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ABSTRACT

This thesis presents a series of analytical models, based on the Generalized Beam
Theory (GBT), to describe the buckling and post-buckling behaviour of thin-walled prismatic
cold-formed steel structural members under compression and/or bending. GBT has a unique
feature of enabling an theoretical significance to the structural analysis of these members,
which can not be achieved by any other known method.

Initially, a review of the current state of the art in GBT is carried out, together with a
review on the most recent bibliography of alternative methods for post-buckling analysis of
thin-walled structures, allowing to define the specific goal of the present work — the setting up
of a consistent GBT-based methodology for post-buckling analysis. Next, a consistent
formulation based on the concept of Total Potential Energy in the framework of the classical
GBT theory, for post-buckling analysis, was created, enabling the rigorous study of open non-
branched and closed mono-cellular sections. Subsequently, a series of refinements in the GBT
theory and in the adopted numerical strategies, namely in the Rayleigh-Ritz method and in the
bifurcational calculus techniques, were made in order to analyze the perfect structural
member, without making resource to imperfections, made by plane plates rigidly connected
along the folding lines with a general cross section. Finally, the developments were illustrated
and validated by the resolution of several examples, which were compared to other methods
of analysis for the critical behaviour and for the post-buckling equilibrium paths, like the

Finite Strip and the Finite Elements Method.



RESUMO

Esta tese descreve um conjunto de modelos analiticos, baseados na GBT
(“Generalized Beam Theory”), para a descricdo do comportamento critico e pds-critico de
elementos estruturais prismaticos, formados pela unido de placas planas finas, a compressao
e/ou a flexdo, com secgdo transversal de geometria qualquer. A GBT tem uma capacidade
unica de dar um significado tedrico a analise, signioficado este que ndo ¢ possivel obter por
nenhum outro método alternativo, tal como o Método das Faixas Finitas ou o Método dos
Elementos Finitos.

Inicialmente, uma minuciosa revisdo bibliografica do estado-da-arte sobre GBT foi
realizado, conjuntamente com uma revisdo da bibliografia mais recente sobre os métodos
alternativos para a analise pos-encurvadura de estruturas de paredes finas, com as respectivas
técnicas numéricas para modelagdo e resolucdo do problema, permitindo assim estabelecer o
principal objectivo deste trabalho: a criacdo de uma metodologia consistente, baseada na
GBT, para analise pos.encurvadura de seccdes formadas por paredes finas planas. De seguida,
uma formulag¢do baseada no conceito de Energia Potencial Total no contexto da GBT, para
analise pods-encurvadura, foi criada, permitindo o estudo rigoroso de sec¢des abertas nao
ramificadas e de seccdes fechacas mono-celulares. Posteriormente, um conjunto de
refinamentos na teoria da GBT e nas técnicas numéricas adoptadas, nomeadamente no método
de Rayleigh-Ritz e nas técnicas de célculo bifurcacional, foram realizados por forma a
analisar o elemento estrutural perfeito, sem o recurso a imperfei¢des, realizado pelajungao
rigida de placas planas, unidas ao longo das linhas longitudinais de dobragem, com sec¢ao
transversal qualquer. Finalmente, os desenvolvimentos foram ilustrados e validados pela
resolugdo de varios exemplos, que foram comparados com outros métodos de analise para o
comportamento critico e para as trajectérias de equilibrio pos-encurvadura, como o Método

das Faixas Finitas e dos Elementos Finitos.
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Notation

1 — Latin letters

‘a - generalized coordinate (degree of freedom) i

A - amplitude modal function

A - vector containing the amplitude modal functions for all modes of deformation
b - plate width

B - transverse bending stiffness matrix

C - warping stiffness matrix

D - torsion stiffness matrix

E - Young modulus

£, - displacement along the cross section perimeter

f - displacement normal to the cross section perimeter

F - force in the cross section plane

F; - derivation of the total potential matrix with respect to generalized coordinate i
G - shear modulus

Hpp - Hessian matrix for the total potential energy evaluated along the fundamental path
TH - (i, j) term of the Hessian matrix for the total potential energy

L - length of a member

M - bending moment

iy - number of active coordinates

x1i



nBCk - number of adopted boundary conditions for mode of deformation &

ne - number of generalized coordinates

n - number of adopted coordinate functions for mode of deformation k&
) - number of modes of deformation

P - axial force or load parameter

q - distributed load

‘q - sliding coordinate i

t - plate thickness

T - transformation matrix

u(s) - longitudinal (warping) displacement

U, - internal strain energy

v - displacement in Oy direction

V - total potential energy

w - displacement in Oz direction

w - virtual work

w - total potential energy in the W-formulation

‘W - generalized bimoment for mode of deformation i

2 — Greek letters

a - angle of a main plate to the horizontal axis

K - tensor containing the non-linear stiffness coefficients

xil



£ - normal extension

y - shear distortion

1) - coordinate function

D - matrix containing the amplitude modal functions

9 - rotation in the cross section plane of the plate’s chord
K - non-linear stiffness coefficient

u - Poisson coefficient

17 - potential of the external loading

o - normal stress

S - maximum exponent of variable x in a polynomial

T - shear stress

3 — Symbols, subscripts and superscripts

() - denotes differentiation along the perimeter coordinate s

( )’ - denotes differentiation along the longitudinal coordinate x

ij( ) - (i, ) term of a matrix

yk( ) - (i, j,k) term of a tensor

i( ) - denotes mode of deformation i

( ) L - indicates non-linear term related to the normal longitudinal membrane stresses
( )SH - indicates non-linear term related to shear membrane stresses

Xiil



( )T - indicates non-linear term related to the normal longitudinal membrane stresses
() - inditates at Critical State

(), - inditates evaluation along the Fundamental Path
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1 —INTRODUCTION

1.1 — Generalities

In recent years, the use of very slender thin-walled cross section members has
become increasingly common due to their high stiffness/weight ratio. Extensive
application of these members is found, in practice, in cold-formed steel members for
lightweight structures (Yu 2000) or in box girder bridges (Cheung, Li and Chidiac 1996).

The analysis of thin-walled cross section members has experienced great advances
over the past decades, mostly because of the vastly increased capabilities of numerical
methods such as the classical finite element (FEM) or finite strip methods (FSM) (Cheung
1976). It currently constitutes an established and widespread field of research because of
the inherent complexities that must be taken into account. Thin-walled cross section
members are characterized by great susceptibility to instability phenomena (flexural,
torsional or flexural-torsional buckling or lateral torsional buckling), related to the
deformation of the member axis, combined exclusively with rigid-body displacement of
the cross-sections, as well as distortional and local plate buckling, because of the high
slenderness that characterizes these members. All these approaches lack a clear rationale
and treat all relevant phenomena independently. It is thus difficult to identify the limits of
validity and the user is easily lost in a long calculation procedure without much physical
meaning. On the other hand, although the FEM is able to deal with all the complexities
listed above, it is still time consuming, requires extensive calibration and does not easily
allow a clear identification of the various relevant theoretical phenomena that build-up the
structural response of the member. It thus requires extensive parametric studies to be able
to lead to useful design guidance. Also, the usual FEM or FSM software packages require

the introduction of imperfections in order to overcome the occurrence of bifurcation points
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for a post-buckling analysis, thus destroying the bifurcational behaviour. This often further
masks reality and extends the required work one or two orders of magnitude because of the
need to obtain a reasonable envelope of all possible imperfections.

In practical design terms, the codified approach to design thin-walled cross section
members consists of: i) the application of the concept of effective width (EN 1993-1-3,
2006); ii) design formulae that account on the distortional effects (Lau and Hancock 1987),
and ii1) more recently the Direct Strength approach (Shafer, 2003), already adopted by the
American and by the Australian design codes.

Generalized Beam Theory (GBT), translated from the German “Verallgemeinerte
Technische Biegetheorie” (VTB), is a complete theory devoted to the analysis of thin
walled prismatic members, developed since the sixties by Schardt and his co-workers at the
Technical University of Darmstadt, in Germany, and has been widely applied to study the
behaviour of cold formed members. It can be regarded as a fusion between the classical
Vlasov’s theory for thin walled members (Vlasov 1961) and the folded plate theory (Born
1954, Girkman 1959), and is an alternative tool to the classical finite element and finite
strip methods for prismatic members. It enables the analysis of thin walled prismatic
members with the allowance of cross section distortion and local plate behaviour, in a one-
dimensional formulation through the linear combination of pre-established orthogonal
deformation patterns — the modes of deformation.

It is the aim of the present thesis to develop consistent formulations and tools to
analyse the buckling and post-buckling behaviour of thin-walled prismatic members in the
elastic range having a generic cross section — open or with closed cells, branched or non-
branched — based on the GBT concepts, and to apply them to the characterization of the
behaviour of some thin-walled prismatic members submitted to uniform compression
and/or major axis bending. This chapter presents a review of the relevant aspects of GBT,
FEM and FSM applied to the study of the stability of thin walled members. Given the

objectives stated above, it also reviews the various methodologies for the analysis of a
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general thin-walled cross section. It is supposed that the reader has a basic knowledge on
the classical stability theory (Thompson and Hunt 1973 and 1984) and on the
geometrically non-linear behaviour of thin-walled plated structures, so that these concepts

will not be reviewed here. Finally, the chapter closes with an outline of this thesis.

1.2 — A review of the development of GBT — Generalized Beam Theory

It was not accidentally that GBT was invented in Germany during the first half of
the sixties. Since the thirties, a wide range of works were developed in Germany on folded-
plate structural members — members made from flat plates rigidly connected at their edges
—, which are widely used in concrete or steel structures. Born (1954) summarizes several
earlier theories, among which it is possible to find Gruber’s and Hartenbach’s flexural
theories, dating back to the thirties and the forties, respectively. These theories computed
the transverse flexural bending moments by modelling the folded plate member as a
continuous beam and using the force method of analysis to determine the statically
indeterminate bending moments at the junction of the plates. A subsequent advance in the
theory of folded plate structures, also described in his book, is Glining’s method, which
relates the longitudinal stress resultants and the shear stresses along the cross section and
then establishes an equilibrium relation between the transverse shear forces and the
transversal loading; subsequently, from the transverse shear forces, the transverse bending
moments are computed. From this theory, taking into account the boundary conditions of
the edge plates, Girkman developed his theory (Born 1954, Girkman 1959), which already
enables good quality results for the analysis of open folded plate structures — an illustration
of the accuracy of Girkman’s method can be found in section 2.11 of Schardt (1989),
where a folded plate concrete structure subjected to transversal loading was analysed using
GBT and then compared to the Girkman’s method, showing a quite good agreement. In the

early sixties, the crucial work on thin walled members due to Vlasov (1961), released in
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the late forties in the Soviet Union, was disseminated in the west, and translated in English,
French and German. From these historical facts it becomes obvious that only in the early
sixties all elements were grouped together, in Germany, to create GBT.

The first known GBT publication dates from 1966 (Schardt 1966), derives from a
work of Schardt to become Professor at the Technical University of Darmstadt and
presents already all basic aspects of GBT, a theory devoted to the analysis of longitudinally
prismatic folded-plate structures. Starting i) from the classical Vlasov assumption of
negligible shear distortions along the thin walled member (Vlasov 1961), ii) using the
Vlasov strategy of defining the longitudinal and transversal displacements in the plane of
the plate as a sum of the product of pre-established functions defined over the member’s
transversal perimeter s to amplitude functions depending on the longitudinal coordinate x —
Vlasov had already used a similar scheme to derive a model for thin walled closed
sections, accounting for the shear deformation effects, in Chapter 4 of Vlasov (1961) — and
1i1) assuming linear warping displacement patterns between the edges of the plates, Schardt
derived a relation between the warping displacements and the displacements along the
perimeter, relating both the pre-established functions, for both displacements, along the
perimeter and along the longitudinal axis. Now the displacements along the cross section
plane and normal to the plates are derived from the displacements along the perimeter
through a simple geometric compatible rendering process, determining also the rotations of
the plates. Since these rotations differ from plate to plate, transversal bending appears so
that, making resource to the folded plate theory concepts referred above, a force method
problem is established in order to compute the transversal bending moments. Schardt
proceeds to the establishment of the general equilibrium equation of GBT and the
orthogonalization of the basic modes of deformation through a matrix eigenvalue problem
— this mathematical scheme corresponds to the adoption of the principal axes and the cross
section’s shear centre for the computation of the cross section’s geometrical properties in

the Vlasov’s thin walled member theory (Vlasov 1961). In this paper it is proposed to
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compute the transverse membrane stresses by equilibrium — in later works of Schardt and
his co-workers different proposals were made for the determination of these stresses. This
work introduces already the non-linear stability analysis based on the concept of deviating
forces, establishes the analogy to the beam on an elastic foundation for the differential
equations system of equilibrium (Hetenyi 1952) and presents two examples of open non-
branched sections.

The following works of Schardt explored the stability behaviour of a wider range of
cross sections. The analysis of closed (polygonal) cross section and cylindrical members
appears in Schardt (1970): due to the absence of membrane shear deformations, the
torsional mode did not appear in these types of members (the first known work to consider
closed sections with membrane shear distortion is the fundamental book Schardt (1989)
and thus the system of equilibrium equations contains less information than necessary to
enable a good analysis for general load and support conditions. At this point it is worth
referring the work of Sedlacek (1971) who, based on the works of Schardt (1966) and
Vlasov (1961), derived a consistent theory for the analysis of box grider bridge spans
allowing cross section distortion, accounting consistently for the shear deformations. The
resulting set of the modes of deformation contained already the torsional mode and gave
sufficient information to the equilibrium system in order to realize an accurate analysis of
closed sections. Based on Sedlacek’s work, Mandi¢ and Hajdin (1988) improve this theory
by adding the effect of the secondary warping shear stress

During the seventies and eighties Schardt and his co-workers continued to apply the
GBT procedures to the analysis of a wider range of problems. Among the articles found in
German scientific journals it is worth mentioning Schardt and Steingall (1970) with an
application of GBT to the analysis of thin walled closed cylindrical sections, Uhlmann
(1970) with an extension to open thin walled members with curved longitudinal axis, and
Schardt and Zhang (1989), with a geometrically non-linear analysis of plates in the post-

buckling range. Throughout this time, several thesis and monographs were supervised by
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Schardt at the Technische Universitdt Darmstadt. Among these, Saal (1974) presents an
incursion into dynamical analysis of thin walled members, Schardt and Schrade (1982)
made an extensive study on purlins, including experimental work, Schrade (1984) studied
channel and hat section members with small plates connecting discontinuously the
member’s lips, Schardt, Issmer and Morschardt (1986) analysed the stability behaviour of
plates and open sections, with some comparisons with codes, Zhang (1989) studied U-
sections under eccentrically compression loading and Hanf (1989) made an incursion into
the analysis of open section in the elastic-plastic range.

Among the research works made at the Technische Universitit Darmstadt during
the seventies and the eighties, two works deserve special attention here, due to their
contribution to the advancement of GBT: the thesis of Miosga (1976) and the thesis of
Moller (1982). Apart from the work of Sedlacek referred above, Miosga (1976) is the first
publication that considers other basic modes of deformation than the warping modes: a
second type of modes of deformation is established by imposing a unit displacement of an
intermediate node (henceforth called inner node and simply consisting of a node between
two consecutive folding lines or between a folding line and the section’s edge) along the
cross section’s plane and normal to the plate that contains the inner node. These modes of
deformation are crucial to characterize properly the plate buckling behaviour that occurs in
thin walled prismatic members under compression or bending with shorter lengths. Later,
when applied to free edge nodes, they enable the modelling of lips buckling. Miosga also
presents a definition of the membrane distortion, later adopted in several works (see for
example Heinz and Mark 1990), that is based on the interpretation of a deformed
configuration of a plate to which a null distortion was imposed (see Miosga 1976, page 27,
fig. 1.6). It is noted at this stage that this definition will not be adopted in the present thesis
since it renders an incomplete formula for the membrane shear deformation. Instead, all
strains will be directly derived from the classical procedures of the theory of elasticity.

Secondly, Miosga (1976) also presents the non-linear terms of the virtual work referring to
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the membrane shear deformation. They are computed from membrane shear forces derived
by establishing the equilibrium of an elementary plate dxxds, where x and s are the
longitudinal and the cross section perimeter coordinates. It is also noted at this stage that in
the present work, in order to avoid inconsistencies concerning the conjugacy between
stresses and strains for the derivation of the internal strain energy of the structural member,
only the internal stresses derived from elasticity relations of the relevant deformations are
considered, thus opting for a Lagrangian description of the system (Arantes e Oliveira
1999). Despite these two aspects, that are rebated here, the work of Miosga must be
considered as one of the most crucial steps forward in the GBT research for the analysis of
thin walled members, since it enabled the incorporation of the plate bending modes in the
analysis, thus allowing a more precise study on the stability of thin-walled members and
contains inclusive some relevant applications to the buckling analysis of plates, with some
incursions in the post-buckling domain for compressed plates.

The other thesis from Darmstadt to be highlighted here is Mdller (1982). His work
purposes to analyse thin walled prismatic sections with a general cross section. In chapter 2
a consistent definition of the membrane strains is adopted but null transverse membrane
deformations are imposed, and the internal strain energy is established through a consistent
energy method, considering the Vlasov’s formulas for the fundamental displacements of
the plates (Vlasov 1961), i.e., not considering, for a mode of deformation, the relation
between the amplitude modal function for the cross section displacements and the
amplitude function for the longitudinal displacements, which is the first derivative of the
later, as hinted above. It is noted that this relation, between the amplitude functions of the
displacements along the cross section and the amplitude functions for the warping
displacements, is completely general, as it will be observed in chapters 2 and 5 of the
thesiss, and constitutes one of the most relevant aspects of GBT. The third chapter of
Moller’s thesis presents an attempt to analyse of branched sections in the context of GBT,

neglecting the membrane shear deformations. Subsequently, some examples of thin-walled
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sections are presented, for a bi-cellular closed section and for a simply supported plate with
a reinforcement at the half-width point — this later example presents already membrane
shear deformations associated with the warping of the intermediate nodes. It ends with a
brief study on the vibrations of a multi-cellular beam and on the stability analysis of a
squared closed section neglecting the membrane shear deformations for the GBT
modelling.

During the eighties and nineties several more works on the stability analysis using
GBT came to light. It is highlighted the first GBT article written in English (Schardt 1983),
containing a brief presentation of GBT for stability analysis and mentioning already the
need to consider a constant shear flow mode for closed sections. During the conference
where this paper was presented, GBT was introduced to Davies, from the University of
Salford — Prof. J. M. Davies later moved to the University of Manchester — who, by that
time, had already realized a vast and very important research work on lightweight steel
construction, namely on stressed skin design (Davies and Brian 1982), and later would
develop several important researches on GBT, exploring the large potential of this theory
to enable a better understanding of the stability behaviour of thin-walled members.

So, since the late eighties and under the supervision of Davies, several research
works were made at Salford and Manchester. The first contributions of Davies are
associated with Leach, whose PhD thesis (Leach 1989) contents a detailed description of
the GBT procedure for open non-branched sections and an application of GBT to the linear
analysis and stability analysis of these sections, making resource to the finite difference
method to solve the differential equilibrium equations system, exploring to some extent the
interaction between the modes of deformation, which correspond to the buckling modes,
and benchmarking GBT with other methodologies. Due to Davies and Leach, several
works were made, namely on the first order analysis and stability analysis of open sections
submitted to compression and/or bending, exploring the modal interaction between the

modes of deformation, containing also some benchmark examples comparing the GBT
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results with experimental analysis (Davies and Leach 1992, 1994, Davies, Leach and
Heinz 1994, Davies 1998). Due to these works, GBT was spread worldwide.

Later, with the collaboration of Jiang, Davies continued applying GBT to study the
behaviour of thin-walled members. In Jiang’s thesis (Jiang 1994), GBT was applied to the
stability analysis of purlins. Subsequently, Davies and Jiang continued to apply GBT to
explore the distortional behaviour of open sections (Davies and Jiang 1996a, 1996b and
1998) and the modal interaction of cold-formed members under compression and/or
bending (Davies, Jiang and Ungureanu 1998). More recently, Davies and Kesti (2000)
applied GBT to the study of flange- and web-stiffened compression members and, in
particular, web-perforated sections. Finally, a recent article of Davies, Jiang and Voutay
(2000) is referred here for the analysis of thin-walled members with stiffened compression
flanges.

Returning to Darmstadt, in 1989 the major reference of GBT came to light: the
crucial book of Schardt (1989), in German only, which contains the basic GBT statements
for the establishment of the modes of deformation and for linear analysis, and collects also
some developments contained in the previous thesis of the TU Darmstadt. This book is, for
sure, the most cited reference in this thesis.

More recently, Schardt (1994a) presented a full and consistent linear stability
analysis of open sections under uniform compression and/or uniform bending: this paper
constitutes one of the most consistent GBT applications of the stability analysis of thin
walled members, fully exploring the modal interaction of the modes of deformation, and
constitutes the basis of several further works. The derivation of the non-linear terms for
stability analysis presented in this paper is made through a similar procedure to the one
presented by Vlasov (1961) — in chapter 2.3.6 of the present thesis this aspect will be
explored in detail. In the same year, Schardt presented an article where the lateral torsional
and distortional behaviour of channel and hat-sections is deeply analysed and where some

approximate GBT-based formulae for design are developed. Recently, Schardt supervised
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the thesis of Heinz (1994), concerning a study on the stability and dynamic behaviour of
plates, of Conchon (2001), on the behaviour of plates in the framework of GBT, and of
Haahk (2004), which contains an application of GBT to branched sections, accounting also
for plate distortion.

A recent and very active pole of development of GBT is nowadays the group of
Prof. Dinar Camotim, at the Instituto Superior Técnico in Lisbon. As far as is known, the
vast work of this group can be structured in five research areas: the extension of GBT to
thin-walled members made of orthotropic and fibre reinforced materials (Silvestre and
Camotim 2002a, 2002b and 2003), the development of GBT based formulae for
distortional design (Silvestre and Camotim 2004a and 2004b), the post-buckling analysis
of thin-walled members (Camotim and Silvestre 2003), the analysis of aluminium
structures (Gongalves and Camotim 2003) and the plastic analysis of thin walled members
(Gongalves and Camotim 2004).

Outside Darmstadt, Manchester and Lisbon, few other groups have until now
discovered the advantages of GBT, maybe because the main references are written in
German. Takanashi, Ishihara and Nakamura (2000) presented a study on the stability
analysis of thin-walled beams in bending and Balaz (1999) authored a paper on the linear

GBT analysis of open and closed sections.

1.3 — Brief overview of the alternative methods for the stability analysis

of thin-walled members

1.3.1. Introduction

In the last decade, great advances have been achieved in the knowledge on the
behaviour of cold-formed structures and are summarized in three review articles that

appeared in recent years. Rondal (2000) deals with the stability problems of cold-formed



INTRODUCTION 11

members and the behaviour of the structural joints in cold-formed steel construction, and
Davies (2000) includes developments in cold-formed steel construction and applications,
high lighting the relevant role that GBT has gained for a deeper understanding on the
stability behaviour of cold-formed structural members. More recently, Hancock (2003)
updates the advances in cold-formed steel research, describes the advances in the North-
American specifications and introduces briefly the Direct Strength Method and its
developments, for the use in engineering practice.

The contemporary alternatives to GBT, to perform the stability analysis of thin-
walled members, are the well known finite element method (FEM) and the finite strip
method (FSM), which derives from the FEM. Rasmussen and Hancock (2000) contains a
thorough review on the application of these techniques to the stability analysis of thin-
walled cold-formed members, so only a brief review on some significant contributions will
be mentioned. Finally, some aspects on experimental research, on the development of
direct design methods for engineering practice, not based in GBT, and on the behaviour of

thin-walled I-section members are also presented.

1.3.2. The FEM

Using the FEM method, there is an immense range of applications of this numerical
tool to the stability analysis of thin-walled structures and members, so here only some
recent works that explore the generality of the method are cited. The group of the Cornell
University, headed by Prof. T. Pekdz, make a wide use of the FEM to the analysis of thin-
walled members and frames (Sarawit, Kim, Bakker and Pek6z 2003). The report made by
Sarawit and Pekoz (2003) presents an exhaustive description of the advances recently
made, covering all major aspects of the industrial steel storage racks, from the behaviour of
column bases, beam-to-column connections, structural members, to the FEM analysis of

entire pallet rack systems, and comparing with design methods that are or will be adopted
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by current design codes. The group of the University of Timisoara, headed by Prof. D.
Dubina, produces also a wide FEM based research work on cold-formed structures: two
examples of this are the development of an alternative interactive buckling model, the
Erosion of the Critical Bifurcation Load (ECBL) approach (Dubina, Davies, Jiang, and
Ungureanu 1996) and the research on plastic buckling analysis in cold-formed construction

(Dubina, Goina, Georgescu, Ungureanu, Zaharia 1998).

1.3.3. The FSM

The FSM is derived from the FEM and consists on a specialization of the FEM to
the analysis of thin walled members (Schafer 1998), the only difference consisting on the
longitudinal discretization of the member, as seen in Fig. 1.1: the FEM uses a mesh that
discretizes the member transversally and longitudinally, while the FSM needs only
transversal discretization, using currently either harmonic or spline functions in the
longitudinal direction of the member. It was originally developed by Cheung (Cheung
1976, Cheung and Tham 2000) and was widely used by other authors for understanding
and predicting the behaviour of cold-formed steel members and for bridge decks (Cheung,
Li and Chidiac 1996) — a concise overview of the FSM can be found in Graves-Smith
(1987). The work of Hancock (1978), a study on the elastic buckling of I-section beams,
can be considered as a starting point on the use of the FSM as an analysis tool for the
stability behaviour of thin-walled members, and several other works using a similar
strategy for other types of cross sections and load conditions followed, many of them from
the research group of the University of Sydney. Hancock (1981) applied the FSM to the
stability analysis of I-section columns, comparing the FSM to the alternative analysis
and/or design models of that time, and Kwon and Hancock (1991 and 1993) extended to
the elastic post-buckling analysis of thin-walled members under bending and/or

compression. Outside Sydney several other research groups also widely explored the FSM
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potential for the analysis of thin-walled structures. It is highlighted here the pioneering
work of Graves-Smith and Sridharan (Graves-Smith and Sridharan 1980, Sridharan and
Graves Smith 1981), where a consistent formulation for the post-buckling analysis of thin-
walled columns using the FSM is presented, and where an experimental observation on
secondary localized buckling in a thin-walled square section tube made of silicone rubber
is also addressed, as illustrated in chapter 3 of the present thesis. Among the vast range of
works on FSM analysis, van Erp and Menken (1991) studied the initial post-buckling
analysis of T-beams. More recently, Prola (2001) presents a large number of applications
of the spline FSM to the post-buckling analysis of cold-formed members, mainly channel
and rack section members, and Ovesy, Loughlan and Assaee (2004) address the analysis of
the post-buckling behaviour of thin-plates using a special FSM scheme that makes resource
directly to the principle of minimum potential energy. Finally, it is referred that a reliable
harmonic FSM program — CUFSM - for the determination of the critical load parameter of
thin-walled prismatic members under a general longitudinal normal stress loading at the
extreme cross sections, developed by Schafer (1998), is available freely in internet, at

www.ce.jhu.edu/bschafer.
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Fig. 1.1 — FSM discretization versus FEM discretization
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1.3.4. Direct design methods and experimental analysis

Several research groups are devoted today to the development of direct design
methods accounting for local and distortional buckling, for application in codes and
engineering practice, in order to search for alternative methods to the classical effective
width approach (Winter 1962), which forms the basis of the design provisions of the
Eurocode 3 — Part 1.3 (CEN 2004). Thin-walled cross sections usually adopted in cold-
formed construction, like channel or rack sections, may exhibit different buckling
behaviour depending on the member’s length. For small lengths, local plate buckling,
characterized by the fact that the folding lines of the cross section do not move when the
section buckles, rules the stability behaviour of the member, while for larger lengths the
member acts like an Euler column, cross section distortion being negligible and minor axis
bending ruling the global behaviour. These buckling phenomena are well known and
simple formulas can be derived to compute a lower bound buckling stress (Bleich 1952).
However, mainly for mono-symmetric sections like channels and racks, which are widely
employed in cold-formed construction, there is an intermediate length zone where buckling
is neither local nor global, and occurs with the movement of at least some folding lines of
the member, the cross section exhibiting distortion at buckling. So, for the engineering
practice, simple design methods are needed in order to avoid the use of the more complex
FEM or FSM. Starting from the formulation of the torsional and flexural buckling of an
undistorted section with continuous elastic supports, firstly developed by Vlasov (1961),
Lau and Hancock (1987) derived a simple procedure to determine the buckling
compressive stress for the distortional mode. Later, Hancock, Kwon and Bernard (1994)
derived strength design curves for some common cold-formed cross sections, dealing with
distortional buckling together with the remaining critical buckling modes, in a work that
became the basis of the Direct Strength Method (DSM) derived by Schafer and Pekoz
(Schafer 1998, Schafer and Pek6z 1998b), which uses strength formulas for the gross cross

section and integrates consistently local, distortional and global buckling in a practical and
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simple design procedure. This method is already included in the American cold-formed
steel design code and constitutes one great step forward for the engineering practice and
cold-formed industry — a concise explanation of the DSM is presented in Schafer (2002).
On the other hand, the EuroCode (European Committee for Standardization 2006)
allows the design of thin-walled members assisted by testing, which previously had already
appeared in some ECCS recommendations (ECCS 1987). Therefore, experimental analysis
gains a special relevance in cold-formed steel structures and a recent description on
experimental techniques in the testing of thin-walled members can be found in Rasmussen
(2000). During the last decade, a wide range of experimental works on cold-formed
construction came to light, studying several relevant aspects that need special attention,
like for example web crippling (Young and Hancock 2000). Here only a few and recent
papers associated with the member’s stability analysis will be referred. Young and
Rasmussen (1998) performed an experimental research on the behaviour of cold-formed
fixed-ended channel sections, which exhibit distinctive buckling behaviour compared to
the pin-ended ones, thus providing an example of how the support conditions influence the
buckling behaviour of thin-walled members. Comparisons to the Australian/New Zealand,
American and European design codes and proposals for their design are also addressed.
Schafer and Pekoz (1998) carried out an experimental study regarding the characterization
of the geometric imperfections and residual stresses of cold-formed members, in order to
acquire important data information for numerical post-buckling analysis. Included in a
research on cold formed flexural members (Schafer and Pekéz 1999), Yu and Schafer
(2002) carried out a series of tests on C- and Z-section beams, in order to get reliable
information about stiffened elements under stress gradient and to improve the American
code provisions for the design of beams. Previously, Hancock, Rogers and Schuster (1996)
had performed a benchmark comparison between the distortional buckling design method
for flexural members and tests. Exploring the ability of cold-formed steel construction to

create any cross section shape, Narayanan and Mahendran (2003) performed a series of
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experimental tests on innovative cold formed open section columns, which all failed by
distortional buckling and showed very little post-buckling strength — in fact, this aspect
will also be observed in the post-buckling analyses of open section columns in the later
part of the present thesis. Exploring also the cold formed construction’s capacity of
generating different cross sections, Yan and Young (2001) developed a series of tests of
thin-walled channel columns with returning lips, showing that the American design
provisions are conservative for this type of cross section. At last, it is worth referring the
experimental work on cold-formed sections realized at the Federal University of Rio de

Janeiro by Batista (Batista, Camotim, Prola and Vasquez 1998).

1.4 — A review of the methodologies for the analysis of general thin-

walled cross sections

Cold-formed, coupled with the versatility of manufacturing possibilities, allows the
“invention” of arbitrary cross-sectional shapes. These sections attempt to maximize
performance under certain loading conditions. Given this practical need, it is a stated
objective of this thesis to develop a general procedure to deal with arbitrary cross section
shapes, open or closed, branched or unbranched, mono-cell or multi-cell, or a combination
of all these possibilities. A review of the current methodologies for the analysis of general
cross sections are thus presented in this section

The I-section constitutes an excellent example to deal with branching. Because of
its widespread use in the steel construction industry, the stability analysis of thin-walled I-
sections has been the object of research for a long time. Bulson (1967), based on the
traditional plate theory, presented a study on the column buckling of I-sections which,
despite its simplicity, shows already the major characteristics of I-section column buckling
that will be seen in the GBT analysis, namely the existence of two buckling regions: for

smaller lengths local instability of the plates occurs while for larger lengths interaction
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occurs between local and overall buckling modes. These aspects will be observed in the
GBT analysis of I-sections performed in chapter 6. Later, several applications of the FSM
to I-sections appeared. It is highlighted here the pioneering work of Hancock for the
stability analysis of beams (Hancock 1978) and of columns (Hancock 1981), and the works
of Sridharan (Benito and Sridharan 1985 and 1984-85, Ali and Sridharan 1989), based on
FSM analysis, which showed that thin-walled I-section columns have a nearly flat post-
buckling behaviour in the distortional range — in fact, in chapter 6, this behaviour will be
detected by the GBT analysis. In the context of GBT, the analysis of branched sections is
found very briefly in few works, such as the already referred Moller (1982). Mdorschardt
(1990) adopts a strategy of treating the cross section with branches, in the context of GBT,
as a superposition of several non-branched sections. Based on this strategy, Dinis,
Camotim and Silvestre (2006) performed several linear buckling analyses of branched
cross sections. Recently, Haakh (2004) presents several applications of GBT to I-sections,
where some deformation patterns involving plate’s distortion are present — it is fair to say
that Haakh was very close to the wholly general GBT formulation presented in this thesis.
No GBT applications were found on the analysis of multi-cellular, hollow flange
beams or other cross sections having geometrical complexity other than non-branching,
open branched or closed mono-cellular sections. Among the obtained literature about cold-
formed and thin walled members in general having cross sections with more complex
geometry, few authors focused on multi-cellular sections, although it was considered as a
desired GBT enhancement (Camotim, Silvestre, Gongalves and Borges Dinis 2004). In the
context of structural engineering applications, these sections were analysed by Vlassov
(1961) and Murray (1986), and also in the paper of Waldron (1986) on the derivation of
the cross section properties, but all these works neglect cross section distortion'.

Kollbrunner and Hajdin (1975) extends the classical folded plate theory to the analysis of
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multi-cell sections, and uses some strategies for cross section analysis that are similar to
those presented in Chapter 5 below, namely the adoption of the displacements method to
derive the transverse bending moments along the cross section. More recently,
Shanmungam and Balendra (1991) present an experimental study of thin-walled multi-
cellular structures curved in plan, analysing perspex models and comparing the results with
FEM analyses. Razaqpur and Li (1991) derived a finite element from the Vlasov’s theory
that accounts on the shear lag effects, appropriate to the analysis of mono-cell and multi-
cell box girders, and validated the corresponding results by comparing this analysis against
FEM solutions using shell elements. Jonsson (1999) presents an extension of the traditional
thin-walled beam theory (Vlasov 1961, Kolbrunner and Hajdin1975, Murray 1986), to
include cross section’s distortion for open, mono-cell and multi-cell prismatic members,
deriving the differential equilibrium conditions by establishing the equilibrium in an
elementary cut-out of the member, and applying the formulation to the analysis of a triple
cell bridge cross section. During the same year the book of Ignatiev and Sokolov (1999)
was released, presenting an innovative method — the substructuring method — for the
analysis of thin-walled plate and box-type members, based on the concept of spline
interpolation of the displacement fields, together with a condensation method to compute
the first n eigenvalues and eigenvectors for a stability or dynamics structural problem —
those that have interest in engineering practice. At last, Pavazza and Blagojevi¢ (2005)
present a study on the distortion of rectangular multi-cell cross sections under bending,
assuming that beam walls are hinged along their longitudinal edges, for the accounting of
the cross section distortion.

