) and PJ(T ) are population distributions of the vibrational and rota-

tional quantum numbers of the reactants respectively. T is the temperature and

both summations run over all the quantum numbers.
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Multiplying σ(Etr;T ) by the relative velocity vrel and integrating over the

Boltzmann distribution one gets the bi-molecular thermal rates constant:

k(T ) =

∫ ∞

0

vrelσ(Etr;T )PB(vrel;T )dvrel (3.5)

or if it is written in terms of relative translational energy:

k(T ) =

(
8kBT

πµ

)1/2 ∫ ∞

0

σ(Etr;T )
Etr

(kBT )2
e−Etr/kBT dEtr (3.6)

where µ is the reduced mass of the system, and kB the Boltzmann constant.

When a batch of NT trajectories are calculated and Nr of them were reactive,

the reaction cross section (whether for specific ro-vibrational levels or not) may

be calculated as [3]:

σr =
Nr

NT
πb2max (3.7)

being bmax the largest impact parameter that leads to reaction.

3.1.2 Initial conditions

For the molecular collisions studied in this thesis, the VENUS [10] code was

used. A brief survey of the procedure to select initial conditions for bi-molecular

reaction (3.3) trajectories [4], using Monte Carlo sampling as implemented in

VENUS package, will be given in the following.

Choosing initial Cartesian coordinates and momenta for a symmetric top poly-

atomic reactant follows in part a procedure for normal modes sampling [14], the

components of the angular momentum are found from:

j =
√

J(J + 1)h̄

jz = Kh̄

jx = (j2 − j2
z )

1/2 sin 2πR

jy = (j2 − j2
z )

1/2 cos 2πR (3.8)

where R is a random number, J and K are the rotational quantum numbers,

h̄ is the Planck constant. When calculating thermally averaged cross-sections
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σr(Etr;T ) it is sufficiently accurate to sample j and jz from their classical Boltz-

mann distributions [15]:

P(jz) = e(−j2
z/2IzkBT ) 0 ≤ jz ≤ ∞ (3.9)

P(j) = je(−j2/2IxkBT ) jz ≤ j ≤ ∞ (3.10)

The von Neumann rejection method [16] is used to sample jz from P (jz), while

j is sampled by the cumulative distribution formula [15]:

j = [j2
z − 2IxkBT ln(1 −R)]1/2 (3.11)

The components jx and j are found from equation (3.8). The vibrational quantum

number vA of the reactant is fixed when calculating the state specific cross-section.

However, to calculate σr(Etr;T ) each vibrational quantum number is selected

from its quantum probability distribution:

P(vi) =
1

Qi
e[−(vi+1/2)h̄ωi/kBT ] (3.12)

This distribution may be sampled by the rejection method [16] or by cumulative

distribution function:
vi∑

vi=0

e[−(vi+1/2)h̄ωi/kBT ]

Qi
= R (3.13)

where R is a random number and Qi the partition function.

The next step is to transform the rotational angular momentum and its com-

ponents and the vibrational quantum numbers for the polyatomic reactant A

to Cartesian coordinates and momenta. The energies for the individual normal

modes are given by:

Ei =
P 2

i + ω2
iQ

2
i

2
(3.14)

which are then transformed to normal mode coordinates and momenta by means

of:

Qi = [(2Ei)
1/2/ωi] cos(2πRi) and Pi = −(2Ei)

1/2 sin(2πRi) (3.15)

The normal mode coordinates and momenta (Q and P) and the rotational angular

momentum are then transformed to Cartesian coordinates and momenta in the

center-of-mass frame of reactant A, by the following procedure:
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• The Q and P are transformed to Cartesian coordinates q and momenta for

N atoms using the normal mode eigenvector L [17]:

q = q0 + M−1/2LQ

p = M1/2LP (3.16)

where q0 is a vector of the equilibrium coordinates and M is a diagonal

matrix whose elements are the atomic masses. Since normal modes are

approximate for finite displacements [17], a spurious angular momentum js

arises following this transformation [18, 19].

• The spurious angular momentum is found from:

js =
N∑

i=1

ri × miṙi (3.17)

where mi is the mass of the ith atom and ri its position vector. The desired

angular momentum j0 is added to the molecule by forming the vector

j = j0 − js (3.18)

and adding the rotational velocity ω × ri to each atom, where:

ω = I−1j (3.19)

and I−1 is the inverse of inertia tensor [9].

• The actual internal energy E for the Cartesian coordinates and momenta,

chosen from two previous steps, is calculated using the correct Hamiltonian

and compared with the intended (provided) energy E0. If they do not agree

within some acceptance criterion, the Cartesian coordinates and momenta

are scaled according to:

q′
i = q0

i + (qi − q0
i )(E

0/E)1/2

p′
i = pi(E

0/E)1/2 (3.20)

any spurious center-of-mass translational energy is subtracted from the

molecule and the procedure loops back to the second step.
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The above Cartesian coordinates selected for the polyatomic are then ran-

domly rotated through Euler’s angles [20] to give a random orientation:

q = R(θ, φ, χ)q0 q̇ = R(θ, φ, χ)q̇0 (3.21)

a dot above a quantity represent its time derivative, q0 and q̇0 are vectors of the

Cartesian coordinates and velocities selected above and R(θ, φ, χ) is the Euler

rotation matrix. The angles θ, φ, χ are randomly chosen according to:

cos θ = 2R1 − 1, φ = 2πR2, χ = 2πR3 (3.22)

where R1, R2 and R3 are three different random numbers.

Since the polyatomic reactant A has a random orientation in the space-fixed

coordinates frame, the atom B may be placed in the yz plane without loss of

generality. The x, y, z coordinates of B are then:

x = 0, y = b, z = (s2 − b2)1/2 (3.23)

where s is the initial separation between both reactants centers of mass, and b

the impact parameter.

The A + B relative velocity vrel is now added along the z-axis with restraint

that the A+B center of mass remains at rest. The space fixed Cartesian momenta

are then:

P = M(q̇ − q̇rel) (3.24)

the elements of the relative velocity q̇rel are zero for x and y components and

equal [mA/(mA + mB)]vrel for the z component of each atom of B and equal to

−[mB/(mA + mB)]vrel for the z component of each atom of A. Thus, the initial

configuration is already determined.

3.1.3 Product properties

In classical calculations, a trajectory is ended once provided conditions of product

formation are accomplished (see table 1 of Chapter 4, as example). Then, the

resulting information is collected in terms of the whole set of coordinates and

linear momenta of all the atoms. These variables must be transformed into those

of physical interest [4].
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In the chemical reaction:

A + B → C + D (3.25)

the properties with interest are commonly: the C + D relative translational en-

ergy, the C and D vibrational and rotational energies and the scattering angle

between the initial A + B and the final C + D relative velocity vectors. These

properties are calculated from space-fixed Cartesian coordinates and momenta at

the termination of a classical trajectory. The procedures here described are incor-

porated in the general chemical dynamics program VENUS [10] used to calculate

the trajectories for the reactions studied in this thesis.

3.1.3.1 Relative velocity and translational energy

The product relative velocity is the difference between the velocities of the centers

of mass of C and D. For example for the x component of the center of mass

position and velocity of product D is given by:

XD =

nD∑

i=1

mixi/MD , ẊD =

nD∑

i=1

miẋi/MD (3.26)

where the sum is over nD, the number of atoms in D, mi are the masses and xi

are the x coordinates of the atoms. MD is the mas of D, upper case variables

identify the center of mass position and velocity. The product relative velocity is

the time derivative of the relative coordinate:

R = RD − RC

= (XD −XC)i + (YD − YC)j + (ZD − ZC)k (3.27)

= Rxi +Ryj +Rzk

Ṙ = Ṙxi + Ṙyj + Ṙzk

where i, j,k are the unitary vectors in the x,y,z directions respectively. The pro-

duct translational energy is:

Erel =
µCDṘ · Ṙ

2
(3.28)
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where µCD = MCMD/(MC + MD) is the CD reduced mass. Erel may also be

written as the sum of the relative translational energy along the line of centers

C − D and the energy of the orbital (angular) motion:

Erel =
µCDṘ

2

2
+

l2

2µCDR2
(3.29)

being Ṙ the module of the velocity along line of centers (radial velocity), and R

the distance between them:

R = (R · R)1/2 , Ṙ =
RxṘx +RyṘy +RzṘz

R
(3.30)

l is the orbital angular momentum (and l its module):

l = µCDR × Ṙ = lxi + lyj + lzk (3.31)

3.1.3.2 Velocity scattering angle

The velocity scattering angle θv is the angle between the relative velocity vector

for the reactants Ṙ0 and the product’s relative velocity vector Ṙ, given by:

θv = cos−1

(

Ṙ · Ṙ0

ṘṘ0

)

(3.32)

3.1.3.3 Internal energy

To calculate the internal rotational and vibrational energy of the products requires

the coordinates and velocities of each atom of the molecule in the center of mass

frame of the molecule:

x′i = xi −XD , ẋ
′
i = ẋi − ẊD , i = 1, nD (3.33)

the internal energy of D is:

ED = TD + VD (3.34)

where TD and VD are the kinetic and vibrational energies of D respectively. VD is

determined from the potential energy function and TD is given by:

TD =

nD∑

i=1

mi(ẋ
2
i + ẏ2

i + ż2
i )

2
(3.35)
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3.1.3.4 Rotational angular momentum

The rotational angular momentum j of the product molecule D is the sum of the

angular momentum ji of the individual atoms of D relative to its center of mass:

jD =

nD∑

i=1

ji = jxi + jyj + jzk (3.36)

the atomic angular momentum is given by:

ji = mir
′
i × ṙ′i (3.37)

The total angular momentum of the C + D products is the vector sum:

L = l + jC + jD (3.38)

3.1.3.5 Rotational and vibrational energies

If the product correspond to a diatomic species, same procedure as previously

described in equations (3.28-3.31) can be used. The internal energy TD of a

diatomic molecule 1-2, can be written:

TD =
µ12ṙ

2

2
+

j2

2µ12r2
(3.39)

where µ12 is the reduced mass of D, r is the 1-2 bond length. Similar expressions

than (3.28-3.31) are used for r and ṙ. The rotational quantum number J for D

is found from the expression:

j =
√

J(J + 1)h̄ (3.40)

Since calculation is classical, non-integer values are obtained for J ; then, rounding

is often used.

The vibrational quantum number is obtained with help of semi-classical quan-

tization condition [21, p71]:
∮

prdr = (n +
1

2
)2πh̄ (3.41)

where the momentum pr = µṙ and the cyclic integral denotes integration over

one orbit. From the equations (3.34) and (3.39) pr is given by:

pr =

[

2µ12

(

ED − j2

2µ12r2
− VD(r)

)]1/2

(3.42)
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as for J , non-integer values of n are often obtained.

If D is a polyatomic species it is not a simple to calculate rotational and

vibrational quantum numbers [4]. Semi-classical quantization can be used as

in case of diatomic molecules, presented above. However, mostly because of

the multidimensional character, such a task is tedious. As a result most of the

semi-classical quantization has been limited to triatomics. So far, there is not a

general form to calculate both rotational and vibrational quantum numbers from

its Cartesian coordinates [4].