During the early nineties, a new type of cross section was developed in Australia by
Palmer Tube Mills Pty Ltd, nowadays known as Smorgon Steel Tube Mills (SSTM): the

hollow flange beam section (HFB), also called “Dogbone” (Avery, Mahendran and Nasir

' — From now on, the reader must be aware of the two different meanings of the word “distortional”: it can
either refer to a shear deformation at a point of the structure, or to the deformation of the cross section in its
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2000). This cross section is used mainly in beam members due to its double symmetry,
high major axis bending stiffness, and also to the high torsional rigidity provided by the
two closed cells on the upper and lower parts of the cross section. This innovative cold
formed steel section is made from a single metal strip on an electric resistance welding
tube (ERW), identical to those used in the manufacturing process of square and rectangular
hollow sections (Zhao and Mahendran 1998). Heldt and Mahendran (1992) present one of
the first works on the analysis of HFB section members and perform buckling analyses for
HFB section beams under several support conditions — it is worth highlighting the research
effort on these structural members realized at the Queensland University of Technology, in
Brisbane, Australia, by Mahendran and his co-workers, and below some further works of
this group are referred. Despite of the high torsional stiffness of the flanges, HFB members
webs are comparatively very flexible, so Pi and Trahair (1997) analysed the decrease of the
resistance to lateral buckling of the HFB members due to this aspect. In order to solve the
problem of low bending stiffness of the webs, Avery and Mahendran introduced web
stiffeners and applied the FEM (Avery and Mahendran 1997) to the analysis of HFB
members, together with some experimental work (Mahendran and Avery 1997). They
showed that the reduction in the lateral buckling resistance could be effectively and
economically eliminated by the adoption of a web stiffener at third points of the span.
Mahendran and Doan (1999) performed FEM analyses for simply supported HFB
members under uniform bending moment, which were validated against experimental tests.
The most recent work on HFB section members found in the available literature is Avery,
Mahendran and Nasir (2000), where some FEM analyses are performed in several HFB
sections, modelling all relevant effects such as material inelasticity, residual stresses, local
buckling, member instability, web distortion and geometric imperfections, covering all
possible buckling modes for a wide range of cross sections — three buckling modes were

detected: the local plate buckling in the compressed flange, plate buckling of the web —

own plane by transverse bending or transverse extension.
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only for HFB members having slender web — and global distortional buckling.

1.5 — Numerical strategies for the post-buckling analysis of elastic thin-

walled structures

In his doctoral dissertation “On the stability of elastic equilibrium”, Koiter (1945)
laid the basis for the analysis of the elastic post-buckling of structures. He developed an
asymptotic approach in a continuous framework. Twenty years later, working
independently and unaware of the fundamental Koiter’s contribution (written in Dutch),
the Stability research Group, in the UK, developed a similar theory but based on a discrete
formulation. The two classical monographs by Thompson and Hunt (1973 and 1984)
encapsulate those developments. In the present thesis it is the later discrete formulation that
is followed. It is assumed that the reader is familiar with the theory, so that no review will
be presented here (Hunt 1981, Thompson and Hunt 1973 and 1984).

Within the theoretical context described in the previous paragraph, the post-
buckling analysis of perfect thin-walled elastic structures requires the implementation of
numerical strategies that are able to deal with two aspects: 1) the discretization of the
problem, addressed in this thesis in the context of the Rayleigh-Ritz Method, and ii) the
numerical techniques used to solve the non-linear equilibrium equations that describe the
behaviour of the system. This behaviour exhibits, in most cases, a bifurcational nature in a
multi-dimensional framework, thus requiring great core to ensure that the right equilibrium
solutions are obtained and the equilibrium paths of the system are identified consistently.

Focusing firstly on the discretization techniques of the problem, in the present work,
like in many other on the non-linear stability of elastic structural members — see, for
example, Wadee, Hunt and Withing (1997) — the member’s system of equilibrium
differential equations are derived from an energy formulation and are rendered discrete by

adopting the traditional Rayleigh-Ritz method, i.e., by approximating each of the unknown



INTRODUCTION 21

functions by a linear combination of pre-established functions — the coordinate functions. It
is known that the efficiency of the method is highly dependent on the correct choice of
these coordinate functions — for a deeper review of the method it is recommended the
reading of Richards (1977) — and it is required that these functions satisfy, at least, the
cinematic/forced boundary conditions of the system, compliance to the static/natural
boundary conditions is optional. Often, trigonometric functions are adopted but a few
strategies for the definition of appropriate coordinate functions other than trigonometric
ones can be found in the literature. Since Chapter 3 presents an alternative and consistent
scheme to determine the coordinate functions from the relevant boundary conditions, a
brief explanation on alternative procedures is presented here. In a chronological order,
Storch and Strang (1988) perform a Rayleigh-Ritz analysis of a simple cantilever beam and
adopt coordinate functions that either agree or do not agree with the natural boundary
conditions, highlighting the effects of neglecting the natural conditions. They also discuss
briefly the role of the norm of the coordinate functions and address the fact that, in this
case, the adoption of trigonometric functions does not generate a complete vector space
basis for the unknown functions, because a function with constant second order derivatives
along the member’s length was required. Orthogonal polynomials derived from the Gram-
Schmidt process are used by Singh and Chakraverty (1992) for the vibration analysis of
elliptic plates, and Singhvi and Kapania (1994) analyse the vibration and buckling
behaviour of doubly symmetric thin-walled beams of open section for two sets of boundary
conditions: fixed-fixed and pined-pined. These authors adopt several types of coordinate
functions, namely orthogonal functions consisting of a combination of algebraic and
trigonometric terms, simple polynomials that do not satisfy all essential boundary
conditions, and Chebichev polynomials. Geannakakes (1995) uses serendipity functions to
compute the natural frequencies of arbitrarily shaped plates, and Brown and Stone (1997)
apply polynomial functions for the analysis of plates and conclude that polynomials series

do not negatively affect convergence, for a given maximum polynomial degree, but
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influence the numerical stability of the problem. Smith, Bradford and Oehlers (1999a) use
orthogonal Chebichev polynomials of types 1 and 2, and also Legendre, Hermite and
Laguerre polynomials to study the unilateral buckling of plates. In Smith, Bradford and
Oelhers (1999b) the same authors use as displacements functions polynomials consisting
of a boundary polynomial, specifying the geometric and cinematic boundary conditions,
multiplied by a complete two-dimensional simple polynomial. Amabili and Graziera
(1999) analyzed the vibration of simple structural models, like beam models and circular
plates and shells, and rendered the system discrete by adopting the eigenfunctions of the
equation of motion of the model, which are linear combinations of admissible pre-
established functions that are, usually, trigonometric, hyperbolic or exponential functions.
At last, Chen and Baker (2003), apply Hermite polynomials in the localized buckling
analysis of a strut on a softening foundation. All in all, it can be concluded that a wide
range of strategies are employed in the discrete rendering of an equilibrium system for
stability or dynamical problems, and it is noted the need of a simple, systematic and
general scheme for the generation of a complete set of efficient coordinate functions for the
application of the Rayleigh-Ritz method to structural engineering problems — the word
“efficient” refers to the fact that a desired convergence shall be reached with a minimum
number of coordinate functions.

Focusing now on the step that follows the discrete rendering of the equilibrium
system — the numerical strategies applied to the detection of equilibrium paths for the
stability analysis of compressed structures — it is known from the classical references on
the matter that straight perfect elastic structural members under compression or major axis
bending exhibit most often bifurcational behaviour, so numerical techniques that follow
arbitrary non-linear equilibrium paths, detect the so called stability points — turning or
bifurcation points —, and allow the path switching at a bifurcation point are of major
relevance in structural analysis. For this purpose, in non-linear stability analysis two

numerical scheme types may be applied: the perturbation approach, based on power series
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expansion techniques, and continuation methods, that bring the equilibrium curves as a set
of equilibrium points — a complete summary on these techniques can be found in Riks
(1984). Therefore, it is worth referring here a brief review on some relevant works on this
theme but, due to large number of papers on this subject, only few works, published during
the last two decades and considered more relevant in the context of the present thesis, will
be referred, and the crucial works on this subject owed to Hunt and Thompson, namely
Hunt (1981) and Thompson and Hunt (1973 and 1984), that are the basis of the numerical
strategies employed in the forthcoming chapters for the search of non-trivial equilibrium
paths, being deeply described in Chapter 3, are not reviewed here.

Following once again a chronologic order, one finds the paper of Fujikake (1988),
where the positive definiteness of the tangent stiffness matrix is directly inspected at each
load increment, in the sense that if it passes from positive definite to non-positive definite
in the following step, it is concluded that the structure’s equilibrium state became unstable.
This procedure was implemented in the FEM package Adina, and was employed to the
buckling analysis of a cylindrical shell. Eriksson (1988) sees the solution of a non-linear
structural problem as a curve in the displacement space, resulting from a continuous
variation of a load parameter and each state along the equilibrium path is described by a
tangent vector describing the response to a small increment. The author then applies the
procedure to snapping and buckling problems. One year after, the same author (Eriksson
1989) discusses the introduction of constraint conditions in the equilibrium equation
systems for structural models showing limit points or bifurcation states, and applied to the
analysis of snapping shells, buckling plates and buckling cylindrical shells. Allman (1988)
computes stable equilibrium paths of discrete conservative systems by a modified
Newton’s method that converges only to minima, without adding any constraining
condition, thus fully exploring the symmetry or bandedness of the Hessian matrix of the
potential energy function. Kouhia and Mikkola (1989) present a procedure for handling

simple critical points, by adding an extended Crisfield elliptical constraint equation to the
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equilibrium system of the structural model. Ten years after, the same authors (Kouhia and
Mikkola 1999) present a set of procedures to handle critical points showing coincident or
nearly coincident buckling loads, improving some modifications to previous algorithms in
order to increase their numerical robustness. In 1990 the crucial work of Allgower and
Georg (1990) on numerical continuation methods comes to light, presenting a complete
description of the numerical techniques developed until that date for the solution of non-
linear systems, comprising the problem of bifurcations and path switching. During the
same year Wriggers and Simo (1990) present a numerical formulation to compute directly
the turning or bifurcation points in the context of the Finite Element Method, appending a
constraint equation to characterize the presence of either a turning or a bifurcation point,
and introducing a penalty regularization of the extended system in order to improve the
efficiency of Newton method used to solve the equilibrium system in the neighbourhood of
bifurcation points — in Wriggers (1995) further details on this subject can be found,
together with a more complete explanation of the numerical strategies involved in non-
linear stability analysis of structures. Huang and Atluri (1995) present a simple but very
efficient approach to the stability analysis of elastic structures, monitoring the sign changes
of the diagonal elements of the triangularized tangent stiffness matrix, verifying the
equilibrium path’s slope at critical points to distinguish between limit and bifurcational
points, and applying an approximate asymptotic solution to switch to the post-buckling
path. Eriksson and Pacoste (1999) explore the use of symbolic software in the large-
displacement analysis of structures, using co-rotational and strain energy based
formulations, discussing how the precision of the derivation of the finite elements and the
efficiency of the code formulations are satisfied in the context of the symbolic
programming. At last, it is worth referring two recent works of Potier-Ferry and his co-
workers (Vannucci, Cochelin, Damil and Potier-Ferry 1998, Boutyour, Zahrouni, Potier-
Ferry and Boudi 2004): the first work presents a strategy to compute bifurcation branches

in elastic systems by adopting a perturbation technique called asymptotic-numerical
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method (ANM) that associates perturbation techniques and the FEM, while the second
paper combines the ANM with Padé approximants, used to detect the bifurcation points,
and illustrates the adopted numerical strategies by presenting several examples on the post-

buckling behaviour of different structures modelled using thin elastic shell elements.

1.6 — Outline of the thesis

Having reviewed the developments of the underlying theory, a brief summary of
the content of this thesis is described in the following.

Chapter 2 starts with the detailed description of the classical Schardt’s GBT
formulation, fully explaining the establishment of the basic modes of deformation (the
warping, the plate bending and the closed cell distortional modes), the orthogonalization
procedure and the derivation of the GBT member’s equilibrium condition. An explanation
of the Schardt scheme for stability analysis (1994), which follows the strategy derived by
Vlasov (1961) for thin-walled members with no cross section distortion, is presented. In
order to apply the traditional stability procedures (Thompson and Hunt 1973) to the
buckling and post-buckling analysis of thin-walled cross sections under compression and
bending, a consistent formulation based on the concept of total potential energy and on the
Lagrange description for geometrically non-linear analysis, accounting only on the
membrane longitudinal and shear deformations since it is based on the Schardt’s
assumptions for the establishment of the modes of deformation, is developed. The
limitations of the Schardt’s formulation for stability analysis (Schardt 1994) are revealed,
since it generates much fewer non-linear terms than the energy formulation. Then, an
introductory application to the stability analysis of open or closed cross section columns is
performed, exploring into some extent the interaction of the orthogonal modes of
deformation and drawing some conclusions from the observation of the Hessian matrix,

namely the fact that the stability analysis shall be made by withdrawing the line and
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column related to the axial extension mode. This study considers the commonly used one
half-wave sinusoidal trial functions for the modal amplitudes, in the context of the
Rayleigh-Ritz method.

Chapter 3 presents the numerical strategies to derive the buckling and post-
buckling behaviour of thin-walled members, in the context of the Rayleigh-Ritz method.
The first part, related to the discretization of the TPE of the member, presents a natural and
sequential procedure to derive the coordinate functions for each modal amplitude function,
by emanating them from the relevant modal boundary conditions. Adopting, for each mode
of deformation, polynomials as coordinate functions, the first coordinate function is
derived from an algebraic system composed by the boundary conditions, which alone
would render a homogeneous system with little numerical interest, and by a normalization
rule. This later condition provides the non-homogeneous condition that enables a non-
trivial solution. The following coordinate function for the same mode of deformation is
then generated from the same equations system used to calculate the first coordinate
function, to which an ortogonalization condition, between the coordinate function being
calculated and the previous polynomial, already defined, is added. For the third coordinate
function the system that generates it is composed, naturally, by the same system and by
two additional rules, each one imposing the orthogonality between the third coordinate
function and each of the two previously calculated polynomials. The scheme now proceeds
calculating as many coordinate functions as whished, and a reference is made about the
advantages of adopting the polynomial coordinate functions when compared to the usual
adoption of sinusoidal functions. In order to accelerate the calculus involved and to save
computer resources, a matrix scheme to compute directly the discrete TPE function,
adopting the polynomials previously derived as trial functions, is developed.

The second part of chapter 3 consists on an explanation of the numerical techniques
to perform buckling and post-buckling analysis of perfect members, thus enabling a full

characterization of the member’s behaviour without the need of making resource to
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member’s imperfections that would destroy the bifurcational behaviour of the structural
member’s equilibrium system. The proposed set of numerical techniques uses fewer
assumptions and can be viewed as a simplification, as a numerical interpretation or as an
updating of the traditional stability techniques (Thompson and Hunt 1973 and 1984, Hunt
1981) to the use of the today’s computer capacities and to the advanced symbolic
programming software MATHEMATICA (Wolfram 2003), dispensing the elimination of the
passive coordinates, the use of perturbation methods and the introduction of imperfections
to the structural member. From this point forward, these techniques will be used for the
discrete rendering and stability analysis of the thin-walled prismatic members.

Chapter 4 applies the numerical techniques described in Chapter 3 to some
preliminary examples, using the energy formulation for the traditional GBT theory,
previously presented in Chapter 2.

Chapter 5 extends the energy formulation to its general form and derives additional
modes of deformation in order to compute all terms of the internal strain energy. Three
additional types of modes of deformation are established, each one associated with the
withdrawal of three fundamental Schardt’s assumptions: the linear warping between main
nodes, the null membrane shear deformations for open sections or, for closed sections, the
constant membrane shear flow around the closed cell, and the transversal inextensibility of
the plates. By doing this, it is intended to enlarge the range of application of GBT, enabling
this theory to model a wider range of phenomena, and also to unify the analysis of open
and closed cross sections. Instead of the force method to compute the transversal modal
bending moments, the present scheme adopts the displacements method, which is strictly
needed for the establishment of the transversal extension modes of deformation. The
orthogonalization procedure needs little adaptation to embrace the additional modes of
deformation and highlights the fact that the enlarged GBT scheme contains the traditional
GBT formulation. It is important to point out that the present methodology unifies the

analysis of open and closed sections, thus formulation a wholly general GBT theory, and



28 CHAPTER 1

allows the full description of the stress state at any point of the member, which was not
possible in the classical formulation — for example, some attempts to determine the
transversal membrane stresses and the shear stresses in open sections for the classical GBT
theory can be found in Miosga (1976) and Schardt (1983). The concepts just presented are
then validated by solving two illustrative examples — the post-buckling analyses of a
rectangular hollow section column and a channel column — and by comparing the
correspondent results against alternative independent solutions obtained from FEM
analyses.

Chapter 6 contains the generalization of the extended GBT formulation, previously
presented in Chapter 5, to the analysis of a general cross section and is illustrated here,
without loss of generality, by the GBT analysis of the I-section, the rectangular two cells
section and of the reinforced flange beam cross section — the presentation of these
examples, by this order, pretends to illustrate the way the procedure was derived. The main
difference between the formulation presented here and the previous attempts for the GBT
analysis of general cross sections (Moller 1982, Morschardt 1990 and Haakh 2004) is that
in the present thesis the extended GBT scheme presented in Chapter 5 is used with little
adaptation for the analysis of wholly general cross sections made by flat folded plates, thus
keeping the generality of the extended GBT theory: it is required only the combining of the
membrane shear deformations patterns associated with the main plates with the traditional
warping modes to implement the basic warping and plate shear modes of deformation at
once, generating more modes of deformation than the other GBT formulations that were
applicable to open branched sections only. The present procedure is applicable to any cross
section, not only to open branched ones, and explores completely the ability of the
displacements method to render compatible the relative displacements at the folding lines
of the cross section, needed to restore the cross section’s continuity, in the sense that, for
all mode types except the one related to the transverse extension of the plates, the scheme

requires only the computing of the translations of the main nodes of the cross section



INTRODUCTION 29

(nodes related to edge or folding lines), which are the input data to the displacements
method problem, which, by itself and from these translations, computes the rotations at the
folding lines, needing no further adaptation in order to accommodate branching nodes.
Moreover, the formulation of the modes related to plate bending, inner nodes warping and
transverse extension of the plates needs no adaptation for the analysis of general cross
sections. Once again, several illustrative examples are presented, namely an I-section
member under compression or constant major axis bending moment, a two-cells
rectangular cross section column and two hollow-flange beam section members under
uniform major axis bending moment, being the critical behaviour of each example
validated against Finite Strip Method analyses (Schafer 2004). All in all, this formulation
derives directly from the extended GBT theory presented in Chapter 5, so it makes no
distinction between open or closed sections and is appropriate to analyse general cross
sections, showing branching and (but not necessarily) closed cells.

Chapter 7 draws the thesis to a conclusion by summarizing the implications of the

findings and remarking on possible extensions to the research presented.
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2 — POST-BUCKLING FORMULATION FOR THE CLASSICAL GBT

THEORY

2.1 — Introduction

In this chapter the basic statements of GBT are addressed. The first part consists of
a detailed description of the GBT scheme, based on Schardt’s procedures for the cross
section analysis (Schardt 1989), comprehending the general assumptions of the method,
the establishment of the basic modes of deformation, namely the warping, the plate
bending and the closed cell distortional modes of deformation. Then, the analysis proceeds
to the establishment of the linear homogeneous equilibrium conditions for the structural
member and, based on this equilibrium system, to the orthogonalization procedure. This
orthogonalization procedure linearly combines the basic modes of deformation and forms a
new set of modes of deformation, equivalent to the basic modes in terms of enabling the
same results — stresses and displacements — for the analysis of the structural member
submitted to any general loading. The new set of modes of deformation, which will be
used in the global analysis of the member since it introduces several simplifications into
the member’s equilibrium system, contains two main groups of modes of deformation: the
distortional modes and the rigid-body modes. The distortional modes imply that the cross
section distorts when the member is loaded, thus the classical Vlasov’s theory (Vlasov
1961) is no longer applicable, while the rigid-body modes imply no cross section distortion
and are equivalent to the Vlasov’s axial elongation, major and minor axis bendings and
shear centre torsion — hence, GBT includes the classical theory for thin-walled prismatic
members, enlarging it to the analysis of cross section distortion.

Subsequently, in order to apply GBT to the stability analysis of thin-walled steel

members, the procedure developed by Schardt (1994), based on Vlasov’s geometrically
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non-linear theory, is presented. This theory provides precise results for the stability
analysis of thin-walled open section members and was widely used by several authors for
the stability analysis of open sections only, under axial compression or uniform major axis
bending (Schardt 1994, Davies 1998), but does not generate sufficient information for
post-buckling analysis, namely because it does not contain third order terms in the
equilibrium system. Therefore, a new methodology for post-buckling analysis is needed.

In order to apply the traditional stability procedures (Thompson and Hunt 1973) to
the post-buckling analysis of prismatic thin-walled open or closed cross section members
under a general loading, a consistent energy formulation, based on the Lagrange
formulation for geometrically non-linear analysis and accounting only for the membrane
longitudinal and shear deformations, since it is based on the Schardt’s GBT formulation, is
then developed. In contrast to Miosga’s formulation for buckling and post-buckling
analysis (Miosga 1976), the present energy formulation does not consider the effects of any
stress calculated by partial equilibrium, so that the conjugacy between stresses and strains
is kept, and is based on the Total Potential Energy concept. Finally, an introductory
application to the stability analysis of an open and a closed cross section columns is
presented, showing the relevant mathematical aspects for stability analysis of open and
closed cross section members like, for example, the establishment of the generalized non-
linear eigenvalue problem. This application considers the commonly used one half-wave
sinusoidal trial functions for the modal amplitudes with the exception of the first mode of
deformation, the axial elongation, which needs a special treatment in the GBT scheme, as

stated in Schardt (1989).

2.2 - Basic concepts of GBT: a brief overview

2.2.1 The GBT scheme

As already stated in the introductory chapter, the whole GBT concept is based on
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the characterization of the response of a prismatic thin-walled member as a linear
combination of pre-established cross sectional deformation patterns, called modes of
deformation. A typical thin walled cross section is represented in Fig. 2.1-a). To clarify the
establishment of a warping mode of deformation, with reference to the generic cross-
section of Fig. 2.1-a) and an infinitesimal slice of length dx, an overview of the general
procedure for the warping modes — the first type of mode to be derived (Schardt, 1965) — is

briefly presented as follows:

e

bl .
F N O e —— initial configuration i+2
~ —-—-- intermediate configuration
N final configuration
a) infinitesimal b) typical configuration for a warping mode of
slice of a typical deformation
thin walled
section
Fig. 2.1 — Generic thin-walled cross-section member
1) impose, to each main node in succession, a comprehensive set of linearly

independent unitary warping displacement patterns along the cross-section

nodal lines, see Fig. 2.1-b), assuming that the distortion of each plate is zero.

This displacement will generate some discontinuities at section x+dx, along the

folding lines, as it can be seen for the intermediate configuration of Fig. 2.1-b). These
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discontinuity displacements must become compatible, so:

iii)

using only transversal bending displacements, render compatible the
discontinuity displacements at the folding lines between any two consecutive
plates, assuming that the connections between the folding plates are hinged — in
this step only the nodal translations are computed;

assuming the transversal displacements of the nodes computed in (ii) as
prescribed displacements along the cross section, determine the rotations of the
nodes that render compatible the rotation discontinuities between the plates,

making resource to a force method formulation.

Only in step iii) a constitutive relation is used and only at this step all relevant

modal displacements and transverse bending moments become fully determined. Next, the

analysis proceeds as follows:

iv)

Vi)

vii)

determine the generalized geometrical cross section properties needed for the
orthogonalization procedure of the modes of deformation;

compute the resulting cross-sectional stresses and deformations for each
orthogonalized mode of deformation, and calculate all generalized geometrical
properties;

superimpose the relevant results for all modes of deformation, each mode &
multiplied by an unknown amplitude function “4 that only depends on the
longitudinal coordinate x;

use the global equilibrium conditions and the appropriate numerical techniques

to calculate the unknown amplitude functions.

This procedure constitutes the basis of any GBT analysis and is applied also for the
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establishment of other types of modes of deformation — for full details see Schardt (1989).
Naturally, the establishment of the unit longitudinal displacement pattern is performed by
introducing longitudinal cuts between the plates, along each folding line, in order to allow
the longitudinal deformations. This leads to some non-admissible displacements that
destroy the member’s continuity along the cross-section perimeter at x + dx , thus requiring
the application of a set of forces and moments along the cross section to reinstate
compatibility. In the classic formulation, GBT calculates these forces and moments from
the discontinuity displacements and appropriate constitutive relations by using the force
method (Schardt, 1989). The scheme presented above was derived for the warping modes
of deformation, but the establishment of the remaining types of modes follows a similar
procedure.

It is worth noting that steps iv) to vi) are meant to simplify the problem, ease the
quest for solutions and relate back to the classical rigid body modes of beam theory (axial
elongation, bending and torsion): the chosen modes of deformation are transformed into a
new and equivalent set of modes of deformation using a reversible linear transformation
(Noble and Daniel, 1998) that render orthogonal some matrices of the linear system of

equilibrium equations.

2.2.2. General assumptions

A typical thin walled cross section is represented in Fig. 2.2 and is composed of npp
main walls of longitudinally constant thickness #,, and width b, ,., rigidly connected at
their end nodes. At the present stage it will be considered that branching along the cross
section does not occur — branched sections will be analysed in Chapter 6. A main node
(from the German ‘“Hauptknot”) is defined as any point of the cross section that: 1)
connects two plates with different inclination angle, or ii) connects three or more plates
(for branched sections only — see Chapter 6), or iii) corresponds to a point at a free edge of

a plate. A main plate is thus any plate between two consecutive main nodes. In addition to
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the main nodes there is another type of nodes, the inner nodes (in German called
“Nebenknoten”), which are points freely defined by the user inside the plate’s width and
that will be associated with specific modes of deformation. It is further assumed that two

consecutive main walls in non-branched sections make a nonzero continuity angle 4¢;,, so
that the number of principal nodes is n,, =n,, + 1 for an open section, and n,, =n,, for

a closed cell. Following Schardt (1989), and with reference to Fig. 2.2, two coordinate

systems are defined: (i) a local coordinate system 7, s, x for each wall i and (ii) a global

coordinate system, x y z with its origin on node 1. The displacements associated with the

global and the local axes are defined in Table 2.1 and Fig. 2.3.

Fig. 2.2 — The cross section dimensions and the coordinate systems
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Fig. 2.3 — The relevant displacements for a generic plate

Table 2.1 — Definition of the relevant unitary displacements and transversal
bending moments for mode of deformation k

for wall i
General . initial end
Axes : for node i chord
notation node node
X u U; U beg U end
Displacements y v Vi
in global axes z w W
Displacements s fs Ssibeg Ssiend
in local axes r f Sirbeg Siend
transversal
: 9 G 3. 4
rotation i,beg iend i,chord
Transverse
bending my M, beg M, i end
moment

In the GBT analysis, based on the concept of modes of deformation, it is supposed

that the relevant displacements are given by (see Fig. 2.3):
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Fes)=> 1 (s)x *a(x) (2.1, a-e)

where ‘u(s), “f.(s), *f(s), *9(s) and *m(s) denote, respectively, the warping
displacement, the displacement along the perimeter of the plate, the displacement normal
to the plate, the rotation and the transverse bending moment functions — defined along the
whole cross section perimeter — for the mode of deformation k, and “4 (x)=*4 is the

corresponding modal amplitude function, nyp being the total number of modes of
deformation. This definition of the displacements constitutes one of the crucial
characteristics of GBT and implies no loss of generality for the definition of the
displacements and stresses as long as a proper set of functions for the unitary
displacements along the cross section and for the amplitudes of the modes are provided. In
paragraph 2.2.3.1 it will be demonstrated that the amplitude function for the warping
displacements is the first derivative of the modal amplitude function for any type of mode.

The following general assumptions are considered:

1) the cross section is considered constant along the member’s longitudinal axis
Ox;
i1) the material follows Hooke’s law for isotropic materials;

iii) since the plates are thin, i.e., their thickness is small when compared to the
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other dimensions of the plate, the Kirchoff’s thin plates assumption is
considered, and thus the strains in the xOs plane may be split into bending and

membrane parts (Fung, 1965):

M B
E,. =€, +€X

e, =" +&’ (2.2, a-c)
y=r"+y".
v) the von Karman hypotheses for thin plates are adopted, with a small

adjustment: the assumption of negligible shear displacements shall not be
considered, due to the fact that, in cold formed prismatic elements, the plate’s
transversal width » may be much smaller than the longitudinal length L and so
the non-linear terms related to the displacements along the plate’s plane may
not be negligible. It will be considered instead that, in any strain-displacement
relation, the higher powers of the derivatives of u and f; are neglected only if
lower powers of the same terms are already present in that expression; so, in
comparison to the usual von Kérmén strain tensor for thin plates, some more
terms of the complete Green’s strain tensor must be added — this strategy was
already used by Benito and Sridharan (1984-85) and will be relevant for the

non-linear energy formulation.

The present GBT formulation assumes also the following assumptions (Schardt 1989)

(later relaxed in Chapter 5), namely:

V) neg

ofs

os

ligible membrane transverse strain:

=~ 0; (23)

vi-a) negligible membrane shear distortion for open cross sections:
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- 0; 24
Vs = s T oy (2.4)

vi-b) constant shear flow around a closed cell, for closed sections:

T Xt= Gt(a—u +%j =constant (2.5)

0s Ox

vii)  linear warping displacements between main nodes, i.e., the function * u(s) is linear

between any two main nodes, for any mode k.

From the above hypothesis the strain-displacement relations are obtained, which are

shown here for linear analysis: the parts related to bending effects are:

S
SB =_3 — —r k kA”
: P kZ f
_82 yp .
gl =-5 8s{ = Z—r "fra (2.6, a-c)
k=1
_Of :
B =_2% =y -2r*fta’,
Ve . ; f

while for the membrane effects, for open or closed sections:

ou
el === *uty", 2.7
= 2 (2.7)

and for closed sections only also:

w_ Ou Of Blr. i Vi,
= — —A: A . 2.
Vo P + Ay kzzl( u+fs) (2.8)

From the above expressions the elasticity relations can be derived. For the bending

effects:
ol = I—E;f (gf +,ugf)=]_Eﬂ2 ﬁ—E(ifiA"+y ’f’A)
ol = I—E;f (gf +,ugf)= T~ jzwj:—E(ifiA+y ’f’A”) (2.9, a-c)
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2 =Gyt =-2GY. 57 4,
i=1

and for membrane effects (equation (2.10 b) holds only for closed cross section members):

nyp

ol =Ee' =E) 'u'd" (2.10, a-b)
i=1

vp

o =GyM =G (lur'r) .
i=1

2.2.3. The establishment of the basic modes of deformation

2.2.3.1. The warping mode

In this section, the implementation of the basic modes of deformation associated
with the longitudinal warping displacements is presented, following closely the statements
of Schardt (1989). The warping modes were the first modes to be established (Schardt
1966) and constitute the basis of all GBT theory. Fig. 2.4 presents a transversal slice of
length dx, at an arbitrary position x, that belongs to a typical thin-walled prismatic member.
There, it is represented the imposition of a unitary longitudinal displacement at node i,
placed at the folding line that connects plates p and p+1, for the establishment of mode of
deformation £, and it becomes evident that some discontinuities occurs along the cross
section at x+dx. Since it is supposed that along any plate the linear membrane distortion is
null for any basic warping mode, the displacements of the plates p and p+1/ in their own

plane can be completely defined. Denoting the relevant displacements for mode & by:
“fi(xs)= Y (s)x *A(x) (2.11, a-b)
ku(x,s): ku(s)x kU(x),

and noting that “4(x) and *U(x) — the amplitude functions for mode k associated with

cross section displacements and longitudinal displacements, respectively — remain until

now unrelated, the above definition of the displacements is similar to the one used by
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Vlasov for the theory of closed cells (Vlasov 1961). The condition of zero membrane
distortion, derived also from the assumption of Vlasov for open sections (Vlasov 1961),

leads to:

_of, ou_,_of_ ou

—, (2.12)
ox Os ox os

7/)55‘

this relation being illustrated in Fig. 2.5. Applying this relation to the plates p and p+1

yields:
k k _k
i)  forplatep: “u = 0 ul Mgy~ ey, xFU(x) = ika(x) (2.13)
rooos | b, b,
k k _k
ii) for plate p+1: “u = 0 u| = Mendprt ™ Poegpet k U(x)= —kaU(x).
p+ 0s Pl bp+1 p+l

(2.14)
Substituting these expressions in (2.12) and comparing the resulting expression

with (2.11, a-b), and considering the assumption of null transversal extensibility — for any

plate and for any warping mode k it implies that * £, (s,x) is constant along the perimeter

direction — the perimeter displacements * £, can be computed as follows:

1) for platep: kfv, P (S’x):kfs,beg,p kA (x)zkfs,end, P kA (X) = _bi kA (X), (215)
P
i) for plate p1: £ (5.5 g "A (1 o) A00) = =) (216
p+l

and rendering equal the coefficients of x in both members of expression (2.12) yields:
“A(x)="U(x), (2.17)

hence justifying expression (2-a). Note that 1) this simple relation holds for any type of

mode of deformation for open or closed cross sections as it will be seen below, ii) is one of