It is always possible to calculate the average vibrational and rotational energies

of a polyatomic product:

ED = 〈Evib
D 〉 + 〈Erot

D 〉 (3.43)

Because of the ro-vibrational coupling the vibrational and rotational energies

of D, Evib
D and Erot

D , will fluctuate as the molecule vibrates. An instantaneous

rotational energy for D may be calculated from:

Erot
D =

1

2
ωD · jD (3.44)

jD has been defined in Eqn. 3.36 and ωD, the angular velocity of D, can be

determined from equation (3.19).

The average rotational energy is computed by averaging over the longest vi-

brational period of the product. Then, by means of equation (3.44), the average

vibrational energy can also be obtained.

3.2 Excitation functions and rate constant

Molecular beam experiments provide high initial collision energy resolution [22].

That is why they are often employed to measure the translational energy depen-

dence of the reaction cross section (excitation function). Much of the interesting

information about an elementary chemical reaction can be summarized in such

a function [23]. Besides, it is also needed to calculate the rate constant for spe-

cific ro-vibrational states of the reactants. Once its value is obtained for a given

translational energy, some models are used to represent it.



86 Theoretical Framework

3.2.1 Reaction with barrier

Based on the fitting of available data, LeRoy [23] proposed some particular mod-

els:

Class I reactions

σ(Etr) =

{

C(Etr − Eth
tr )ne−m(Etr−Eth

tr ) Etr ≥ Eth
tr

0 Etr < 0
(3.45)

where m,n ≥ 0. Those functions increase from 0 at Etr = Eth
tr , the exponential

term causes the excitation function to pass through a maximum as the energy in-

crease. Such a dependence describe properly the excitation functions for neutral-

neutral reactions. The reaction presented in chapter 5 of this thesis properly fit

to this model.

By substituting (3.45) into (3.6), an analytical expression for the rate constant

is obtained:

k(T ) = C

(
8kBT

πµ

)1/2
(kBT )ne−Eth

tr /kBT

(1 +mkBT )n+2
×

×
[

Γ(n + 2) + Γ(n+ 1)
(1 +mkBT )Eth

tr

kBT

]

(3.46)

where Γ is the Gamma function, see appendix.

Class II reactions

σ(Etr) =

{
C(Etr−Eth

tr )n

Etr
e−m(Etr−Eth

tr ) Etr ≥ Eth
tr

0 Etr < 0
(3.47)

these functions are very similar to the previous one, however they include the

excitation function for the collision of hard spheres which requires a critical energy

Eth
tr [22]. This excitation function yields to a rate constant:

k(T ) = C

(
8kBT

πµ

)1/2
(kBT )n−1Γ(n+ 1)e−Eth/kBT

(1 +mkBT )n+1
(3.48)

Class III reactions

σ(Etr) =

{
CEn

tr Etr ≥ Eth
tr

0 Etr < 0
(3.49)
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This type of functions applies for collisions between low energy ions and polariz-

able molecules [23]. For these functions, the rate constant becomes:

k(T ) = C

(
8kBT

πµ

)1/2

(kBT )n[Γ(n+ 2) − P (n+ 2, Eth
tr /kBT )] (3.50)

being P the incomplete Gamma function, see appendix.

3.2.2 Barrier-free reactions

In the collision of two particles (with masses m1 and m2) interacting along the

centers of mass line, the two-body problem can be simplified into a one-body

problem. There, a particle of mass µ (µ=m1m2/(m1 +m2)) moves under the in-

fluence of an effective potential (Veff) given by the sum of the interaction between

both particles and a centrifugal potential [9].

For reactions which proceed through an attractive potential energy surface,

without a barrier (capture-like), the centrifugal barrier on the effective potential

Veff may still prevent reaction. To obtain a simple model of such a kind of collision,

structureless reactants will be assumed. Considering also a long-range attractive

potential in the form:

V (R) = −Cn

Rn
(3.51)

where Cn and n are parameters depending on the interaction type, with n=3 when

there are dipole-dipole like, n=4 for quadrupole-dipole and so on [24, 25]. The

distance between reactants is represented by R. Of course the above assumption

is a large simplification of the problem as in real collisions we deal with reactants

having different electric multipoles and also their values can change as the reaction

proceeds. However, these effects are supposed to be included in the values on n

and Cn with some intermediate values, not corresponding exactly to any specific

multipole interaction, but to a mixture of them.

The effective potential becomes:

Veff(R) = Etr
b2

R2
− Cn

Rn
(3.52)

where b is the impact parameter. Veff(R) has a maximum value at R = R0:

R0 =

(
nCn

2Etrb2

)1/(n−2)

(3.53)
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Figure 1. Distance vs. time plot for a typical trajectory of the reaction OH +
SO → H + SO2, for low translational energies of the reactants.

With the condition that the translational energy must equal the maximum value

of the effective potential for b=bmax, the excitation function then becomes:

σ(Etr) = πb2max = nπ(n− 2)(2−n)/n

(
Cn

2Etr

)2/n

(3.54)

By substituting the previous expression into Eq. (3.6), the rate constant is ob-

tained as:

k(T ) = 2nπ(n− 2)(2−n)/n

(
2

πµ

)1/2(
Cn

2

)2/n

Γ

(
2n− 2

n

)

(kBT )(n−4)/2n (3.55)

Even when this result was obtained for a simplified model of interaction, it fits

particularly well the radical-radical reactions [26]. Molecular collisions OH + SO

and S+HO2 presented respectively in chapters 4 and 6 of this thesis are properly

described by such a model; though further corrections are needed in the former

to account for recrossing effects.
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Figure 2. Distance vs. time plot for a typical recrossing trajectory in the
OH + SO collision, for high translational energies of the reactants.

3.3 Complex formation

An important information one gets from quasi-classical trajectories is the reaction

mechanism. Very useful are the distances vs time plots such as shows in Figures

1 and 2. By means of such a kind of plot, and with the knowledge of the topology

of the PES, it is possible to describe the intermediate species or structures formed

in the path from reactants to products (in the general sense products may also

be recoiled reactants, as in inelastic scattering). However, a detailed check of all

the plots produced by each of the computed trajectory is a cumbersome task.

What it is actually done is to choose a certain number of trajectories and define

a criterion to identify whether such structure is formed or not, and implement it

in the code used for computing trajectories. Such a criteria should be carefully

tested in a significant number of trajectories.

For example, by checking 100 trajectories at Etr =0.6 and Etr =20.0kcal mol−1

of the reaction OH+SO (see chapter 4) in detail, we verify that OH bond length

remains shorter than the HS bond length. This observation led to the conclusion
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that there is no formation of an HSO2 conformer in the C2v structure with the H

atom bonded to the S atom. HOSO with hydrogen bonded to one of the oxygen

atoms is formed instead. The selected criterion can also provide life-times of the

formed complex. Usually geometry conditions are used to define it (distances

between atoms, comparison between them, etc.) but energetic conditions may be

used as well.

When a trajectory enters into a configuration corresponding to a complex and

returns back to the reactants it is said a recrossing has occurred [26]. This effect is

common in reactions with a deep well in the interaction potential, corresponding

to the complex, followed by a barrier which must be overcame for continuing

the way to the products. For these cases, it is particularly important to detect

whether or not the complex was formed during the trajectory. We may need

to account for recrossing effects as a correction in the rate constant or in the

excitation function [26]. Thus, the probability of a recrossing needs to be known.

In the study of the reaction OH + SO presented in chapter 4 of this thesis, a

correction to the capture excitation function is done to account for such effect.

3.4 Electronic degeneracy factor

Degeneracy of the electronic states in a molecular systems were not included in

the picture presented so far, of the nuclei moving on a potential energy surface.

The results of having different electronic states have a quantitative effect when

studying molecular collisions. As early as 1936, it was pointed out by Ravi-

nowich [27], that theoretically calculated rate constants differ in a factor from

experimental results. This factor depends upon the electronic degeneracy of the

involved species. Bunker and Davidson [28, 29] remarked the role of such a fac-

tor. In the work of Truhlar [30] the proper inclusion of the electronic degeneracy

was presented while Muckerman and Newton [31] pointed out its dependence on

temperature. Main ideas of the degeneracy factor are briefly presented in the

following.

In some collision processes (e.g. He+Ne) both collision partners have the same

degeneracy g (g = 2). It is a good approximation to consider that internuclear

motion is governed by one potential energy surface, corresponding to the lowest
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energy (degenerate or not) electronic state of the system. For most collision

problems one must consider more than one electronic state: e.g. I2P3/2 has g = 4

so the collision partners in I + I have g = 16. However, the ground state of

I2 is non-degenerate. Coupling between the 16 states of I2 is expected at large

internuclear distances where the states are nearly degenerate. In the absence of

a detailed treatment of this non-adiabatic coupling it is reasonable to use BOA

at all internuclear distances. In this approximation each collision occurs on one

potential energy surface, but only 1/16 of the collisions occurs in the ground state

surface [30].

Thus, when comparing rate constants with experimental values a factor:

ge =
gcomp

greact1greact2

(3.56)

should be included. The numerator denotes the degeneracy of the whole molecular

system and the denominator accounts for the degeneracies of the reactants. Note

that these factors must include the dependence on temperature of spin orbit

splitting.

Molecular system studied in this thesis is HSO2(
2A), a doublet. When study-

ing molecular collision e.g. OH(2Π) + SO(3Σ), ge assumes the form:

ge(T ) =
2

3(2[1 + exp(−205/T )])
(3.57)

the two pi (Π) levels of OH split into two double-fold levels when spin-orbit

interaction (first order) is considered, there is an energy gap of 205 K between

them [32]. As the three degenerate states of SO are sigma (Σ) states they remain

the same as spin-orbit coupling is accounted. In the same way, in all dynamics

studies carried out in this work, such a factor was included.

3.5 Quantum corrections to classical calculations

Even when classical calculations may provide an appropriate description of molec-

ular collisions, quantum nature of the molecular world should be preserved. Thus,

some behaviors in the classical calculations must be corrected.

The so-called tunnel effect is a direct consequence from quantum mecha-

nics [21], when a particle is passing through a potential energy barrier. Of course,
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classical calculations do not account for such effect. Some attempts have been

made to include tunneling in classical calculations (see Ref. [33] and references

therein). In molecular collisions studied in this work, tunneling effects will not

be considered.

An important error uprising from classical calculations are the “sub-threshold”

reactive trajectories appearing in some reactions for translational energies below

the quantum threshold [34]. This fact could be significant, especially for barrier-

type reactions, where the threshold energy dictates the magnitude and the slope

of the rate constant. In the reactions presented here it was followed the idea

of Varandas and collaborators [35] to circumvent this problem. There, the au-

thors calculated trajectories for translational energies above the energy threshold,

whose value is fixed to the conventional transition state enthalpy.

Classical calculations does not forbid molecular systems to have vibrational

energy bellow the lowest value given by quantum calculations. This is usually re-

ferred as zero-point energy (ZPE) leakage. To account for ZPE leakage of classical

calculations several strategies have been proposed [36–41]. In the quasiclassical

study of the reactions presented in this thesis the following methods were used:

➭ IEQMT [39]. Internal Energy Quantum Mechanics Threshold. Each prod-

uct is demanded to have an internal energy larger than its corresponding

ZPE.

➭ VEQMT [40]. Vibrational Energy Quantum Mechanical Threshold. The

vibrational energy of each product must be larger than its corresponding

ZPE.

➭ VEQMTC [41] Vibrational Energy Quantum Mechanical Threshold of the

Complex. The vibrational energy of the complex, just before dissociation,

must be larger than the sum of the ZPE energies of the formed products.