the most relevant contributions of Schardt (1966) and iii) constitutes a great advance in
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relation to the classical thin-walled beam theory of Vlasov (1961).

~~~~~~~~~~~~~~~~~~~ initial configuration

..... —--—-- intermediate configuration

Fig. 2.4 — Imposing a unitary warping displacement at node i

| bp |
| |
ku,:]
<
kI/l i— 1
fe—
k
Jsbeg —|
k
f:v,end
Fig. 2.5 — The in-plane displacements for plate p, considering a null membrane

distortion

At the present stage only the displacements at x+dx along the cross section plane
need to be rendered compatible, given the configuration of the plates shown in Fig. 2.6 — in
this figure the deformed shapes of plates p and p+/ are represented by bold lines. The
translation displacements at the edge nodes of the plates are rendered compatible through
the process illustrated in Fig. 2.7, allowing relative rotations between consecutive plates to

occur. The resulting displacements at the edges of the main plates, for plates near node i, in
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the present case for plates p-1 to p+2, are given by the general following formulas for any
plate ¢ that result from the geometrical compatible rendering procedure (Schardt 1989),

assuming that the plates numbering is as show in Fig. 2.4:

k k
f;,q _ f;,q—]

k
= 2.18, a-b
Jreeq tan A, sinAa, ( )
k k
kf — f;',q+1 _ f;q
@' sinda,,, tanda,,,’
where
da,=a,-a,,, (2.19)
for
f 1
Jop=—"7 (2.20, a-b)
’ bp
1
k
fs, +1 =T
! bp+1
thus obtaining:
1
k
f‘end,p—] == .
b,sinAa,
1
k
fbegp =T
b, tan A,
1 1
k
Senap = : + (2.21, a-f)
b,,simAa,, b, tanda,,,
1 1
o = Aa b sn A
. tanda, b sinda,
1
k g
Jort.pe b, tanda,,,
1
k
Joegprr == T
©r b,. sinAea,,,

where
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Aap =a,-a,,

-a (2.22, a-c)

Aap+1 = ap+1 4

Aap+2 = ap+2 _ap+1

Note that, until now, the compatible rendering procedure referred only to the main
plates, allowing rotation inconsistencies between them to occur, and, from now on, no
more longitudinal displacements will occur along the transversal slice. In order to
eliminate the relative rotations between consecutive plates the structural model shown in
Fig. 2.8, a continuous beam model related to the secondary plates connecting any two
consecutive secondary plates by a hinge, which makes resource to the traditional folded
plate theory (Born 1954), is adopted in order to apply the traditional force method (Ghali
and Neville 1997) to the transversal slice which has the form presented in Fig. 2.7 — note
that the inner nodes, and the free edge nodes as well, have null translation displacements
normal to the plates. Associated with each added hinge, which was introduced in all nodes
of the cross section with the exception of free edge nodes, two equal and opposite
transverse bending moments — the connecting moments — acting on either side of the hinge

become now the static redundant forces of the problem.

Fig. 2.6 — Rendering compatible the translation inconsistent displacements
along the cross section plane
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Fig. 2.7 — The transversal slice shape after rendering compatible the translations

bp+1,1
bp+],2

bp+2,1

bp+2,2

@D g
node r-1

node r_—
node r+1_—

Fig. 2.8 — The structural model to render compatible the relative rotations at the
plates edges, related to the secondary plates

Thus, from this point forward, a global numbering to all nodes and plates can be

adopted and the flexibility matrix A will have the following shape:

columni—/ column i columni + / columni+2
b. b, b,
linei—1 2y —
6K, , 6K, 6K, ,
line i —bj = —bj = +—bj b,
6K, , 6K, , 6K, 6K,
b b, b, b.
line i + 1 J Lyt L
6Kj 6Kj 6Kj+, 6KJ,+]
b, b. b.
linei+2 fazl JH j+2
6Kj+1 6Kj+] 6Kj+2

(2.23)
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where each line or column corresponds to a specific introduced hinge: hinge i is placed
between secondary plates j-/ and j. For any secondary plate j, K; corresponds to the
transversal bending stiffness coefficient and is given by the usual formula:
K =t (2.24)
T(i-w)
The i-line of the matrix of the displacement inconsistencies 4.4 related to mode of

deformation £ is given by:

Ci

kAlgi:klg hord , j _klgchord,j—l (225)
where

k k
_ fend,j_fbeg,j

chord,j b

(2.26, a-b)

J

k k
klg _ fend,j—[ - fbeg,j—]
chord,j—1 — b 5
-1

and the connecting moments for each introduced hinge are computed by solving the force
method equation:

Ad-m;,=48. (2.27)

In practice, the transverse bending moments can be determined all at once by
matching, in matrix 4.9, the i-line to a specific hinge and the k-column to a mode of
deformation. Finally, the unitary modal displacements become fully determined through

the following expressions, for a general secondary plate i (Schardt 1989):
. . . k k ui end ui beg
1) warping displacement (along Ox) : u(s) ='u, +—— "4, (2.28)

i b

1

ii)  normal displacement (along Or) : * f(s)= *f,,., [1 —iJ#‘ © ond bi +

i

2 3 3
+m, b s s o, L . (2.29)
e\ 3K 7 2K 6bK, el 6K 6b K,



48 CHAPTER 2

iiiy  perimeter displacement (along Os) : * £.(s)= “f. e =1\ s ona - (2.30)

s,i,beg

It is worth referring that expression (2.28) is computed from the assumption of
linear longitudinal displacements along a plate, expression (2.29) is derived from the
classical equation of the elastica (Dias da Silva 2004) and the perimeter displacements of

expression (2.30), due to assumption v) of chapter 2.2.2, remain constant along the plate.

2.2.3.2. The plate bending mode

The plate bending modes of deformation were first introduced by Miosga (1976)
and consist in imposing a unitary displacement to each secondary or free edge node of the
cross section, perpendicularly to the plate where it is placed, and no displacements along
the longitudinal direction or along the perimeter. These modes are intended to model local
plate buckling patterns which occur frequently in short thin-walled members under
compression and/or bending. Their implementation is achieved through a similar procedure
of the one used to render compatible the relative rotations of the previous paragraph — note
that, for the plate bending modes, only the relative rotations that are formed at the edges of
the plates need to become zero. With reference to the cross section model of Fig. 2.8
shown above, let’s suppose, without loss of generality, that plate p+2 is an edge plate.
Related to this plate, with the nodal discretization presented in Fig. 2.8, the plate bending
modes of deformation & — associated with the inner node » — and k+/ — associated with the

free edge node r+1 — have the form presented in Fig. 2.9.
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mode k — for an inner node mode k+1 — for a free edge node

Fig. 2.9 — The establishment of the plate bending modes for wall p+2

Now the establishment of the force method problem, similar to expression (2.27),
requires only the computation of vector 4.¢ for each mode of deformation. For mode £,
the only non-zero terms in vector 4.9 are:

1

‘AY._, = (2.31, a-b)
bp+2,1

‘4 =— 1
bp+2,2 bp+2,1

while for mode £+1 the only non-zero term is:
k+1 1
A9 = (2.32)

bp+2,2

Then, the unitary cross section displacements can be entirely computed using expression

(2.29), the remaining displacements being identically equal to zero.

2.2.3.3. The distortional mode for closed cells
For the modes of deformation presented above, the traditional Vlasov’s assumption
of null membrane shear distortions around the cross section (Vlasov 1961), applied to open
section members, was considered. However, for closed cells, in addition to the warping
and plate bending modes, following the classical theory of torsion of closed sections
developed by von Karman & Christensen (1944), it is currently assumed (Kollbriinner &

Basler 1966) that the membrane shear flow, given by
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Fy, =1, xt, (2.33)
for a generic point 7 of the cross section, is constant along the cross section perimeter, i.e.,
for any two distinct points of a closed cell 7; and r», it is considered that

FSH,r1 = FSH,rZ < TrI x trl = Trz x tr_, H (234)

and the shear deformations and stresses, instead of being negligible, will follow an
elasticity law. In fact, looking at one of the first works of Schardt (1970), the analysis of a
closed cell without the consideration of membrane shear deformations leads to a set of
modes of deformation where torsion is not present, and in some support conditions and/or
load cases the analysis of the closed cell member may not be accurate. So, an additional
mode of deformation shall be added in order to give the dimension of membrane distortion
to the equilibrium system, and the generic cinematic relation for the membrane distortion is

considered:

v Ou Of,
= +—=, 2.35
4 0s Ox ( )

Schardt (1989) refers three ways of considering the shear flow effect in closed

cells:

1) the shear flow is constant and no warping displacements occur along the closed
cell, the displacements f, in each wall being inversely proportional to the
wall’s thickness, and the distortion of the cross section by transversal bending is
allowed;

i) the cross section rotates as a rigid body, the displacement of a generic point

being inversely proportional to the distance of that point to the shear centre; the
shear centre, which may be not constant, is determined by imposing that the
shear forces cause only a torsional moment;

1i1) a constant shear flow occurs along the cross section but a warping

displacements pattern along the cross section is imposed in order to avoid cross
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section deformation caused transversal bending.

All the methods model the shear distortion dimension of the problem in an
equivalent way (Schardt), but only the first one will be used in the present work, regarding
the GBT scheme’s elegance and ease — it is the only procedure that does not require the

direct computation of the shear centre. So, and additional mode of deformation is created,

here denoted by I, to which corresponds the amplitude function 'V . During the

establishment of this mode, no longitudinal displacements occur along the cross section
and the shear distortions are due only to the displacements ' f,. Hence a relation between
the shear flow 7-¢ and these displacements can be found, and considering a reference
thickness #°, which can be the thickness of any wall of the closed cell for which is

supposed that the shear distortion is unitary, the perimeter displacement for any wall i

comes equal to:
o=l (2.36)

this displacement being constant along the entire width of the main wall. For a main plate i

having a variation of thickness along the perimeter direction, as shown in Fig. 2.10, the

displacement ' £, . is computed considering an equivalent thickness given by

S,

t, = ti,I 'bi,I +ti,2 'bi,z +ti,3 'bi,s . (2.37)
” bi,] + bi,Z + bi,3
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dx

Fig. 2.10 — A wall with a transversal variation of the thickness

After finding the perimeter displacements for all the main walls, the displacements
! Sreg @nd 'f., for any main plate are determined using the general formulas (2.18, a-b)
shown in paragraph 2.2.3.1, and the force method problem can now be established, to

determine the unitary transversal bending moments for mode /, in a similar way to the one

used in the modes types presented above — see expression (2.27).

2.2.4. The GBT homogeneous equilibrium equations system
The system of equilibrium equations for a prismatic thin-walled member with

length L is determined by equalizing the virtual work of the internal forces W; and the

virtual work of the exterior loading W,, when the member is submitted to a set of

cinematically compatible virtual displacements:

oW, =ow,. (2.38)
Firstly, attention will be drawn to the work of the internal forces, in order to derive the
homogeneous equilibrium system — this is the strategy followed by Schardt (1989), which
is summarized in the following. Subsequently, the contribution of the external loading will
be analysed.

The work done by the internal forces is:
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/
ow,=[|[(o, ¢, +0, 52, +7, 57, )dA dx. (2.39)
04

Noting that each part of the above expression can be split in two, one associated with the
membrane effects and the other with the bending effects, the general expression will
contain six parts. However, due to the assumptions exposed in paragraph 2.2.2, for open
section members only four parts are not zero, while for closed sections the number of non-

zero parts increases to five, yielding:

1
1) for open sections: oW, =II " 5e" +o’ 5e’ +oM sV +
() A X X X X s s
1* part 2™ part =
+o? 8 +c" oyM + 18 5y” |dA dx ; (2.40)
3" part =0 4™ part
]
ii)  for closed cells: 5w, =-” o 6e" +0° 5" +oM e +
0| — ——
1° part 2" part =0
+0” 5’ +c" Sy + 1 5y” |dA dx ; (2.41)
3" part 4™ part 5" part

Applying the elasticity and strain-displacement relations presented in paragraph

2.2.2, the following equilibrium expression is obtained:
SW. = I (*Cia""—*D 4"+ *B'4)5* Adx =0. (2.42)
i 0

Because the above expression must be valid whatever the value of &V, the following

equilibrium system is obtained, presented in a matrix form:

CA"-DA"+BA=0. (2.43)
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It is a homogeneous system of fourth order differential equations, and the terms of the

matrices are computed using the following formulas:

1) for matrix C:
o=t 4+t (2.44)

koM = J.Et ‘u *uds (2.45)

B:IE(%)WNS (2.46)

i1) for matrix D:

ii-1) for open section members: *D="D, — (isz +’“D2) (2.47)

ii-2) for closed cells: *D=*D,+*D, —(*D, +"D, ) (2.48)
where:

“p, = GTf 5 s (2.49)

ik Et u
D, _13(1_2) i 5 ds (2.50)

; Et u
lkD d 251
" j1211 w’ iff ’ (2.51)

“D, = [G-r-(lu+f, (i, ) ds (2.52)
1) for matrix B:

f  ds (2.53)

Note that all terms may be computed as long as the unitary displacement functions
are known and the above formulas are entirely general. If these terms are calculated using

the unitary modal displacements presented above — denoted by basic modes of deformation
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— in general these matrices will be full. It is worth referring that the equilibrium condition
system is very similar to the one obtained through the Vlasov’s theory (Vlasov 1961),
differing only in the additional part associated with the (zero derivative) amplitude modal
functions “¥ — this is due to the assumption of the Vlasov’s theory related to the non-

distortion of the cross section.

2.2.5. The orthogonalization procedure

In the classical Vlasov’s theory (Vlasov 1961), the global equilibrium matrices
were in general full, preventing the uncoupling of the system of equations. In order to
uncouple the equations, the determination of the geometrical cross section properties
should refer to the principal axes and to the shear centre of the cross section. This
corresponds to the diagonalization of the equilibrium system, is enabled by an appropriate
eigenproblem and corresponds to the orthogonalization procedure in GBT.

So, having defined the equilibrium system, the second crucial concept in a GBT
analysis of a thin walled member is the orthogonalization of the modes of deformation.
Through this process it is intended, as much as possible, to render diagonal the linear
equilibrium system matrices by means of a reversible linear transformation applied to the
displacements and stress resultants of the basic modes of deformation. In other words, a
non-singular nyp-dimensional square matrix T is required which combines linearly the
displacements and stress resultants associated with the modes of deformation in such a way
that the matrices C, D and B (see expressions 2.44 to 2.53 above) become diagonal or, at
least, with some diagonal blocks. From the mathematical point of view it consists merely
in a change of the coordinate system for the n,,p-dimensional vector space generated by the
basic modes of deformation, and any equilibrium analysis for the prismatic member shall
not be affected by this transformation. Furthermore, it is obvious that the analysis becomes
simpler, enables a better physical explanation of the phenomena and allows a better

definition of the boundary conditions if it makes resource to the orthogonal modes of
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deformation.

In general, by the orthogonalization procedure, it is not possible to render diagonal
all three matrices of the linear equilibrium system, but it is possible to render diagonal two
of them and also to diagonalize a block in the remaining one. It must be stressed that the
present goal is just to define a matrix 7 that enables the required modal transformation,
independently of the procedure used to obtain it. Also, regarding the properties of linear
transformations, it is important to point out that if one column of matrix 7 is multiplied by
a non-zero scalar, the resulting matrix still enables a feasible linear transformation. This
property will allow a specific normalization for each resulting mode of deformation. It is
obvious that the matrices of the linear equilibrium system C, D and B are the most
appropriate for the determination of matrix 7, and the procedure proposed by Schardt
(1965 and 1989) uses these matrices, giving the most relevant role to matrix C and
enabling the full diagonalization of matrices C and B. A remark is made in Schardt (1989)
that other options may exist, namely he refers that it can be convenient to start the
orthogonalization scheme by matrices D and B for closed sections, since in closed sections
warping may not be very relevant — this suggestion will not be followed in the present
work.

Thus, in the GBT framework, in order to render diagonal the equilibrium system’s
matrices, the following algebra concept will be used, which states that the
orthogonalization procedure corresponds to the diagonalization of matrices through the
resolution of a generalized eigenproblem (Wilkinson 1965) of the following type:

Ax-ABx=0, (2.54)
the general matrices 4 and B being symmetric and B also positive definite, thus invertible.
For the resolution of the eigenproblem the Jacobi method (Wilkinson1965, Jiang 1996) can

be adopted, and the procedure occurs in three steps:

1) first step — the following n)p-dimensional eigenproblem is solved:
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(B-21C)T=0 (2.55)
where the transformation matrix 7 stores the eigenvectors by columns and can
be initially given by the identity matrix, obtaining nyp eigenvalues “A and nyp

eigenvectors kT,

Ordering the eigenvectors by the increasing values of the corresponding
eigenvalue, a new matrix 7 is formed, through which the new modes of deformation can be

derived, and the equilibrium matrices are then updated as follows:

co1ler (2.56)
DTl DT (2.57)
BTl BT (2.58)

and the actual shape of matrices C and B is, evidentely, diagonal. After this step, it is
noticed that the first eigenvalues “A are zero, the corresponding modes of deformation
being related to the classical Vlasov’s theory, but are not yet explicited as axial elongation,
major and minor axis bending and shear centre’s torsion. The corresponding terms in the
main diagonal of the diagonalized matrix B are zero, so a second orthogonalization can

take place, in the following form, for these modes of deformation:

i1) second step — the following eigenproblem, with dimension 4, is solved:
(p-2C)T=0 (2.59)

where matrices D and C are given by
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e 0]
0 *C 0 0
0 FC 0 0
: 44
C= Q OC (j , Z (2.60)
0 1 :
: 0
0 0 0 0 0 0 1]
B np 2p Bp p 0'
ap 2 Bp Mp g 0
sip 2p ¥p #p o 0
b iIp 2p Sp “p g 0 | 2.60)
0 0 0 0 1 0 0
0 1 :
: 0
L0 0 0 0 0 0 1]

The first four columns of T are ordered according to the increasing value of the
corresponding eigenvalue and replace the corresponding first columns of matrix 7 obtained
in the first orthogonalization step. The matrices C, B and D are updated using expressions
(2.56) to (2.58), matrix B remains unchanged and now the first 4-dimensional main block
in matrix D has only one non-zero term, ““D, which corresponds to the polar moment of
inertia related to the cross section’s shear centre. In matrix C the term **C corresponds
now to the torsional warping of the cross section. Therefore, mode 4 corresponds to the
classical torsion of thin-walled beams and shall be normalized in such a form that for any
point of the cross section one gets:

‘9=1. (2.62)

The first three terms of the main diagonal of matrix D are zero, consequently the first three
modes of deformation are not influenced by torsion and correspond to the traditional

phenomena of axial elongation and major and minor axis bendings — however these modes



POST-BUCKLING FORMULATION FOR THE CLASSICAL GBT THEORY 59

are still mixed and to split them one makes resource to the third orthogonalization step, as

follows:

1i1) third step — the following eigenproblem, with dimension 3, is solved:
(k-2C)T=0 (2.63)

where matrix & is a matrix given in the form:

_”K 12K 13 0 0
A 2,023 0
31 32 33
0
e=| K K K (2.64)
0 0 0 1
: 0
i 0 0 ]_
its (i,k) term being given by:
k. 1 & (i k i k )b 265
K= _ZZ f;,beg,r f?v,beg,r—‘r ﬁ)eg,r ﬁ)eg,r r tr 4 ( ° )

r=I

where 4 is the cross section area.

Matrix & has physical meaning only in the 2" order theory of GBT, corresponding
to the tensor xrpz in the energy formulation presented later, so it will be explained later,
and the displacements f and f; refer to the first three modes of deformation. After
normalization, these three modes of deformation represent the axial elongation and major
and minor axis bendings, and the first three terms of the main diagonal of matrix C
correspond, respectively, to the cross sectional area and major and minor axis moment of
inertia.

After the three-step procedure the sought reversible transformation matrix 7, which
contains the resulting eigenvectors stored in columns, is already obtained and the modal
displacements for the secondary plates (see table 2.1), which can be stored, for each mode

of deformation, as columns of the respective displacement’s matrix, are updated in the
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following way (they shall be updated after each orthogonalization step):

u,,, >y, T and u,, > u,, T

end

-ﬂ)eg - ﬁ:eg T and .f;nd - -f;nd T
-fs,beg - f;',beg T and ft\',end - f‘s,end T (266’ a_e)

9

e — 9

beg

Tad $,,—8,.,T

m, —>m, Tadm ,—>m T

5,beg s, beg s.en send 1 -

All in all, through the orthogonalization procedure it is possible to highlight that
GBT includes the classical Vlasov theory, since the first four modes derived from the
orthogonalization process correspond to the Vlasov’s equilibrium system equations of the
member, giving a traditional significance to the resulting generalized geometrical
properties for these first four modes.

After the orthogonalization procedure the homogeneous equilibrium equations
system shows the following form

CA"-DA"+BA=0 (2.67)
where matrices C and B and the main 4-dimensional block in matrix D are diagonal. If
Schardt’s simplification is adopted (Schardt 1989), neglecting the out-of-diagonal terms in
matrix D for open sections, since they are negligible, then the system (2.67) becomes a set

of uncoupled fourth order differential equations, which can be solved separately.

2.2.6. The generalized loading

Loading is only handled now since logically it refers to the orthogonal modes of
deformation, resulting from the orthogonalization procedure presented just above. Its study
is made in two parts, one related to the loading acting along the cross section plane and the
other related to the loads acting along the longitudinal axis. The existence of loading

implies that the equilibrium system (2.67) will no longer be homogeneous, and this
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corresponds to rendering equal the virtual work of the internal forces and of the external

loading (Schardt 1989), as referred above:
SW, =W, . (2.68)

The virtual work of the external loading SW, is given by (Schardt 1989):

1 n n+l
W, =[S0, 51+ S, 05160, i (2.69)
0 \r=2 r=I
which is equivalent to

oW, = ij.(zn:qm(x)é'k/l(x)kﬁ“ +§1:qx1r(x)5k/l'(x)kurjdx (2.70)

k=1 g \r=2 r=I
where ¢, is the magnitude of the transversal load at node  and “f, , is the displacement
of node r in the cross section’s plane along the direction of ¢,., for mode of deformation k.

The second part of expression (2.70) refers to the longitudinal loading, which is a function
of 6'4', whereas the first part is a function of 6*4. This implies that two distinct
approaches must be implemented, the respective terms for the global equilibrium condition
being derived separately.

For the transversal loading, the modal transversal loading is given by:

()= 0, 5 = g, v, + g 5w ] 2.71)
r=1 r=1

where * denotes the displacement in the direction of for mode k at node r. The
tr,r p qtr)r

last part of (2.71) is equivalent to the former part and is applicable if the load is referred to
the general axes of the cross section, as shown in Fig. 2.11.

For the longitudinal loading the virtual work is given by (Schardt 1989):

/

L pt n+
swi = i(kq; 5kA)dx—Z]: g 5t A (2.72)
0 k=1 k=1

0

where

n+l

‘q.(x)==-q.,(x) "u, . (2.73)



62 CHAPTER 2

The second part of expression (2.72) influences only the boundary conditions and thus has
no direct influence in the equilibrium equation, while the first part belongs to the

equilibrium equation for mode k.

Fig. 2.11 — Transversal loading acting along the cross section’s general axes

2.2.7. The GBT general equilibrium equations system
Finally, the general equilibrium equations system is given by the following
expression, neglecting the out-of-diagonal terms in matrix D:
“CHA" D A+ B A= q(x)+ “q (x). (2.74)
and it is worth defining the following quantities in order to determine the stresses and

internal forces along the member (Schardt 1989):

1) the generalized bimoment is given by, for mode £:
w=-C*4"; (2.75)
i) the normal stresses are given by, for linear analysis:
k k
ka(s,x)=—EM; (2.76)

iii)  the shear stresses are determined by, for each mode of deformation £:

VAR
“r(s)=F —2L—Fr—.

"Cxs) 79
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Expression (2.77) refers to open sections only, since for closed cells the constant
shear flow follows an elasticity law, and is derived by partial equilibrium for an elementary

plate, so shall not be included in the global equilibrium system.

2.2.8. The Schardt’s GBT formulation for stability analysis

The above formulation was derived for linear analysis and thus needs further
improvements in order to perform the stability analysis of thin-walled members, which will
be presented here, following the Vlasov (1961) strategy, based on the concept of deviating
forces. It consists on computing the virtual work of the deviating forces generated by the
longitudinal membrane stresses associated with a displacements shape / to a shape of
virtual displacements k, and the corresponding classical equilibrium expression is given by:

oW, =oW, (2.78)

where W; and W, refer to the work of the internal forces and to the work of the external

loading, respectively (the above expression requires that, for any equilibrium configuration
of a structural member, the external and the internal virtual works are determined for any
cinematically admissible shape of the virtual displacements). By analyzing Figures 2.12
and 2.13, reproduced from Vlasov (1961) (split in two for clearer understanding), recalling
expression (2.76) for the membrane longitudinal stresses in the linear analysis (Schardt

1989), here expressed in terms of the modes of deformation:

Nyp iW iu
o= Z}— E c (2.79)

and because matrix C becomes diagonal after the orthogonalization scheme presented
above, the following deviating forces are obtained:
1) the first term of the deviating force is due to the variation of the longitudinal normal

membrane stress in the plane Osx, for the mode of deformation /
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dx
'q! =ctds—~ot'fldsdx;

(2.80)
i1) the second term of the deviating force is due to the variation of the longitudinal normal
membrane stress in the plane Osx, for the mode of deformation /
‘" = a—Gz‘sin (a, )ds dx ~ a—Gz‘ 'fldsdx .
S Ox ‘ ox =

(2.81)

o, +—=dx

)

1}

L}

II

L}

\ . Jo
\ \

i X
1

)

1

1}

1}

II

)

Fig. 2.12 - Computing the 2™ order terms for the equilibrium condition using
the non-linear Vlasov theory: analysis along the plate’s plane Osx

dx

Fig. 2.13 - Computing the 2nd order terms for the equilibrium condition using
the non-linear Vlasov theory: analysis normal to the plate, along plane Orx
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Adding these two forces and using expression (2.79) the deviating force along
plane Osx becomes
gl =Y - E%t (W a) dsdx | (2.82)
i=1
Applying the same procedures for the plane Orx the following deviating force for mode of

deformation / is obtained

=Y E—t (W a) dsdx . (2.83)

i=1
The work of these deviating forces is determined for a virtual displacements pattern k —
these forces will be multiplied by the displacements that occur in their plane for mode £,

i.e., they are multiplied by:

“f. 5% - forces along the Osx plane; (2.84)

* £ 5% - forces along the Orx plane. (2.85)

By doing this, the following expression is obtained for the virtual work of the deviating

forces:

sw=| j %t(f £ ) ) (St dsd (2.86)
Defining the coefficients « as

lle:jE;—Zt(lfs ffEf)ds (2.87)
the following expression is obtained for the virtual work of the deviating forces:

SW= jf

i=11

il e ) 5" dx . (2.88)

Ms

Ul
~

Noting that the virtual work of the above expression refers to fictitious forces, hence shall
be added to the virtual work of the external loading (Przemieniecki 1968), when it is

transferred to the first member of expression (2.67) its signal is changed; accounting also
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on the definition of generalized bimoment for the mode of deformation i — see expression
(2.75) — the following non-linear equilibrium equation derived by Schardt (1994) is
obtained, for mode of deformation k:

D B A S ke () = 0 (2.89)
i1 =1

Note that the non-linear equilibrium conditions are derived after the orthogonalization
scheme and Schardt neglects the out of diagonal terms in the linear equilibrium matrices,
since he analysed only open sections. Noting that for the usual bifurcational problems it is
supposed that the generalized bimoment ' is constant along the member’s length, so:

wW'=0, (2.90)
and then expression (2.89) reduces to (Schardt 1994):

C*4"" D *4"+'B "A+"anw“ il =0. (2.91)
=1

Finally, this formulation was adapted to the GBT by Schardt to perform buckling
analysis of columns under uniform compression and beams under uniform major axis
bending moment (Schardt 1965, 1970 and 1994). Although this formulation is in most
cases sufficiently accurate for the buckling analysis of open sections under uniform
compression or under uniform bending moment, it becomes incomplete for post-buckling
analysis, even if the usual strategy of accounting only on the geometrical nonlinear effects
provoked by the longitudinal stresses is considered (Schardt 1994, Chajes 1974), due, at
least, to the absence of third order terms. In the following a consistent formulation for
buckling and post-buckling analysis is therefore developed, based on the concept of total
potential energy. It is noted that the stability analysis using expression (2.91) corresponds
to the use of the TPE formulation accounting only for the nonlinear term related to the

tensor k,, for the definition of the internal strain energy, defined in chapter 2.3, thus

taking into account only the nonlinear effects of the longitudinal membrane stresses.
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2.3 — The energy formulation

2.3.1 The strain-displacements relation

. !

Based on the assumptions presented in paragraph 2.1.2 and using ( ) and ( ) to

denote differentiation with respect to s and x, respectively, the bending strain-displacement

relations follow the usual linear formulation and are given by

2 Myp
L Y

' ox’ ) k=1
2 nyp B
gl =—r 0 { =Y -r'f'4 (2.92, a-c)
Os k=1
a2f nyp .
b=-2r =Y -2r'fta.
Ve . ; 'f

For a stability analysis, it is necessary to include the relevant non-linear terms in
the membrane strain-displacement relations. From Fig. 2.14, the longitudinal membrane

strain is given, in general, by:

—_— 2 2 2
giv[ =M= ]+a_u + % + % —1. (293)
A,B, 0x ox Ox
Expanding equation (2.93) in Taylor series and neglecting higher-order terms yields:

2 2
M_a_u i % i % :”MD C i inMD . i Nk
o _6x+2(6x] +2(axj ;{”A+2§[(fsfs+ff)z4 A]}.

(2.94)
Analogously, for closed cross-section members only, from the definition of
membrane shear distortion,
y¥ =<a(B,AC,)-<(B,A,C,), (2.95)

given that
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<(B,AC,)= % rad, (2.96)

and noting that by definition of scalar product of two vectors, A,B, and A,C, , the angle

(B A,C ) may be determined as a function of the displacements of A, B and C, the

membrane shear distortion is given by:

1+ Ou L o/, 19/, + oror
v ox 8 0s ) Ox Ox Os
Vo = 5 arccos - - - - =
1+ ou) + ofs + or ou +| 1+ ofs + of
ox ox ox os os os
(2.97)
Expanding in Taylor series and neglecting higher-order terms leads to:
v Ou Of, gﬂ+6_uau of, 0f, (2.98)

Vs :g 9x o0x 0s 0Oxds ox s

Finally, introducing the assumption of a negligible 1* order transverse membrane strain

s Lo (2.99)
0s

the membrane shear distortion of equation (11) is obtained:

yggza_“Jr%JrﬂﬂJra_“a_”:
- 0s Ox Ox O0s OxO0s
=S ) S S A A 3> A (2.100)

k=1 k=11=1 k=11=1
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u+6—uds+%dx
Os ox

ou

U +—dx 2N f+gds+gdx
% ox 0s Ox
of o
2y fo o,
x’ u f ax X f;+%f; dx fv +7ds+§dx
X

Fig. 2.14— Membrane displacements of the thin plate ds x dx

2.3.2. The constitutive relations

The stress-strain relations are split into bending effects,

ol = y (ef +,ugf):—] _E#Z ﬁ—r(’f A"+ 1 }""A)
of = 1—E;ﬁ (e? +y8f)=%izwj—r(if Ut A7) (2.101, ac)

P =Gy? :—ZGZ rfiq.

i=1

and membrane effects — equation (2.102 b) holds only for closed cross section members:
M M B i LBy ir vipir\ig g
oM = Eg’ :EZ{uA +EZ[(fS if+if If) i JA]} (2.102 a)
i=] =1

yp yp "vp My Myn

M =Gy = G{Z(%#ﬂ)%# SS A Ay i JA} . (2.102b)

i=1 i= j=I i=l j=I
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2.3.3 The internal strain energy

From the classical definition of internal strain energy (ISE),
L

v, [iay s L Lon o Lon o 1o y;;jdAdx, (2.103)
A 2 2 2 2

the bending terms are obtained by introducing equations (2.92, a-c) and (2.101, a-c) into
equation (2.103), yielding:

L L
U[B=ZZ§}[szBzAukAudx+l IéliijiA'kA'dX+

i=1 k=1

”wD”wD nyp nyp L My nyp L
+ o zzjm ‘A4 d xS ! J.”‘DZT’A” ‘ddx+L zzj”‘B "A*Adx,
i=1 k=1 i=1 k=19 i=1 k=1
(2.104)
where
ik ~B Et iy k
= ds
J‘12 1 2 e
ik Gt3i k
D =[=-1"d
3
D, = 12E1t K75 ds (2.105, a-c)
ik Etj,u iy ky
o = [y I T ds

Analogously, the membrane contribution, which includes all non-linear terms, is obtained
by introducing equations (2.94), (2.97) and (2.102, a-b) into equation (2.103), giving:
nyp Mmp L

L
= | *C" 4" 4" dx + Zzi j “D, A" *A'dx+

11k120 i=1 k=14 ¢
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] Ry "yp "yp il ) i ; nyp "yp b - ) ) ‘
+ Wiy A" A ik [P, a4 A dx +
i=1 k=11=1p, i=1 j=1k=17p
] Ny "yp "yp Myp " i ; ] nyp "W) nyp . . ;
+= j’f Ko, ‘A A A A dx+ = j Ky, ‘A" *A A dx +
8 2
i=1 j=1k=11=1p i=1 k=11=1p,
] nyp Myp "vp . ‘ ; ] nyp Mup "mp - ) -
+= [ Mgy A A dx+ =y gy ‘A" A A dx +
2i1k11 17 211j=1k=1L

"MD "y "up up

SIS Wik A e s SIS S [Py A
' L

3
S
=
S
=
S
=
<
S

i=1 j=1 k=1 1=1 i=1 j=1k=11=1T
] "y "mp "D " ‘ ”MD yp "vp yp - ' ;

+ ij iqm joqr ij iqm joqr '

+5 [ Picgy, A" A A dx o+~ zzzzj Koy ‘A" 1A A4 dx +
i=1 j=1k=I7p 1111k111L

"y "mp "up mp

1
2 i:/g

J

_[ljkl o A" IA A" A dx (2.106)
L

=] I=]

where the following coefficients relate to the longitudinal membrane stress

el :jEtiu “uds (1% order term)
“Kior = [Et ("1, 41 s (2.107, a-d)
iijLOS :J-Et k”(ifs jfs"'if jf)ds

Moy = I Ee('f, 410 ) (1, 441 1 s

while the following arise uniquely for closed sections from the membrane shear flow

contribution:

*D, = J.G-t-("d#fs)- (kb't+kfs)ds (1% order term)
gy = J.G 1 (’i’t+’fs )-lf-kfds

My = JG ot (’ft+7s)-lu-ku ds
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o =J'g.t.7.f']'f.("u+’75)ds
s Gt -1 (2.108, a-i)
e :J'G,t.if./f.lu-"uds

M s :IG-t- - 'f M ds

ikl _ N S
KSHg—'[G-t- u-'u-"u-"uds.

It is worth recalling that all of the above expressions are computed taking into
consideration the expressions of the displacements for mode & at plate i (Schardt 1989)

presented above — see expressions (2.28), (2.29) and (2.30).

2.3.4. The potential energy of the external loading
The potential of the external loading is given, in general, by

nyp NT nyp MNT

H - Izz{qyr (x) kvr + qz,r (‘x) kwr } kA dx + Jzz{_ qX,r (x) kur } kA'dx +
L k=lr=I L k=1 r=1I
v + S0, Foatw, F) 4 el emeal L 2109)

k=

N

where ¢q,,, (x), q., (x) and ¢q, (x) denote general longitudinally distributed loads applied at
node 7 in the y, z and x directions, respectively, P denotes an axial force applied at x =x,,
F 1s a concentrated force in the cross section plane applied at x = x, and with vertical and

horizontal components F, and F.. M and ’M denote the components of an applied

bending moment at x = x; with respect to the principal cross section axes.
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2.3.5 The total potential energy

Combining equations (2.104), (2.106) and (2.109) yields the total potential energy

function:
YR ] kM | ik B k VK ] k ik k
y=33[(“crtiet)ar i ardx+ Yy - j “D,+D, ) A A dx+
[=1k=12() 11k1
1 nyp Map L, " ‘ ] nyp My L, " i ”wD nyp L " ‘
oS [MD, A A A+ =Y Y [ D, A A+ ZZI’B’A Adx+
2i:1k:1() i=1 k=1 g 11k10
1 yp Pyp Pyp kl k l ] nyp nMD nMD k k
T [ ¥, amtaa dxt- 32, D[ s A A A de+
4i:]k11 1 l]j]k]L
1 v "mp "mp vp " ‘ ; "MD "pp mp " i /
S [ W, ar7an A e+~ Zzzj' Kgp, A A ' Adx +
8i=ll=1k=ll=1L 211k111L
1 My "mp "mp - ‘ / ”MD nyp "y " ‘
+= | A ZZZJ” Ky ‘A" 7A A dx +
2l1k11=1L l]j]k]L
] v "mp "ump vp " i /
+= [ Wiy a4 A A dx +
2;:1] =l k=11=1T
1 "y "mp "mp vp ” ‘ ;
+5 jlf Ky 'A'7A A" A dx +
i=1 j=1 k=1 1=1
] Myip "vp "D " . ] yp "yp vp up - ‘ ;
+= [Py, A" A A dx o+~ Z [ Mgy AT A A A de+
21:] j=1 k=1p, 2 i=l j=1k=II=1
] Myp My Mvp "Mvp
+= IUMK IA"]A’kA"lAdX
SH9
2 i=1 j=1k=11=1p

yp INT

—.[ ’ {qy,(X)kV,+qZ, (x)* }"Adx IZ { }kA dx—
1 k=1 r=1 L k=1 r=
— Px 1A'X=x _mf(kVFFy—l_kaFz)kAX:x _2M2Afx=X _3M3A,x=x . (2.110)

k=2
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2.4 — The particular case of a simply supported compressed column

2.4.1. Introduction
In order to illustrate the application of the general formulation derived above the
Rayleigh-Ritz method will be used, approximating the modal amplitude functions "A(x)
by a set of coordinate functions * 4,(x), as shown in equation (2.111):
kA(x) = *a, "o, (x)+ “a,%p, (x)+ ‘a," o, (x)+ oo (2.111)
where the coordinate functions “¢, (x) must respect the cinematic boundary conditions and

the coordinates “a; become the unknowns of the problem (in Chapter 5 a deeper analysis on
the Rayleigh-Ritz method will be presented). Concentrating, at the present stage, on the
application to an open or closed simply supported compressed column with flexible end

plates, a suitable and usual approximation consists of sinusoidal amplitude functions given

by:

model: 'A(x)~ 'a

(2.112, a-b)

.. L TXx
remaining modes: *A(x)~ *a sin — for k=2,..., nup,

'a and ‘a being the unknown degrees-of-freedom. It is noted that the approximation
function for the first mode of deformation is not sinusoidal in order to allow for constant
axial force along the length of the member — below, in Chapter 3, the choice of the
adequate coordinate functions will be object of deeper analysis and it is noticed here that
other boundary conditions or different loading cases follow identical procedures, given an
adequate choice of amplitude functions. For this particular case of a compressed column,

the potential of the external loads is simply given by

IT=Px'A L (2.113)

so that substitution of equations (2.112 a-b) into the total potential energy function (2.110)
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and integration along the length yields:

wmp yp "vn

2
V=V la+V, 'a +ZV ‘a +ZZV ‘a ‘a+
i=2 j=2i#j
yp "yp ;o ) ;o ) yp "yp Myp ) - ;o -
Ly J L L Ly J
+ZZ(VM a‘a’a+V,,; a ‘a a)+ (VU.k a‘a‘a+V, ‘a'a’a a)+
i=2 j=2 i=2 j=2k=2

333, ‘a’ataa. (2.114)

where

4 5 5
_%(iCM+iCB)+§ z‘B+;T_L(iiD]+iiD3)_;T_L(iiDeriiDZT)

2 2

T (s i 5 i
ZU, = 4_L(‘]D1+JD3)_4_L(JD2+JD2T)
2\/_ 7 ij 7[2\/3 1, i .
Vlij = 4L/ (1] a2+j1Ka3)_ 2L% (]1 SH3+1JKSH7) (2.115, a-1)
V. :—i(”kx +7* g )—i—i(”k/c +7* g ) —7[3 (”krc + 7K g )
ik 61° o2 o3 )73 SH2 sue )= 33 SH 3 SH7
_ 5’ lilj
i = "6 SH9
_ 27[\/3 (ij]kK ) 27[3\/3 (Iiij, +ij1k](‘ )
lijk = 7 SH6 )T T SH9 SH9
3L 3L"
3’ ijkl 7’ ikl 7’ ikl 7’ ikl

Viu = 641 Koyt 161 Ksys _]6—L3 Ksye _167 Ksro»

with i, j, k,/ > 2. It is noted that, in the case of a compressed column, all terms in ”kIKSH s

vanish upon integration.
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2.4.2. Equilibrium equations

Differentiating the total potential energy function (2.114) with respect to the several
degrees of freedom yields the equilibrium equations of the system (Thompson & Hunt

1973). Specifically, for i=1, yields

aV ; mp wp . . o .
V,+2V, a+ZZ(V1U ‘a’a+2V,, ‘a’‘a Ja)+

1 =
0'a i=2 j=2

+§imfmf%yk[a ‘ata=0, (2-116)

i=2 j=2 k=2
while for the remaining degrees of freedom (i >2),

nyp

6_’V =2 ia+%(V"f +Vf")/a+z[(V1ij +V1ﬁ) 'a ja+(V11ij +Vuﬁ) 'a’ ja]"'
=2 =

0'a
]
i vn - J _—
J J

+ZZ[(VI‘/‘/« +V +iji) a a+(V1ijk +V i +V1kji) a‘a a]+

=2 k=2

i vn "up C

J —

+ (Vs +V g + Vi V) 70 *a 'a]=0. (2.117)

j=2 k=2 I=2

Equation (2.116) can be solved with respect to ‘a, giving

wp "vn o wp "vp un Dk
— — Ly Jy i_J
V=22Vl la=2.2, 2 Vy'laata
i=2 j=2 i=2 j=2 k=2
'a= =2 = (2.118)
wmp "mp . .
Ly
W, +23.3 Vy'a'a
i=2 j=2

or, in the case of an open cross section,

V=22 Ve’
Iy = i=2 j=2 (2.119)
2V,

because of the inexistence of a shear flow.



POST-BUCKLING FORMULATION FOR THE CLASSICAL GBT THEORY 77

2.4.3. Pre-buckling solution and sliding coordinate transformation

Equations (2.116) and (2.117) yield a pre-buckling (fundamental) solution defined

ty =,
2,

. la,=0fori=2,...,n,,. (2.120)

In order to simplify further calculations, it is worth applying a sliding coordinate

transformation (Thompson & Hunt 1973):
‘a='a,+'q, i=1,...,n,, (2.121)

to yield a trivial fundamental solution:

‘q=0,i=1,...,n,,. (2.122)
The resulting total potential energy function, now denoted by W, is given by

nvp Mvp (

W=Ww,+W, 1q2+zz le_j iq jq+Wuj Iq iq j(]'i‘W}IUIQZ 'q ./q)+

i=2 j=2

yp "vp v v

W 'q7q q+ Wy 'a'a 70 )+ D> 3> (W'a g “q ') (2.123)

My "vp up (

t22.2

i=2 j=2 k=2 i=2 j=2 k=2 1=2
where
2
o
4V,
W, =V,
2
ifi=j, W, =V, +Vy; ij 1ii 4
_ 4V, 2V,
a V2 Vv
ifi#j, W, =V, +V,;— 15 57
iy i i 41/12] i 2V11
V,.V
Wh.j = th — 1;/’{ ! (2.124, a-h)
11
Vb
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Wvlg'jk = V1ijk
VVII{;’ = V]Iij
Wijkl = Vijkz .

2.4.4. Eigenvalue analysis
The critical loads of the compressed column are now easily evaluated by setting to
zero the determinant of the Hessian matrix of the total potential energy function, evaluated

along the fundamental path of the system (Thompson & Hunt 1973):

2W,, 0 0 0

2 WZZ W23 + W32

2nyp + nyp 2

2
/4
det(HF ) = a 4 = 2W Sy T WnMD3 =0
0'qd’q|, ‘
Symmetric
(2.125)
Analysing equation (2.125) the following conclusions can be drawn:
1) the first row and the first column have all terms equal to zero with the

exception of the term ''H ., which is not dependant of P; so, when finding

the roots of the determinant Hp, only the submatrix formed by the last

(n,,, — 1) rows and columns shall be considered;
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ii)

iii)

: NP v
for closed cross sections, the terms Wy, for i=j and i= j, in the V},, —=

11
part, contain a quadratic factor in P, which is dependent of coefficient

"y 103 50, for closed section members only, if third order coefficients are

taken into account for the determination of the critical loads, a non-linear
eigenvalue problem will occur (Mirasso & Godoy 1992) — this fact will
have a small influence for the value of the critical loads, so in the example
presented below, only second order terms will be considered for the closed
cross section;

for open or closed cross sections, the terms Wj;, for i=j and i # j, contain,

. : . : V. :
in general, a linear term in P in the part thﬁ, so all coefficients for
11

i, j =2 will have a constant part and a linear part in P — thus the eigenvalue

problem is established.

Regarding the first conclusion above, the eigenvalue-eigenvector problem will have

dimension (nMD —]), since coordinate 'q will always be passive. From the third

conclusion, the shape of any term (i, j) of Hp, for any i,j>2,is "H,+"H P, and the

generalized eigenproblem can be established in the form (Hangai & Kawamata 1972):

(H,+P-H,)q=0, (2.126)

being the non-zero terms in the eigenvectors ¢, if properly normalized, regarded as the

“participation” of their relative mode of deformation in the overall buckling — note that in

this particular case each coordinate ‘g is related to a specific mode of deformation.
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2.5 — Chapter synopsis

This chapter starts by presenting a brief overview of the Schardt’s GBT scheme for
the analysis of thin-walled open or closed cross section members, in terms of the
establishment of the modes of deformation, their orthogonalization and the Schardt’s
approach to stability analysis. Afterwards, the Schardt’s GBT scheme was developed
through the frame of a consistent energy formulation, eliminating inconsistencies in the
former theories and enabling the Schardt’s GBT theory to analyse open or closed sections
submitted to a general loading in the buckling and in the post-buckling ranges. Finally, a
theoretical application to the stability analysis was realized. The developments of this
chapter are based on several contributions of the author to scientific journals (Simdes da
Silva and Simdo 2002 and Simdo and Simdes da Silva 2004a) and to international

scientific conferences (Simdo and Simdes da Silva 2002, 2003a and 2003b).



3 — NUMERICAL SOLUTION STRATEGIES FOR BUCKLING AND POST-

BUCKLING ANALYSIS

3.1 — Introduction

The previous chapter introduced an energy formulation for the GBT non-linear

analysis of thin-walled prismatic members, deriving a functional in the yet unknown modal
amplitude functions “A4(x) and in the load parameter P, for the modelling of the

geometrically non-linear behaviour of the structural member. In this chapter, the numerical
strategies used to perform the GBT energy analysis of a prismatic thin-walled member
subjected to any conservative loading and to a wide range of supporting conditions, are
presented in the context of the derived energy formulation and the classical stability theory
for discrete systems (Hunt 1981, Thompson and Hunt 1973 and 1984). These numerical
strategies comprehend two distinct parts: 1) the discretization of the energy functional and
the corresponding integration along the member’s length, in order to turn the energy
functional into a gradient potential function in a set of discrete coordinates “a and the load
parameter P, and ii) the establishment and solution of the member’s equilibrium system,
now expressed in terms of a finite set of discrete generalized coordinates and a control
parameter.

The first part develops a discretization procedure for the member’s TPE in the

context of the Rayleigh-Ritz method (RRM) for which, instead of the commonly used
trigonometric functions, each amplitude modal function kA(x) is approximated by a set of

normalized orthogonal polynomials derived directly from the relevant modal boundary
conditions. This procedure presents several advantages when compared to the traditional

use of trigonometric functions, as follows:

81
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iii)

Since the coordinate functions are computed from the boundary conditions, the
computed functions can model a wider range of boundary conditions and the
user can choose, among all boundary conditions that apply to the problem, those
that shall be taken into account — note that the RRM requires only to account for
all cinematic (forced) boundary conditions, and, in some occasions, it ca be
advantageous to neglect some static (natural) conditions in terms of the
completeness of the set of trial functions, as it will be seen below.

The use of orthonormal polynomials as coordinate functions leads to smoother
approximations for the stresses and displacements, due to the continuity of any
order derivative of the polynomials and also to the fact that no additional
orthogonality conditions are added to the problem than those required by the
method, whereas the use of trigonometric functions always carries the
introduction of orthogonality conditions between the coordinate functions
themselves and also between their derivatives.

The polynomials can form a complete set of trial functions — it is seen below that
it suffices to withdraw the natural boundary conditions.

The scheme enables fast convergence, owing to the orthogonality between the
polynomials, and favours easy integrations that can be made through a matrix

procedure.

The scheme proposed here uses one-dimensional polynomials only, since it is

devoted to the GBT analysis; nevertheless, it may be generalized to n-dimensional

problems with little adaptations, thus generating polynomials in # variables. All in all, by

defining the coordinate functions this way, a sequential scheme to build an infinite-

dimensional orthogonal complete base for the vector space of the coordinate functions that

respect the considered boundary conditions is created for the problem under observation,

keeping the problem as general as possible and improving the convergence speed of the
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solution procedure. At the end of the first part, an integration procedure is proposed that
benefits from the use of polynomials as coordinate functions, performing the integration in
a matricial form, deriving directly the gradient potential function.

The second part of the chapter concerns the stability analysis of the thin-walled
structural straight members. It is known, from the classical references on this subject (see,
for example, Croll and Walker 1972), that most of these mechanical systems, submitted to
axial or bending forces, exhibit bifurcational behaviour. Hence a numerical tool is needed
that: 1) computes equilibrium paths derived from an already known equilibrium state, ii)
enables the search and analysis of critical points along the already known equilibrium path,
determining whether they are bifurcational points or not, and if the corresponding
equilibrium state is stable or not, and iii) searches alternative equilibrium points in the
neighbourhood of the computed critical point and outside the initial (primary) equilibrium
path, respecting the bifurcational formalism and analysing the stability of the found non-
trivial equilibrium state. The scheme presented below is adapted from the traditional
nonlinear stability theory for discrete systems developed by Hunt and Thompson (Hunt
1981, Thompson and Hunt 1973 and 1984). The stability procedures due to these authors
use perturbation techniques (Murdock 1999) to deal with the bifurcation phenomena,
which become very heavy if a large number of coordinates is required by the analysis. The
procedure presented below, devoted to perfect structures — hence not requiring the use of
imperfections to overcome bifurcation points and thus enabling a full comprehension on
the involved bifurcation phenomena — can be viewed as a numerical approach to the
classical stability procedures, adapted for the use of the advanced symbolic programming
software MATHEMATICA (Wolfram 2003), and is based in as few concepts as possible: the
definition of an equilibrium point and the analysis of the stability of an equilibrium state.

Finally, a description of the software developed to perform the post-buckling
analysis is presented, aimed at organizing the concepts previously explained and showing

how they connect in order to perform a buckling and post-bucking analysis.
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3.2 — The application of the Rayleigh-Ritz method — the use of polynomial

coordinate functions

3.2.1 The derivation of the coordinate functions and the natural

discretization
In the previous chapter, in the context of GBT, the thin-walled structural member’s
behaviour is described by its total potential energy V, which is a functional in the nyp
amplitude modal functions A(x) and their first two derivatives, all yet unknown, together

with a unique control parameter P that measures the magnitude of the applied loading
system that appears in a linear form — hence the designation of specialized system — in the

following form:
L
v =[Fla(x) a4 () 4 () Pl dx, k=1...n,,. (3.1)
0

Expression (3.1) shall be transformed into a gradient potential function that depends on a

finite set of discrete generalized coordinates ‘a and the scaling factor P,
v=v(aP),i=1...n., (3.2)

so that the stability procedures may be applied (Hunt 1981, Thompson and Hunt 1973 and

1984). This process comprehends two distinctive parts: the discretization, presented below,

and the integration, described subsequently.

The discretization is performed in the context of the Rayleigh-Ritz Method

(Richards 1977), by approximating each amplitude modal function * 4 (x) by a finite set of
pre-established coordinate functions “¢, (x), previously defined along the member’s length
— in mathematical notation along the closed interval [0, L | — as follows:

“Ax)=fa,f o, (x ) a, o, (x)+.. +a, ", (x), (3.3)

where 7y is the number of adopted coordinate functions for the amplitude function of mode

k. The coefficients ‘a; become the unknowns of the problem and are henceforth denoted
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generalized coordinates.

Trigonometric functions, usually sinusoidal ones, are commonly adopted as
coordinate functions, but they exhibit several disadvantages, as already mentioned: they
carry several difficulties in the computational treatment, for example their integration can
be very heavy if several half-waves are used, need a complex treatment to model more
peculiar boundary conditions, and the wuse of polynomials provides smoother
approximations for the longitudinal variation of the displacements (Prola 2001). Also, it
has been observed experimentally (Young and Rasmussen 1998) that the boundary
conditions can influence the buckling behaviour of thin-walled compressed channel
columns more that the mere change of the effective member’s length.

For practical GBT applications the boundary conditions can be considered mode by
mode and, without loss of generality, can be considered as homogeneous (Richards 1977),

in the following form:

L/— (3.4)

X=X

where x refers to a specific value of x inside [O,L], usually 0 or L, and superscript (i)

refers to the /™ derivative of “A. These boundary conditions can be either cinematic

(forced) or static (natural) but, in the context of the RRM, the adopted coordinate functions
. must respect only the cinematic boundary conditions. If, in addition, the coordinate

functions respect also the static boundary conditions, usually but not always convergence
is improved, in the sense that less coordinate functions are needed to achieve the intended
precision. So, the efficiency of this method depends strongly on the correct choice of the
coordinate functions, as emphasized by Richards (1977), and the choice of orthonormal
functions “p; over the member’s length, defined by (Courant and Hilbert 1953):
cifi=j
[*o, "o, dc= : (3.5)
L 0ifi=#j

accelerates the convergence of the method. In expression (3.5), the first condition is a
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normalization rule, where c is a real positive constant usually taken equal to / or to the
member’s length L. Alternatively, the normalizing condition of expression (3.5) can also

be written as (Singh and Chakraverty 1992):

[*o'p dx=c, (3.6)
L

whereas the second condition constitutes an orthogonality condition. Grouping together the
boundary conditions for each mode of deformation, a homogeneous system is obtained,
and it has a trivial solution of no numerical interest. However, if the normalizing condition
of expression (3.5) is added, the resulting system is no longer homogeneous and becomes
the basis of a sequential procedure that generates a set of appropriate coordinate functions
for the mode of deformation £ in the following way.

To initiate the procedure, assume that the first coordinate function for a general

mode £ is given by the following polynomial

k _ npc k
g=a,,+a,,x+...+a,, x (3.7)

where the a, ,...,q, are yet unknown coefficients and npc 1s the number of boundary

ek
conditions that apply to mode of deformation k. Obviously, the set of the considered
boundary conditions must contain all the cinematic ones, but there is freedom to choose,
among the static conditions, those, if any, that shall be considered in the procedure. The
npck chosen boundary conditions are then used sequentially to define the first npcx

coefficients of the polynomial, «,,,...,q,, _,, as a linear function of the highest order

coefficient of the polynomial «,,  :

Ao = a1,0(a1,ngcvk )a---a Ao i—1 = a],nBC’k—I(aI,nECvk ) (3-8)

Subsequently, the normalization condition of expression (3.5) gives a simple
quadratic equationin a,, :
L

[[o.la,,, 2dx=c. (3.9)

0
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that can be easily solved, thus obtaining two symmetrical roots, the positive one being
retained. Polynomial (3.7) is now completely defined and the determination of the second
polynomial can start right away. It is important to point out at this stage that choosing the
arbitrary positive constant ¢ of the orthogonality condition in (3.5) equal to one will
usually lead to polynomials that take very small values for long members. This can be
avoided by normalizing the coordinate function with respect to the member’s length L or to
L’, instead of unity. By doing this, the resulting polynomial shows more reasonable values
along the member’s length, independently of its value — below the influence of the
normalization factor on the integrals and functional values along the member’s length will
be illustrated for a specific function.

The second coordinate polynomial is now set up in the form:

ko = g npeg+1
Q=0+ 0, X+...+a,, X" +a,, X , (3.10)

i.e., it is established in the same way as the first polynomial but is one order higher. Like
the previous polynomial, the n; boundary conditions are used sequentially to determine all

the a,,,...,a,, _, as linear functions of a,, and a,, the (unknown) coefficients
, L TeN e k 1B

cxtl?
of the higher order parts:
0= azxo(az’nﬁc,k ’ az'"BC,k +1)" t azx"lﬂc,k -1 = az’”gc,k _I(az’”EC,k ’ az’”gc,k +1)' (31 1)

Next, imposing the orthogonality condition between “p, (already known) and “p, in the

form:

[k(ﬂz(x) X k(Pz (az,ngcy,(’az,nBCﬁpx)]dx =0, (3.12)

S ey 1~

yields coefficient @, ,  as a function of coefficient a,, ,,:
»""BC k +"'BC k

az'"BC,k :az’”EC,k (azx”lﬂc,k +1)' (313)
Finally, coefficient a,, ., 1is determined by choosing the positive root of the

normalization condition for “p, along the member’s length:
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L
J.[k¢2(a2,ngcvk+1’x) dx =c, (314)
0
The process may be repeated as many times as needed, providing an infinite set of

functions suitable to approximate the unknown amplitude modal function * 4 (x)

This calculation is sequential and can be used indefinitely, bringing a set of
orthonormal polynomials over the member’s length that respect the adopted boundary
conditions since they are derived from them, hence the designation “natural discretization”.
Therefore, these polynomials are appropriate to be used as coordinate functions in the
context of the Rayleigh-Ritz method, since they full fill all the applicable requirements for

the set of appropriate coordinate functions (Storch and Strang 1988):

1) they satisfy the cinematic/forced boundary conditions of the mode, being
optional their obedience to the static/natural boundary conditions;

1) they are linearly independent along the problem’s domain, i.e., for any set of n
coordinate functions ‘¢, (x) the relation

n

diatp(x)=0 (3.15)
i=1

holds if and only if
‘a=0,Yxel0, L], (3.16)

which is equivalent to say that none of the functions *¢,(x) can be obtained as

a linear combination of the remaining ones, along the problem’s domain — in
the present case they are not only linearly independent but they are orthogonal;

1i1) the functions ‘g, (x) form a complete set of functions; in other words, the

function

A x)=Y e o) (3.17)
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converges to any admissible function “4(x) in [0, L] as the number of trial

functions increases, or, in other words, the following expression holds:

lim j [F4(x) - *4,(x)Pdx=0. (3.18)

n—> 0

By adopting the polynomial coordinate functions derived through the scheme
presented above, it is intended that the Rayleigh-Ritz method converges to the correct
solution of the system of differential equations as fast as possible, i.e., using as few
coordinate functions as possible. This is achieved without loss of generality since the
computed set of allowable polynomial coordinate functions is infinite and complete along
the member’s length, paying attention to the first Weierstrass’ approximation theorem,
which states that any function defined along an interval in R can be approximated as
closely as desired by a polynomial (Nathanson 1964) — this theorem proves that expression
(3.18) applies to the set of orthonormal polynomials derived through the scheme presented
just above.

Finally it is worth referring that the static boundary conditions are considered here
in a linear form, thus resulting in simple expressions for each mode in the form of (3.4). A
more refined theory would bring more complex static boundary conditions that could
involve more than one mode at a time if they were derived from the non-linear equilibrium
system, and so the scheme would become very complex, perhaps not possible. However,
the formulation presented here and illustrated below is still appropriate and general for the
Rayleigh-Ritz method, due to the fact that the method only requires the obedience to the
cinematic/forced boundary conditions, which, being related only to the displacements, are
linear in engineering problems, even for a non-linear geometrical analysis — it consists
merely to impose a null value to a displacement, which is computed from the amplitude
modal functions in a linear form. Note that similar approaches, where the static boundary

conditions involve only first order equations, are currently adopted in the context of the
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non-linear stability of structural members — see, for example, Yamada and Croll (1999) for
the stability analysis of axially compressed thin-walled cylinders, or Sridharan and Graves

Smith (1981) for the FSM analysis of thin-walled prismatic structures.

3.2.2 Illustrative examples of appropriate coordinate functions for GBT
stability analysis
3.2.2.1 The coordinate function for the axial elongation mode — mode 1
Having presented the background procedure, some polynomial coordinate
functions, appropriate for buckling and post-buckling analysis of a thin-walled compressed
columns or beams in the context of the energy formulation of GBT, are derived below for
several boundary conditions — note that not all will be used in the forthcoming examples
but are presented here to illustrate the possibilities of the scheme.
Applying the procedure to the first mode of deformation — axial elongation —,
requires a special implementation (Schardt 1989) in order to be integrated in the general
theory of GBT. For a column considering axial displacement restricted at x =0 and free at

x = L, the corresponding boundary conditions are:

=0 and ‘4’

x=0

i) cinematic conditions: '4 =0; (3.19 a-b)

x=0

=0 and ‘A"

x=L

ii) static conditions: ‘A" =0. (3.19 c-d)

x=L

Expression (3.19 a) is used for consistency only, since ‘4 appears in the member’s
total potential energy only in its first and second derivatives. This case illustrates a typical
situation where it is advantageous to neglect the static conditions: if the static conditions
are taken into account, it is not possible to simulate a load case with constant axial force
along the length of the member, so only the cinematic conditions of expression (3.19 a-b)
are retained. Therefore, accounting only on the boundary conditions given by (3.14 a-b),

the coordinate polynomial is simply given by

‘o, ="a,,+"a,, x+"a,, x’. (3.20)
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Using sequentially condition (3.19 a) and condition (3.19 b), by this order, yields:
a,,=0 (3.21)
and

'a,,=0. (3.22)

Finally, applying the normality rule of (3.5), considering ¢ =/, leads to

N

a,=—. (3.23)
L
and the first coordinate function becomes fully defined in the form:
X245
‘9, =——. (3.24)

L

When a column is axially loaded at one end, a linear equilibrium analysis leads to a
constant longitudinal stress resultant — axial effort — and to a linear longitudinal
displacements configuration along the member’s length. Figure 3.1 presents a plot of
function ¢, and its first two derivatives for a member’s length of L = 300 mm . Recalling
that the generalized bimoment for mode of deformation & is given by (Schardt 1989):

w=-rC *4", (3.25)
which, for mode of deformation 1 (axial elongation), corresponds to the traditional normal
force. The sufficiency of this function to achieve an optimal approximation for ‘A for the
stability analysis of compressed columns becomes evident by looking at the graphics
shown in Fig. 3.1, where it can be seen that the second derivative of 'p; is constant along
the member’s length, thus allowing a constant axial force along the member. Hence, it is
appropriate to model the axial elongation mode for a compressed column and this property

illustrates the advantage of neglecting the static boundary conditions for a practical case.
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Fig. 3.1 — Function ‘¢ and its first two derivatives for L=300 mm

3.2.2.2 The coordinate functions for the higher modes: the pined-pined boundary
conditions
For modes 2 and higher and allowing warping at the end sections — end plate with

negligible bending inertia at both ends — the modal boundary conditions are:

i) cinematic conditions: *4

=0 and “4| =0; (3.26 a-b)

xX= x=L

=0 and “A4"

X=0

ii) static conditions: 4"

=0. (3.26 c-d)

x=L
If the static boundary conditions of (3.26 c-d) are used, the first polynomial is of 4™ order

and has five unknown coefficients, given by

k k k k 2k 3k 4
Q="a,,+a, xta,x+a,;x+a, x, (3.27)

where “a 1.05 ka 11 %a; 2, %a; 5 and ka 1.4 are yet unknown. Using sequentially expressions (3.26
a), (3.26b), (3. 26 ¢) and (3. 26 ¢), by this order, leads to:

a,,=0, (3.28 a-d)

Kok k 2k 3
a,,=—a;,L—"a,; L'—"a,,L",

a,,=0,
k

_ ok
a;=-2"a,,L.

Finally, imposing the normality rule of expression (3.5) with respect to the member’s

length yields:
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0 0
_3 31 k _3 31

! ‘pldx=L= ‘a,,= = a,, == (3.29)

The positive root is retained and the first coordinate polynomial for mode £ becomes fully

defined in the form:
‘o, = 7—0(ix—if +ix4j. (3.30)

If a different value was chosen to normalize the polynomial, different values for “a 14

would be obtained, and the polynomial would be equal to:

3.0
[foldx=1= ‘a,, == and ‘g, = 7—0[ijx—i,x3+igx4]; (3.31)
] L2 31\ > Iz I

3. [
jk¢fdx=L2:> ‘a,, =L and ‘¢, = Q(ix—2x3+—7x4j.(3.32)
" ' I? 31 \/Z I?

The second polynomial has now the following form

k k k k 2k 3k 4k 5
Q,=a,,+a,, x+a,,x+a,, x’+a,,x+a,;x (3.33)

where coefficients kag,g to kag, 5 are yet unknown, and the use of the boundary conditions is
performed in the same way as for the first polynomial, yielding the same results for the
first four coefficients. Imposing the orthogonality rule between “p, and *p; of expression
(3.30), the following relation between ka 24 and ka 2,5 1S obtained:

5%, . L
[Cp, "p)ax=0= ‘a,,= - (3.34)
L

Finally, the normality rule (3.5) yields for kas 5:

6.4 6./%2
[fplax=1= ‘a,,=—— v ‘fa,, =" (3.35)
) ’ L L
Again, accounting only for the positive root of (3.35) yields the following expression for

the second coordinate polynomial:

o, = 1402 —ix+i5x5 ++/2310 x %xf—%ﬂ : (3.36)
5 L L L L
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The scheme may proceed indefinitely, building a set of orthonormal polynomials that are
adequate to approximate the unknown amplitude modal function “4. The first five
polynomials are listed below, and Fig. 3.2 presents a plot of these functions and their first

two derivatives for a member’s length of L=400:

"o, = Q(ix—if +ix4j (3.37, a-e)

k(pzz,/ﬂx —ix+%x5 +4/2310 x %xj—%x"
5 L L L L
; 2730 (27 736 ; 2073 , 84630 66 s 22
Ps = mro X 7 X5 X X |ty X T X X
7781 L L L 251 L L
; 462 41 17796 ;
Oy =475 X~ X+t ———x |t
1345 L L
[2310 (472 5 2073 , 2730 4 780 ,
+ X X - x' - x + X
269 \ I r L r
; 39270 (57 6016 ; 37341 , 96018 ;5 123370
Qs = X|— X=X +——— X ————X +———Xx |+
111193 L L L L L

(9856770 ( 312 , 78 8)
+ X| = X +—x |.
443 r L’

Another option for the derivation of the coordinate functions that approximate the

amplitude modal function ¥4 is the use of the cinematic boundary conditions only, i.e.,
only those that are required by the Rayleigh-Ritz method, which are given by expressions
(3.26 a) and (3.26 b). If this option is considered, the scheme generates the following first

five coordinate polynomials, all normalized to L:

V30 x 30 %7
LA A (3.38, a-e)
L r
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2 3 4
‘o, = «/10[—9%+512—2—84%+42%]
k 2310 x . x x’ x x’
», = 2310 2—974'26?—3074‘]2?

2 3 4 5 6
“o, =~1365| — 25+ 267 — 1147+ 222>~ 198°_+ 66— |.
L L L L r L

These polynomials, illustrated in Figure 3.3, are of lower order than those given by
expression (3.27). Therefore the later require less integrations and less computer resources
for the calculation of the total potential energy. Moreover, as for the axial elongation
mode, if a constant major axis bending moment is required for the stability analysis of
simply supported beams, the bending moment is given by (Schardt 1989):

‘W=-"C ‘4", (3.39)
and therefore the coordinate functions set that approximate “4 must result in a constant 2™
order derivative. This is only achievable if function (3.38 a) is taken, since its 2" order
derivative is constant — see Figure 3.3 — or, in other words, if the static boundary

conditions are withdrawn.

3.2.2.3 The coordinate functions for the higher modes: the fixed-fixed boundary
conditions

The coordinate functions for modes of deformation 2 and higher for the case of

fixed-fixed boundary conditions, without the allowance of warping at the edge sections, are

computed. The relevant boundary conditions are now all cinematic and are given by:

‘4| =0,"4| =0,"4'| =0and ‘4’| =0 (3.40 a-d)

x=0 x=L x=0 x=L

and the sequential procedure leads to the following first five orthonormal polynomials:
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Fig. 3.2 — Functions “p;, “,, 03, *p,and “ps, and their first two derivatives, for
L=400, for pined-pined — free-to-warp edge cross sections, using the cinematic
and the static boundary conditions, normalized to L
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boundary conditions only, normalized to L
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k(pI = ﬁ(%xz —%)f +ix4j (3.41, a-e)

r L r

k§02=\/770x(—%x2+£x3 ]5x4+6 5)

r r r a

g, =770 % _IL_§x2+138x3_465x4+732x5_546x6+]56x7)

k% Z@x(i—fxz —%)f + 213 x’ - 198 x4+ 06 6j
( r L r r r

15 186 873 2018 2496 1560 390
k¢5=«/2618x(7x2— 7 x’ + Iz x? - 5 X+ 7 X’ + % X'+ 70 x6),

plotted in Fig. 3.4 for L=400 mm.

3.2.2.4 The coordinate functions for the higher modes: the fixed-pinned boundary
conditions

In order to show the ability of the present procedure to simulate several and distinct

boundary conditions, the coordinate functions for fixed-pinned boundary conditions are

presented. The considered boundary conditions are:

4| =0,%4] =0,*4| =0and *4"| =0, (3.42 a-d)

x=0 x=L x=0 x=L
so the static condition at x=L is also considered, and the first five polynomials, shown in

Fig. 3.5 for a member’s length L=300 mm, take the following form:

9\ 7% 15,7 6.[70
k@ — LV 2 Lyw SN LVIQ o (343, 2¢)
i 3 10010x2+14] %x3—]59 ;772)644_3/%)65
¢2 - L/ L% L% L%
i I 305G o 6333 SSING, o B
g, = SR SN TS T

1% I 1% 1%
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4]02 10010 26 [ 430430
_ 1247 x6 + 29 x7

L” L”

9. [ 7669,[85  34824,[%15 7823425
p— —_ + j—

29 2 2059 3 2059 4 2059 5
Q5 = x X X+

o I 1% 1%

k

I3

2496,/ 2818 15602818 39073922

2059 6 2059 7 718
X X

T L” L”

3.2.3 — Matrix scheme for the integration of the internal strain energy

Once chosen the relevant coordinate functions, the modal amplitude functions have

the following form:
“A=*a, fo, (x)+...+kank kgonk (x), k=1,....nup (3.44)

(remember that n; represents the number of orthonormal polynomials adopted for the
modal amplitude function k), all functions "4 becoming a function of x and of the

generalized coordinates ‘a, and their n” order derivative is now given by:
A=, o ()4 a, Fe, ") (x), k=L, (3.45)

A global numbering can now be adopted for the generalized coordinates, and n¢
denotes the total number of generalized coordinates and trial functions of the problem, and

the total potential energy presents the following form:

L
v =[Fl'a "olx), *¢'(x). “9"(x).P| dx. k=1...n, (3.46)

0
where
F[ka, “o(x), “o'(x), "go"(x),P], k=1,...n., (3.47)
is a polynomial in the control parameter P, in the generalized “a coordinates and in x, or in
other words, whose any of its parts belonging to the internal strain energy is given by the
product of a term of a tensor related to a generalized mechanical property times the
coordinate functions (or their 1% or 2" order derivatives, being dependent of x) times the

generalized coordinates “a. The part related to the potential of the external loading is given
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control parameter P.

by the product of a coordinate function times a stress pattern linearly dependent of the
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Fig. 3.4 — Functions kgol , k(p2 , k¢3 , k§04 and k¢5 , and their first two

derivatives, for L=400, for fixed-fixed and warping restrained edge cross

sections
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Fig. 3.5 — Functions k(p, , kgoz , k¢)3, k¢)4 and kg05, and their first two

derivatives, for L=300 mm, for fixed-pinned boundary conditions and
accounting also for the static boundary condition

The aim of the integration procedure is to group the terms corresponding to the

same power of x, thus generating a vector dependent only of the generalized coordinates,

and to integrate along the member’s length by summing all these coefficients, each one
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multiplied by the integration of the correspondent power of x along the member’s length;

in other words, for the generic coefficient of ¥’ in (3.47), this coefficient is multiplied by

Jj+1

7 and subsequently added to the internal strain energy polynomial — the following
j+

presentation concerns only the computation of the internal strain energy parts, because the
ones related to the potential of the external loading are usually very easy to calculate, since
they are simple and linear terms.

To perform the integration of the ISE parts, first the set of all amplitude modal
functions “4 from expression (3.3) are stored in the following matrix:

D, =d (3.48)

0, mypx (&,+1)

where & is the maximum power of x for all modal amplitude functions, and the term "' @,

represents the coefficient of x"~' for the amplitude function associated with mode of
deformation i, all these coefficients being linear polynomials in the generalized coordinates
“a. Similar storage form can be derived for the set of derivatives of “4, the first two — those

that have relevance for the problem — being denoted by @®,, and @®,, and having
dimensions (nMD X §X) and (nMD x& — ]), respectively.

The calculus of the integral in the TPE is made through a matrix scheme based on

m

the fact that the coefficient of x” of the product of the m polynomials ‘@ (x),..., g/)(x) is

given in general by:

(n+1) , (n+1)=i;+1 , (n+1)—(i,+i§)+2 (n+1)—(i1+i_7+...+z‘m1_,])+(m—2)
Z ¢i1 x Z (Diz x Z ng} Koo X Z ¢1'3 . ¢[(”Jrl)—(iﬁriﬁ--~+imfz Y(m=2)=i,,_;+1]
=]

i=1 i=I Iy =1

(3.49)
where i¢j denotes the coefficient of x/ for polynomial ‘¢ . The above expression can be

easily proven by natural induction and, noting that in the definition of the TPE expression
the integration is made between () and L for all terms, it can be applied to the calculus of

the TPE as follows — it is illustrated in the following for some representative cases:
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1) calculus of the part related to matrix D,: the maximum power of the product is

given by the sum of the maximum powers of the polynomials stored in @, and

®,,, being equal to &,,, =2& — 2, and the part of ISE associated with D; is:

] Eror L”"’I yp Mvp r+1
I/iDZ — ZzlkD XZzS@ % k r+1 \+]]@d2 ’ (350)
2 =0 (r+1 i=1k=I
i1) calculus of the part related to the second-order tensor x;,: the maximum power

is equal to &,,, =3¢, —4 and the part of the ISE related to x;; is:

] gror L”” Myp Mp up r+l (r+1)=s)+1
Ky _ 4 ikl i ks, L{(r+1)-s;+1 5,41 .
yre = X E E E K, % E D,, x E D, x D, s

43 |\r+1 TiST 5=1 So=1
(3.51)

i) calculus of the part related to the third-order tensor x4 the maximum power is

equal to &,,, =4&. —4 and the part of the ISE related to x4 is given by:

Sror )5 +1 Myp Py Myp Mup
LS LSS S
= 14

p R AR By Ry

r+l (r+1)-s,+1 } (r+1)~(s,+s,)+1
X|:Z I’S]@dl % Z 7Sz djd] X Z k.3 djd] X /v[(’”)*(sf”z)*z]ﬂs”cpdl :|} . (352)

s;=1 s,=1 s3=1

The calculation of the remaining parts of the TPE becomes now trivial and it is
important to point out that the above scheme is devoted to the use the symbolic computing
software, like MATHEMATICA (Wolfram 2003), exploring the vast resources that this type
of software enables, although it can be adapted for numerical computer languages like

FORTRAN.
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3.2.4 Choice of the normalization factor for the polynomial coordinate

functions — a way for minimising numerical instability problems

The choice of the normalization factor ¢ in the normalization rule of expression
(3.5) provokes great changes in the magnitude of the coordinate polynomial functions

along the interval [0, L] and therefore in the corresponding integrals for the calculus of the

TPE. This fact, rarely object of research in applied mechanics, is illustrated in Figure 3.6,
where the graphics of functions (3.30), (3.31) and (3.32) for L=300 mm, together with
their first and second derivatives, are presented, while Tables 3.1 to 3.3 show the most
relevant integration values of coordinate function (3.22) as its derivatives as they appear in

the TPE of the member, for several member’s lengths.

. k st . . nd . .
c a) Function "¢, b)1™ derivative ¢) 2™ derivative
k‘.‘v“ 1 ko
0.08 [t o
0.0007 50100 150 200 250 ui\.(mm)
0.06 L] il 50 200 21
o / 0,000 =
1 0.04 / U= ) 410
0.02 ~0.00025}F 50 100 150:200 250 300 _6x%10°¢
\ -0.0005 S
¥ x(mm -0.00075 -8x 107
50 100 150 200 250 300" 000072
; zwl k‘.ﬁll k%u
2 0.015 X (mm
1.2 0 (1’1 000002l 50 100 150 200 250 300" ™)
1 e ~0.00004
L E:E - ~0.00006
0.6 — sy (mm ~0.00008 /
0.4 _0.005| 50 100 150200 250 300 20,0001 /
= by o] Zd aoots
T X (1mnm = =0.0Uu
50 100 150 200 250 300 -0.015 -
o koot
2591 [ k%”
} x(mim)
2 02 30100 150 200 250 3
_(_.) /\ » _0.0005 1\ 50 100 150 200 250 300

-0.001

o
10 X (mm) 00015
. S0 100 150200 250 300 0.0015
5 -0.1 -0.002
! : : - X (1nm) -0.2 -0.0025
50 100 150 200 250 300

Fig. 3.6 — Functionk(/)] and its first two derivatives, for L=300, for pined-pined

boundary conditions, accounting also on the static conditions: influence of the
normalization factor ¢

A deeper look at Fig. 3.6 highlights the variation of the maximum value of “¢, as

normalization factor ¢ changes from 7 to L and to L’, for which the maximum value the
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function reaches along the interval [0,300] passes from about 0.08 to 1.4 or 25,

respectively, but more dramatic changes occur in the function’s derivatives, specially for

the function’s second derivative, where a ratio of about /00 is observed between the
maximum values of the 2™ derivative of *¢@, for c=I and ¢=L’. Since the function “¢,

itself and its first and second derivatives are present in the calculation of the TPE of the
member, it becomes evident that this variation in the values the function and its derivatives
along the member’s length, due only to the normalization factor, influences the numerical
stability of the solution procedure. Tables 3.1 to 3.3 illustrate this fact by computing the
most relevant integrals that appear in the TPE expression for several lengths. It is clear that
the choice of the normalization factor results in great changes in the values of the integrals:
for example, it is seen that the integrals related to the geometrical property xz; are about
10 times greater that the integrals associated with x4 for ¢=1, but for c=L’ the terms
related to xzo, can be /00 times less than the others. Knowing that the maximum
magnitude in tensor x;p; is about 10 times smaller than the maximum term of x;o4, it
becomes evident that the normalization factor must be carefully chosen if balanced
expressions are pretended in the equilibrium system, so that the numerical efficiency of the
structural stability procedures used to analyse the member’s behaviour is optimized.
Knowing that the TPE is a polynomial in the generalized coordinates, as it will be seen
below, the strategy adopted in the examples presented below is to consider a normalization
factor for the coordinate polynomials and for a specific member’s length that generates
parts in the TPE of the same magnitude order, as far as possible and especially for the 2™
and 3" order parts, so that balanced equations appear in equilibrium system and the
numerical problems due to the presence, in the same expression, of numbers with different
magnitudes are minimized. In other words, knowing that the greatest term in tensor x.¢; or

Kro; 1s of magnitude x, usually the magnitude of the greatest term in tensor x;ps is of
magnitude O(xx] 03), so it is convenient to chose a normalization factor for the

coordinate polynomials that, in some part, compensates this difference in order to derive a
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more balanced TPE polynomial. It was observed that the most reliable numerical
behaviour occurred, usually, for the normalization factor equal to L or L’ but a deeper
analysis of this phenomenon requires an extensive analysis of the equilibrium system from
the point of view of computational efficiency (Golub and Van Loan 1996), which may
contain very large expressions and become hard to handle. Thisis considered to be beyond
the scope of the present work and beyond the available computer resources. Moreover,
with today’s evolution of small personal computers to 64-bit processors, that compute
numbers with 31 decimal places instead of 15 for the traditional 32-bit processors (like the
computer available to the author), these numerical problems tend to be less relevant in the

near future.

Lmm)  [pxedy [ox 0" dx (@' x ¢ dx [ 0" x¢"dx [0"x o' x @' dx [¢'x0'x0'x @' dx
50 1 -3.948387E-03  3.948387E-03  1.560774E-05 -1.382013E-06 4.755731E-07
100 1 -9.870968E-04  9.870968E-04  9.754839E-07 -6.107691E-08 1.486166E-08
300 1 -1.096774E-04  1.096774E-04  1.204301E-08 -4.353428E-10 6.115910E-11
500 1 -3.948387E-05  3.948387E-05  1.560774E-09 -4.370308E-11 4.755731E-12

1000 1 -9.870968E-06  9.870968E-06  9.754839E-11 -1.931421E-12 1.486166E-13
1500 1 -4387097E-06  4.387097E-06  1.926882E-11 -3.115060E-13 1.957091E-14
2000 1 2.467742E-06  2.467742E-06  6.096774E-12 -8.535757E-14 4.644269E-15
2500 1 -1.579355E-06  1.579355E-06  2.497239E-12 -3.127138E-14 1.521834E-15
3000 1 -1.096774E-06  1.096774E-06  1.204301E-12 -1.376675E-14 6.115910E-16
3500 1 -8.057933E-07  8.057933E-07  6.500517E-13 -6.879721E-15 2.829614E-16
4000 1 -6.169355E-07  6.169355E-07  3.810484E-13 -3.772307E-15 1.451334E-16
4500 1 -4.874552E-07  4.874552E-07  2.378866E-13 -2.220346E-15 8.053873E-17
5000 1 -3.948387E-07  3.948387E-07  1.560774E-13 -1.382013E-15 4.755731E-17

Table 3.1 — Variation of the TPE integrals of the coordinate function (3.22)

against the member’s length (polynomial normalized to /)
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L (mm)

[ox@dx

[ox " dx

[ x @ dx

f(p"><(p"dx

[0"x o' x o' dx

[(p'X(p'x(p’X(p’dx

50

50

-1.974194E-01

1.974194E-01

7.803871E-04

-4.886152E-04

1.188933E-03

100

100

-9.870968E-02

9.870968E-02

9.754839E-05

-6.107691E-05

1.486166E-04

300

300

-3.290323E-02

3.290323E-02

3.612903E-06

-2.262108E-06

5.504319E-06

500

500

-1.974194E-02

1.974194E-02

7.803871E-07

-4.886152E-07

1.188933E-06

1000

1000

-9.870968E-03

9.870968E-03

9.754839E-08

-6.107691E-08

1.486166E-07

1500

1500

-6.580645E-03

6.580645E-03

2.890323E-08

-1.809686E-08

4.403455E-08

2000

2000

-4.935484E-03

4.935484E-03

1.219355E-08

-7.634613E-09

1.857708E-08

2500

2500

-3.948387E-03

3.948387E-03

6.243097E-09

-3.908922E-09

9.511463E-09

3000

3000

-3.290323E-03

3.290323E-03

3.612903E-09

-2.262108E-09

5.504319E-09

3500

3500

-2.820276E-03

2.820276E-03

2.275181E-09

-1.424534E-09

3.466277E-09

4000

4000

-2.467742E-03

2.467742E-03

1.524194E-09

-9.543266E-10

2.322134E-09

4500

4500

-2.193548E-03

2.193548E-03

1.070490E-09

-6.702541E-10

1.630909E-09

5000

5000

-1.974194E-03

1.974194E-03

7.803871E-10

-4.886152E-10

1.188933E-09

Table 3.2 — Variation of the TPE integrals of coordinate function (3.21) against
the member’s length (polynomial normalized to L)

L (mm)

f(oxa)dx

f(p><(p"dx

[ x ¢ dx

[o"x@"dx

[0"x0' x ' dx

[0’ x0'x @' x @' dx

50

2.500E+03

-9.870968E+00

9.870968E+00

3.901935E-02

-1.727516E-01

2.972332E+00

100

1.000E+04

-9.870968E+00

9.870968E+00

9.754839E-03

-6.107691E-02

1.486166E+00

300

9.000E+04

-9.870968E+00

9.870968E+00

1.083871E-03

-1.175426E-02

4.953887E-01

500

2.500E+05

-9.870968E+00

9.870968E+00

3.901935E-04

-5.462884E-03

2.972332E-01

1000

1.000E+06

-9.870968E+00

9.870968E+00

9.754839E-05

-1.931421E-03

1.486166E-01

1500

2.250E+06

-9.870968E+00

9.870968E+00

4.335484E-05

-1.051333E-03

9.907774E-02

2000

4.000E+06

-9.870968E+00

9.870968E+00

2.438710E-05

-6.828606E-04

7.430830E-02

2500

6.250E+06

-9.870968E+00

9.870968E+00

1.560774E-05

-4.886152E-04

5.944664E-02

3000

9.000E+06

-9.870968E+00

9.870968E+00

1.083871E-05

-3.717022E-04

4.953887E-02

3500

1.225E+07

-9.870968E+00

9.870968E+00

7.963134E-06

-2.949680E-04

4.246189E-02

4000

1.600E+07

-9.870968E+00

9.870968E+00

6.096774E-06

-2.414277E-04

3.715415E-02

4500

2.025E+07

-9.870968E+00

9.870968E+00

4.817204E-06

-2.023291E-04

3.302591E-02

5000

2.500E+07

-9.870968E+00

9.870968E+00

3.901935E-06

-1.727516E-04

2.972332E-02

Table 3.3 — Variation of the TPE integrals of the coordinate function (3.23)

against the member’s length (polynomial normalized to L%)

3.3 — The stability procedures and bifurcational analysis

3.3.1 Introduction

After the natural discretization and the integration procedures presented above, the
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TPE becomes a polynomial gradient potential function on the generalized coordinates and
on a single external control parameter, here referring to the applied load P, in the form:

v=vla,..., "a P), (3.53)
where n¢ denotes the total number of generalized coordinates. P appears in expression
(3.24) in a linear form, hence its designation of specialized system (Thompson and Hunt
1984). At the present stage, function (3.53) is ready to be analysed using the traditional
stability procedures, and it is taken as axiomatic that (Thompson and Hunt 1973, Hunt
1981):

Axiom 1: a stationary value of the TPE with respect to the generalized coordinates
is necessary and sufficient for the equilibrium of the system;

Axiom 2: a complete relative minimum of the TPE with respect to the generalized
coordinates is necessary and sufficient for the stability of an equilibrium state of the
system.

From Axiom 1 the member’s equilibrium system is defined as:

" da

0,i=1,..., nc (3.54)

1

V(Ia,..., "°q, P)

where, in the present case, V; are polynomials in ‘a and P, hence can be treated as smooth
functions. From Axiom 2 the sign of the determinant of the Hessian matrix of the TPE at
any equilibrium state, whose general term is given by:

a4
d'ad’a’

i

i=1..,n,and j=1,...,n,, (3.55)

rules the stability of the equilibrium state, in the sense that a positive sign implies a stable
equilibrium state while a negative sign implies that the equilibrium state is unstable. In the
transition between stable and unstable equilibrium states, along an equilibrium path, H
becomes singular and, obviously, its determinant becomes zero. For initially stable
equilibrium paths rising with increasing values of the load parameter, a bifurcation point or

a limit point state may occur when H becomes singular. The limit point state may be
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identified by a direct inspection of the fundamental path, plotting the curve P —'a, where ‘a
is any appropriate coordinate, or by computing the slope of the equilibrium path at the
singular point, being zero at limit point (Huang and Atluri 1995). This case has little
interest for the problem under observation, since from the practice it is known that thin
walled straight prismatic members under compression or bending show bifurcational
behaviour. So, the basic problem consists of i) determining the sets of values of ‘a and P
that satisfy system (3.54) — the so called equilibrium paths — from the known equilibrium
point related to the unloaded state of the member by any appropriate numerical method,
then ii) at each point in the ‘a—P space that satisfies (3.54), of analysing the stability of the
corresponding equilibrium state by calculating the value of the determinant of the TPE
Hessian matrix H through expression (3.55), detecting the eventual existence of critical
points and detecting if they are related to limit point or to bifurcational states, and finally
iii) if a critical point along an equilibrium path has been reached corresponding to a
bifurcational state, to switch from the already known equilibrium path to another distinct

one, adopting the appropriate numerical techniques for this path switching.

3.3.2 From the unloaded state to the critical state

Due to the physical properties of the equilibrium system of structural members, the
unloaded state defined by:

P=0and ‘a=0,i=1,.., nc, (3.56)
is a particular and stable solution of (3.54), and, since it is known that there is a unique
equilibrium path emerging from a non-critical equilibrium state on varying a single control
(Thompson and Hunt 1973), the unique equilibrium path emerging from the unloaded state
— the fundamental path (FP) — can be easily computed from this equilibrium state by the
power series method (Kreiszig 1999) in the following way: first, it is assumed that the FP

can be expressed as a Taylor expansion in the neighbourhood of the unloaded state in the
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following form:
iaFP(P): ia(I)P+ia(2)P2+ia(3)P3 +... , i:1,..., ne, (357)

where coefficients ‘a(, are yet unknown. For most situations in practice this assumption is
not restrictive, since the FP is almost linear in the range of interest — between the unloaded
state and the lowest critical point. Here P was chosen to be the control parameter, but other
variables of the system — any appropriate generalized coordinate — could have been chosen
as the controller, which would correspond to the displacements control technique, the
adoption of an appropriate generalized coordinate as a controller being needed in the cases
where limit points may occur in the region of interest, which is not the present case. Then,

expression (3.57) is introduced into the equilibrium system (3.54), giving:

Villag, P)=0,i=1,..., nc,j=1,..., nc, (3.58)

and all coefficients’a, are determined by equalling to zero all coefficients of the powers in
P, since along an equilibrium path all equilibrium equations V; of system (3.54) must
vanish for any value of P. In practice, although the FP is quasi-linear between the unloaded
state and the lowest critical point, it was observed that expansions at least of third order are
required for the column in compression, and at least of fifth order for the simply supported
beam under constant major axis bending moment, in order to define with sufficient
precision not only the bifurcational load parameter Pcr but also the first critical state, i.e.,
the values of the generalized coordinates ‘a at the critical state.

The resulting FP intersects other equilibrium paths — post-buckling paths, yet
unknown — at points of bifurcation, which are to be found. So, associated with the FP, a
sliding coordinate transformation — the W-transformation — is introduced in the form

(Thompson and Hunt 1973, Hunt 1981):
‘a='a,,(PW'q ,i=1,..., nc, (3.59)
this transformation being valid only outside the neighbourhood of limit points of the FP

(Hunt 1981). For thin-walled prismatic members under compression or bending, this
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assumption is not restrictive because, as said above, the FP is usually almost linear in the
range of interest, i.e., between the unloaded state and the first critical point. Note that the
FP is given, in the ‘g—P space, as a trivial solution in terms of the sliding coordinates ‘g.
Hence a new TPE function W is defined in terms of the sliding coordinates as (Thompson
and Hunt 1973):
w('q.P)=v(a,,(PKqP). (3.60)

In general, the linearity in P disappears in expression (3.60) but the equilibrium and the
stability conditions pass over unchanged to the W function with respect to the generalized
coordinates ‘g (Thompson and Hunt 1973, Hunt 1981). Therefore, the equilibrium system

can be computed either from (3.54) by applying directly substitution (3.59):
W,(¢.P)=V,(ap(PHqP)=0,i=1...n, (3.61)

or by deriving directly (3.60) with respect to the sliding coordinates ‘g:

W.(iq,P):a%:0,i:I ..... ne.. (3.62)

The fundamental path remains stable until it reaches a critical point, which is
associated with the vanishing of the second variation of W with respect to the generalized
coordinates, thus the critical points along the FP are computed by equalling to zero the
determinant of the Hessian matrix of W along the FP, denoted by Hpp:

o’w

— =0, 3.63
3ig g (3.63)

det(HFP ) = ‘

FP