It must be noted, as a final remark on this chapter, that although quantum

mechanics should be used for the exact treatment of the dynamics of molecular

systems, classical methods are affordable means to obtain cross sections for the

majority of systems of chemical interest. This is valid for large polyatomics as

much as small systems containing heavy atoms.
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Abstract

We report a quasiclassical trajectory study of the title reaction using a recently reported

double many-body expansion potential energy surface for ground state HSO2. Two

methods that aim to account for zero point energy leakage are used. A capture-type

behavior is predicted, with recrossing effects manifesting mainly at high translational

energies. Reaction cross sections and a comparison of the calculated rate constant with

available literature data are also reported.
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1 Introduction

The SO radical plays a significant role in combustion chemistry [1], while tropo-

spheric oxidation of sulfur is driven by hydroperoxyl radicals [2]. In particular,

the reaction

OH + SO → H + SO2 (1)

has been much studied, both theoretically and experimentally [3–10]. Although

some of these works have suggested mechanisms [7, 8], they have all been based

on studies using partial information about the HSO2 system. Our aim here is

to report a dynamics and kinetics study of reaction (1) using a single-sheeted

(global) double many-body expansion (DMBE) potential energy surface recently

reported [11] for HSO2, hoping to clarify how the reaction proceeds. The paper is

organized as follows. Section 2 surveys briefly the potential energy surface, while

the technicalities of the computational method are addressed in section 3. The

results and discussion are in section 4, and the conclusions in section 5.

2 Potential Energy Surface

All calculations employed the six-dimensional double many-body expansion po-

tential energy surface for the electronic ground state of HSO2. Since this has al-

ready been described in detail elsewhere [11], we focus on its major topographical

features which are of relevance for the title reaction. Figure 1 depicts schemati-

cally its energetics, as predicted from the HSO2 DMBE potential energy surface.

As it is shown in this diagram, the title reaction can proceed via one or two in-

termediate structures: HOSO and/or HSO2. Figure 2 shows a perspective view

of the HSO2 potential energy surface for regions of configuration space with rel-

evance for the title reaction: the x-axis stands for the O−H distance relating to

the hydrogen and oxygen atoms in the hydroxyl radical, while the y-axis indicates

the distance between sulfur in SO and oxygen in OH. Note that 6 OSO, 6 SOH,

and the dihedral angle, as well as the SO distance, are partially relaxed in this

plot.
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3 Computational procedure

To run the quasi-classical trajectories, we have utilized an adapted version of

the VENUS96 [12] code which accommodates the HSO2 DMBE potential en-

ergy surface. Calculations have done for diatom-diatom translational energies in

the range 0.2 ≤ Etr/kcal mol−1 ≤ 19.9. In all cases the vibrational and rota-

tional quantum numbers of the reactants have been fixed at the ground level.

This implies vOH = vSO = 0 for the vibrational quantum numbers, while the ro-

tational quantum numbers are jOH = 1 and jSO = 0 assuming [13] that OH fits

Hund’s rule case b) (according, the smallest N ′ value should be N ′ = 1, 2, . . .;

for consistency, we use j instead of N ′ in this work). Of course, a thermalized

rotational-vibrational distribution would be necessary if one seeks a comparison

with thermal rate coefficients. We focus here more on dynamical issues for specific

initial states and translational energies, leaving a direct thermalized calculation

of the rate constant for future consideration.

The step size used for numerical integration is 2.5× 10−16 s, which warrants con-

servation of the total energy to better than 1 part in 103. The reactant diatomic

molecules were initially separated by 9 Å, a value considered sufficiently large to

make the interaction energy essentially negligible. The procedure employed to

assign reactive channels has been described elsewhere [14]. There are 14 possi-

ble arrangement channels if we do not distinguish those leading to isomers of a

given species. Table 1 collects their assignments according to the geometries of

the four-atom species (channel 1 identifies the reactants). In turn, the maximum

impact parameter (bmax) has been found by running batches of 100 trajectories

at fixed values, with bmax being diminished until reaction (this implies an exit

channel distinct from # 1) takes place. Such a procedure allows to determine bmax

within ±0.1 Å. For a given translational energy, batches of trajectories have then

been run, and the reactive cross section calculated as σr(Etr) = πb2maxPr, with the

associated 68 % uncertainties being ∆σr(Etr) = σr [(NT −Nr) /NTNr]
1/2; Nr is

the number of reactive trajectories in a total of NT , and Pr = Nr/NT the reaction

probability. From this, and assuming a Maxwell-Boltzmann distribution over the

translational energy (Etr), the specific thermal rate coefficient is obtained as

k(T ) = ge(T )

(
2

kBT

)3/2(
1

πµ

)1/2 ∫ ∞

0

Etrσr(Etr) exp

(

− Etr

kBT

)

dEtr (2)
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Table 1. Assignment of reaction channels.

Channel Products R1/Å R2/Å R3/Å R4/Å R5/Å R6/Å

1 OaH + SOb ∞ 1.481 ∞ ∞ 0.971 ∞
2 ObH + SOa 1.481 ∞ ∞ ∞ ∞ 0.971
3 HS + O2 ∞ ∞ 1.340 1.208 ∞ ∞
4 H + SO2 1.431 1.431 ∞ 2.470 ∞ ∞
5 Oa + HSOb ∞ 1.512 1.386 ∞ ∞ 2.374
6 Ob + HSOa 1.512 ∞ 1.386 ∞ 2.374 ∞
7 S + HO2 ∞ ∞ ∞ 1.331 0.971 1.831
8 Oa + H + SOb ∞ 1.481 ∞ ∞ ∞ ∞
9 S + Ob + HOa ∞ ∞ ∞ ∞ 0.971 ∞
10 Ob + H + SOa 1.481 ∞ ∞ ∞ ∞ ∞
11 S + Oa + HOb ∞ ∞ ∞ ∞ ∞ 0.971
12 S + H + O2 ∞ ∞ ∞ 1.208 ∞ ∞
13 Oa + Ob + HS ∞ ∞ 1.340 ∞ ∞ ∞
14 S + Oa + Ob + H ∞ ∞ ∞ ∞ ∞ ∞

where T is the temperature, and ge(T ) the electronic degeneracy factor which

assumes [15, 16] the form:

ge(T ) =
1

3[1 + exp(−205/T )]
(3)

Note that OH(2Π) splits into two double-fold degenerate states [OH(2Π1/2) and

OH(2Π3/2)] when first-order spin-orbit interaction is considered, with 205 K being

the energy difference between them [17]. In turn, SO(3Σ) is a triplet, while the

complex is a doublet.

To monitor complex formation, we have first studied in detail 100 trajectories

at translational energies of 0.596 and 19.87 kcal mol−1 (respectively, 300 and

10000 K). From the analysis of time vs bond-distance plots (not shown for

brevity), a geometric criterion has been set to define whether complex forma-

tion has occurred. According to such a criterion, complex formation is defined

by means of only two bond-lengths: one ensuring that the incoming hydroxyl is

bonded to sulfur, the other checking whether the H atom is part of the four-body

moiety or, instead, far away forming H + SO2 products. A complex is then any
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arrangement of the four atoms where the HS and SOa distances become shorter

than 1.3 times their values at the global minimum. Such a definition leads to com-

plex lifetimes that agree well with those obtained from inspection of the above

referred bond distance vs time plots. Indeed, we find such a procedure to be

sufficiently rigorous to avoid the cumbersome observation of the bond distance

vs time plots for all trajectories that have been run, although checks have been

performed here and there to warrant the accuracy of the method during mass

production of the trajectory results. We note at this stage that in no single case

has HSO2 been formed. The same applies to the oxygen interchange process

HOa + SOb → HOb + SOa, as in no case it has been observed.

A well know problem of classical trajectories is the so-called zero-point energy

leakage. Both ’active’ and ’non-active’ methods have been suggested (Ref. 18,

and references therein) to overcome it in an approximate manner. In the ac-

tive methods, a constraint is introduced to prevent the trajectories from entering

the region of phase space which allows vibrational modes to have less than its

ZPE. Instead, in the non-active ones, trajectories leading to aphysical products

(with vibrational/internal energies below a given threshold) are thrown out and

replaced [13] by running novel trajectories. The perturbed statistics may even-

tually be corrected a posteriori [19]. Thus, no trajectory calculations, besides

those run in the traditional QCT method are eventually required when using

a non-active method. Clearly, the above mentioned schemes are not free from

ambiguity, and we use only two simple non-active methods in this work, namely

VEQMTC [20] and IEQMT [21]. The former demands that the total vibrational

energy of the products is larger than the sum of their ZPEs [20] while the latter,

less restrictive, requires that the total internal energy of each molecular product

is larger than the corresponding ZPE [21].

4 Results and discussion

According to Figures 1 and 2, the title reaction takes place without a potential

barrier. Computational difficulties arise as a significant number of trajectories

(around 10 %) falls into the deep well of the potential energy surface and remains

there up to 4×105 steps, thus leading to convergence problems. This is especially
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critical at low collisional energies as this leads to a drastic increase in computa-

tional cost.

Table 2 summarizes the trajectory calculations, with non-converged trajectories

removed from the total number run, NT . Nc is the number of complex-forming

trajectories, and Nr the number of trajectories leading to SO2 + H formation.

This is a subset of Nc, while Nrec is the number of recrossing trajectories (those

that form a complex but subsequently re-dissociate back to reactants). Once the

complex is formed (note that most are long lived), vibrational energy of OH is

transfered to other modes. Thus, when the trajectory dissociates back to reac-

tants, it often does so by loosing vibrational energy with respect to its original

value, in this case the ground-state vibrational energy. In fact, only for high

translational energies, does OH keep its vibrational energy above ZPE. As a re-

sult, nearly all recrossing trajectories in the low-translational energy regime suffer

from ZPE-leakage. Disregarding such trajectories from the final statistics may

imply that reactivity will likely be overestimated with respect to the traditional

QCT value as the statistics of the reactive trajectories gets improved with respect

to the non-reactive one. This is illustrated in Table 2, where the results from the

VEQMTC and IEQMT methods are compared with those of traditional QCT.

We emphasize that all trajectories not fulfilling the threshold conditions imposed

by such methods are simply discarded, with no attempt being made to improve

the statistics a posteriori [19]. As expected, the IEQMT results lie between QCT

and VEQMTC. To give reasonable lower and upper limits of reactivity one then

needs to consider only the QCT and VEQMTC methods. Thus, we focus hereto-

fore only on these two approaches. In the absence of a potential energy barrier,

the tittle reaction should be controlled at low energies by long-range interactions

associated to the permanent electric moments of the reactants. The reactive cross

section may then be expressed by multiplying the capture cross section [22, 23]

by a factor Frec(Etr) that accounts for recrossing effects:

σ(Etr) = nπ(n− 2)(2−n)/n

(
Cn

2Etr

)2/n

Frec(Etr) (4)

Note that Frec depends on the translational energy, as opposed to Refs. 22, 23

where the correction for recrossing appears in the rate constant and hence is
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Table 2. A summary of the trajectories calculations.