determined, for ‘g=0, i=1, ...,n,, directly from (3.630) or by applying (3.59) to expression
(3.55). Instead of equalling to zero the determinant of the Hessian matrix, the critical loads
can be determined by solving the following generalized eigenproblem, equivalent to

equation (3.63), that computes the critical loads and the buckling modes:

[, 7]=0. (3.64)
Due to the shape of Hrp — see paragraph 2.4.4 for a simple and illustrative example —

equation (3.64) can be presented in the following form:
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[H,]{7}=0< [HY)+HUP+HYP + HEP +.. |{7}=0, (3.65)
corresponding to a non-linear eigenproblem, which can be solved using an appropriate
numerical technique (Mirasso and Godoy 1992) that enables the calculation of the
eigenvalues — the critical loads, the lowest one having the most relevant physical interest —,
and their corresponding eigenvectors — the critical modes. This technique requires, at first,

that the following eigenvalue problem is solved

1 _ _

Slagligy=-u i), (3.66)
where matrix M is given by

M, =H}), (3.67)
and the corresponding lowest value of P, the relevant critical load denoted by P ), is

retained. The inverse of P is adopted in the eigenproblem formulation to avoid infinite
solutions for the eigenvalues or the need to reduce the dimension of the eigenproblem, as
seen in the example at paragraph 2.4. Then, the second-member matrix M is updated in the

form:
My = H ) + Py HS) + Poy  H ) + Py H + .. (3.68)

and once again the eigenproblem

Sla) gy~ i), (.69)

is solved. The procedure continues until convergence of Pcr is achieved, which usually
requires few iterations, when, for two consecutive iterations i and i+/, it is obtained:
Pepir1) = Fer(s) < tolerance. (3.70)
After having achieved convergence of the lowest eigenvalue of P at iteration n, the

buckling modes are then determined by computing the eigenvectors for the problem:

HEAIGEN A 6.7

and the one corresponding to Pcg, denoted by {i Z]}CR, defines the relevant buckling mode
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for which the correspondent post-buckling equilibrium path will be searched. Furthermore,

through expression (3.57) Pcr defines the values of all coordinates ‘a at the critical state,
henceforth deonted by ‘acg, and thus defining completely the critical state, and {’E}CR,

being the relevant buckling mode, defines the direction of the tangent line of the post-
buckling path at the critical state (Wriggers 1995, Kritzig 1995) for the space of the sliding

coordinates.

3.3.3 Searching post-buckling equilibrium paths near the critical state:
Thompson and Hunt’s approach using the elimination of the passive

coordinates

The study of efficient numerical procedures for searching post-critical equilibrium
paths in the neighbourhood of critical points, for the analysis of the equilibrium system of
loaded perfect members given in the form of expression (3.54), has been a relevant
research subject in structural engineering over the years, due to the many mathematical
difficulties that arise in the treatment of these problems, and several strategies were
presented in Chapter 1. Special relevance is made now to the techniques developed by
Hunt and Thompson (Thompson and Hunt 1973 and 1984, Hunt 1981), which are briefly
reviewed here and are based on perturbation methods (Murdock 1999) that compute the
post-buckling equilibrium path as Taylor expansions from the relevant critical state.

So, in relation to the problem stated in chapter 3.3.1 — the search of equilibrium
curves in the ‘a-P space for the equilibrium system given by (3.54), and at each solution in
analysing the stability of the equilibrium state — after having defined the fundamental
equilibrium path as a function of an appropriate control parameter A4, which can be the load
parameter P or any appropriate coordinate ‘a, whichever is appropriate in the range of
interest — in the following it is assumed, with no loss of generality, that the control

parameter is actually the acting load P, because it is the most usual case in practice — in the
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form:
(3.72)

having always a non-null component in the P-direction in the region of interest in the ‘a—P
space, which excludes limit points and defines the fundamental path as a single valued path
with respect to P. The localized set of incremental coordinates is then introduced in the

form

‘a='a,,(PW'q ,i=1,..., nc, (3.73)
implying a one-to-one correspondence between ‘a and ‘g, and the origin of the new
coordinate system slides along the fundamental path — these two aspects are only true in

the absence of limit points. A new function is derived for the TPE in terms of g, as above:
w('q.P)=V('am(PHqP), (3.74)
and the equilibrium and stability axioms pass over unchanged to the new TPE function.

Furthermore, W(iq,P) has the following property:

aWrHI
0'q OP"

=0, Vi=1...,n,andVn=012,... (3.75)

FP

since function ? it is identically null along the FP, for any i from / to n..
q

The Hessian matrix of /¥ along the FP,

o'W

ﬁFP:W ,ZZI ..... n‘and‘j:] ..... n. (376)

FP

rules the stability of equilibrium and, since it is supposed that the FP is initially stable, for

low values of P matrix W;| is positive definite. With increasing P, a m-fold point of

o
bifurcation C is found in the FP, for P = P, and WIC is singular with rank n.-m (co-rank
m). The procedure shown in section 3.3.2 follows closely the present scheme until this

stage, only adding the eigenproblem formulation of expression (3.64), but from this point

forward it will be seen that some changes will be introduced.
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Returning to the Thompson and Hunt’s scheme, it proceeds by splitting the
coordinates in two subsets, one of m active coordinates (in the present chapter, henceforth
denoted by Latin suffices) and another of n.-m passive coordinates (in the present chapter,
henceforth denoted by Greek suffices), in such a way that the Hessian’s submatrix

corresponding to the passive coordinates only is non-singular at the critical state:

C

2
oW . (3.77)

det (Wc)z o

af

The two sets are not necessarily unique, which means that more than one
admissible set of active coordinates can be established. For the most relevant case in
engineering practice, i.e. for m=1, it means that more than one coordinate can be chosen to
be the active one and thus to control the search of the post-buckling equilibrium path in the
neighbourhood of the relevant critical state.

Subsequently, all n.-m passive coordinates are expressed as a function of the active

coordinates and the control parameter in the form:

“q="q (g, P) (3.78)
and are introduced in the equilibrium equations related to the passive coordinates only,
yielding the n.-m equilibrium equations:

w,|'q, “q(’q, P) P|=0. (3.79)

In fact, it can be seen in subsequent works by Hunt, like for example Hunt and
Lucena Neto (1991) and Lucena Neto (1992), that the passive coordinates can be made
dependent of the active ones only, without being dependent of the control parameter, in the
neighbourhood of the relevant critical state in the form:

“4="q('q). (3.80)

This is allowed by the application of the implicit function’s theorem (Poston and Stewart
1978, Troger and Steindl 1991). Returning to expression (3.78), assuming that the
elimination of the passive coordinates is made by assuming they are given by a series

expansion in ‘g and P from the critical state, the coefficients can be computed through the



116 CHAPTER 3

power series method and a new potential function is thus obtained, defined by:

7 (g, P)=w|q, “q('q. P) P|. (3.81)
It is highlighted that the passive coordinates are not simply neglected, and any
contamination effect they provoke in the buckling modes is considered (Hunt 1981). The
set of m equilibrium equations is given in general by:

e
oq

7 , (3.82)

which enable the computing of the post-buckling equilibrium paths. In most of the cases in

practice, there is only one active coordinate and one control parameter, corresponding to

the case where matrix Wf of (3.77) has co-rank /, so (3.82) becomes a simple equation

whose solution yields the pretended post-buckling equilibrium path.

The scheme presented here is one among several procedures of reducing the
system’s dimension in the analysis of dynamical systems — see for example Steindl and
Troger (2001) — and Hunt, Thompson and their co-workers applied it to perform post-
buckling analysis of structural engineering systems having a relatively small number of
coordinates. In this thesis it was observed that this procedure becomes inefficient in
practice if a high number of coordinates is required, sometimes not applicable even with
the nowadays computer resources, due to the need of manipulation of very large
expressions that requires large computer resources, so an alternative procedure is derived
below to compute the post-buckling equilibrium paths in the context of the use of advanced

symbolic programming (Wolfram 2003) and based on continuation methods.

3.3.4 Searching post-buckling equilibrium paths near the critical state: the

direct search approach using coordinate control

Going back to the problem under observation — the search of post-buckling
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equilibrium paths in the neighbourhood of an already known critical equilibrium state —, as
an alternative to the scheme of Thompson and Hunt presented above, which is based on
perturbation procedures, the post-buckling equilibrium paths are determined numerically in
this thesis by solving directly the non-linear transformed equilibrium system (3.61) or
(3.62), which was previously manipulated in order to ensure that the resulting equilibrium
state stays outside the equilibrium path. The procedure presented in the following is
devoted to simple bifurcation problems, for which m=1, the most common situation in
practice, is greatly inspired in the Thompson and Hunt’s scheme and shall be viewed as an
adaptation of the traditional stability procedures to the use of continuation methods in the
context of symbolic programming software MATHEMATICA (Wolfram 2003). It relies only

c+l

on the definition of an equilibrium path — any line in the R"™ space that solves the
equilibrium system (3.25) — and also on the following theorems (Thompson and Hunt
1973):

Theorem 1: an initially stable (primary) equilibrium path rising monotonically
with the loading parameter cannot become unstable without intersecting a further distinct
(secondary) equilibrium path;

Theorem 2: an initially stable equilibrium path rising with the loading parameter
cannot approach an unstable equilibrium state, from which the system would exhibit a
finite dynamic snap, without the approach of an equilibrium path (which may or may not
be an extension of the original path) at values of the loading parameter less than that of the
unstable state.

These theorems apply to the present problem and, due to the shape of the FP, which
is almost linear in the range of interest, i.e., between the unloaded and the relevant critical
state, a secondary equilibrium path must emerge from the critical state since here the
determinant of the Hessian matrix becomes zero, passing from positive to negative, and
thus the FP ceases to be stable, although the values of the control parameter P rise.

ne+l

Therefore, among all equilibrium paths in the R vector space related to the sliding
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coordinates and the load parameter P that solve the equilibrium system (3.54), it is sought
the one that intersects the FP at the relevant critical state determined above. So, from the

above paragraph some information about this post-buckling equilibrium path (PBP) can be

obtained: it contains the critical state defined by the nc+; dimensional vectors (iaCR,PCR),
i=1,...,n., or by (0,...,0, PCR) in terms of the sliding coordinates, and from this point,

follows approximately the direction of the critical eigenvector in the ‘a-P or ‘g-P vector
space.
The search of this equilibrium path is performed using simple continuation

ne+l

methods, determining a number of points in the R space of the sliding coordinates and
the load parameter belonging to the solution curve of interest. The post-buckling

equilibrium path is thus defined by the set of nk points in the form:
g b Pli=t..nc k=1..ng, (3.83)

being (0,...,0, PCR) part of this set, and the first step to define (3.83) is to chose one active

control

coordinate as the controller, denoted by q. Following Thompson and Hunt (1973 and
1984), it is required for this coordinate that the matrix obtained by removing the control
line and control column of the Hessian matrix at the critical state is non-singular:

o'W
0'q0’q

det (€)= (3.84)

c . .
i=1,...,n. Ni# control
" j=1...,n. A j# control

control

Since g 1s active in the post-buckling range, its corresponding term in the buckling

mode must be non-zero and in most cases it is convenient to chose as the controller the
coordinate that has a high coefficient in the buckling mode {’E}CR, obtained through

(3.64), but not necessarily the highest. Subsequently, a set of ng positive and negative

control

prescribed values are attributed to g and the equilibrium system becomes dependent of
the remaining coordinates and of the load parameter:
VV;(fq,P)=0,i=1,...,nc, j=1,...,n, A j#control, (3.85)

thus having n¢ unknowns and n¢ equations. By placing the equilibrium equation related to
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conroly at the end of the system, the corresponding Jacobian matrix has a symmetric

(n. —1)x(n. —1) dimensional block along the main diagonal, which is very useful for

numerical purposes, and is written in the form:

ow, ow,
j i=1,...,n. ANi#control
J = o’q or )t N . (3.86)
(symmetric block) Jj=1....n_ A j+# control
a VVcontrol a VVcontrol
i d’q o°P |

Therefore, the set (3.83) is defined by giving a sequence of pre-established non-

control

zero, positive and negative, values with increasing modulus to g and, for each value,

by determining the corresponding solution of (3.85). Care shall be taken upon the choice of

control

the lowest attributed value for q, for the sequences associated with positive and

control

negative values of “""*g, denoted by q: in the thesis it was chosen by analysing

directly ill conditioning phenomena of the Jacobian matrix, in order to reduce the
numerical instability of the procedure, and the first value was adopted when the respective
Jacobian matrix was well conditioned and whose inverse was correctly determined. Note
that, at the critical state, the Jacobian matrix is singular, hence not invertible, and in a
neighbourhood around the critical state this matrix is ill-conditioned (Fellipa 2001), being
very difficult, even not possible, to determine its inverse, and any adopted method for
solving the non-linear algebraic system (3.85) may lead to incorrect solutions (Golub and
Van Loan 1996). Following Wriggers (1995) and Krétzig (1995), as a first approximation
of the solution of equilibrium system (3.85), in order to move away from the critical state,

the terms related to the passive coordinates are computed by making resource to the
relevant buckling mode vector {i der }, i=1,..,n.,in the form:
control
i i— 1 .
q(()): qCR x controlq( ) » 1= I""’nC 2 (387)

CR

which means that the first approximation for the solution of the equilibrium system follows
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the critical buckling mode, and the term related to the load parameter is considered equal to
Pcr. Then, the traditional Newton-Raphson method (Jennings and McKeown 1992) is
applied to solve the resulting algebraic non-linear system (3.85), and the obtained solution
is then used as a first approximation for the next step, related to the second prescribed

control

value for g. Finally, the PBP is defined by the set of resulting points, each being a

solution of the equilibrium system (3.85). Fig. 3.7 gives a geometrical representation of the

ne+l

presented scheme in the R™™ space.

Having found the first equilibrium point outside the equilibrium path, it is possible

control

to opt between proceeding with this scheme by giving increasing values to q (positive
and negative), hence forcing the resulting equilibrium points to move outwards the FP,
which is valid as long as the equilibrium points move away from the FP in the ‘a-P hyper-
plane, or by any other appropriate method (Allgower and Georg 1990). Moreover, it is also
possible to compute the PBP either through the transformed equilibrium system of (3.85)

control

or by the initial one, from (3.54), as long as it is known the way coordinate a, related

control

to g through transformation (3.59), evolves along the PBP, which is not difficult to
obtain. The stability of the obtained equilibrium states can be evaluated through the usual
process, by evaluating at each equilibrium point the sign of the determinant of the
corresponding Hessian matrix. By doing this, the search of secondary critical states
becomes possible for the adopted discretization, following the same scheme as above,
shooting a polynomial in an appropriate parameter when a critical point becomes near and
searching alternative equilibrium points outside the secondary path — if a more refined
discretization was possible, regarding the available computational capacities, since the
energy system (3.54) is conservative, thus keeping its volume and dimensions in the rR"*/
space (Thompson and Stewart 2002), this scheme would proceed to the search of
secondary bifurcations which would implicate, almost certainly, the appearance of

localized phenomena (Coman 2004). These localized buckling phenomena were already

observed, either experimentally (Graves-Smith and Sridharan 1980) or analytically (Lord,
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Champneys and Hunt 1997, Hunt, Peletier, Champneys, Woods, Ahmer Wadee, Budd and
Lord 2000), in some types of thin-walled prismatic members under compression or
bending and in the near future it is wished to analyse them in the context of the extended
GBT formulation, as sufficient computer resources become available to the author. Finally,
it is important to highlight that the use of symbolic programming software, like
MATHEMATICA in the present case, allows the analyst to choose the appropriate coordinate
for the definition of the equilibrium path that solves system (3.85), and one coordinate
might be appropriate for one section of the equilibrium path, while for another section

another coordinate can make easier the involved computations — by choosing the

appropriate coordinate to control the solving procedure for each section of the equilibrium
path, the analyst can turn the sometimes complex problem of searching solution paths in

highly non-linear systems into a sequence of much easier problems.

. ~. /B’ critical state
N
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\\ ‘\ \
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control \ v
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. b) Finding equilibrium points in the neighbourhood
a) General overview ) £ P &

of the FP (hyper-planea-P)

Fig. 3.7 — Direct search of post-buckling paths in the neighbourhood of the
critical point through continuation methods
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3.4 — Computer implementation of the stability procedures

Regarding the optimization of the computational resources, several worksheets
running on the software MATHEMATICA were implemented to solve the examples shown in
the following chapter. They comprise: i) the calculus of the TPE, ii) the linear stability
analysis, in the sense of the characterization of the critical behaviour of the member in
relation to the member’s length, and iii) the post-buckling analysis for a specific length of
the member. In the following, a general presentation of these programs is made, to clarify
the application of the concepts just presented to practical member stability analysis.

The calculus of the ISE is the hardest task in the overall analysis, and usually the
one that limits the number of adopted polynomial coordinate functions per mode of
deformation (it may take several... weeks, continuously, to compute the ISE for one single
example), due to the heavy calculations involved, and is realized according to Fig. 3.8.

The input data consists in the adopted number of modes of deformation and
generalized coordinates, respectively nyp and n¢, a vector containing the definition of all
amplitude modal functions, each one expressed in the form of expression (3.44), and the
set of generalized properties, which were previously computed using the formulas shown
in chapter 2.3.3. The ISE is then calculated making resource to the matrix scheme of
chapter 3.2.3, which already considers the adopted coordinate functions to approximate
each modal amplitude function “4. The potential of the external loading is computed by
expression (2.109) of chapter 2.3.4 and then the TPE becomes fully defined, being a

ne

function of the generalized coordinates a,...," @ and of the load parameter P. It is noted

here that for post-buckling analysis the member’s length L is defined as the worksheet

starts while for linear stability analysis the TPE may stay also dependent of L, due to the

available computer resources, both being related to a specific cross section and load case.
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Input Data

R 2

Calculus of all parts
of the ISE

Sum of all parts of
the ISE

Calculus of the potential
of the external loading

Assembly of the TPE

~

Results saving and
storage

Fig. 3.8 — Flowchart of the program for calculation of the TPE

It is highlighted here that GBT constitutes, in a certain way, a way of discretization,
which introduces unavoidable errors in the solution. Also, the thin-walled prismatic
structural members under analysis show very small ratios thickness/length, due to their
very small thickness, and so their analysis may be very susceptible to numerical locking
phenomena that often occurs in FSM or FEM analyses of thin-walled members, which can
destroy completely the accuracy of the solution (Cook, Malkus and Plesha 1989, Lanzo,
Garcea and Casciaro 1995, Garcea 2001). These phenomena can also affect any GBT non-

linear analysis and usually decrease as the discretization becomes smaller, but refined GBT
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discretizations, which imply a large number of inner nodes, may not be possible since they
demand large computer resources. Although in certain cases locking can appear in linear
analyses, it is often due to errors in the calculus of the non-linear terms of the TPE — one
possible cause is the unavoidable errors that occur in the calculus of the difference of very
large numbers, the error usually being greater than the correct value (Lanzo, Garcea and
Casciaro 1995). A common way to assure the accuracy of the analysis, overcoming this
problem, is to consider the fewest number of non-linear terms, obviously as long as the
accuracy of the analysis is not affected. Apart certain types of problems that deal with local
non-linear effects, like patch loading or non-correct support conditions, in thin-walled
prismatic cold-formed members the main cause of geometric non-linearity are the
membrane longitudinal stresses and strains, so very often it is adopted the assumption of
accounting only for the non-linear effects related to the longitudinal membrane stresses.
This strategy is used by Thompson and Hunt (1984) for the analysis of compressed plates,
by Schafer (1997) in the context of the FSM, and also by Schardt (1994) in the GBT
stability analysis for open cross sections. In the context of the GBT formulation presented
in chapter 3, it implies the consideration of only the higher order parts associated with the
tensors ko2, Kro; and Kros in expression 2.110 in the member’s global analysis. This
strategy was adopted in several examples and has generated very good results when it was
compared to other methods of analysis, like the FSM (Schafer 2003).

The linear stability analysis is performed through the scheme presented in Fig. 3.6.
The input data is the TPE, which depends on the generalized coordinates ’a,...." a, the

load parameter P and the member’s length L. The equilibrium equations system is obtained
by expression (3.54), deriving the TPE in order to each generalized coordinate and the FP
is determined through the power series method, assuming each coordinate given by
expression (3.57) and rendering to zero each coefficient of every power of P in each
equation of the equilibrium system. It is possible to prove that, in this step and for a

specific member’s length L, only one matrix inversion is required, independently of the
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approximation adopted for the generalized coordinates, in a similar way as done by Hunt
(1981) for the post-buckling analysis through a perturbation scheme. The matrix inversion
is made making resource to the MATHEMATICA appropriate instruction. The W-
transformation is then applied, the Hessian matrix is deduced through expression (3.63)
and the eigenproblem that will determine the critical state is established in the form given

by expression (3.65). The procedure explained in Mirasso and Godoy (1992) is then
applied, noting that in expression (3.65) matrix H (FQ is not invertible — see chapter 2.4,

where this is proved for column analysis in the context of the classical GBT theory. This
difficulty is easily overcome by making resource to the relevant properties of the
eigenvalue problems (Wilkinson 1965) so that the first step of the eigenproblem must be

expressed in the following form:
1
(H‘FQ +;Hé”,?]{q}= 0, (3.88)

and is solved using the MATHEMATICA own appropriate instructions. The lowest

eigenvalue, denoted by P, is then retained and used to update the eigenproblem, through

the scheme proposed in Mirasso and Godoy (1992), in the following form
1
(H;Q (B P, +HE) P+ )+ ;Hg)j{q} - 0. (3.89)

Usually one or two iterations are sufficient to achieve convergence, then the eigenvector is
determined, using the MATHEMATICA instruction for determining eigenvectors, and the one
that corresponds to the lowest eigenvalue Pcr represents the relevant buckling mode.
Finally, the critical loads and the buckling modes are saved and stored in a file, in order to
draw the graphics of the critical behaviour — loads and modes — in relation to the member’s
length. For the examples presented throughout this thesis, due to computer limitations, the
maximum number of adopted polynomials for modes of deformation 2 and higher, for
post-buckling column analysis, was five, which implies more than 90 generalized

coordinates if about 20 modes of deformation are adopted.
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Input of the TPE 4 [For L from L,,;, to L,,,, with increment 4L, do :\
{} e cxpress the TPE A4 for L
e find the equilibrium equations system
Stability analysis e determine the FP
e apply the W-transformation for the FP
G e determine the hessian matrix H
e solve the eigenproblem H,,(P)-{q}=0
Results saving and g J
storage

Fig. 3.9 — Flowchart of the program for stability analysis

The post-buckling analysis is performed for a specific member’s length using the
scheme presented in Fig. 3.10 below, and follows the procedure used for linear stability
analysis described above until the determination of the critical state along the FP. Then,
based on the concepts presented in chapter 3.3, the post-buckling equilibrium path is
determined and, at each equilibrium point, the determinant of the Hessian matrix is
calculated to enable the full characterization of the equilibrium state. The algebraic
equilibrium system (3.85) may be solved by any appropriate numerical method (Stoer and
Bulirsch 1993, Jennings and McKeown 1992). A Newton-Raphson scheme was adopted
here, benefiting from the internal procedures of Mathematica (Wolfram 2003). The initial
values of the unknowns influence the convergence of the method, so, in order to improve
the efficiency of the numerical method, the initial value of the sliding coordinates for the
first iteration is taken proportional to the eigenvector of the problem (3.89) that

corresponds to the critical load.
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Input of.the TPE 4 for a /For a specific length L do: \
specific length L find the equilibrium equations system

determine the FP

apply the W-transformation for the FP
determine the hessian matrix H

solve the eigenproblem H,,(P)-{q}=0

Post-buckling
analysis

determine the maximum component of
U the critical buckling mode, /g

o for jq from jq,,,i,, to” ¢ max With increment

_ A7q do (for both branches):

Results saving and — solve the equilibrium equations
storage system

— determine the determinant of H

\ for the obtained solution

Fig. 3.10 - Flowchart of the program for post-buckling analysis

3.5 — Chapter synopsis

This chapter contains the numerical developments that were needed to implement
the post-buckling analysis of thin-walled perfect members through the unified energy
formulation of GBT. At first, a structured and sequential scheme that derives the
appropriate coordinate functions from the relevant modal boundary conditions, in the
context of the Rayleigh-Ritz method, was presented. The graphics of the resulting
functions prove their adequacy for the buckling and post-buckling analysis and the
advantages of adopting these functions instead of trigonometric ones. As referred in
Chapter 1, Storch and Strang (1988) performed a Rayleigh-Ritz analysis for a simple
cantilever beam and addressed the fact that the adoption of trigonometric functions can not
render a complete vector space basis for the unknown functions, since they can not
simulate a function with constant second order derivative along the member’s length. In

fact, in the scheme presented just above, this aspect is also perceived and explained: for
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functions respecting all cinematic boundary conditions, this limitation is related to the
obedience to the natural boundary conditions of the system for the functions derived above,
so if a complete set of coordinate functions is needed to analyse a general case, natural
boundary conditions must be removed from the problem. So, one has to opt between a
faster convergence, that usually — but not always — is obtained from the obedience to the
natural boundary conditions, or the completeness of the functions set, which renders
completely general the RRM analysis. In most cases the second option is more advisable,
since, usually, it carries only one or two more coordinate functions per unknown to achieve
a similar convergence to the first option.

Subsequently, the stability procedures that permit the calculus of the sought
equilibrium paths were described. They are based on the traditional bifurcational calculus
adapted to the stability analysis by Thompson and Hunt, but were improved here in the
context of an advanced programming software, in order to avoid the more complicated
computations based on the perturbations scheme — with the modern symbolic software
programming like MATHEMATICA, needed to manipulate the member’s equilibrium system,
it was observed that, as the number of discrete coordinates increases, it is easier to invert a
matrix than to make a series development of the passive coordinates in terms of the active
one. The numerical techniques just presented will be applied to several illustrative
examples in the following chapters, in the context of the energy formulation for the
classical or extended GBT theories. This chapter is based on two articles from the author
that were presented in two international scientific conferences (Simdo and Simdes da Silva

2003b and 2004b).



4 — ILLUSTRATIVE EXAMPLES FOR THE CLASSICAL GBT

FORMULATION

4.1 — Introduction

This chapter presents some applications of the energy formulation derived above, in
the context of the classical GBT theory, to the linear and non-linear stability analysis of
open non-branched and closed mono-cellular section thin-walled sections under uniform
compression or major axis bending moment. The objective of these examples is to validate
the implementation of the unified post-buckling energy formulation developed in Chapter
2 and the implementation of the numerical techniques presented in Chapter 3. The
validation examples comprise i) the comparative stability analysis of a mono-cellular ad a
channel cross section columns, ii) the linear stability analysis of a closed mono-cellular
simply supported beam, and iii) the post-buckling analysis of a simply supported channel
column. These validation examples are not intended to reproduce real situations but only to
highlight the features of the formulation that was developed. In particular, an ideal elastic

material was considered, without any concern about actual levels of plasticity.

4.2 — Comparative analysis of an open and of a closed cross section

columns

The present example compares the linear stability behaviour of a closed mono-
cellular and of a channel section member under uniform compression. The closed cross
section — case 1 — consists of a RHS 80x40%2 member while the open section — case 2 —

was chosen to have the same height, width and cross sectional area as and also to fulfil

129
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EC3 — part 1.3 recommendations for lip slenderness (EC3 2006). Fig. 4.1 illustrates the
cross section geometry and the nodal discretization for the chosen sections. Young’s
modulus is £ = 210 GPa and the Poisson ratio is x# = (.3. The warping functions, the cross
section displacements and the transverse bending moments are shown in Figures 4.2, 4.3
and 4.4. These figures illustrate some important aspects: for the closed section, only one
distortional mode, here referred in the most restrictive sense of the word distortional — the
mode that is associated with distortional buckling, is generated (mode 5), while for the
channel section two distortional modes — symmetric distortional mode 5 and anti-
symmetric distortional mode 6 — are generated. The remaining distortional modes, here in
wider sense, i.e., modes associated with non-zero terms of the diagonal matrix B, deal just
with plate and/or lip bending and are associated with null displacements of the main nodes

along the cross section plane, except for the free nodes of the lips.

@ @ O, ©
@
80 mm _ S
_»jime -@ .@ _><t_—2.5 mm § l@
5 @
| rE L]
W @ @ @ 40 mm @ @
Nodal Nodal
discretization discretization
Case 1 Case 2

Fig. 4.1 — Definition of cross sections dimensions and nodal discretization

The boundary conditions are assumed to model a simply supported column, as

shown in Fig. 4.5, so that the trigonometric functions:
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k(p = sin% 4.1)

are chosen as trial functions for modes 2 to 9, while for mode 1 polynomial (3.24) is
chosen to model a column with an end free to move along the longitudinal direction. For a

compressive axial force P applied at one end — see Fig. 4.5 — the potential of the external

load is simply given by:
I, =Px'V| ='a 2*/313. (4.2)
’ x=L L%
Mode 1 Mode 2 Mode 3 Mode 1 Mode 3

Mode 4 Mode 5 Mode 6 Mode 6

Mode 8
Mode 7 Mode 8 Mode 9

Case 1 Case 2

Fig. 4.16 — Shape of the unitary modal cross section displacements

Since both cases are related to equal cross section areas — that is equivalent to say,
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in GBT notation, to equal values of ‘C (Schardt 1989) — their fundamental paths are equal
and given by:

la,=2.21832x107° x ", (4.3)
all other coordinates being equal to zero. Applying the standard stability procedures
presented in Chapter 3, the critical loads of Fig. 4.6 are obtained, together with the modal

participation coefficients.
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Fig. 4.3 — Shape of the unitary modal warping displacements
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Fig 4.4— Shape of the modal transverse bending diagrams

Case 1 Case 2

Figure 4.5 — The simply supported compressed column
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Fig. 4.6 — Buckling loads and modal participations for cases 1 and 2

For case 1, the existence of three buckling regions is clearly perceptible. The first

region, where modes 6 and 9 are predominant, corresponds to the local plate buckling

zone, for lengths smaller than 400 mm. Then, as the member length increases, the second

region occurs, where modes 3 and 7 interact, this phenomenon being related to global

buckling — minor axis bending — influenced by buckling of the compressed web, linked to

the asymmetric distortional mode. Finally, for lengths longer than 1500 mm, the third

region occurs, where mode 3 (minor axis bending) alone governs the behaviour of the

member. It is important to notice that individual mode buckling loads for modes 4 and 5

are much greater than the buckling loads for all modes, as can be observed in Figure 4.7.
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Fig. 4.7 - Single mode buckling loads for modes 4 and 5 for case 1

The buckling behaviour for case 2 is far more complex, being a mono-symmetric
open cross section. Four buckling regions can be identified. The first region corresponds to
lengths smaller than 100 mm and local plate buckling rules the column behaviour, which,
in GBT notation, is expressed by the strong influence of mode 7. Then, a second region
occurs for lengths up to 530 mm and mode 5 controls the buckling loads, corresponding to
the symmetric distortional buckling zone. In the third region, that can be denoted as the
anti-symmetrical flexural-distortional buckling range, for column lengths between 530 mm
and 2100 mm, modes 2, 4 and 6 control the behaviour — in this zone at first, mode 6
(asymmetric distortional mode) governs the behaviour but smoothly major axis bending
(mode 2) takes the most relevant role. Finally, for lengths higher than 2100 mm, minor axis
bending controls alone the behaviour of the column.

Observing Fig. 4.8 it is seen that the buckling load for smaller lengths is lower for
the closed section than for the channel, due to its smaller thickness. For higher lengths the
buckling loads become higher for the closed section due to the higher minor axis bending

stiffness.
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Fig. 4.8 — All modes bifurcation loads for cases 1 and 2

A last note to refer that the analysis just performed used only one half-wave per
mode of deformation, like in several stability works (see, for example, Davies), so in this
introductory example the multi-wave effect that often occurs in plated structures (Bleich
1952) was not modelled, hence was not observed. In forthcoming examples this

phenomenon will be analysed.

4.3 — Stability analysis of a closed cross section member under uniform

major axis bending moment

In the literature a wide range of works on the stability of open section members
under major axis bending moment may be found, which use FSM (Prola 2001), or GBT
(Davies, Jiang & Ungureanu 1998), or even FEM. It is thought that closed cross section
beams have high resistance to buckling, due to the high stiffness of these sections to

torsional effects, so that flexural-torsional buckling is not relevant. However, the following
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example shows that the cross section’s distortion induces a relevant decrease of the critical
moment when compared to the traditional rigid cross section analysis.

Here the closed cross section member of the previous example is submitted to two
equal and opposite major axis bending moments M, at both ends of the member. The
potential of the external loads is now given by:

_ ). (4.4)

+ 2 V!
x=0

m, =Mx=v

and a small adjustment was made to the coordinate functions. The coordinate function
related to mode of deformation 2 is no longer sinusoidal, instead polynomial (3.38 a) is
chosen to allow a uniform and constant linear major axis bending moment. Assuming that
both ends are longitudinally fixed and thin plates are used at the edge cross sections, the
critical moments are determined for a range of lengths, leading to the results of Fig. 4.9.
Fig. 4.9 highlights that there are two sets of lengths: the smaller lengths — smaller than
about 350 mm — for which local plate modes rule the buckling load, related to the buckling
of the compressed flange, and the higher lengths range — over about 350 mm — for which
the rigid body mode 3 and the distortional mode 5 control the buckling behaviour of the
beam. In contrast to the compressed column, the distortional mode is very important for all
the higher lengths range, the critical moments resulting from the combination of all modes
being much smaller than the critical bending moments arising from the analysis with the
rigid body modes 3 and 4 only. Therefore, the neglect of the cross section distortion mode

results in a gross overestimation of the critical moments.
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Fig. 4.9 — Critical major axis bending moments

The modal buckling loads were determined by equalling to zero the determinant of

the TPE Hessian matrix (Thompson & Hunt 1973), in the context of the Rayleigh-Ritz

method, as in the previous example. To show the precision of this method with only one

coordinate function, the critical moments were calculated also using the FSM program

CUFSM (Schafer 2003) in Fig. 4.10 and the bifurcation moments for modes 3 and 4 only,

corresponding to neglecting the cross section distortion, were compared to the classical

critical moment formula (Trahair 1993) in Fig. 4.11. It can be observed a very good fitting

between both curves, for both cases.
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Fig.4.10 — Comparison between the stability procedures using GBT and
CUFSM (Schafer 1998)
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Fig.4.11 — Comparison between the stability procedures using Rayleigh-Ritz
method and the classical formula (Trahair 1993)
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Fig. 4.13 — Modal participation factors for strong axis bending for member

lengths between 50 and 200 mm

The participation factor of the modes is presented in Figures 4.12 and 4.13. Fig.
4.12 puts in evidence the dominance of modes 3 and 5 for the higher lengths range, mode 5
being more important for intermediate lengths and mode 3 more important for the higher
lengths. Mode 4 plays a minor role for all lengths. For the smaller lengths, in Fig. 4.13, it
can be see that first, for very small lengths, modes 6, 8 and 9 control the buckling

behaviour, with mode 2 having a small but very significant role — it corresponds to the
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influence of the local buckling of the compressed flange on the bending stiffness. Then,
abruptly, the relevance of these modes ceases and modes 3, 5 and 7 start to rule the
buckling behaviour. As the member’s length increases, modes 3 and 5 progressively
control the global buckling behaviour, and mode 7 for lengths higher than 600 mm has no

relevance.

4.4 — Post-buckling analysis of an open cross section column

4.4.1. Introduction

Finally, to illustrate the potential of the GBT energy formulation developed above,
an example on the post-buckling analysis of an open channel section is presented. The

channel cross section used in paragraph 4.2 was chosen, with similar nodal discretization.

4.4.2 Buckling behaviour

The critical behaviour is presented in Fig. 4.14 for member lengths between 50 and
3500 mm, and polynomial (3.24) is chosen as trial function for mode 1, while the first
three polynomials of (3.37) are considered as coordinate functions for the remaining
modes. For case one, only the first polynomial was considered, and for cases 2 and 3 the
first two and three polynomials of (3.37) were adopted, respectively. The lowest
eigenvalue was used here to describe the member critical behaviour. In the present problem
and, due to the shape of Hgp, coordinate 1 (related to axial elongation mode) is passive for
all values of the load factor P and thus can be ignored in the eigenvalue analysis. Figure
4.14 illustrates the decrease of critical load with the number of approximating polynomials,
this decrease being more relevant when local or distortional buckling are dominant —
significant decrease occurs for the smaller lengths (lengths up to about 250mm) when local
plate buckling of the web rules the bifurcational behaviour — and almost negligible for

global buckling. For example, the use of just one half-wave curve stiffens the member up
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to 46% for L=160 mm, when compared to cases 2 or 3. When the critical behaviour is
governed mainly by minor axis bending, the use of additional coordinate functions is not

necessary, because a good convergence is obtained with only one polynomial per mode.

600 -

400 -

200 -

: : : : : : L L (mm)
500 1000 1500 2000 2500 3000 3500

Fig. 4.14: Member’s critical loads for the three analysed cases

4.4.3 Post-Buckling behaviour

In order to perform the post-buckling analysis, consider a length of 400 mm
submitted to a uniform axial compression load at one end, as indicated in Fig. 4.5 — case 2.
For this length, the critical behaviour is governed mainly by mode of deformation 5
(symmetric distortion), and the lowest critical load is P, =481.05 kN. The corresponding
eigenvector is presented in Table 4.2, where it can be seen that mode 5 — symmetrical
distortion — plays the most relevant role. In this table, for each mode of deformation, the
first coordinate corresponds to the generalized coordinate associated with polynomial (3.37
a), and the second and the third coordinates correspond to polynomials (3.37 b) and (3.37
c), respectively.

Next, the post-buckling solutions are obtained by searching non-trivial equilibrium
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paths around the critical point. Fig. 4.15 shows the post-buckling paths for coordinates ‘a
and ''a, Fig. 4.16 presents the horizontal displacement of node 4 and the relative vertical
displacement between nodes 1 and 7 in the post-buckling domain, Fig. 4.17 displays the
post-buckling axial displacements of nodes 5 and 6, and Fig. 4.18 gives an overall post-
buckling member shape. Fig. 4.15 highlights the stability of both post-buckling equilibrium
paths, the one related to negative values of '‘a exhibiting a slightly negative slope in the
neighbourhood of the critical point, while the other branch has always a positive slope,
hence this bifurcation is clearly a non-symmetric one. Having negative slope, the branch

1

related to ""a <0 is unstable around the bifurcation point, corresponding to the inwards

11

deformation. However, as the values of coordinate ""a move away from the fundamental

path, the post-buckling path gains a positive slope and the equilibrium becomes stable.

mode n. 3 5 7 9

: 5 6 7 11 12 13 17 18 19 23 24 25
coordinate a a a a a a a a a a a a

coefficient | 096 0 0 | 98.13 0 0.40 | -0.49 0 0 -0.02 0 0

Table 4.1 — Coefficients of the 1* eigenvector

P (kN) P (kN)
500 — 200
400 400
300 — Ma=p0 300
11 — 11,

200 a>0 200 a=0

— a0 a0
100 100 e

1y y
50 100 150 200 -75  -50  -25 25 50 75

Fig. 4.15 — Post-buckling equilibrium paths for coordinates ‘a and 'a
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Fig. 4.16 — Post-buckling displacements (v4: horizontal displacement of node 4;

01-7: relative vertical displacement between nodes 1 and 7)