Etr Etr bmax QCT VEQMTC IEQMT
K kcal mol−1 Å NT Ncom Nrec Nr NT Ncom Nrec Nr NT Ncom Nrec Nr

100 0.199 8.8 1946 1656 83 1573 1444 1444 0 1444 1551 1551 0 1551
200 0.396 7.6 1862 1624 92 1532 1395 1395 0 1395 1511 1511 0 1511
300 0.596 7.0 1800 1518 81 1437 1301 1301 0 1301 1422 1422 0 1422
500 0.993 6.1 1742 1405 106 1299 1175 1175 0 1175 1287 1287 0 1287

1000 1.987 5.3 1672 1126 138 988 901 901 0 901 986 986 0 986
3000 5.962 3.7 1791 1097 499 598 570 561 18 543 648 624 28 596
5000 9.936 3.4 1903 1170 864 306 419 398 110 288 549 442 136 306

10000 19.872 2.6 2000 1275 1158 117 695 624 508 116 887 659 542 117
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results. The arrow indicates the step introduced in the recrossing function in
Eq. (5) at Etr = Eth

tr , which is shown graphically in the insert.

written as a function of temperature. We have found convenient the form:

Frec(Etr) =

{
1 Etr < Eth

tr

exp
[
−α(Etr − Eth

tr )
]

Etr ≥ Eth
tr

(5)

as it mimics well the recrossing data shown in Table 2. Note that Eth
tr can be

regarded as a threshold energy for recrossing under the requirements of a given

method. As expected, Eth
tr vanishes (or lies close to zero) in the traditional QCT

method. The calculated reactive cross sections are shown in Figure 3, jointly

with the results of the fits based on Eqs. (4) and (5). Note the expected bump in

the VEQMTC curve due to the use a non-vanishing threshold energy in Eq. (5).

After substitution of Eq. (4) in Eq. (2) and integration, one gets:

k(T ) = kcap(T )

[

P

(
2(n− 1)

n
,
Eth

tr

kBT

)

+ exp

(
Eth

tr

kBT0

)(
T0

T0 + T

) 2(n−1)
n

×

×Q
(

2(n− 1)

n
,
Eth

tr

kBT

)]

(6)
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Table 3. Rate constants for the title reaction.

k(T )/10−11 cm3 s−1 T/K source

8.3 ± 1.7 298 literature review [10]
7.9 ± 1.6 295 discharge flow [8]
8.4 ± 1.5 298 electron spin resonance [6]
5.0 ± 3.0 298 literature review [5]
11.6 ± 3.2 300 literature review [4]
11.6 ± 5.0 298 chemiluminescence [3]
10.4 − 15.4 300 this work

where T0 = 1/ (αkB),

kcap(T )=2nπge(T )(n−2)(2−n)/n

(
2

πµ

)1/2(
Cn

2

)2/n

Γ

[
2(n−1)

n

]

(kBT )(n−4)/2n (7)

and P and Q stand for the incomplete gamma function and its complement (re-

spectively), while Γ is the Gamma function. Figure 4 shows a plot with rate

constants reported in literature and both the lower and upper limits that have

been calculated in this work. The two delimit a shaded area that should bound

a realistic estimate of the quasi-classical rate constant. In turn, Table 3 com-

pares the values calculated for room temperature. Note that we have used the

high-temperature limit [24, 25] of the electronic degeneracy factor (ge = 1/6)

such as to get the ’pure’ dependence of the rate constant on temperature [i.e.,

without including the dependence due to ge(T )]. Clearly, our results agree well

with the limited experimental values reported in the literature [3–6, 10]. We

now address the work by Blitz et al. [8]. Their rate constants were measured for

OH + SO over the temperature range 295 − 703 K, and measured at pressures

of 100 Torr. Because it agrees at room temperature with the values reported by

Jordain et al. [6] and Fair et al. [3] which have been obtained at low pressures

(∼ 1 Torr), this led those authors [8] to suggest that the title reaction can be

treated as pressure-independent. However, because pressure effects are likely to

increase the complex lifetime due to the presence of third-bodies, we may argue

that an increasing pressure will result on an increasing recrossing probability,

thus diminishing reactivity as predicted from our calculations. In fact, for high
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temperatures, our results show significant differences from those of Blitz et al. [8]

which show a sudden drop with temperature. Such a “sudden-drop” in k(T ) has

also been observed by Sander et al. [10], who have referred to it as ’a non-expected

behavior for temperatures above 500 K’. We further remark that Blitz et al. [8]

relied on the assumption [7] that isomerization HOSO → HSO2 is needed for the

title reaction to take place. As noted above, direct processes HO+SO → H+SO2

without isomerization to HSO2, are the only ones observed in the present study.

Figure 4 depicts the temperature dependence recommended by Sander et al. [10]

based on the temperature data of Blitz et al. [8] for the range 295−453 K, as well

as their suggested error bars which are indicated by the shaded area. Also shown

is the rate constant proposed by Alzueta et al. [9], which has been derived from a
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fit to the Blitz et al. [8] data. The salient feature is the good agreement between

the results from the present work and the measurement of Fair et al. [3] for room

temperature, as well as with other experimental values or recommendations for

the same temperature [4–6, 10]. They predict a small T -dependence which is best

seen in a (non-logarithmic) plot of k(T ) vs T : a modest initial increase before

stabilization at high temperatures. Thus, both the VEQMTC and QCT curves

show maxima, but they occur at higher temperatures (respectively ∼ 1400 and

∼ 100 K) than predicted by quantum capture rate constant calculations [24, 25].

In an attempt to clarify this behavior, we have fitted the energy along the mini-

mum energy path (for diatom-diatom separations 2.4 ≤ R/Å ≤ 4.8) to a simple

isotropic long-range CnR
−n form and calculated the rate constant using classical

capture theory [22]. We observe the following: a) the optimum power in the long-

range potential is found to be n = 5.9 (Cn = −7.3 EhÅ
n), which is due to prob-

ing various arrangements of the interacting permanent electrostatic (i.e., dipole-

dipole, dipole-quadrupole, and quadrupole-quadrupole) moments along such a

path of the DMBE potential energy surface [11], as well as to having additional

long-range contributions included in the latter; b) the calculated rate constant

at room temperature is predicted to be 5.3 × 10−11 cm3 s−1, which is somewhat

smaller than Clary’s recommended [24] value of 8.0×10−11 cm3 s−1 obtained using

the adiabatic capture global centrifugal sudden approximation, although it lies

closer to their reported result of 6.5 × 10−11 cm3 s−1 obtained with the adiabatic

capture infinite order sudden approximation [24]; c) no maximum arises in the

classical capture rate constant, which is predicted to increase with temperature

as expected for a power law larger than n = 4. This result suggests that the maxi-

mum arising in the curves of Ref. 25 at very low temperatures can be ascribed

to changing from a fixed orientation of the permanent moments at low tempera-

tures to a rotationally-averaged regime with increasing temperature. However,

such a mechanism conflicts with the prediction from DMBE which shows signif-

icant angle-scrambling (besides dispersion interactions) in the minimum energy

path itself. Such an averaging process becomes even more prominent if one re-

calls that OH in its ground state has already one quantum of rotational energy.

Indeed, movies of OH(vOH = 0, jOH = 1)+SO(vSO = 0, jSO = 0) trajectories show

a quick sampling of all diatom-diatom interaction angles. Finally, we emphasize
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that a full comparison with experiment requires a thermalized distribution of

initial reactant states. Although the above arguments suggest that the general

trends are likely to be maintained, calculations are required to confirm such an

assertion and to assess the role of excited vibrational states, especially at high

temperatures.

5 Conclusions

The reaction OH + SO → H + SO2 has been theoretically studied over a range

of translational energies. No formation of HSO2 has occurred, thus predicting

reaction to proceed via an HOSO intermediate. Cross sections have been calcu-

lated and fitted to a two-step model based on capture×recrossing. Such a model

offers an analytic expression for the rate constant which, for the title reaction,

predicts only a slight dependence on temperature. The calculated state-specific

rate constant is predicted in fair agreement with experimental data reported in

the literature for room temperature.
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Chapter 5

The reaction H + SO2 → OH + SO
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Abstract

We report a quasi-classical trajectory study of the title reaction using a double many-

body expansion potential energy surface for ground state HSO2. Calculations for spe-

cific low ro-vibrational states of the reactants, as well as thermalized reactants, have

been performed. The calculated cross sections indicate a barrier-type mechanism, and

nearly thermalized product distributions. Both HOSO and HSO2 isomers are formed

during the collisional process, although with quite different incidences. The rate con-

stant is found to be enhanced by adding internal energy to the reactants, with the

thermalized result being in good agreement with existing experimental data.
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1 Introduction

Sulfur dioxide is well known as an important atmospheric pollutant [1], while

catalytic recombination of H atoms in SO2 doped flames is considered to be

responsible for radical sink in fuel-rich flames [2]. Considerable work has been

devoted to study the reaction of SO2 with atomic hydrogen, both experimentally

and theoretically. By measuring the thermal profiles of H atoms behind the

reflected shock of C2H5I/SO2/Ar mixtures, Murakami et al. [3] have studied the

reaction

H + SO2 → products (1)

and reported for the rate constant the value k = exp (−66.1 kJ mol−1/RT ) ×
10−11 cm3 s−1. Such a result has been obtained under the assumption it yields

only OH + SO above 1000 K, being therefore valid for the temperature range of

1400 ≤ T/K ≤ 2200. In turn, Goumri et al. [4] have employed RRKM theory

to study the reaction (1) for formation of an adduct as well as the isomeriza-

tion process. Additionally, Fair and Thrush [5] studied complex formation in an

experimental frame using an Ar bath. More recently, Blitz et al. [6] reported a

master equation for the H+SO2 reaction, with the derived rate coefficients relying

heavily on measurements of the reverse OH + SO reaction that had previously

been analyzed [7]. Their reported low pressure limit rate constant for the title re-

action is k(T ) = 4.51 (T/300)−2.3 exp(−15582/T)× 10−8 cm3 s−1. In turn, Morris

et al. [8] have carried out ab initio calculations on properties of the intermediate

structures for the title reaction, while in another publication [9] they reported an

observation of time-resolved IR emission from ro-vibrational excited OH that is

produced when reacting ’hot’ hydrogen atoms (58 kcal mol−1 of average effective

initial translational energy) with vibrationally excited SO2. A quasi-triatomic

approximation has then been utilized to describe the HSO2 potential energy sur-

face where quasi-classical trajectory (QCT) calculations have been performed [9].

Their calculations have shown a “statistical but non-Boltzmann vibrational dis-

tribution of OH” when vibrational excitations as high as v=11−13 are deposited

into the non-frozen SO bond of SO2. A rather more pronounced non-statistical

behavior has been observed both experimentally [10–12] and theoretically [13–15]

for the analogous reaction H + O3 → OH(v) + O2, which is exothermic by about
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81 kcal mol−1. Although the reduced-dimensionality QCT results of Morris et

al. [9] tend to support their experimental observations for the title reaction, they

are clearly not definitive due to the simplistic nature of the employed potential

energy surface. Recently, we have reported a full-dimensional single-sheeted po-

tential energy surface [16] of the double many-body expansion [17] (DMBE) type

for the ground electronic state of HSO2, which will be here employed. The major

aim of the present work will be to elucidate the mechanism the H + SO2 reac-

tion, and study the influence of the internal energy of the reactants (at moderate

regimes of excitation) in the rate constant over a wide range of temperatures.

Thus, we will not address the vibrational issue raised by Morris et al. [9] in the

present work.

The paper is organized as follows. Section 2 addresses briefly the main aspects of

the potential energy surface, while the details of the computational methods are

presented in section 3. The results are reported and discussed in section 4, and

the conclusions gathered in section 5.

2 Potential energy surface

All calculations reported in this work have employed the six-dimensional (6D)

single-sheeted DMBE potential energy surface [16] for ground state HSO2. It

uses in its definition DMBE functions previously reported for the diatomic and

triatomic fragments (Ref. 16, and references therein) and four-body energy terms

that have been calibrated from correlated CASPT2/FVCAS/AVXZ (X = 2, 3)

calculations. For brevity, only some major topographical features of interest for

the title reaction are described, with the readers being referred to the original

papers for details. Such a DMBE form has recently been employed [18] in a

QCT study of the OH + SO → H + SO2 reaction, with the results showing

good agreement with the available experimental data. Figure 1 illustrates the

minimum energy path for title reaction, assuming as intermediate the stable

HOSO species. As shown, the reaction is endothermic by 27.6 kcal mol−1, with

a potential well of −3.1 kcal mol−1 and a barrier of 9.1 kcal mol−1 preceding the

deep well (−49.2 kcal mol−1) associated to the HOSO intermediate; all energies

are measured with respect to the H + SO2 asymptote. As it will be discussed,
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Figure 1. Minimum energy path of title reaction with the HOSO adduct as
intermediate.

there is also a possibility of forming a HSO2 intermediate, but its likelihood is

rather small.

3 Computational procedures

All calculations used the QCT method as implemented in the VENUS96 [19]

code, which have been suitably modified to accommodate the HSO2 DMBE po-

tential energy surface. For the numerical integrations, a step size of 2.5× 10−16 s

has been utilized, warranting the conservation of total energy to better than 1

part in 103. The procedure employed to assign the various reactive channels has

been described elsewhere [20]. As for the OH + SO reaction [18], there will be

14 possible channels since we do not consider as distinct those corresponding to

isomers of a given species.

Two types of calculations have been here performed. First, we have studied the

role of the reactants internal energy by performing calculations for specific ro-

vibrational combinations of the reactants (SO2). To directly calculate the rate
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constant, we have then carried out calculations using thermalized reactants. De-

tails of both such studies are given in the following.

The specific ro-vibrational calculations have covered translational energies over

the range 31.0 ≤ Etr/kcal mol−1 ≤ 55.0. In turn, the translational energies

were selected such as to exceed the classical threshold for reaction as dictated by

the energetics of the DMBE potential energy surface, but below the minimum

energy required to open other channels [16]. Two specific cases have been consid-

ered. First, sulfur dioxide has been prepared in its ground vibrational state [21]

(v1 = 0, v2 = 0, v3 = 0), with the rotational energy around each principal axis

of inertia [19] being RTrot/2. The rotational temperature has then been fixed

at Trot = 300 K, as indicated heretofore by writing SO2(v = 0, Trot = 300 K),

where v = {v1, v2, v3} denotes the set of quantum numbers for the triatomic

vibrational modes. Second, the triatomic molecule has been considered vibra-

tionally excited, with one quantum of excitation in each normal mode (v=1 or

v1 =1, v2 =1, v3 =1) and the rotational temperature set at 1800 K, as denoted by

SO2(v = 1, Trot =1800 K). Thus, the first case considers the title reaction with-

out any extra internal energy, while in the latter we choose both the vibrational

and rotational energies to have the same order of magnitude (the rotational and

vibrational temperatures correspond to the average temperature for the range

1400 ≤ T/K ≤ 2200 here considered).

Batches of 100 trajectories per collisional energy have been run to determine the

maximum impact parameter (bmax) that leads to reaction. For a given transla-

tional energy, the reactive cross section has been calculated by using σr =πb2maxPr,

with the associated 68 % uncertainties being ∆σr =σr[(NT−Nr)/(NTNr)]
1/2; Nr is

the number of reactive trajectories in a total of NT , and Pr =Nr/NT the reaction

probability. From the reactive cross section and assuming a Maxwell-Boltzmann

distribution over the translational energy, the specific thermal rate coefficient

assumes the form

k(T ;v,Trot)=ge(T )

(
2

kBT

)3/2(
1

πµ

)1/2∫ ∞

0

Etrσ(Etr;v,Trot) exp(−Etr/kBT )dEtr (2)

where T is the temperature, kB the Boltzmann constant, µ the reactants reduced

mass, and ge a factor that accounts for the electronic degeneracy [22, 23]. Since

H is a doublet (2S), SO2 is a singlet (X̃1A′), and the tetratomic is a doublet, one
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has ge =1.

To monitor complex formation, we have first studied in detail 100 trajectories at

32.0 and 55.0 kcal mol−1 of translational energy with SO2(v = 0, Trot = 300 K).

Traditional ‘distance vs time’ plots have then been carefully examined for many

reactive trajectories. From such plots, we have concluded that both HOSO and

HSO2 structures are formed during the collisional event. Since it is unpractical to

examine all such plots, we require a definition of intermediate complex that may

operate without being so time consuming. Following previous work, and taking

into account the energetics of the HSO2 DMBE potential energy surface [16], we

have defined complex as any configuration of the four-body system in which the

SH distance is smaller than 1.3 times its value at the HSO2 equilibrium geometry.

If any of the OH distances is smaller than RSH, the HOSO adduct is considered

to have been formed, otherwise the complex will be considered to correspond to

an HSO2 configuration. To assess the merits of such a definition, we have then

compared the lifetimes of a large set the intermediates so assigned with the re-

sults obtained by viewing the corresponding ’distance vs time’ plots. In all cases,

we have found our “blind” procedure to be sufficiently accurate to be used in the

present calculations.

A well known problem in classical molecular dynamics is the so-called zero-

point energy leakage (Ref. 24 and references therein). To approximately account

for this problem, we have followed our previous work [18] by considering the

VEQMTC [25] method. According to this method, only the trajectories leading

to total vibrational energies of the products larger than the sum of their separed

ZPEs are considered for the final statistical analysis.

For the thermalized calculations, the collisional energy has been selected from a

Maxwell-Boltzmann distribution by using the cumulative function

G(Etr) =

(
1

kBT

)2 ∫ Etr

0

E ′
tr exp(−E ′

tr/kBT )dE ′
tr (3)

where Etr is chosen randomly for each trajectory by solving the equation G(Etr)−
ξ = 0; ξ is a random number. In turn, the vibrational quantum numbers v of

SO2 were sampled by using a cumulative distribution function of the form

C(Ev) =

v∑

n=0

P (n) (4)
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where the probability P (n) is chosen from a Boltzmann distribution, and the

dependence of the vibrational energy (Ev′) on the vibrational quantum numbers

of SO2 has been reported elsewhere [21]. The selected vibrational states are

obtained from the requirement that C(Ev) ≥ ξ. To complete the specification of

the initial internal energy, the standard thermal distribution is assumed for the

rotational energy [19] by considering the reactant triatomic as a symmetric top.

With the maximum impact parameter being optimized as described above, the

thermalized rate constant assumes now the form

k(T ) = ge(T )

(
8kBT

πµ

)1/2

πb2max

Nr

NT
(5)

where all symbols have the usual meaning (see above), and the associated uncer-

tainty is given by the corresponding analog of the expression used for the cross

section. Batches of 3 × 105 trajectories have then been run at temperatures of

T = 1400, 1800, and 2200 K to cover the range of experimental values reported

in literature for the title reaction. To save computer time, trajectories with to-

tal energies bellow the classical threshold (ET ≤ 30.11 kcal mol−1) have not been

integrated, although the original distributions have been preserved by counting

such non-integrated trajectories as non-reactive.

4 Results and discussion

Tables 1 and 2 collect the results of the vibrationally-specific calculations carried

out in the present work, both using the QCT and VEQMTC methods. Average

lifetimes of both complexes are also reported. As shown, the HSO2 lifetimes are

in all cases found to be much smaller than the HOSO ones: 〈τHOSO〉 ≫ 〈τHSO2〉.
Actually, most reactive trajectories do not form HSO2 while, for the ones that

form, the lifetime of the HOSO complex has a value larger than the average life-

time of all formed complexes. The title reaction is therefore more likely to occur

by direct attack of the hydrogen atom to one of the terminal oxygen atoms in

SO2: formation of an HSO2 intermediate may take place but it rapidly decom-

poses back to reactants or forms HOSO. Notice that the optimized maximum

impact parameters have values around 2 Å, the value used by Morris et al. [9] in
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their reduced-dimensionality QCT calculations. In fact, a similar value has been

utilized in our thermalized calculations.

The calculated cross sections for specifically prepared reactants can be modeled

by the following barrier-type excitation function [26]:

σr = C(Etr − Eth
tr )n exp[−m(Etr −Eth

tr )] (6)

where C, n, and m are least-squares parameters and Eth
tr is the translational en-

ergy threshold. As it has been pointed out elsewhere [24], the value of Eth
tr dictates

the slope of the calculated rate constant and is hard to determine at the QCT

level due to ZPE leakage. Following Ref. 24, for H + SO2(v=0, Trot =300 K) we

have then fixed its value at the energy difference between products and reactants

once the zero-point energies are accounted for, yielding Eth
tr = 30.11 kcal mol−1.

As expected, such a value may decrease when internal energy is added to reac-

tants; thus, for H + SO2(v = 1, Trot = 1800 K), the actual threshold energy has

been obtained from a fit to the calculated cross sections by using the above men-

tioned estimate as starting guess. Figure 2 shows the fitted excitation functions

so obtained. Also indicated in the plot is the classical energy threshold which,

as expected, decreases slightly with increasing ro-vibrational excitation of the

reactants. Cross sections for different vibrational excitations of SO2 obtained by

Morris et al. [9], when they use an entrance channel barrier of 13.6 kcal mol−1, are

found to have the same order of magnitude of those here reported. Figure 3 shows

the OH product vibrational and rotational distributions for the title reaction un-

der the initial conditions considered in the present work. The general pattern is

the formation of vibrationally cold OH radicals, as could be expected from nearly

thermalized (at relatively low temperatures) vibrational-rotational distributions.

This is observed even for the two state-specific cases that have been here consid-

ered. This is better illustrated by comparing the actual calculated distributions

to the fitted Boltzmann distributions that are shown by the solid lines in Figure 3.