Looking at Fig. 4.19, where the longitudinal membrane stresses along two
illustrative cross sections are presented for the critical point and for two points of both
post-buckling branches, it can be concluded that, mainly due to the modal interaction
between modes 5 and 3, the path relative to ''a < 0 is associated with a stresses increase in

the flanges near the lips, while the other branch carries a stress increase at the web, this

configuration being more stable.

P/Pe P/Py
115 1.15
1.1 1.1
1.05 1.05
1 4
— a0 L os g5
0.95 — a0 0.95
Ma<0 i
. 09 Ma<0 0.9
— a=0 0.85 — g 35
U5, Xx=L (min .
-275 25 -225 -2 —175 -15 125 ’ () e a5 s i texlimm)

Fig. 4.31- Post-buckling axial displacements for nodes 5 and 6
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Fig. 4.18 — Post-buckling member’s configuration
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Fig. 4.19 — Longitudinal stresses for the critical state (light grey) and for post-
buckling states (dark grey) (x10° Pa)

4.4 — Chapter synopsis

This chapter presented three simple examples to illustrate the ability of the GBT
energy formulation to model the critical and post-critical behaviour of open and closed

cross sections under uniform compressive load or major axis bending moment. These
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examples were previously used to illustrate the theoretical developments in one scientific
journal paper (Simao and Simdes da Silva 2004) and in three international conference
papers (Simdo and Simdes da Silva 2002, 2003a and 2003b). It is highlighted once again
that the examples presented above, made during an initial phase of this thesis, were
pretended to illustrate the features of the GBT only, and not to reproduce real situations.

Therefore, they were realized with no concern upon the stress levels neither to plasticity.



5 — POST-BUCKLING FORMULATION FOR THE EXTENDED GBT

THEORY

5.1 — Introduction

Since GBT combines pre-established modes of deformation, one crucial
requirement is to consider modes of deformation that enable a complete characterization of
all relevant phenomena involved in the member’s behaviour, i.e., in the member’s
deformations and stresses that occur when it is subjected to an external action such as an
external loading, and consequently a complete characterization of all relevant terms in the
total potential energy. The most important modes for the analysis of thin-walled folded-
plate members were already derived by Schardt (1989) and Miosga (1976), but some
important phenomena need additional information. The plate bending modes of
deformation, first introduced by Miosga (1976), intended to enable a multi-linear
transverse bending moments diagrams along the cross section perimeter. Until then, GBT
was limited to have a linear shape between any two consecutive main nodes. With the plate
bending mode, the GBT methodology gained the ability to analyse a wider range of
phenomena, like the local plate buckling behaviour in thin-walled members. An
experimental work of Graves-Smith and Sridharan (1980) shows, for a thin-walled squared
hollow section column with such a length that plate buckling occurs as a first critical state,
that secondary critical states deal with the change of the distance between two consecutive
folding lines: this is illustrated in Fig. 5.1, showing the various stages of a compression test
of a thin-walled RHS column. Fig. 5.1-a) shows the state associated with the fundamental
path and Figures 5.1-b) and -c) present the deformation of the member for increasing load
values, in the local plate buckling range. Then, suddenly, a secondary critical state occurs

and a terciary path emerges from it, associated with a localized deformation of the cross

147
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section that involves a curved shape for the folding lines, illustrated at Fig. 5.1-d). The
equilibrium path emerging from the secondary critical point is unstable and therefore the
secondary critical state defines the maximum load capacity of the elastic column.
Observation of Fig. 5.1 - d) shows clearly that the existing modes of deformation for
closed sections presented in Chapter 2 could not model the deformations related to the

terciary path, since they do not allow transverse extension of the plates.
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Fig. 5.1 — An experimental test of a thin-walled square hollow section under
compression (Graves-Smith and Sridharan 1980)

Moreover, the traditional GBT analysis is not able to define precisely the
membrane stress state at any point of the member, even for linear analysis: the
inconsistency for the definition of the shear and normal transverse membrane stresses is

noted by comparing the various proposals for the definition of the transverse membrane
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stress (Schardt 1965, Schardt 1989 and Heinz and Mark 1990).

To overcome these limitations of the classical GBT theory, it is adopted here a
strategy of taking up each simplifying hypothesis of Schardt (1989) and, for the
establishment of each additional mode of deformation, of imposing displacement patterns
that go against these assumptions. It is intended that the validity of the former assumptions
becomes a result of the member equilibrium analysis, instead of a hypothesis at the starting
point of the problem. This strategy is not new: it was already used by Schardt (1989) for
the analysis of closed cells in the context of GBT, and here is extended to other situations.
Also, it can be observed that using this strategy Schardt derived GBT from the classical
Vlasov theory. It is obvious that adding more modes of deformation renders the analysis
more cumbersome and, for several practical applications, the additional modes may not be
relevant. Also, the modes of deformation presented below, in addition to the classical ones,
may not form a complete set of all possible modes. In principle, the limit is one’s
imagination, and just one condition applies to consider additional modes: any newly added
mode must be linearly independent from all previous modes. During the definition of the
modes, only first order properties are needed to establish the orthogonalization problem,
with the exception of axial elongation and bending around the principal axes (Schardt,
1989). After the orthogonalization procedure, for all modes of deformation, the non-linear
properties will be computed and no restriction is made to which coefficients are present for
a given mode of deformation. In other words, for example in the classical formulation, the
non-linear terms related to shear distortion were not taken into account for the analysis of
open sections (Schardt, 1994; Simao and Simdes da Silva, 2002), whereas in the present
chapter they will be considered. Among the simplifying statements (Schardt, 1989) that
will be relaxed, one finds: (i) the assumption of negligible transverse membrane strain,
(i1a) the assumption of negligible distortion in open sections and (iib) the hypothesis that
imposes the shear flow around a closed cell to be constant, (iii) the hypothesis of linear

warping displacements between the folding lines of the cross section, and (iv) the
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assumption of negligible transverse extensions.

From the mathematical point of view, the displacement, along the direction of any
coordinate axis, of a point belonging to any plate of a thin-walled prismatic member can be
regarded as a function, in the sense that to the generic point of the plate corresponds one
and only one displacement. So, any displacement of a generic point of a plate can be
regarded as a function of the plate’s transverse coordinate s and longitudinal coordinate x,
continuous since no fracture is admitted along the plate. This function can thus be
approximated, as closely as wished, by a polynomial in s and x (Natanson 1964), so that
one can speak in terms of a polynomial instead of a generic function. The definition of a
polynomial of two variables, s and x, is given in general by the sum of the products of a
polynomial in x by a polynomial in s (Caraga 1954), and so the formulas (2.1, a-e)
presented in chapter 2..2.2 can be completely general if the polynomials in s, related to the
modes of deformation, and in x, referred in this work to the polynomial coordinate
functions in the context of the Rayleigh-Ritz method, provide that generality. So, it is the
aim of the present chapter to enlarge the field of the referred formulas for the polynomials
in s, by defining alternative polynomials in s, along the cross section perimeter, that may
improve the GBT analysis skills. This is achieved by the introduction of additional modes
of deformation that model more general deformation patterns of the cross section and of its
plates, namely 1) the plate distortional mode (defined for each plate), ii) the inner nodes
warping modes and iii) the plate’s transversal extension modes. As seen in Chapter 3, the
generality of the polynomials in x is assured by a sequential scheme that provides a set of
proper coordinate functions, in the context of the Rayleigh-Ritz method, for the analysis of

the member’s global equilibrium.
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5.2 — The general energy formulation

5.2.1. Introduction

In order to prepare the background for the establishment of alternative modes of
deformation, general elasticity relations are derived, and a more general formula for the
internal strain energy is thus obtained (cf. equation 2.110). It is intended that all
generalized geometric properties derived here become fully defined by all modes of

deformation, as it will be seen in chapter 5.3.

5.2.2. The complete strain-stress relations and constitutive relations

The bending strain-displacement relations follow the usual linear formulation for

thin plates and are given by:

v
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For a stability analysis the membrane strain-displacement relations must include the

relevant non-linear terms, as seen in Chapter 2. Taking into account Fig. 5.2 and neglecting

higher order terms, £ and y are given by:
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Fig. 5.2 — Membrane displacements of the thin plate ds x dx

Because it is intended to relax some assumptions of the classical GBT theory,
expression (5.3) will be considered in its full form, in opposition to the formulation derived
in chapter 2.3. The transverse membrane extension must be considered and again from Fig.

5.2 it can be computed as:
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The membrane strains were determined above by using the “engineering strain”
concept (Crisfield, 1991). This option is consistent with the Lagrangian description for
plates and the use of the Green strains (Fung, 1965), since in the analysis only the first
terms of the series expansion are considered, any square term in du and 0f; being neglected
only if it is present in the same expression in a linear form — this is commonly referred as
“Simplified Lagrangian description” (Garcea 2001), and the conjugacy between strains and
stresses is therefore assured.

For isotropic materials, the stress-strain relations are, for bending effects,

of = el s uel)

ol = £ - (5f +,ugf) (5.5, a-c)
1-p
2 =Gyl

while for membrane effects are
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5.2.3. The internal strain and the total potential energy

From the classical definition of internal strain energy,
1 L
U :3”(0;4 e o ety ol e v ol e ol B )dAdx,  (5.7)
04

the bending terms are obtained by introducing equations (5.1, a-c) and (5.5, a-c) into

equation (5.7),
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The determination of the membrane contribution was derived in chapter 2 using the
classical assumptions of GBT (Schardt, 1989). Here it is extended to include the influence
of the transverse strains, thus enabling the consideration of the full membrane constitutive
law. It is obtained by introducing equations (5.2), (5.3), (5.4) and (5.6) into equation (5.7),
and is presented in the form

ur=ult+ult+ult (5.10)
where superscripts “, ” and * refer to the parts associated with longitudinal, transverse and
shear membrane deformations, respectively. The terms related to the longitudinal
membrane stresses are:
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Similarly, the strain energy due to transverse membrane stresses is given by:

M nyp "mp 1 L M ‘ nyp "wyp ] L " . ‘
UMt =3 [ MBY A adx+ Yy Y [ D, A" Adx+
i:Ik:IZ() 11k120
] yp Mvp vp - ) . i ] yp Mvp "vp " ‘
ij TN ij ig ]
+ [Pacp, A Adx+ =3 > 3 [ Py, A4 M dx +
41:]/:]k:]L 41:]/1k1L
]”MD nyip "wmp " i LMD ”MD” MD i ‘ ;
+= [Ty, a4 A dx + j Ky 'ARA A dx +
4ilj=1k=1L i=1 k=1 1=1 [,

- . . ‘ ; ] % T Tun v ” . /
[acps 14774 A A et j'f Ky, A74%A" A dx
L 8 =1 s

i=1 k=1 I=

'\..

] R Mun Tun " i ; ] R T Mun Tun - . . i ;

+= [ Maey AT A A e+ [Paep, A4 A e+
4 i=1 k=1 I=1 ], 8 i=1 j=1 k=1 I=1 |,
Ji "wmp "mp wmp " bl Ji "wyp "y "yp "vp kl bl

+= Micry A A Ade+ =) / ‘A4 A Adx +

T10 Kri

4 i=1 k=1 I=1 [ 8 i=1 j=1 k=1 1=1 [
b "wmp "wmp Mvp "vn " f 1 wmp "wmp "wmp il ko

+= [y, 47404 A+~ j Ky ‘A" *A A dx
8i:1j1k:11 1 41 1 k=11=1
b "wmp "wp Mvp vp " ko

+ j” iy, A4 A Adx (5.13)

i=1 j=1 k=1 1=1 [
where
“pM :j £ t'f. " ds (1% order term) (5.14, a-0)
—/,12 s N . 5
N

“D,, :Illjzz t 'u*f. ds (1 order term)

i joo kg
>t'u’uf, ds

S (E i ds
I-u
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—J (. 147 ) . ds
""’K”:j]_Eﬂztji"a i ds
Micrs = | t i i i ds

T6 ]—/,12

?jleT7 :J‘]_E:letlf‘{f kT/‘l ll,‘l dS

Bt (1 0+ ) Mt dis

Py = '[ I _E

st f, ' ds
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yszT” _ .[ ]_Eﬂz ¢ kf ’fds
WKTU = I 7 _E’uz t lf 1f kf ?ds
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l/kl

(7 2r 4790 ) o ds

Finally, the membrane shear contribution is given by:

”MD MD 1 L ) ] %up R v .
UMsH .[ sz3 iq kA’dx+_ZzzJ.lk1KSH2 AL L dx+
11k1 0 2i=1k=ll=1L
1 W YR R ikl iqr k qm 1 41 1 XK nMD S iqr k
+= [ Mgy A A A de+ S DY [ gy, A A A dx+
2 i=1 k=1 1=1 [, i=1 j=1 k=17p,
I BB RE A ijkl i gg ko grl
+= [Pagys 44 A Ad+
2 i=1 j=1 k=1 1=1 ],
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] My Myp "vp up " ‘ ; n‘\/lD nyp "wmp " ‘

+= [ Mgy A4 FA" A e+ Zzzj’f Ky, ‘A" A A dx+
2i:]j]k]l 17 11]1k1L
] nvp "mp "mp "wmp " ‘ ;

+= jlf Kgs A" A" A" A dx +
2 i=] j=1 k=1 1=1 [

yp Myp "up up nyip Myp "vp

] ikl PoAgm jogr k qm 1 41 ] ikl iqr k 411

+= [ Mgy, A" AT A A+ Y Zj Ky A FA" ' Adx+
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] Myp Myp "mp "'MD ” ‘ ;
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+= [ g5 1474 A" A"+
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+= [ gy1s 474 A A dx (5.15)
2 i=1 j=1 k=1 1=1 [

where
“D, =[Gt (‘u+f,)(“i+'f. ) ds (1* order term) (5.16, a-p)
S

g, = [Gr(iv's,) ' ds
Mo :jGt(f,ﬂfJg)ku " ds
Kiges =[Gt f (Mt )ds
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ae oy = jGt u i (kL'Hrka )ds
Micons :jGt wu i ds
ijkl i i ko 1.
/ KSngjGt u’'u “u'uds
s
ikl i i ke o lg
kg = | Grl'at't, ), 'F. ds
N
M Ksu1, :J.th T S ds
M :jGt w ' f ds
jk i i (ko k
v KSH13 :jGt fv thv ( u+ fs)ds
jkl ig jp kgl
K14 :JGtﬂ AANACS
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All of the above expressions are computed taking into consideration the following

definitions of the displacements for mode £ at plate i (Schardt 1989):

. . . Lk ok kui,end_ ibeg .
1) warping displacement (along Ox) : u(s) = U g +TS ; (5.17)

ii) normal displacement (along Or) : * f(s)= kﬁ.,beg(l — bi}rkfi’g"d bi +

bA 2 3 b 3
+km‘,l.be 5 — 5 + 5 +km“.end s — 5 ; (5.18)
e 3K, 2K, 6b, K, 6K, 6b, K,
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and the displacements along the perimeter are assumed to vary linearly between the edges

of the plate:

k k
-f:v,i,end - f;,i,beg s
b. '

1

iii) perimeter displacement (along Os) : * £, (s) = k]”s’l.’beg + (5.19)

Combining equations (5.8), (5.11), (5.13) and (5.15) yields the total potential
energy function:

v=uf+uMt+uMt +uM" -1 (5.20)
where the potential of the external loading /71is given by the general expression (2.109).

The above formulation is completely general and is based on the classical
procedures of the non-linear theory of elasticity (Fung 1969). If the assumptions and the
procedures of the classical GBT formulation (Schardt, 1989) are considered, most of these
energy terms become null, as shown in chapter 2.3 — note that now all parts of expression
(5.7) were considered. Moreover, often only the non-linear terms associated with the
normal longitudinal membrane extensions are considered for buckling and post-buckling
analysis of thin-walled structural members — several works where this assumption is
considered are, for example, Sridharan and Graves-Smith (1981), Rhodes (1991), Schardt
(1994) and Schaefer (1998). This simplification constitutes the so-called “lower bound
approach” and implies, in the present case, that only the non-linear terms related to the
generalized geometric properties x;, k73 and x4 are considered. The designation “lower
bound” is a common expression in the specialized literature and derives from the fact that,
for systems with post-critical stable behaviour (which is the case of the structural systems
analysed in this work), the above simplification usually yields conservative results, and is a
particular case of the complex problem of the truncation of the structural potential function
that is analysed, for example, in Hunt and Williams (1984). This simplification is

reasonable and in some cases may give better results than the consideration of all parts in
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the non-linear member’s equilibrium system, for a similar discretization of the problem. In
the analysis of thin-walled prismatic members, subjected to uniform major axis bending
moments or uniform compression loads that generate mainly longitudinal normal
membrane stresses, these stresses (and the corresponding deformations as well) are of
much higher magnitude that the shear and normal transverse membrane stresses.
Moreover, in open sections shear and transverse membrane stresses are null in the
neighbourhood of the edge nodes. So, they generate much smaller non-linear coefficients
than the longitudinal stresses, and the corresponding coefficients may perturb drastically
the numerical accuracy of the numerical algorithm used to solve the member’s equilibrium
equations system. Note that it is well known that it is numerically very instable if no
imperfections are introduced in the model (Troger and Steindl 1990), i.e., if the perfect
member is analysed using bifurcational analysis (Keller 1987). 32-bits computers' consider
only 15 decimal places for any number, so numerical difficulties arise when, for example,
one wants to invert a matrix having high spectral ratius (Golub and Van Loan 1996). It is
also worth recalling that a typical numerical instability phenomenon in the analysis of thin-
walled structures is the well known “membrane locking” phenomenon, associated with the
fact that, in the member’s equilibrium system, large coefficients coexist with much smaller
coefficients in the same equation, thus generating Jacobean matrices for the non-linear
system with very high spectral ratio, so very hard to invert. If bifurcational analysis is used
to determine the equilibrium paths, this problem is augmented since in the neighbourhood
of the critical point the Jacobean matrix of the non-linear equilibrium system has naturally
a very high spectral ratio, since its lowest eigenvalue is very small and trends to zero as the
equilibrium state approaches to the critical state and is hardly invertible — in the critical
point it is exactly zero and the Jacobian matrix of the equilibrium system has an infinite
spectral ratio and is not invertible. Moreover, it is well known that the equilibrium systems

for the stability analysis of perfect structures have poor numerical stability (Troger &

" Such as the computer used to solve the forthcoming examples, in this thesis.
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Steindl 1991). So, these causes of numerical instability may be present in the stability
analysis of a real case and may collaborate with each other in the destruction of the
precision of the numerical procedure used to solve the problem, so that equilibrium
systems with simpler equations may compute more reliable results, even if it is known a
priori that these results are approximate”.

Therefore, in the following examples this simplifying assumption is often adopted,
and the correspondent TPE is given simply by:

V= Zz J'szB zAn kA”dX‘l‘Zz J'szM zAn kAudx_l_

z1k1 llkl

+Z j”‘D Ry dx+—nwf j D, A" dx +
i=1 k 2 i=1 k=1
MD MD L
z J""DZT’A" "Adx+zz _[”‘D3 A A dx
i=1 k=1 2 0

MDIL " npp 1 MD]Li Py
E!lkD ‘4*4 dx+zg [ "Dy 4" *Adx +

0

My "mp "D pp up Mvp

+1L D[ M, AT A A+ =D NS [y MM A d+
4TS 7 i=1 j=1k=1T7

REA e T4 A A dx — (5.21)
8 i=1 j=1k=I11=17]

5.3 — The additional modes of deformation

5.3.1 Introduction

It is worth recalling here the procedure to establish the displacement patterns for a

2 It is hoped that the recent innovations in personal computers, such as the 64-bit processors that compute
numbers with 31 decimal places, together with large computing capacities, contribute to the resolution of
many numerical problems that commonly arise in structural stability.
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mode. Considering a transversal member slice with longitudinal length dx, at first a
displacement is imposed to a node and/or a plate and all the necessary movements for the
plates are free to happen. Then, considering the relevant constitutive relations, the
discontinuities around the cross section are rendered compatible making resource to an
adequate method to solve statically indeterminate structures. The traditional theory of
Schardt uses the classical force method, modelling the cross section as a continuous beam,
introducing a hinge in each node and setting to zero the rotational discontinuities that occur
in each hinge when the displacements modal pattern is applied. Henceforth the
displacement method adapted to folded plate structures will be used for the new modes of
deformation. The use of this method implies that it will be necessary to solve one system
of equations per mode, while in the traditional GBT procedure just one system of equations
was required for all modes. Nevertheless, it is important to point out that this procedure
embraces the traditional process, leading to necessarily equal resulting modal
displacements. The procedure to establish the displacement patterns for a mode can be

summarized as follows:

1) for each major plate (plate between folding lines or extreme lines), a consistent
stiffness matrix considering the inner nodes and the corresponding transformation
matrix is formulated; then the global stiffness matrix for the whole cross section is
computed;

i1) the classical warping modes, the plate bending modes (Miosga, 1976), the main
plate distortional modes and the inner nodes warping modes are defined — these
modes can be defined using the classical procedure or the displacement method,
being the later adopted here;

1i1) the transverse extension modes are defined — these modes require the use of the
displacement method;

1v) the modal unitary displacements and transverse bending modes are computed for all
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modes and the terms related to the linear analysis can be computed, thus enabling
the start of the orthogonalization procedure.

V) the orthogonalization procedure is performed, in order to simplify the global
equilibrium system;

vi) the unitary modal displacements and transverse bending moments are computed for
the orthogonal modes of deformation, which will be used in the global analysis of

the equilibrium of the structural member.

In the following, the basic concepts to perform the steps shown above to establish
the basic modes of deformation are presented. First, in order to determine the rotations and
the transversal bending moments at the ends of the plates in the context of the traditional
displacements method (Ghali and Neville 1997), a consistent major plate stiffness matrix is
derived for all possible cases of plates: the plate between two consecutive main nodes
placed inside the cross section and the initial of final edge plate. Subsequently, reference is
made to the insertion of the traditional modes of deformation, presented in chapter 2, in the
extended GBT formulation. Then, the set of additional modes of deformation is presented:
the inner nodes warping, the main plates’ transversal extension and the main plates’

distortional modes of deformation.

5.3.2. Derivation of a consistent major plate stiffness matrix

The starting point of this procedure is the formulation of the plate element and its
stiffness matrix. Each plate is modelled as depicted in Fig. 5.3, where a main plate with
two inner nodes is illustrated (the adaptation for plates with a different number of inner

nodes is trivial).
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a) Local coordinates for all plates b) Global coordinates for internal plates

Fig. 5.3 — Plate displacements for a main plate »

The corresponding stiffness matrix in local coordinates is given by:

i 1
0 0o - 0 0 0 0 0 0
Zb,-(l—/‘f) zbr(f—#f)
~  Ei, ~  Et,
0 12{(1 _%K, 0 0 0 _121f, —‘”f' 0 0
bl bl bl bl
0 - 6blf ! % 0 0 0 6}5 ! 2 f ! 0 0
1 1 1 1
- j . 0 ; j . 0 0 0 0 0 0
A -,
2 2
S= 0 0 0 0 ! Zf* 615* 0 0 1 Zf‘ 6Iff
b; b; b; b;
0 0 0 0 6153 kLS] 0 0 - 6153 2K,
bj bj b} b3
) ~ 12€<1 6[5, ) ) ) 12§<, . 1213<2 6[5, ~ 6132 ~ 1213<2 ~ 6152
b[ bl bl bZ b[ bZ bZ b}
) 6K, 2K, ) ) ) 6K, 6K, 4K, 4K, 6K, 2K,
b; b, b, b b, b, b; b,
) ) ) ) (12K, 6K, 12K, 6K, 12K, 12K, 6K, 6K,
b} b? b3 b? b bbb
6K, 2K 6K 2K 6K, 6K, 4K, 4K
0 0 0 0 sz b3 _b23 bz bzz_sz b2+b3
L 3 3 3 2 2 3 2 3
(5.22)

where K, is the plate stiffness given by:

E 3
— K,

The plate global displacements are given in Fig. 5.3-b) and the corresponding

transformation matrix 7, relating local and global coordinates displacements in the form

{d, }=T-1d,}, (5.24)
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where subscripts ; and ¢ refer to local and global coordinates, respectively, is given by:

[—cosa, —sina, 0 0 0 0 0 0 0]
—-sina, cosa, 0 0 0 0 0 0 0 0
0 0 1 0 0 000 00
0 0 0 —cosa, —-sina, 0 0 0 0 0

7 0 0 0 —-sina, cosa, 0 0 0 0 0 (5.25)

0 0 0 0 0 1 00 00
0 0 0 0 0 010 00
0 0 0 0 0 0 01 00
0 0 0 0 0 00 0 10

0 0 0 0 0 00 0 0 1]

Having obtained the plate displacements in global coordinates, the global stiffness
matrix can be computed using the traditional procedure by summing the contributions of
all plates, making resource to an adequate incidence matrix. One important exception
consists of the edge plates, for which the transversal displacement at the edge node has a
special significance in the context of GBT and it is advantageous to keep it in local

coordinates, as it was done before with the inner nodes of the internal plates. This is

illustrated in Fig. 5.4 and the corresponding transformation matrix is now trivial.

a) initial edge plate b) end edge plate
Fig. 5.4 — The particular case of the edge plates
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5.3.3 The classical modes of deformation in the extended formulation

The consideration of the traditional modes of deformation, presented in chapter 2,
in the extended formulation is easily achieved and will be applied to the warping and plate
bending modes only, since the distortional mode for closed cells is substituted here by the
plate’s distortional modes, each referring to each main plate of the cross section. It requires
that all translational displacements for all nodes are defined by rendering compatible the
translations between the plates, considering each node as hinged (Schardt 1989). After
finding the translations for the nodes of each plate, these displacements can be expressed in
global coordinates by the proper transformation matrices and are considered as prescribed
displacements in the global displacement method problem (Ghali and Neville, 1997), while
all rotations become the unknowns of the problem. Thus, the fixation forces vector, for
each mode of deformation, is defined by the prescribed translation displacements of the
nodes. Below, it will be seen that this procedure can be used for all types of modes of
deformation with the exception of the inner nodes warping modes, for which no
compatibility rendering is required, and for the transversal extension modes, whose set of
fixation forces can be trivially found. Having computed the plate displacements, this step
of the cross section analysis ends with the computation of the transversal bending

moments, thus enabling the full definition of the unitary modal displacements (Schardt,

1989).

5.3.4. The inner nodes warping modes

In order to neglect the assumption of linear displacements between the major
nodes, related to the folding or edge lines (Schardt, 1989), it is assumed that, for a major
plate, all nodes have zero warping displacements while an inner node has a unit
displacement along the longitudinal axis. This displacements shape is only achievable by

considering shear distortion in the plate and does not provoke any transversal
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displacement, so there is no need to render compatible any displacements. It is noted that
these modes of deformation are intended to model the “shear lag” phenomenon (Nakai and
Yoo, 1988) and, in certain way, they were already present in the work of Mdller (1982).

In the formulation of this family of modes of deformation it is possible either to
assume (for simplicity) that the displacements between the nodes of the plate are linear, or
to use a more rigorous formulation, ensuring continuity of the first derivative along Os of
the warping displacements and, consequently, the continuity of the shear distortion for
linear analysis, and the 1* order shear stresses distribution. Both alternatives are illustrated
in Fig. 5.5 and consist of the choice between a multi-linear shape (Fig. 5.5-a) and a smooth
polynomial shape (Fig. 5.5-b), for the warping displacements. In the present work, the
multi-linear displacements distribution is assumed (for simplicity) and it is suggested the

use of a larger number of inner nodes per plate to minimize the shear stresses

discontinuities.

S, f

X, u
i-1 i i+l i+2 i-1 i i+l it2
u=1 uir =1
a) multi-linear function;

s, fs

X, U

uiv =1

b) polynomial function

Fig. 5.5 — Alternative displacement functions

From Fig. 5.6 and the linear part of expression (5.3), and considering only the mode

of deformation £ related to u; = /, the following values for the distortion are obtained:
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k
i) for plate i-7: *u ,,,,, (s, x)= (b—u’sj A = Y peis = b—’ 4 (5.26)

i—1

k k

ii) for plate i: “u (s, x):{kui—%sj A = e =—% “4' (5.27)

1 1

dx

_________________ 1 u,:]

Fig. 5.6 — Membrane distortion for the inner nodes warping modes

Associated with these modes of deformation no displacements along the cross

section plane occur, so for consistency, the amplitude modal function can be denoted by

“A' and the calculus of the relevant mechanical terms can start immediately.

5.3.5. The main plates transversal extension mode

The consideration of the transversal normal stresses has been the object of several
approaches in the past. Vlasov (1961) assumed that the cross section was fully rigid in the
transversal direction and the corresponding strains were zero. The transversal normal
stresses were thus dependant on the longitudinal stresses through the constitutive law for
i1sotropic materials, deriving from the Poisson effect. The zero transversal membrane strain
was kept in the first works of GBT, and an equilibrium model was proposed by Schardt
(1989), similar to the equilibrium model for the membrane shear stresses, to compute the
transverse membrane normal stresses. Assuming a rigid section’s perimeter does not
respect the boundary condition of a free edge of the cross section, where the transverse

normal stress is null and some type of deformations must occur if longitudinal membrane
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stresses are present — this phenomenon is referred in the literature as the “bulging effect”.
Previously, Schardt (1983) had noticed that the presence of transversal extensions would
affect the member’s behaviour in certain situations — one of them was the post-critical
behaviour, so in this paper a non-linear term related to the transverse extension is present
in the member’s non-linear internal virtual work. A later work (Heinz and Mark, 1990)
already considered the presence of some non-linear terms in the internal virtual work of the
thin-walled member accounting for the transverse strains, but only for the classical modes,
so that the first order part of the internal virtual work related to the transverse extensions
was always null. The establishment of the membrane constitutive relations for the plates in
their general form requires that the transverse membrane extensions are taken as unknown

values, not necessarily negligible, and the corresponding first order part is given by:

g =9t (5.28)
‘ os

So, in order to fully define the transverse membrane extensions, a new type of
mode of deformation is established, and consists of an extension of a major plate along the
cross section perimeter’s direction, as shown in Fig. 5.7, generating displacements along

the Os axis and provoking a transversal membrane extension given by:

ESA{ _ fs,i+1 _fs,i . (5.29)
B bl-
S’f; 1 bl |
i i+
! i
| |
| |
X, u ! ! dx
| i
| |
| |
| |
«— >
Si Soist

Fig. 5.7 — Transversal membrane extension for plate /

In the context of the matrix displacement method scheme presented above to

restore cross section’s continuity, the mechanical system of Fig. 5.9 is adopted and the
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transverse extension of plate i is modelled making resource to the proper set of fixation
forces. For the transverse extension of plate i, it can be computed as follows. Consider a
simply supported portion of the plate i with longitudinal unitary length, and it is
considered, for the sake of generality, that the thickness varies along the perimeter in the
form presented in Fig. 5.8. When a load F is applied at point A, the displacement 6 along

Os 1s:

5= F[br,] (1 — /lrz,z)+ b,, (] - :ur2,2)+ b, s (1 _ ’lli3 )] (5.30)
Et” Etr,z Etrﬁ

The fixation force is thus obtained by setting the displacement dequal to /:

1

[P ), )

Et,, Et,, Et,

Fr

(5.31)

and is applied on both ends of the plate, following the scheme presented in Fig. 5.9.

Figure 5.8 — The determination of fixation forces for plate i

Subsequently, the fixation forces are introduced in the mechanical system of Fig.
5.9, where all translations are prevented with the exception of those related to major plate 7,
which are set as unknowns together with all rotations at the cross section nodes. The
correspondent displacement method problem is solved and the unknown displacements are
determined, thus defining the unitary displacements for the mode of deformation. Fig. 5.10

illustrates the deformed shape of the mechanical model associated with the transverse
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extension of plate i/, and in most cases the plates connected to plate i present very small
membrane deformations, showing mostly transverse bending.

The procedure presented above considers the transversal extension of an entire
major plate, i.e., of a plate between two consecutive folding line nodes or edge nodes.
However, this scheme can be refined to model the extension of a secondary plate, i.e., the
plate delimited by two consecutive nodes, independently of their type and including the
intermediate nodes, while the remaining secondary plates do not experience transversal
extension directly, and hence several transversal extension modes would correspond to one
major plate. The adaptation requires little change in the scheme exposed above: it would
only need a more refined model for the cross section, with the introduction of additional
coordinate displacements along the local axis Os at all inner nodes for any major plate 7,
and the fixation forces for the transverse extension of secondary plate j, belonging to major
plate i, would be applied directly at the edges of the secondary plate. Then, the scheme
would proceed through a similar way as the one presented just above, and some
adaptations in the orthogonalization procedure are expected, since the resulting matrix C
for these modes would no longer be invertible — this fact will be object of deeper
discussions in the final Chapter 7. In the present thesis, this more refined procedure was
not adopted since these modes showed little relevance for the examples presented below,
the modes derived from the simplified scheme showing sufficient precision, and also due
to the limited computer resources available. However, for more advanced non-linear
stability analyses, such as localization analysis (Champneys, Hunt and Thompson 1999), it

is expected that this type of modes of deformation shows greater relevance.
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dG, i-2,2

Fig. 5.9 — The mechanical system and the fixation forces Fr; for the extension
of plate i

Fig. 5.10 — Deformed shape for an extension of plate p

5.3.6. The main plates distortional modes

Section 5.3.4 presented the inner nodes warping displacements modes, which
allowed distortional deformations and shear stresses along a plate. However, these modes
do not consider the distortional behaviour of a main plate as a whole and are not able to
model, for example, the behaviour of a plate submitted to a shear force along the cross
section perimeter’s direction, because the plate’s edge nodes do not move. So, following
closely the methods proposed by Schardt (1989) for the analysis of mono-cellular sections

and by Vlasov (1961) for the consideration of shear in multi-cellular sections, an additional
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type of modes of deformation, associated with the shear deformation of the plate as a
whole, for each plate of the cross section, is presented. These modes differ from Schardt’s
distortional mode for closed cells (Schardt 1989) because they do not require a constant
shear flow around a closed cell, they just impose a distortional displacement pattern on
each single plate of the section, one by one, and thus they can also be applied to open
sections. Schardt’s distortional mode for closed cells becomes a particular case of the
present modes, i.e., it can be computed as a particular linear combination of the plate’s
distortion modes for a closed cell. The traditional Vlasov assumption of null membrane
shear flow around an open section, which is equivalent to null membrane distortion along
the member, is regarded here as possible result of the equilibrium system of the member
instead of an assumption at the beginning of the analysis.

Consider a main plate i, belonging to a general cross section with no branching, as
presented in Fig. 5.11. The displacements pattern associated with a constant shear

deformation along plate / can be established in two different ways:

1) In Fig. 5.11-a) the constant shear deformation is applied with no warping
displacements, so at x+dx the plate experiences a constant (unitary) displacement
f.; along the perimeter’s direction, and the corresponding shear deformation is
given by:
fo, =y dx=1ldx. (5.32)

11) In Fig. 5.11-b) the constant shear deformation is applied by imposing a (unitary)
warping displacement u,,,; at the final node of plate i, yielding the following shear

deformation:

uend,[ = b[ 7/ = 1 = 7 = bi . (533)

i

Remembering the membrane stress-strain relation for shear deformations in the
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linear form:
of, Ou
Mo s 77 5.34
Vo =5 T3, (5.34)

it is clearly recognizable that the above displacements patterns constitute the two extreme
cases for the establishment of the plate i distortional modes, and that any linear
combination of the above cases is also a feasible distortional displacement pattern.

For the second option and related to plate i+1/, because this plate experiences no
distortion a displacement occurs along the Os axis, equal to:

1
Sorer = 3 (5.35)

r+1

Fig. 5.11 — The r-plate distortional mode

As an alternative to the scheme of Fig. 5.11-b), the unitary warping displacement could be
imposed to the initial node of plate i. All these ways are equivalent, so in the present work
the pattern presented in Fig. 5.11 a) will be used. So, when a unit distortion is applied at
plate r, at x+dx the section undergoes a displacement equal to / along Os, as shown in Fig.

5.12, and the displacements in the cross section plane normal to the plates are:

1

1) forplater-1: f, ,=—;
’ sinAa,

(5.35)
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1 1
and =, 5.36
an Aa Jer tanAc, (5:36)

r

ii) forplater: f, = .

and the scheme proceeds by establishing the displacements method for the computing of
the displacements and transverse bending moments in a similar form as the one presented
in paragraphs 5.3.3 and 5.3.5. Finally, it is worth referring that it is expected these modes
interact with the warping modes during the orthogonalization process, since they can be
established using also warping displacements and the shear deformation may depend also
from warping displacements — actually, in the forthcoming examples this fact is clearly

viewed.

Fig. 5.12 — The r-plate distortional mode: rendering compatible the cross
section displacements in the neighbourhood of plate »

5.4 — The orthogonalization procedure considering the additional modes

The next step is to include the additional modes into the traditional
orthogonalization procedure, i.e., to render fully diagonal matrices C and B and to achieve
a diagonal block in matrix D along the main diagonal. However, some adaptations are
needed. Defining as rigid body modes those modes of deformation that have a main
diagonal term of matrix B equal to zero, after the first orthogonalization step their number

becomes now higher than four, which was the number of rigid body modes for the classical
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GBT theory. From expressions (5.9 e) and (5.14 a) it is concluded that the rigid body
modes do not exhibit transverse bending moments neither transversal extension in any
point of the cross section, since the corresponding term in matrix B is zero. After the
second orthogonalization step, involving only the rigid body modes, only three zero terms
are obtained in the diagonal block of matrix D, these terms being associated with the
modes related to the Bernoulli assumption of plane sections remaining plane after
deformation — the axial elongation and the major and minor axis bending (Vlasov 1961).
The remaining modes that take part in the second orthogonalization step, henceforth
denoted as torsional or “shear lag” modes whether they show a global cross section
rotation or not’, respectively, are associated with torsional or “shear-lag” effects, and in the

forthcoming examples it is observed that:

1) for open sections, a torsional mode always occurs, independently of the number
of intermediate nodes added for the cross section discretization, which confirms
the Vlasov’s assumption of negligible shear deformations in open sections
submitted to torsion;

1) for closed sections, there is not any mode showing constant shear flow around
the closed cell, so that the Bredt’s scheme for torsion analysis is a particular
case and may be restrictive in some cases.

1i1) For one cross section, more than one torsional mode occurs, but for open

sections only one is related to null shear deformations.

Finally, concerning the transversal extension modes for edge plates, these modes
generate non-zero terms only in the main diagonal of matrix B, all corresponding terms in

matrix C being equal to zero. Hence, these modes need not be considered in the

* Some modes can show “shear-lag” combined with a global cross section rotation, and are denoted as
torsional modes.
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orthogonalization procedure, since they are already orthogonal to the others with respect to
matrices C and B.

If the more general formulation was adopted by referring the transversal extension
modes to the secondary plates, then it would be expected that matrix C corresponding to
the transversal extension modes was not invertible, and the orthogonalization procedure
could not start. Accounting on the fact that the problem here is collocated in the
perpendicular direction of the warping modes, it is expected that the insertion of an
additional orthogonalization step at the beginning of the problem, between matrices B and
C and for the transverse extension modes only, brings two sets of transverse extension
modes, corresponding to null and non-null values of main diagonal terms in matrix C.
These two sets of modes of deformation shall correspond to modes that do not exhibit and
exhibit displacements along the cross section’s plane normal to the plates, respectively.
The modes belonging to the first set are considered as they are in the analysis but are
removed from the subsequent orthogonalization steps, while the modes belonging to the
second set are considered in the forthcoming orthogonalization procedure, and obviously
accounted in the global analysis of the structural member. This idea is not more than a
conjecture and was not implemented since the limited computer resources presently
available to the author require that the cross section’s model is as simple as possible, but in
the near future will be tested — this aspect will be object of further discussion in the final

chapter.

5.5 — Computer implementation for cross section analysis

In the following, a general description of the developed software is presented, in
order to enable a better grasp on how the concepts presented above can form a structured
scheme for the calculus of the relevant geometrical properties of an open non-branched or

closed mono-cellular cross section, which will be used after to perform the stability
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analysis of thin walled elements. All GBT cross section analysis embrace two major steps:
1) the calculus of the unitary modal displacements and transverse bending moments, that
will be used later to determine the stresses and the displacements at any point of the
member, and ii) the calculus of the linear and non-linear cross section generalized
geometric properties, calculated from the unitary modal displacements and transverse
bending moments derived in the previous step, and that will build the global equilibrium
system of the member.

In order to perform the first step a computer program was made, on a FORTRAN
POWERSTATION 4.0 code, to calculate the unitary modal displacements and transverse
bending moments, storing all relevant results in a text file that will be read by the
following MATHEMATICA worksheets. Fig. 5.13 presents a flowchart describing the major
steps involved here. The first step consists in reading a data file that includes all relevant
information about the cross section, namely: 1) the type of cross section, ncsy, the number
of main nodes, nyy, and the number of inner nodes, n;y. Since the program, at this stage,
applies only to unicellular or open non-branched sections, from this information it is
possible to derive the number of main plates, n,p, the number of secondary plates, nsp, and