From such fits, we obtain as rotational temperatures Trot =4332, 7444, and 888 K,

respectively for H + SO2(v = 0, Trot =300 K), H + SO2(v = 1, Trot =1800 K), and

thermalized H+SO2. However, it is also seen that even a democratic vibrational
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Table 1. Summary of trajectories calculations for the H + SO2(v=0, Trot =300 K) reaction.a)

Etr bmax QCT VEQMTC

NT Nc Nrec Nr 〈τHOSO〉 〈τHSO2〉 NT Nc Nrec Nr 〈τHOSO〉 〈τHSO2〉
31.0 1.9 10000 9578 9422 156 40.7 1.1 6605 6257 6253 4 47.0 1.4
32.0 2.2 10000 9391 9242 149 33.4 1.1 6428 5976 5964 12 42.1 1.4
35.0 2.0 10000 9667 9413 254 21.6 1.0 6630 6363 6294 69 22.1 1.2
40.0 2.3 10000 9547 9300 247 11.3 0.9 6702 6382 6232 150 13.8 1.1
45.0 2.3 10000 9669 9421 248 7.8 0.9 6996 6767 6587 180 9.6 1.0
50.0 2.3 10000 9752 9496 256 6.3 1.0 7205 7034 6822 212 6.4 1.0
55.0 2.4 10000 9684 9459 225 3.9 0.8 7285 7058 6859 199 4.9 0.9

a)Energies are in kcal mol−1, distances in Å, and times in units of 10−14 s.
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Table 2. Summary of trajectories calculations for the H + SO2(v=1, Trot =1800 K) reaction.a)

Etr bmax QCT VEQMTC

NT Nc Nrec Nr 〈τHOSO〉 〈τHSO2〉 NT Nc Nrec Nr 〈τHOSO〉 〈τHSO2〉
31.0 2.2 10000 9365 9113 252 10.6 1.2 9648 9029 8878 151 9.0 1.3
32.0 2.2 10000 9406 9136 270 9.5 1.2 9667 9092 8907 185 8.3 1.2
35.0 2.2 10000 9507 9167 340 8.0 1.2 9670 9191 8937 254 7.2 1.2
40.0 2.4 10000 9375 9078 297 5.8 1.0 9697 9092 8857 235 5.3 1.0
45.0 2.2 10000 9758 9423 335 4.8 1.0 9736 9500 9210 290 4.6 1.0
50.0 2.2 10000 9821 9466 355 3.9 1.0 9769 9593 9273 320 3.9 1.0
55.0 2.0 10000 9921 9545 376 3.3 0.9 9801 9723 9380 343 3.3 0.9

a)Energies are in kcal mol−1, distances in Å, and times in units of 10−14 s.
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Figure 2. Cross section of title reaction as a function of translational energy
for reactants prepared in specific vibrational states. Eth

tr is the classical threshold
energy.

excitation of the reactants with one quantum of vibrational excitation into each

mode leads to significant deposition of vibrational energy into the newly formed

OH bond. The above results may be rationalized from the fact that the reac-

tion is endothermic and has a deep potential well due to the HOSO intermediate

which is sampled by most reactive trajectories. Thus, some energy randomiza-

tion is expected to occur before the products are formed. In fact, the fractions

of energy released in the products is shown to vary little with the three sets of

chosen initial conditions, although as shown by the fitted curves the distribution

is somewhat closer to a Boltzmann one in the case of initially thermalized reac-

tants. The above results contrast with those for the reaction H + O3 → OH + O2

which is highly exothermic and has no deep potential well along the minimum

energy path [10–15]. In this case, the formed OH is characterized by an inverted

vibrational distribution, which some experiments suggest to peak at quantum

numbers as high as vOH = 9. Of course, the results observed for the title reaction

may change drastically if further vibrational excitation is put into one of the SO
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Figure 3. Vibrational and rotational distributions of OH for the reaction
H + SO2 → OH(vOH, jOH) + SO(vSO, jSO).

bonds of SO2. Such a study is currently in progress and will be hopefully reported

elsewhere. By substituting Eq. (6) into Eq. (2) and integrating, one gets

k(T ;v, Trot) = ge(T )C

(
8kBT

πµ

)1/2
(kBT )n exp(−Eth

tr /kBT )

(1 +mkBT )n+2
×

×
[

Γ(n+ 2) + Γ(n+ 1)
(1 +mkBT )Eth

tr

kBT

]

(7)

where Γ is the Gamma function. Figure 4 shows the calculated rate con-

stants for the title reaction. Indicated by the shaded areas are the intervals

where the most likely values of the calculated specific rate constants should

lie: following previous work [18, 24], the upper and lower limits are defined by

QCT (solid line) and VEQMTC (dashed line) results. Note that the dark-filled

area stands for H + SO2(v = 0, Trot = 300 K), while the light-filled one refers to

H + SO2(v=1, Trot =1800 K). In turn, the hashed area indicates the region where

the optimum thermalized QCT results are likely to fall, with the open rhombuses

indicating the actually calculated QCT values (and corresponding error bars) and

the solid line a linear fit to such points. Note further that, for the thermalized cal-

culations, there was a number of trajectories that have not been integrated, and

hence the VEQMTC rate constant could not be rigorously calculated. To obtain

an estimate of it, we have assumed that the ratio of QCT and VEQMTC results
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Figure 4. Rate constant as a function of temperature for the title reaction. The
light shaded area denotes the specific rate coefficient for H + SO2(v = 0, Trot =
300 K) reactants, while the dark shaded one is for H + SO2(v=1, Trot =1800 K).
The hashed area refers to the thermalized results, with the open rhombuses in-
dicating the actually calculated values. The solid lines represent the QCT cal-
culations, and the dashed line the VEQMTC ones. The solid dots indicate the
experimental results of Murakami et al. [3], while the dotted line represents their
recommended values. Shown by the dash-dot line is the low pressure limit of the
rate constant given by Blitz et al. [6]
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Table 3. Rate constants for the title reaction.

k(T ) × 1014/cm3s−1

Method
1400 K 1800 K 2200 K

QCT/VEQMTC, SO2(v=0, Trot =300 K)a) 0.2 − 0.3 3.1 − 3.8 17.9 − 19.6
QCT/VEQMTC, SO2(v=1, Trot =1800 K)a) 0.4 − 0.8 4.8 − 7.6 21.9 − 33.1
QCT/VEQMTC, thermalizeda) 2.3 − 5.1 14.3 − 24.5 44.1 − 67.0
Master equation [6] 1.9 12.7 38.7
exp. [3] 3.4 12.1 26.9

a)This work.

should approximately mimic those obtained with SO2(v = 1, Trot = 1800 K). Fi-

nally, the circles indicate the results of Murakami et al. [3], while the dotted line

is their reported fit to such points. In turn, the low pressure limit of the rate

constant for the title reaction reported by Blitz et al. [6] is shown by the dash-

dot line. As Figure 4 and Table 3 show, the specific rate constant calculations

reported in this work underestimate reactivity when comparing with the existing

experimental values. This suggests that the inclusion of internal energy into the

reactants may play a significant role. This by no means implies that the near-

Boltzmann distributions observed for both OH and SO will drastically change. A

similar finding has been reported in the quasi-classical trajectory calculations by

Morris et al. [9], although a more detailed study will be required to pinpoint the

differences. Our calculations have also indicated that thermalization is essential

to get a rate constant in good agreement with experiment: the thermalized rate

coefficient shows significant differences with respect to the vibrationally-specific

calculations carried out in the present work. Finally, we observe by extrapolat-

ing to the low temperature regimes that the rate coefficients become negligibly

small for temperatures below 500 K, in qualitative agreement with previous find-

ings [8, 27]. In summary, the present calculations show good agreement with

those reported in the literature, as indeed have shown the ones [18] for the reac-

tion OH + SO → H + SO2. Thus, both sets of results corroborate the reliability

of the HSO2 DMBE potential energy surface to describe the collision processes

occurring in it.
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5 Conclusion

We have reported a theoretical study of the H + SO2 reaction. While both HSO2

and HOSO complexes were predicted to be formed during the reaction process,

the HOSO species is predicted to be by far the most likely intermediate to be

formed. We have also shown from state-specific rate constant calculations that

the addition of internal energy to the reactants may considerably enhance reac-

tivity. Thermalized calculations of the rate constant have also been carried out,

and shown to yield values in good agreement with the available experimental

estimates.
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Chapter 6

The reaction S + HO2
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Abstract

We report a quasi-classical trajectory study of the S + HO2 reaction using a previously

reported global potential energy surface for the ground electronic state of HSO2. Zero-

point energy leakage is approximately accounted for by using the vibrational energy

quantum mechanical threshold method. Calculations are carried out both for specific

ro-vibrational states of the reactants and thermalized ones, with rate constants being

reported as a function of temperature. The results suggest that the title reaction is

capture-type, with OH and SO showing as the most favorable products. The internal

energy distribution of such products and the reaction mechanism are also investigated.
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1 Introduction

Sulfur is an important element when studying atmospheric chemistry [1]. In

turn, the mercapto radical (HS) has been observed in interstellar space [2], while

sulfur compounds are also known to play an important role in combustion chem-

istry [3]. However, due to the large number of electrons involved, high level

theoretical studies involving sulfur atoms are somewhat limited due to being

computationally too expensive. In previous works of this series [4, 5], we have

reported full dynamics studies involving the title sulfur-containing species by us-

ing a global double many-body expansion (DMBE [6, 7]) potential energy surface

reported elsewhere [8]. All those studies have employed the quasi-classical trajec-

tory (QCT) method, a technique that will be also adopted in the current study.

In fact, the good agreement previously achieved when comparing our predictions

with available experimental results suggests that both the HSO2 DMBE potential

energy surface and the dynamics approach should be reliable for our purposes in

this work.

Although the title reaction should play a role whenever sulfur atoms (the ground

electronic state of atomic sulfur is implied heretofore) are present in the atmo-

sphere, no dynamics study of it has yet been reported in the open literature. Our

aim in the present work is to extend the series of previous studies to the reaction

S + HO2 → products (1)

by using the QCT and the above mentioned DMBE potential energy surface.

Thus, we will ignore both quantum effects (except for those related with the

reactant triatomic molecular whose initial state is mimicked as closely as possible)

and non-adiabaticity. Given the large masses of the reactant species and the fact

that the ground (3P ) and first-excited (1D) electronic states are separated by

more than 25 kcal mol−1 [9], we can hardly judge such effects to have any crucial

role for the rate constant calculations carried out in the present work. The paper

is organized as follows. Section 2 reviews the potential energy surface, while

the utilized computational methods are described in section 3. The results will

be presented and discussed in section 4, and the major conclusions gathered in

section 5.
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Figure 1. Minimum energy path for the reaction S+HO2 → OH+SO according
to the potential energy surface used in this work.

2 Potential energy surface

All calculations here performed have employed our six-dimensional DMBE po-

tential energy surface published elsewhere [8] for the electronic ground state of

HSO2. It employs previously reported forms of the same type for the diatomic

and triatomic fragments (Ref. 8, and references therein), and four-body energy

terms that were parametrized to mimic CASPT2/FVCAS/AVXZ (X = D, T )

calculations for the tetratomic system. In this section, we illustrate its major

features that are of interest for the title reaction.

Figure 1 displays the minimum energy path (MEP) for the formation of OH+SO

from S+HO2, while Figure 2 represents the MEP for HOS formation. Other prod-

ucts are allowed for such reactants but the illustrated here are the most favored

ones. According to energetics of the surface (see Table 1 and Figure 11 of the

Ref. 8), the H + SO2 channel lies 84.4 kcal mol−1 bellow the reactants1.

1Energies in this paragraph do not include the zero-point energy (ZPE).
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Figure 2. Minimum energy path for the reaction S+HO2 → HOS+O according
to the potential energy surface used in this work.

Figures 1 and 2 also show a common four-body intermediate structure, HOO · · ·S.

The relative large well depth of this adduct (12.2 kcal mol−1) is directly linked to

the two attractive SO interactions (5.1 and 7.1 kcal mol−1), since the repulsive

three-body contributions involving the sulfur atom, as well as four-body ones, are

irrelevant for such an arrangement. Although such a species could in principle be

isolated, coming from S+HO2 yields an extra energy of 5.6 kcal mol−1 that must

be removed from the moiety such as to allow stabilization and avoid decaying

into other species. To our knowledge, no evidence has yet been reported about

its existence.

3 Computational procedures

To run the trajectories we have utilized an adapted version of the VENUS [10]

code which accommodates the HSO2 DMBE potential energy surface [8]. The

step size used for the numerical integrations was 2.5 × 10−16 s, warranting a
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conservation of the total energy to better than 2 parts in 104. Two types of

calculations have been carried out. First, we have run trajectories for fixed ro-

vibrational combinations of the reactants (HO2) such as to provide a detailed

understanding of the reaction mechanism. Then, thermalized calculations have

been performed to directly assert the rate constant.

The calculations for specific ro-vibrational states have been carried out for trans-

lational energies over the range 0.2 ≤ Etr/kcal mol−1 ≤ 10.0, with the hydroper-

oxyl radical kept in its ground vibrational state [11] (v1 = 0, v2 = 0, v3 = 0),

and the rotational energy for each principal axis fixed at RT/2 with T =300 K.

Following the usual practice, batches of 100 trajectories per collisional energy

have been run to determine the maximum impact parameter (bmax) that leads

to reaction. For a given translational energy, reactive cross section were then

calculated from σr =πb2maxPr and the associated 68 % uncertainties from ∆σr =

σr[(NT −Nr)/(NTNr)]
1
2 , where Nr is the number of reactive trajectories in a total

of NT , Pr = Nr/NT is the reactive probability, and bmax the maximum impact

parameter.

From the reactive cross section assuming a Maxwell-Boltzmann’s distribution over

the translational energy (Etr), the specific thermal rate coefficient is obtained as

k(T ) = ge(T )

(
2

kBT

)3/2(
1

πµ

)1/2 ∫ ∞

0

Etrσ(Etr) exp

(

− Etr

kBT

)

dEtr (2)

where T is the temperature, kB is the Boltzmann constant, µ the reactants re-

duced mass, and

ge(T ) = 1/ [5 + 3exp(−570/T ) + exp(−825/T )] (3)

accounts in the usual way [12, 13] for the electronic degeneracies of the reactants

[S(3P) + HO2(
2A′′)] and the fact that DMBE potential energy surface refers to a

doublet. The atomic levels of sulfur have been taken from the NIST database [14].

We now address the problem of ZPE leakage, which is well known in QCT the-

ory. Both ’active’ and ’non-active’ methods have been suggested (Ref. 15, and

references therein) to account for it in an approximate manner. In the non-active

methods such as the one [16] here utilized, trajectories leading to aphysical prod-

ucts (with vibrational/internal energies below a given threshold) are thrown out
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and eventually replaced [17] by running novel trajectories. The perturbed statis-

tics may then be corrected a posteriori [18]. Thus, no trajectory calculations,

besides those run in the traditional QCT method are required. Specifically, in

VEQMTC [16] we consider as physical only the outcomes where the total vibra-

tional energy is larger than the sum of their ZPEs [16], an approach that has also

been employed in previous work [4]. Clearly, VEQMTC [16] and other similar

methods (including active ones [15], where a constraint is introduced to prevent

the trajectories from entering the region of phase space which allows vibrational

modes to have less than its ZPE) will not be free from ambiguity, an issue that

will not be addressed any further in the present work. Suffice it to say that ac-

counting for ZPE tends to enhance reactivity for the title reaction (see later).

The second series of calculations refers to thermalized ones. The collisional energy

is then selected from a Maxwell-Boltzmann distribution by using the cumulative

function:

G(Etr) =

(
1

kBT

)2 ∫ Etr

0

E ′
tr exp(−E ′

tr/kBT )dE ′
tr (4)

where Etr is chosen randomly for each trajectory by solving the equation G(Etr)−
ξ = 0, where ξ (0 ≤ ξ ≤ 1) is a random number. In turn, as in Ref. 5, the

vibrational quantum numbers v=v1, v2, v3 of the HO2 were sampled by using the

cumulative distribution function

C(Ev) =
v∑

n=0

P (n) (5)

where P (n) has been chosen to be the Boltzmann distribution. With the de-

pendence of the vibrational energy (Ev) on the quantum number of HO2 being

reported elsewhere [19], the specification of the initial internal energy is completed

by specifying a standard thermal distribution for the rotational energy [10] (for

this, we considered the reactants triatom as a symmetric top). After optimiz-

ing the maximum impact parameter as described above, the thermalized rate

constant is calculated from

k(T ) = ge(T )

(
8kBT

πµ

)1/2

πb2max

Nr

NT

(6)

where all symbols have the meaning assigned in preceding paragraphs. Simi-

larly, the associated uncertainty has been calculated using an analogue of the
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expression used above for the cross section. For production, batches of 5000 tra-

jectories were judged sufficient for the thermalized calculations (at T =300, 1000

and 1500 K), while batches of 2000 trajectories were run at each translational

energy for specific calculations.

The procedure used to assign the reaction products is the same as in previous

studies [20]. Although there are 14 possible channels in an atom+triatom colli-

sional process (the various isomers of a given species are assumed indistinguish-

able), we note that according to the energetics of the potential energy surface [8]

there is no direct connection between the reactants and the HSO + O channel.

This issue has been checked in detail by running two batches of 100 trajectories for

specific calculations at translational energies of 0.2 and 10.0 kcal mol−1. In both

cases, formation of HSO has not been observed, with HOS being formed instead.

Note that HOS refers to a structure with a central oxygen atom bonded to sulfur

and hydrogen. This isomer differs therefore from HSO in that the central atom

in the latter is sulfur: such a structure corresponds to the global minimum [21],

with an energy difference of 0.9 kcal mol−1 separating those two species. Accord-

ingly, we have modified the assignment of channels 5 and 6 used in our previous

work [4] such as to identify the corresponding HOS + O ones.

4 Results and discussion

Table 1 collects the results of the specific calculations, both of pure QCT and

VEQMTC types. All symbols have the meaning assigned above, with NT indi-

cating the total number of trajectories run in each method, and Nr =
∑

xN
x
r the

total number of reactive ones. Headings of other columns specify the number of

reactive trajectories for the corresponding x products. As seen, the OH and SO

products are by far the most formed ones, followed by HOS and O in a 5:1 ratio.

For completeness, we show also SO2 formation, even if being an almost negligible

process.

The results for thermalized calculations are similarly presented in Table 2. There,

the total number of trajectories for QCT is reported to recall that some of the
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Table 1. Results of specific trajectories calculations fora) S + HO2.

Etr/ bmax/ QCT VEQMTC

kcal mol−1 Å
∑

xN
x
r x=H + SO2 OH + SO O + HOS NT

∑

xN
x
r x=H + SO2 OH + SO O + HOS

0.2 8.7 492 15 405 72 639 483 15 405 63
0.5 7.3 405 5 326 74 577 393 5 325 63
1.0 6.4 342 7 274 61 595 335 7 273 55
1.5 6.0 299 5 236 58 637 296 5 236 55
2.0 5.2 339 7 259 73 733 333 7 259 67
3.0 4.9 304 3 238 63 784 301 3 238 60
5.0 4.3 307 6 235 66 964 299 6 235 58
10.0 3.5 360 7 274 79 1144 355 7 274 74

a)The total number of trajectories in QCT is NT = 2000 in for all translational energies.
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5000 trajectories run did not converge, i.e., have not led to any of the possible

products after 4 × 105 iterations. This has also occurred in previous work [4],

when some of the trajectories were captured into the deep well associated to the

HOSO species and persisted there until a pre-specified maximum number of iter-

ations were reached.

When the VEQMTC criterion is utilized, a considerable number of non-reactive

trajectories is disregarded, leading to an increase of the reactive probability with

respect to QCT. This may be explained as due to the relatively high value of

the ZPE in HO2. In fact, during the collisional process, the vibrational energy of

the HO2 is partially transferred to translation of the system and therefore many

of the non-reactive HO2 molecules will be left behind with a vibrational energy

below its starting ZPE value.

The ro-vibrational distributions of the OH and SO products are shown in Fig-

ure 3. The left and central panels refer to the results of specific calculations

for translational energies of Etr = 0.2 and Etr = 10.0 kcal mol−1. In turn, the

right-hand-side panels show the results obtained for the thermalized calculations

at T = 300 K. Note that the bottom plots refer to rotational distributions, while

the upper ones are for the vibrational populations. The notable feature from this

Figure is, perhaps, the fact that a high rotational energy content is deposited

in the newly formed SO. This has been rationalized from a detailed study of

the atomic rearrangements along reactive trajectories. To produce OH and SO,

we first observe that the sulfur atom attacks the terminal oxygen atom in HO2.

Once the sulfur atoms gets attached to the oxygen one, they start to describe

a rotation-like motion around the axis defined by the OH bond. Such a process

corresponds to falling into the minimum of the energy path illustrated in Figure 1.

As the SO bond gets shorter and the two oxygen atoms get separated, the sulfur

atom maintains this revolving motion with the SO pair separating away with a

relatively high content of rotational excitation. Meanwhile, the OH bond remains

almost as a spectator, keeping its ro-vibrational distribution as originally was in

HO2. Similar results have been observed for the reaction O + HO2 when O2 is

formed [22] with a high rotational temperature.
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Table 2. Results of thermalized calculations for the title reaction.

T/ bmax/ QCT VEQMTC

K Å NT

∑

xN
x
r x=H + SO2 OH + SO O + HOS NT

∑

xN
x
r x=H + SO2 OH + SO O + HOS

300 8.0 5000 953 18 785 160 2536 952 18 784 150
900 7.8 4999 627 9 507 111 3369 622 9 507 106
1500 7.5 4996 628 21 493 91 4001 624 21 492 88
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Figure 3. Ro-vibrational distributions of the OH and SO products. Left and
central panels show quantum number populations for specific calculations at
Etr = 0.2 and 10 kcal mol−1, respectively. Panels on right-hand-side stand for
thermalized calculations at T = 300 K.

For the thermalized calculations at T = 1500 K, part of the vibrational energy

is initially deposited into the OH vibrational mode, with this bond showing no

longer a spectator behavior. As a result, the HS + O2 channel opens: 6 trajecto-

ries in a total of 4996. Such a process occurs via an isomerization of HOO into

H · · ·OO (see Table 5 of Ref. 8) and continues with the capture of the quasi-free

hydrogen atom by the sulfur one. As expected from this analysis, the H+S+O2

products are also obtained under such conditions, with almost three times more

occurrences (17 trajectories) than the diatom-diatom process referred to above.

Of course, both processes are statistically negligible when compared with forma-

tion of OH + SO (493 trajectories).

Figure 4 shows the predicted excitation functions for the specific calculations.

Total reactive and OH + SO formation cross sections are displayed. In turn,

the insert shows the corresponding reactive cross section for H + SO2 formation.

As already noted in previous paragraphs, the QCT results are smaller than the

VEQMTC ones, as the latter lead to a higher reactivity. According to the above

results and the shape of the potential energy surface (a representative view is

the minimum energy paths shown in Figures 1 and 2, the title reaction is largely

controlled by long-range interactions, mainly associated to the permanent electric
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Figure 4. Reactive QCT and VEQMTC cross sections (total and OH + SO
formation) for the title reaction. Also shown in the insert is the cross section for
HOS + O formation.

quadrupole of sulfur and the multipoles of HO2. Thus, the total reactive cross

section and corresponding results for specific channel may be approximated by

means of the capture cross section [23]

σ(Etr) = nπ(n− 2)(2−n)/n

(
Cn

2Etr

)2/n

(7)

where Cn and n are coefficients to be fitted. The calculated values are shown in

Figure 4, with the lines indicating the best fits obtained using Eq. (7). For QCT,

n = 3.432 and Cn = 6.083, while n = 2.805 and Cn = 20.977 for the VEQMTC

results. Note that the dominant long-range energies arise from the permanent

electric quadrupole moment of the S atom and the electric permanent dipole

and quadrupole moments of HO2. Thus, one would formally expect a V ∼ R−n

dependence. However, due to dispersion (from two- and three-body terms) as

well as other attractive forces of short-range type, such a dependence turns out

to be somewhat stronger as indicated above.

By substituting Eq. (7) in Eq. (2) and performing the integration, one gets
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the following analytical expression for the specific rate constant as a function of

temperature:

k(T ) = 2nπge(T )(n− 2)
2−n

n

(
2

πµ

) 1
2
(
Cn

2

) 2
n

Γ

(
2n− 2

n

)

(kBT )(n−4)/2n (8)

where Γ(. . .) is the gamma function. Since OH+SO have already been identified

to be the main products, only the rate constants accounting for its formation will

be presented. In fact, other products have rate constants a few orders of magni-

tude smaller (kothers ≪ kOH+SO), with the total rate coefficient differing therefore

very little from the one for OH+SO formation. Figure 5 shows the specific QCT

and VEQMTC rate constants calculated in the present work. As expected from

the corresponding cross sections in Figure 4, the VEQMTC curves lie above the

QCT ones. The interval defined by the former curves is light shadowed, with the

expected value of k(T ) resulting from them being expected to lie somewhere be-

tween the upper and lower limits so defined. The dark shadowed region identifies

the corresponding results for the thermalized calculations, according to Eq. (6)

and Table 2.

Circles and squares denote the actually calculated values, while solid line stands

for the QCT results as fitted to the Arrhenius-type form k(T )=AT n exp (−mT ),

and the dashed line to the corresponding fit for the VEQMTC results. Note

that the temperature dependence is similar for both calculations. However, the

thermalized rate constants are in average five times larger than the specific ones,

with the discrepancy becoming more significant as the temperature rises. As

noted above, this is due to the inclusion of vibrational excitation on the thermal-

ized reactants, thus leading to an increase in reactivity. Because the rotational

and vibrational energy of the reactants is properly sampled according to the tem-

perature in the thermalized calculations, our recommended values lie inside the

darker region.

Finally, we note that the rate constant obtained in this work for the reaction

S+HO2 → OH+O2 is k(T )=9.4 ×10−11 cm3 s−1 at T = 300 K, a value quite sim-

ilar to the one reported [22] for the reaction O+HO2 → OH+SO, namely k(T )=

7−8×10−11 cm3 s−1 at the same temperature. More specifically, our recommended

value expressed in Arrhenius form lies between k(T ) = 41.47T 0.336e(245.2/T ) ×
10−13 cm3s−1 and k(T )=1045.85T−0.069e(172.1/T )×10−13 cm3s−1, with T in kelvin.
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Figure 5. Rate constants for the S + HO2 → OH + SO reaction. The light
shaded region corresponds to specific ro-vibrational states of the reactants while
dark shaded area represents the thermalized results. The dashed lines refer to
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the thermalized results, the lines indicate Arrhenius-like functions fitted to rate
coefficients obtained by QCT and VEQMTC, whose actually calculated values
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The above agreement should not be surprising as O + HO2 and S + HO2 have

similar bonding characteristics, with a minimum energy path controlled by long

range forces. Indeed, both reaction rate coefficients show a similar dependence

on temperature.

5 Conclusions

The S + HO2 reaction has been studied using two variants of the QCT method.

To the best of our knowledge, this is the first study of the dynamics and kinetics

of such a reaction. The process has been shown to be dominated by long range

forces, thus manifesting a capture-type behavior. OH+SO has been predicted to

be the most formed products channel, although SO2 and HOS were also formed

but with significantly smaller occurrences. Formation of HSO has not been ob-

served. When ZPE leakage is accounted for by the VEQMTC method, reactivity

is favored leading to reactive rate constants larger than in the pure QCT cal-

culations. Calculations using both reactants prepared in specific ro-vibrational

states and thermalized ones have been carried out, with larger values of the rate

constant predicted for the latter. This is attributed to the fact that vibrationally

excited reactants are allowed to occur when preparing the reactants initial states.

In both calculations, the formed SO is predicted to be vibrationally hot, sim-

ilarly to what has been observed [22] for the reaction O + HO2 → OH + O2.

The calculated rate coefficient is predicted to assume a nearly constant value of

k(T )=9.4 × 10−11 cm3 s−1 for temperatures in the range of T =200 − 1600 K.
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Final remarks

In this thesis a theoretical study on the HSO2 molecular system was carried out.

The first global single-valued potential energy surface for the ground electronic

state of this radical was built an characterized in detail. Double many-body

expansion (DMBE) has been used for this achievement. The properties obtained

for minimum and transition state configurations agree with those reported in

literature. Apart from this, this surface provides new insights in the topology of

the interaction potential for the title four-body system.

Quasiclassical dynamical studies employing the six dimensional function con-

structed here, were also carried out. Three bi-molecular collisions, with relevance

in atmospheric and combustion chemistry, have been examined in detail, yielding

information on reaction mechanisms, cross sections, rate coefficients and product

properties. There is a general agreement between the rate constants reported

here and the available experimental data. Predictions have also been made for

a reaction not studied before. The results obtained in this thesis can be used in

models of the atmospheric sulfur cycle.

The new potential energy surface gives a good description of the HSO2 mole-

cular system. It can be further used to study other reactive processes and the

possible effects of the ro-vibrational energies of the reactants. Finally it may

enable the construction of larger polyatomic DMBE potential energy surfaces in

which HSO2 is contained, most importantly that of HSO3 which would be used

in modeling the reaction HS + O3 with large interest in atmospheric chemistry.
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A Changing distances to bond coordinates

The potential energy surface of the title system is a function of the six distances

between the four atoms {Ri}, i = 1, 6. Numbering the atoms 1-4, the distances

are labeled in the usual form: R1 is the distance 1-2, R2 the distance 1-3, R3

1-4, R4 2-3, R5 2-4 and R6 3-4 . However, in the PES reported in this thesis, we

include four body energy terms which depends on the valence bond coordinates

{rj, α, β, γ}. Thus a transformation from distances to bond coordinates is needed.

This transformation must not contain singularities.

Firstly Cartesian coordinates {Xij} of the four atoms were calculated as a

function of the {Ri}, inXij the i-index labels the atom, while j = 1, 2, 3 represents

the Cartesian component. Then, bond coordinates {rj, α, β, γ} are represented

by means of the Xij according to the given bonding connections. Cartesian

coordinates were calculated as follows: the first atom (1) is placed at the origin,

the second (2) is placed along the x axis, the third (3) is placed in the xy plane,

the position of the remaining one will be uniquely determined by the distances to

the previous three. Figure 1 illustrates this process; then, Cartesian coordinates

are given by:

X11 = 0, X12 = 0, X13 = 0 (A 1)

X21 = R1, X22 = 0, X23 = 0 (A 2)

X31 = R2 cos ρ, X32 = R2 sin ρ, X33 = 0 (A 3)

X41 =
R2

3 − R2
5 +R2

1

2R1

(A 4)

X42 =
R2

3 +R2
2 −R2

6 − 2X41X31

2X32
(A 5)

X43 =
√

R2
3 −X41 −X42 (A 6)

being

cos ρ =
R2

1 +R2
2 − R2

4

2R1R2
and sin ρ =

√

1 − cos2 ρ (A 7)

We call bonding connectivity to the way atoms are connected one to each other,

hence bonding coordinates for a given connectivity I1-I2-I3-I4 (Ik = 1, 4 Ii 6= Ij for
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Figure 1. A simple way to calculate Cartesian coordinates as a function of
distances

j 6= i ) are r1=distance I1-I2, r2=distance I2-I3, r3=distance I3-I4, α=ang I1I2I3,

β=ang I2I3I4 and γ=dihedral angle between planes I1I2I3 and I2I3I4. It may be

illustrated by means of the Z-matrix:

Zmat= {I1;
I2, I1, r1;
I3, I2, r2, I1, α;
I4, I3, r3, I2, β, I1, γ}

We consider a maximum of two connections per atom, which is the case we

are interested in. The resulting valence bond coordinates will depend on such

connectivity order. Let us represent the position vector of the ith atom with
−→Ri,

−→Ri = (Xi1,Xi2,Xi3); then, the valence bond coordinates can be calculated as

follow:

r1 =

√

(
−→RI1 −

−→RI2) · (
−→RI1 −

−→RI2) (A 8)

r2 =

√

(
−→RI2 −

−→RI3) · (
−→RI2 −

−→RI3) (A 9)
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r2 =

√

(
−→RI3 −

−→RI4) · (
−→RI3 −

−→RI4) (A 10)

and the angles:

cosα =
(
−→RI1 −

−→RI2) · (
−→RI3 −

−→RI2)

r1r2
(A 11)

cosβ =
(
−→R′

2 −
−→R′

3) · (
−→R′

4 −
−→R′

3)

r2r3
(A 12)

for the dihedral angle we first define two auxiliary vectors:

−→a1 ≡ (
−→RI1 −

−→RI2) × (
−→RI3 −

−→RI2) (A 13)

and
−→a2 ≡ (

−→RI2 −
−→RI3) × (

−→RI4 −
−→RI3) (A 14)

then

cos γ =
−→a1 · −→a2

| −→a1 || −→a2 | (A 15)

The above procedure is implemented in the HSO2 potential energy surface code

with some corrections to avoid numerical indeterminations.
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B Changing bond coordinates to distances

Ab initio calculations carried in this thesis uses Z-matrix geometry representa-

tion, hence, bond coordinates were used. However in fitting process we need

interatomic distances, thus a transformation from bond coordinates {rj, α, β, γ}
to distances {Ri} is needed. As in the previous appendix cartesian coordinates

{Xij} are used as intermediary set.

With a given bonding connectivity order I1I2I3I4, the procedure is as follow:

The atom I2 is placed in the origin, the atom I3 along the x axis, the I4 in the xy

plane, while the I1 atom has a well defined cartesian coordinates as a function of

the remaining three. Thus cartesian coordinates can be written:

XI11 = r1 cosα (B 1)

XI12 = r1 sinα cos γ (B 2)

XI13 = −r1 sinα sin γ (B 3)

XI21 = XI22 = XI23 = 0 (B 4)

XI31 = r2 (B 5)

XI32 = XI33 = XI43 = 0 (B 6)

XI41 = r2 − r3 cosβ (B 7)

XI42 = r3 sin β (B 8)

Once cartesian coordinates are obtained distances can be calculated according to

the definition given in the previous appendix for {Ri}.
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C Gamma Function

The Gamma function is defined2 by the integral

Γ(z) ≡
∫ ∞

0

tz−1e−tdt (C 1)

When the argument z is an integer, the Gamma function can be written in the

form of a factorial function:

Γ(n + 1) = n! (C 2)

Gamma function satisfies recurrence relation:

Γ(z + 1) = zΓ(z) (C 3)

The natural logarithm of the Gamma function is implemented in the gammln

function from Numerical recipes.

The Incomplete Gamma Functionis defined by:

P (a, x) ≡ γ(a, x)

Γ(a)
≡ 1

Γ(a)

∫ x

0

ta−1e−tdt, (a > 0) (C 4)

It has the limiting values

P (a, 0) = 0 and P (a,∞) = 1 (C 5)

The complement Q(a, x) is:

Q(a, x) ≡ 1 − P (a, x) ≡ 1

Γ(a)

∫ ∞

x

ta−1e−tdt, (a > 0) (C 6)

Functions gammp and gammq from Numerical recipes provides P and Q functions

respectively.

2All definitions and properties from “Numerical Recipes in Fortran ’77”