the number of modes of deformation, np. Afterwards, the relevant mechanical and
geometrical properties, for each main plate i, are read from the data file, namely the
number of inner nodes included in the plate, the inclination angle of the plate, a;, the
number of the corresponding initial and ending main nodes and the incidence matrix,
needed to compute the global stiffness matrix of the cross section, relating the local
displacements of the main plate to the global displacements adopted for the whole cross
section. Next, the information about each secondary plate p is given to the program, which
contains the major plate where the secondary plate p in question is included, its thickness
tp, its width b, its Young modulus E,, and its Poisson coefficient y,. From this data it is
possible to derive the shear modulus and the plate bending stiffness for each secondary

plate i, given respectively by:
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G ——ti (5.38)
2 (1+ :ui)
3
K = tili (5.39)
12(1-p?)

The next step involves the calculus of the stiffness matrices for all main plates and

their assemblage to form the global stiffness matrix, making resource to the concepts

presented in chapter 5.3.2. Now all relevant information is available to establish the basic

modes of deformation in five steps, described by the unitary modal displacements and

transverse bending moments, as follows:

iii)

the nyy warping modes of deformation, one per main node, are derived based on
the concepts exposed in the paragraph 2.2.3.1;

the nyp plate distortional modes, one per main plate, are derived, based on the
postulated in chapter 5.3.6;

the plate bending modes are established through the scheme presented in chapter

2.2.3.2, being their number equal to n,, for closed sections or n,, +2 for open

non-branched sections; each mode corresponds to one inner node and, for open
sections, the edge nodes generate also a plate bending mode, being treated in a
similar form of the remaining inner nodes (Schardt 1989);

the inner nodes are formulated directly, regarding chapter 5.3.4 and do not need
to make resource to the stiffness method since no displacements along the cross
section plane occur.

The plate’s transversal extension modes are established taking into account

paragraph 5.3.5.

The program proceeds to the orthogonalization scheme, based in chapters 2.2.5 and

5.4, by deriving a linear reversible transformation scheme, given by a n,;p dimensional
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square matrix 7, that recombines the modes of deformation in order to simplify some
linear equilibrium matrices, rendering diagonal matrices C and B, and also a matrix block
through the main diagonal of matrix D. This transformation matrix 7 is derived from the
three steps scheme described in the referred chapters and now the number of rigid body
modes ngpy — those that do not involve cross section distortion — is given by the number of
zeros in the main diagonal of matrix B.

Finally, the program computes and stores the unitary modal displacements and
transverse bending moments for the orthogonal modes of deformation, which are obtaining
by multiplying their respective values for the basic modes of deformation by the linear

transformation matrix 7, in the following matrix form:

Uopr = Upgys - T (5.40, a-e)
Soorr = Fopas T

Sorr = Foas T

orr = Fpas - T

Mg opr =m T,

where subscripts BAS and ORT refer to the initial (basic) and the final (orthogonal) modes

of deformation, respectively.
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Fig. 5.13 - Flowchart of the program for calculation of the unitary modal
displacements and transverse bending moments

As an alternative, after having generated the basic modes of deformation, a
Mathematica worksheet was also implemented to perform the orthogonalization procedure
and to derive the final modes of deformation and the corresponding generalized geometric
properties

After having computed the unitary modal displacements and transverse bending
moments, the calculus of the generalized geometric properties — which are given by the
integration of products of functions that represent the relevant displacements along the

cross section — is made through a MATHEMATICA worksheet that calculates and stores these
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tensors, to build afterwards the equilibrium system. Fig. 5.14 presents a flowchart
containing the relevant steps that form the program, which just requires the cross section
geometrical and mechanical properties, related to the secondary plates and which were
already given to the FORTRAN program, and the modal displacements given by expressions
(5.40, a-e). The geometrical constants are calculated by summing, for all secondary plates,
the integral, defined along each secondary plate of the cross section, of the products of the
appropriate displacement functions given by the appropriate formula of expressions (5.9, a-
e), (5.12, a-j), (5.14, a-o) and (5.16, a-p), where each displacement is given by the suitable
formula of (5.17), (5.18) or (5.19).

Input Data

~

a N

Calculus of the 1%

order properties
\ 7

4

Calculus of the non-linear
properties

\ v

~ ,

Results saving and
storage

~

Fig. 5.14 - Flowchart of the program for calculation of the unitary modal
displacements and transverse bending moments

5.6 — Benchmark example: the channel column

5.6.1 General presentation of the problem

In order to illustrate and validate the concepts just presented, the buckling and post-
buckling analysis of a prismatic thin-walled channel section presented in Yap and Hancock

(2006) is performed, for the common load case of uniform compression. After the
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introductory presentation of the problem, a linear stability analysis is made in terms of the
variation of the critical behaviour with the member’s length, thus defining the general
critical behaviour of the member for various boundary conditions. This diagram of the
critical load versus the member’s length is validated by comparing the GBT results with
those arising from the FSM program CUFSM (Schafer 2003), and since this analysis
considers pined-pined boundary conditions for the edge cross sections of the member, the
coordinate functions (3.24) and (3.37 a-e) are adopted. Subsequently, for the length 300
mm, whose stability behaviour lies in the symmetrical distortional buckling range, and
using fixed-fixed boundary conditions for the member’s edge sections, hence adopting
coordinate functions (3.24) for mode 1 and (3.37 a, ¢ and e) for the remaining modes, the
initial post-buckling behaviour is investigated using the lower bound approximation for the
member’s internal strain energy, in other words using expression (5.21) for the TPE of the
member. The corresponding results are drawn and compared to those arising from the FEM
analysis performed by Yap and Hancock (2006). Diagrams of the primary and secondary
equilibrium paths are shown as plots of the load parameter against the vertical
displacement the edge node of the lip for both cases, and a good agreement was observed.
Finally, the deformed configuration of the member is presented, for a load level higher that
the critical one.

The cross section is presented in Fig. 5.15-a) and consists of a §0x60 channel
section with 5 mm lips and thickness equal to / mm. It is assumed that the member is made
of steel, having E=210 Gpa and u=0.3. From the discretization presented in Fig. 5.15-a),
which considers 3 inner nodes in the web and 1 inner node in each flange, 28 basic modes
of deformation are derived, being illustrated in Fig. 5.16 for the unitary warping
displacements and in 5.17 for the unitary cross sectional displacements. After the
orthogonalization procedure, these modes are recombined and transformed in the new set
of modes shown in Figures 5.18 and 5.19. Comparing the initial and the final modes shows

how the orthogonalization procedure performs: the five types of modes of deformation,
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80

warping (modes 1 to 6), plate distorsional (modes 7 to 11), plate bending (modes 12 to 18),

inner nodes warping (modes 19 to 23) and plate transversal extension (modes 24 to 28)

modes are recombined in the following way:

OO,
| [- @ ®
s |©
=1.0 Sl (©)
B N © e
B
60 M
30 30
a) geometric properties and discretization b) member overview

iii)

Fig. 5.15 — The analysed cross-section and the adopted nodes (all dimensions in

mm)

Modes 24 to 28 are still plate transversal extension modes (modes 27 and 28
remain unchanged since they are associated with edge plates of the cross
section), but modes 24 to 26 are recombined in order to present symmetrical or
anti-symmetrical shapes.

Modes 15 to 23 derive from the warping, plate bending and plate distortional
modes and present no warping displacements, as opposite to the corresponding
modes in the classical GBT formulation — this fact can be interpreted as a direct
influence of the plate distortional modes.

Modes 5 to 14 are the torsional and “shear-lag” modes, depending whether or
not they show cross section rotation, and derive from the inner nodes warping,
warping and plate distortional modes. These modes are related to null terms in
the main diagonal of matrix B, hence are already rigid-body modes, and were
determined in the second step of the orthogonalization procedure. Some of

them, showing no cross section rotation, are very close to the traditional major



186 CHAPTER 5

or minor axis bendings and represent the influence of shear-lag in the bending
of structural members, a very important phenomenon that has been object of
research all over the years. On the other hand, the remaining modes illustrate
the influence of shear lag in torsion. All in all, these modes can be regarded as a
new look at the shear lag phenomenon.

1v) Like in the traditional GBT theory, mode 1 corresponds to the axial elongation,
modes 2 and 3 are the major and minor axis bendings, respectively, and mode 4
is the traditional Vlasov’s warping torsion, and for the present case — an open
cross section — does not carry any shear deformation, since the corresponding

term in matrix Dj3 is null.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
|
|
|
| [
| |
|
| |
|
|
|
Mode 19 Mode 20 Mode 21 Mode 22 Mode 23

Fig. 5.16 — The unitary warping displacements for the initial modes of
deformation (the remaining basic modes have null warping displacements)
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Fig. 5.17 — The unitary cross section plane displacements for the initial modes
of deformation (the remaining basic modes have null displacements)
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As said above, the extended GBT formulation embraces the traditional scheme, and
this can be illustrated by considering in the analysis only the initial modes 1, 2, 3, 4, 5, 6,
12, 13, 14, 15, 16, 17 and 18. Their orthogonalization generates the modes represented in
Figures 5.20 and 5.21, which are precisely the same generated by the traditional GBT
procedure explained in Chapter 2 and applied in Chapter 4. So, the extended formulation
only adds more feasible deformation patterns to the analysis, which provokes that any

warping displacement is removed from the plate bending modes.

5.6.2 — The critical behaviour

At first, the critical behaviour was investigated for the uniform compressed column
assuming pined-pined boundary conditions, by accounting on the coordinate functions
(3.37) for modes 2 and higher — all modes were considered. Figure 5.22 presents the
variation of the critical load for member’s lengths between 50 and 5000 mm, adopting only
the first polynomial of (3.37) as coordinate function for all modes, with the exception of
mode 1 that uses function (3.24), together with the corresponding results obtained from the
linear stability analysis realized by the FSM software CUFSM (Schafer 2003). This FSM
program assumes a single half sine wave over the member’s length for the membrane and
flexural displacements, thus it models the pined-pined boundary conditions, and a perfect
agreement between both analyses is observed.

Fig. 5.23 illustrates the decrease of the critical loads for the increasing number of
polynomial coordinate e functions per mode of deformation, for fixed-fixed boundary
conditions, i.e., for coordinate functions (3.41), since in the following paragraph the post-
bucking analysis will be performed for fixed-fixed boundary conditions. The ability of the
procedure shown in Chapter 3 to generate polynomial coordinate functions that model a
wide range of boundary conditions is used to study the member’s critical behaviour for
pined-pined, fixed-fixed and pined-fixed boundary conditions, in other words considering
polynomials (3.37 a), (3.43 a) and (3.41 a) as coordinate functions for modes 2 and higher,

and Fig. 5.24 presents the corresponding critical behaviour of the column, highlighting the
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decrease of the critical loads when the support conditions pass from fixed to pinned.

Mode 6 Mode 7 Mode 9 Mode 10

/

NN

Mode 11 Mode 12 Mode 14 Modes 15 to 28

Fig. 5.18 — The unitary warping displacements for the orthogonal modes of
deformation
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Mode 16 Mode 17 Mode 18 Mode 19 Mode 20
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Fig. 5.19 — The unitary cross section’s plane displacements for the orthogonal
modes of deformation
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Fig. 5.20 — The unitary warping displacements for the orthogonal modes of
deformation, for the classical GBT procedure
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Mode 11 Mode 12 Mode 13

Fig. 5.21 — The unitary cross section’s plane displacements for the orthogonal
modes of deformation, for the classical GBT procedure
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Fig. 5.22 — The critical loads for the simply supported channel column of Yap
& Hancock (2006): benchmark comparison between GBT and CUFSM analysis
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Fig. 5.23 — The critical loads for the fixed-fixed channel column of Yap &
Hancock (2006): the decrease of the critical load with the increasing number of
adopted polynomials
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Fig. 5.24 — The critical loads for the channel column of Yap & Hancock (2006):
comparison for the fixed-fixed, fixed-pined and pined-pined boundary
conditions

5.6.3 — The post-buckling behaviour in the distortional range

In order to perform a benchmark comparison between GBT and FEM analyses in
the post-bucking range and to validate the concepts presented above, the column’s post-
buckling behaviour is investigated for the length L=300 mm, considering fixed-fixed
boundary conditions and following the example presented in Yap & Hancock (2006). Both
the classical and the extended GBT formulations were used and for the latter the lower-
bound approach was adopted to save computer resources, by determining the internal strain
energy through the simplified energy formula (5.21). Hence, both the extended and the
classical GBT formulations account on the same non-linear terms, use the same coordinate
functions, given by expression (3.24) for mode 1 and (3.37 a-e) for modes 2 and higher,
adopt similar discretization, given in Fig. 5.15-a, and make resource to the same no-linear
stability scheme presented in chapter 3.

Fig. 5.25 presents the resulting vertical displacement of the edge node of plate / for

the classical and the extended GBT analyses, and also for a FEM analysis taken from Yap
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& Hancock (2006). A good agreement between all the analyses is noted. The classical GT
formulation clearly overestimates the load parameter for a similar displacement, showing
that the relation between the warping displacements and the cross section plane
displacements for the distortional modes that occurs in the classical GBT scheme to render
null the distortions in the member, clearly stiffens the member’s behaviour, generating
smaller displacements than those that really occur for a specific load level. Despite being
very similar, it is observed in all analyses that the inwards deformation is slightly less stiff
than the outwards one, where inwards and outwards refers to the movement of one lip in
relation to the other one. In the extended GBT analysis some numerical instability was
observed in the neighbourhood of the critical point, due to the larger dimension of the
relative non-linear system, so the analysis of the critical state and its vicinity is not clear,
but the classical GBT analysis highlights the fact that the bifurcational behaviour is non-
symmetric and the inwards deformation corresponds to the non-stable branch. However, as
the post-buckling displacements become bigger, the system regains stability shortly after
the critical state, and the inwards equilibrium path’s slope turns from negative to positive —
in fact, negative path’s slope occurs inside a very small neighbourhood around the critical
state for the analysed example, where some post-buckling equilibrium points were

determined corresponding to a load level slightly smaller that the critical load.

Fig. 5.26 represents the member’s deformed configuration for % =2 and it can

be clearly viewed that the assumption of null distortions results in smaller displacements
for the classical GBT formulation — in fact, despite of giving good results for small
displacements in linear analysis (Schardt 1989), this assumption shall be withdrawn in the
post-buckling analysis since the resulting displacements are smaller than the ones really
observed in the FEM or extended GBT analyses, and the member’s post-buckling
configurations in the right column of Fig. 5.26 are clearly more realistic — for example,
from the classical GBT analysis, the displacements along the Oy axis are nearly null, and it

is known that inwards and outwards deformation are associated with translational
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movements of the cross sections parallel to the major axis, in the present case the Oy axis
(Yap and Hancock 2006 present no information about this displacement, so it is not

illustrated here). Finally, Fig. 5.27 presents the normal membrane longitudinal stresses

along the cross section for % equal to 1, 1.25 and 1.50 for the extended GBT

formulation.

comtrol .
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L L L L t e : ' Whode |, x=% (mum )
-8 -6 -4 -2 2 4 6
Fig. 5.25 — Vertical displacement w for node 1 at x = % : benchmark

comparison between the extended and the classical GBT formulations and the
FEM (Yap & Hancock 2006)
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Fig. 5.27 — Longitudinal membrane stress along the (laid out) cross section, for

P
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5.7 — Benchmark example: the thin-walled RHS member

5.7.1 Presentation and derivation of the modes of deformation

The buckling and post-buckling behaviour of a RHS 80x40x 1 shown in Fig.

5.28-a) is analysed here, and validated against a FEM solution. The member is made of

steel (£ =210 GPa, u=0.3) and is simply supported, as shown in Fig. 5.28-b). The end

plates are of negligible bending inertia, so the edge cross sections are free to warp, and one
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end, at x=L, is free to move along the longitudinal direction.

@ 0)
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a) cross section properties and nodal .
discretization b) member overview

Fig. 5.28 — The compressed column

The unitary modal displacements are presented in Fig. 5.29 for the classical GBT
formulation and in Figures 5.30 and 5.31 for the extended GBT theory. In comparison to
the classical GBT formulation, the number of rigid body modes — modes associated with
null values for the main diagonal of equilibrium matrix B — is increased from 4 to 11. The
first three modes are coincident with those resulting from the classical formulation.

Classical Bredt’s torsion does not appear in the extended formulation. The Schardt
formulation for closed cells (Schardt, 1989) considers the hypothesis of Bredt, by
associating the shear deformation of the plates with a constant membrane shear flow
around the whole closed cell, as seen chapter 2. In the extended GBT formulation different
shear stress flows are allowed for each main plate, so that the classical Bredt’s torsion of
closed cells becomes a particular case of the extended theory: combining modes 5 and 11

in the form:

BT ¢ _ 5 11
0=0.111031"°6+0.888969 "6 (5.41)

where 0 represents any unitary modal displacement or unitary modal transversal bending
moment and superscript 27 denotes Bredt’s torsion, yields the torsional mode of the

classical GBT theory. Analogously, it is possible to obtain the global distortional mode 5
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of the classical formulation by a linear combination of modes 5, 11 and 13.

/

/

Mode 1 Mode 2 Mode 3 Mode 3

[/

Mode 6

Mode 6

L7
[T

-
-

Mode 7 Mode 8 Mode 9 Mode 7 Mode 8 Mode 9

a) cross sectional displacements b) warping displacements

Fig. 5.29— Unit modal displacement shapes for the classical GBT formulation

So, establishing the initial modes using a similar scheme of the previous example,
the modes generated by the extended GBT theory, after the orthogonalization, can be

grouped in the following sets:

1) Modes 17 to 20 deal mainly with transverse extension of the plates.
i1) Modes 12 and 14 to 16 are associated with the transverse bending of the plates,

and will take the most relevant roles in the local plate buckling range.
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1) Among the distortional modes and with the exception of those related to the
plates’ transverse extension, mode 13 is the only one that presents global
rotations of the cross section plates, provoking displacements of the main nodes
along the cross section plane.

iv) Modes 5 and 11 are the torsional modes, whose combination can produce the
Bredt’s torsional mode, as referred above.

V) Modes 4 and 6 to 10 are the so-called shear-lag modes, here related to bending
(modes 6, 7, 9 and 10) or axial elongation (modes 4 and 9). It is expectable that
a more refined cross section discretization renders shear-lag modes associated
with torsion too.

vi) Mode 1 refers to the traditional axial elongation and modes 2 and 3 are the

traditional major and minor axis bendings.

5.7.2. The compressed column

5.7.2.1 The buckling behaviour

Using the coordinate functions presented in the expressions (3.24) for mode 1 and
(3.37 a-e) for the remaining modes, applying the stability procedures presented in Chapter
3 and adopting the complete expression for the TPE, accounting for expressions (5.8),
(5.11), (5.13) and (5.15) in the calculus of the internal strain energy, the column shown in
Fig. 5.32, submitted to an uniform compressive force at x=L, was analysed, and the
respective critical loads are presented in Fig. 5.33, together with the corresponding modal
participation coefficients in Fig. 5.34. These figures clearly highlight a local plate buckling
zone (for smaller lengths, where modes 4, 12 and 15 control the critical state) and a
flexural global buckling zone (for longer columns, where modes 3, 6 and 9 govern
buckling). Additionally, for smaller lengths, the discretization (number of adopted
polynomials per mode) strongly influences the results. For example, for a column length of

250 mm, the use of 1 to 4 polynomials per mode leads to critical loads of 2/7.3 kN, 48.7
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kN, 37.6 kN, and 35.4 kN, respectively, 4 polynomials per mode being required to ensure

convergence.

|||||||||||||||||||||

Mode 4 Mode 5

Mode 3

Mode 2

Mode 1

[ ——

Mode 10

Mode 7 Mode 8 Mode 9

Mode 6

Mode 12 Mode 13 Mode 14 Mode 15

Mode 11

Mode 17 Mode 18 Mode 19 Mode 20

Mode 16

Fig. 5.30 - Unit modal displacements in the cross section plane
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Mode 2 Mode 3 Mode 4 Mode 5

Mode 1

Mode 9 Mode 10

Mode 7 Mode 8

Mode 6

Modes 12 to 20

Mode 11

Fig. 5.31 - Unit modal warping displacements

ZW

Fig. 5.32 - The compressed column
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Fig. 5.33 — The critical loads for the compressed RHS column: the decrease of
the critical loads with the increase of the number of the considered polynomials
per mode of deformation 2 and higher
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Fig. 5.34 — Modal participation coefficients (4 coordinate functions per mode)

5.7.2.2 The post-buckling behaviour in the local plate buckling range
Having identified the active coordinates and calculated the critical loads, the post-

buckling behaviour is determined by searching alternative equilibrium paths in the
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neighbourhood of the critical point through the scheme presented in Chapter 3. In the
following the post-buckling equilibrium paths are determined for a column length of 250
mm. Fig. 5.35 presents the load-displacement curve for the longitudinal displacement of
node 2, both for the classical (CF) and the extended (EF) GBT formulations. Examination
of Fig. 5.35 reveals a coincidence between the CF and the EF along the fundamental and
the post-critical paths. This coincidence was to be expected, because in compressed
columns the additional modes of deformation do not have a great influence on the load-
axial shortening relation. In contrast, for displacements in the cross-sectional plane, this
exact coincidence prior to bifurcation does not occur, as can be seen in Fig. 5.36. As noted
before, the presence of the additional modes in the extended formulation allows the
modelling of the bulging effect (Graves Smith & Sridharan, 1980), which consists of very
small but non-zero transversal displacements prior to bifurcation, a feature not possible
with the classical formulation. Noting that the same coordinate functions were used for
corresponding modes of deformation, the critical load for a column length of L =250 mm
decreases from 38.0 kN for the classical formulation to 35.4 kN for the extended
formulation, a decrease of 7%.

In the post-buckling range, Fig. 5.36 shows that the analysis based on the classical
formulation underestimates the member stiffness compared to the EF. Also, despite the
bulging effect that occurs prior to bifurcation, the critical state of the EF can be regarded as
symmetrical and stable. Fig. 5.37 presents the column’s deformed configuration for
P=29IxP, (the displacements are exaggerated for visual clarity) showing the initial
position of the end section (black line rectangle on the right). This figure was drawn

through the graphic facilities of the software MATHEMATICA and it is seen that the branch
. . .- 37 . . . 3 .
associated with positive values of *'¢ is associated with a convex bulge at x = EL’ while a

concave bulge at the same cross section occurs for negative values of the control

coordinate *'¢g, ¢ being the sliding coordinate associated with mode 12 and coordinate
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function (3.37 d). For this load level, the corners experience negligible displacements in

the cross section plane.

2.5

Fund. path

Extended F.

Clasgical F. 0.5

. . . . . . S— Uy (mm)
-0.6 —0.5 -0.4 -0.3 -0.2 -0.1

Fig. 5.35 — Compressive load — axial displacement curves for the traditional and
for the extended formulations

P
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30
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| L3¢ | ——  Fund. Path
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050 Traditional F.
' ' ' ' a2 o
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Fig. 5.36 — Compressive load — transversal displacement curves for the
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traditional and for the extended formulations at node 2 and x = gL
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Fig. 5.37 - Member’s deformed configuration for P=2.9/x P, (the
displacements are amplified by a factor 5)

Figures 5.38, 5.39 and 5.40 illustrate the stress diagrams along the longitudinal

nodal lines 1, 2 and 4 for *'6 > 0. The membrane shear stresses and membrane normal

stresses in the transversal direction have much smaller magnitude than the longitudinal

normal stresses, the shear stresses being quite small in the present case. It is noted that,

despite of being small, the membrane shear and transversal stresses are determined by the

present scheme. Figures 5.41 and 5.42 present normal stress diagrams along the cross

section at x=0 and xz%L. Fig. 5.41 highlights the significant relaxation of the

membrane longitudinal stresses in the extreme cross section between nodes 1 and 3, due to

the buckling of the corresponding plate. Figures 5.43 and 5.44 present the transverse

3 ) .
normal membrane stresses at x =0 and XZEL’ mainly due to the Poisson effect, and

Figures 5.45 and 5.46 illustrate the discontinuity that appears in the 7’ -plots along a cross

section due to the use of non-smooth functions in the inner nodes warping modes.
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The above example was analysed by the FEM (Gervasio, Simdes da Silva & Simao
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2004), using the commercial FEM package LUSAS (FEA 2002). The adopted finite element
is an isoparametric shell element with 4 nodes (type QST4), and the adopted mesh is
regular, keeping the relation between both sides of the element close to one. The adopted
boundary conditions model an element which, at its extreme cross sections, the
displacement of any point along the cross section plane is not allowed. To avoid numerical
instability a point at the member’s mid-span was fixed along the longitudinal direction.
The applied loading consists of a uniform distributed load, applied along the middle line of
the cross section, whose value is equal to the plate’s thickness. This loading was applied at
both extreme cross sections of the member and generates a unitary stress state, so the
resulting load parameters correspond to the average acting stress. Several member lengths
were adopted, being their values show in Table 5.1. For each case, the eigenvalues and the
eigenvectors were computed, the critical loads being presented in Table 5.2 and the
corresponding buckling modes, for the various analyzed lengths, being presented in

Figures 5.47 to 5.50.

L Model1  Model2 Model3  Model4 Model5 Model6 Model7 Model 8

(mm) 200 250 375 500 750 1000 2000 3000

Table 5.1 — Adopted lengths for the parametric study

Mode Critical loads (kN)

L=200 L=250 L=375 L=500 L=750 [=1000 L=2000 L=3000
1 36.54 36.90 37.17 37.24 37.20 37.42 37.42 17.19
2 40.29 38.72 37.50 37.25 37.27 37.45 37.45 37.23
3 42.06 40.92 39.48 38.86 38.16 38.11 38.11 37.23
4 43.29 41.74 42.04 39.52 38.38 38.38 38.38 37.73
5 44.35 43.37 42.31 41.21 39.64 38.75 38.75 37.74
6 50.16 47.88 42.54 42.14 39.70 39.47 39.47 37.79

Table 5.2 — Critical loads

The post-buckling equilibrium paths were determined by adopting an initial
imperfection proportional to the first instability mode, and are represented in Figures 5.51
and 5.52, showing, for each analysed case, the longitudinal displacements of node 6 at the

edge cross section, and the horizontal displacement of node 6 at the cross section where the
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maximum horizontal displacement is reached, for each member’s length.
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Fig. 5.51 — Post-buckling equilibrium paths for node 6 at an edge cross section
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Fig. 5.52 - Post-buckling equilibrium paths for node 6 at an edge cross section

Comparing with the GBT analysis, Table 5.3 presents the critical loads for the
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analysed RHS column, highlighting the better agreement between the FEM and the
extended GBT analyses, while the classical GBT analysis increases the values of the
critical loads about 10%. For the length’s range between 375 mm and 2000 mm the GBT
analysis presents higher critical loads, because the number of adopted polynomials is
severely limited by the available computer resources — as the computer resources become
more capable, allowing the adoption of a higher number of polynomials per mode of
deformation, looking at Table 5.3 it becomes evident that the GBT method will be able to
achieve as good results as the FEM analysis, enabling also additional information on the

member’s behaviour.

L (mm) 200 250 375 500 750 1000 2000 3000

Lusas 36.54 36.9 37.17 37.24 37.2 37.42 37.42 17.19

GBT 35.62 35.43 39.27 49.93 80.53 115.71 37.88 16.91

Table 5.3 — Critical loads for the simply supported column — comparison
between the FEM and GBT (until 4 polynomials per mode)

For the length L=250 mm — for which the critical state is associated with the local
buckling of the wider cross section’s plates with 4 half-waves — the post-buckling
equilibrium paths were found for both analyses. Fig. 5.53 shows the agreement between
both analyses — MEF e GBT — for the horizontal displacement of node 2 at

X = %L = 93.75 mm, noting that the GBT analysis is applied to the perfect member while

the FEM analysis applies to an imperfect column, GBT considers all non-linear terms of
the ISE and uses in this example only the 1% to the 4™ polynomials as coordinate functions
due to computer limitations. Due to these factors, the GBT analysis provides more rigid
results but, despite of the referred differences and limitations, has still a satisfying
agreement with the FEM analysis. About the normal stresses diagram shown in Fig.
5.53b), the agreement is total in the neighbourhood of the supports, but this agreement
decreases in the middle span zone, due to the existence of imperfections in he FEM model

and to the limited number of adopted polynomials in the GBT analysis.
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Fig. 5.53 — Comparison between GBT and FEM analyses

5.7.3 The critical behaviour of the rectangular hollow section member

under uniform major axis bending moment

The RHS prismatic member is now submitted to a uniform major axis bending
moment, as shown in Fig. 5.54. Since it is assumed that the beam is simply supported and
the edge sections are longitudinally restrained, the axial elongation mode was removed
from the analysis and for modes 3 and higher the coordinate functions of expression (3.37)
were assumed. For mode 2, in order to generate an uniform major axis bending moment,
functions (3.38) were adopted. The load is introduced as a bending normal stress patterns
in both edges of the member, and the respective critical loads are presented in Figures 5.55
and 5.56. Fig. 5.55 highlights the very good agreement between GBT and CUFSM
analyses, the extended GBT theory provoking a small decrease of the critical load in
comparison with the traditional Schardt’s theory. Fig. 5.56 illustrates the influence of the
number of adopted polynomials per mode of deformation in the critical load showing that a

large number of polynomials is required in order to achieve a good convergence.
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Fig. 5.54 - The beam under uniform major axis bending moment
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Fig. 5.55 — Critical major axis bending moments for the simply supported RHS
beam: benchmark comparison between GBT — classical and extended
formulations — and CUFSM analysis
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Fig. 5.56 — Critical major axis bending moments for the simply supported RHS

beam: decrease of the critical major axis bending moment with the increase of
the number of adopted polynomials per mode of deformation

5.8 — Benchmark example: the channel section member

5.8.1. Presentation and derivation of the modes of deformation

In the present paragraph the behaviour of a channel cross-section member,
presented in Fig. 5.57, is analysed. The geometric properties were chosen in order to give
the minimum critical load for the local mode range higher that the minimum critical load
for the distortional lengths zone. Its dimensions are: b,,=80mm, b/=60mm, b;;,;=12mm and

t=1.35mm, and the member is made of steel (£ =270 GPa and x =0.3). A GBT analysis

based on the concepts presented in chapter 3, considering one inner node at the mid-height

of the web, generates 20 modes of deformation, presented in Figures 5.58 and 5.59.
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Fig. 5.57 — The analysed cross-section and the adopted nodes

Mode 7 Mode 8 Mode 10

Fig. 5.58 - Unit modal warping displacements (modes 11 to 20 show no
warping displacements)

5.8.2. The buckling behaviour for the compressed column

Fig. 5.60 presents the critical loads obtained from the extended GBT analysis and
from the FSM program CUFSM for the channel section member under uniform

compression presented in Fig. 5.57 b). For the GBT analysis the polynomial of expression
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(3.37 a) was adopted for modes of deformation 2 and higher, and it is evident the very
good agreement between both analyses. Improving the GBT analysis in terms of adding
more polynomials per mode of deformation to the in the discretization procedure leads to
the decrease of the critical loads shown in Fig. 5.61, together with the modal participation

factors presented in Fig. 5.62.

Mode 6 Mode 8 Mode 10

Mode 11 Mode 12 Mode 14 Mode 15

Mode 16 Mode 17 Mode 18 Mode 19 Mode 20

Fig. 5.59 - Unit modal displacements in the cross section plane
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Fig. 5.60 — Buckling loads for the simply supported channel section column
under a compressive force: benchmark comparison between GBT and CUFSM
analysis
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Fig. 5.61 — The critical loads for the simply supported channel column: the
decrease of the critical loads with the increase of the number of adopted
polynomials for modes 2 and higher
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Fig. 5.62 — The participation of the modes of deformation in the critical state,
for 5 polynomials per modal amplitude function

5.8.3. The post-buckling behaviour

5.8.3.1. Introduction

Having identified the critical loads and the active coordinates at bifurcation for the
channel section column under analysis, the post-buckling equilibrium paths are determined
here through the usual way by searching alternative equilibrium states outside the
fundamental path, in the neighbourhood of the critical state associated with the lowest
critical load, through the application of the appropriate numerical procedures previously
described in Chapter 3. Here the post-buckling behaviour is analysed for two member
lengths, 950 mm and 1100 mm. The first length fall in the symmetric distortional lengths
range, the critical shape corresponding to two longitudinal half-waves, while the higher
length falls in the flexural-asymmetrical range. For the two cases presented below only the
first three polynomials of expression (3.37) are used for modes of deformation 2 to 20, due

to computer limitations.

5.8.3.2. Post-buckling analysis for L=950 mm

For L=950 mm Table 5.4 resumes the main aspects of the critical state for this
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length, showing the active generalized coordinates, together with their corresponding
participation factors, mode of deformation and number of longitudinal half-waves. Due to
the limitations of the available computer resources, only three polynomials per mode of
deformation, for modes 2 to 20, were adopted in the post-buckling analysis, thus
discretizing the member’s total potential energy into 58 generalized coordinates — in fact,
for the member’s length considered, this number of generalized coordinates is sufficient
for an accurate analysis. For this length and for the adopted discretization, the observed

critical load is 76.862 kN and coordinate “°g was chosen to control the post-buckling

calculations.

Critical Active Modal Number of
mode  coordinate participation (%) half-waves

5 a 11.67 2

7 a 78.45 2

9 %4 1.29 2

11 5y 8.43 2

Sum: 99.84

Table 5.4 — Most active modes and most active coordinates at the critical state

The post-buckling behaviour is defined by the evolution of displacements and
stresses at any point of the member beyond the critical state. Fig. 5.63 shows the post-
critical displacements of node 4, at the mid-height of the web, along the y-direction, and
Fig. 5.64 illustrates the deformed shape of the channel column for P=1.078 P..;. Figures
5.65 and 5.66 show the longitudinal membrane normal stresses along plate 2, between
nodes 2 and 3, and along the longitudinal line related to node 2. Fig. 5.67 shows the
longitudinal normal membrane stresses along the column’s flange, for x=0.25 L. From
observing these figures it is concluded that the post-buckling behaviour is symmetric and
stable. For the positive branch of “°q — see Figures 5.65, 5.66 and 5.67 — it is noted that in
the first half of the member, for x between 0 and 475 mm, the membrane longitudinal
normal stresses level increases in the neighbourhood of nodes 2 and 6, while for the other

half of the member these stresses increase in the neighbourhood of the web. The same
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phenomenon is observed in the negative branch of %, obviously making the

corresponding adjustments.
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Fig. 5.66 — The longitudinal normal membrane stresses at node 2 along the
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Fig. 5.67 — The longitudinal normal membrane stresses along the web, between
nodes 3 (x=0 mm), 4 (x=40 mm) and 5 (x=80 mm), for x=0.25 L

5.8.3.3. Post-buckling analysis for L=1100 mm

The post-buckling in the flexural-distortional (asymmetric) buckling zone is
investigated for a member’s length of L=//00 mm, using the classical and the extended
GBT theories, being adopted the lower bound approach given in expression (5.21) for the
latter. For a discretization considering 3 polynomials per mode of deformation 2 and
higher, each one given by expression (3.37), the obtained critical load is P.,=74.513 kN for
the extended GBT theory and P.=77.771 kN for the classical GBT formulation, the
extended formulation carrying a decrease of 4.3%. For the extended formulation, the
control coordinate was chosen to be the one related to mode 12 and to the first coordinate
polynomial, and the resulting post-buckling behaviour presents a curious shape, similar in

both formulations: in fact, the post-buckling behaviour is unstable since, for the post-
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buckling equilibrium path, concavity points downwards at the critical state for both
formulations, i.e., the load level for both branches decreases as the equilibrium states move
away from the critical point, where the tangent line is horizontal, this decrease being more
sensible in the classical GBT formulation, as shown in Fig. 5.68, where the vertical
displacement of node 1 is plotted against the load level. Subsequently, for both
formulations, each branch of the post-buckling path reaches a stability point,
corresponding to the minimum load capacity in the post-buckling range, and from this

point forward the post-buckling equilibrium path regains a positive slope.

os I contm‘ng
control >0 (extended )
0.6 |
— contral 23 (extended )
04 } - control 0 (classical)

i control 420 (classical)

! ! Whade lx=41L (mun)
—80 —60 —40 -20 20 40

Fig. 5.68 — Vertical displacement of node 1: comparison between the extended
and the classical GBT formulations

The post-buckling behaviour is symmetric and Fig. 5.69 presents the member’s
configuration at P =1.50 P, while Fig. 5.70 displays the stress along the mid-span cross
section at the critical state and for P equal to 93.395 kN and 7/2.791 kN. It is noted that
very high stress levels are reached since elastic regime was assumed to the material, so
that, in real cases, plasticity would occur and would limit severely the cross section’s load

capacity, and therefore the load capacity of the member would be much smaller than the
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observed.
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Fig. 5.69 — The column’s deformed shape for P = 1.50x P, (all
displacements are amplified by factor 2)
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5.9 — Chapter synopsis

In this chapter the Schardt’s GBT theory, which is based on the concept of modes

of deformation, was enlarged by setting up additional modes of deformation and by

establishing a fully general energy formulation. It was intended to give more information

about the member’s behaviour to the equilibrium system, to withdraw some initial

assumptions of the Schardt’s theory and to unify the GBT analysis of open and closed

cross sections, as in the FSM and FEM. The adopted strategy was to consider an additional
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mode of deformation against each of the Schardt’s restrictive assumptions, which are
(Schartd 1989): 1) the assumption of negligible distortion in open sections, ii) the
assumption of constant shear flow around a closed cell, iii) the assumption of linear
warping displacements between the folding lines of the cross section, and iv) the
assumption of negligible transverse membrane extension around the cross section. The
necessary modifications were presented, consisting on the modelling of additional
cinematically admissible deformation patterns along the cross section’s perimeter, on the
consideration of additional terms in the total potential energy, derived by the classical non-
linear elasticity theory for thin plates, and in slight adjustments in the orthogonalization
procedure to accommodate new modes of deformation. In the setting up of the modes of
deformation, the force method was replaced by the more consistent displacements method
for the analysis of the cross section — in the following chapter it will be taken great profit
from this change. Finally, the computer programs developed to improve the described GBT
implementations were resumed and two benchmark examples were presented, to validate
the presented GBT theory. The developments contained in this chapter are already
presented in three articles presented in two scientific conferences (Gervasio, Simdes da

Silva & Simao 2004, Simao & Simodes da Silva 2004b and 2005¢).
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6 — TOWARDS THE GBT ANALYSIS OF A GENERAL CROSS-SECTION

MEMBER

6.1 — Introduction

As referred in Chapter 1, since the invention of GBT, in the middle sixties, the
search of a GBT procedure devoted to the analysis of a general cross section, open or
closed, branched and non-branched, has been a major research goal. Until now the GBT
cross section analysis of folded-plate members was limited to open non-branched, open
branched and closed mono-cellular cross section types. In the present chapter, the GBT
skills will be enhanced for the analysis of a general cross section made by plane plates,
which may present branching in several nodes together with several closed cells. This
enhancement, based in the extended GBT formulation presented in the previous chapter, is

based on the following main concepts:

1) As far as possible, it is intended that only one unified GBT formulation applies
for all cross sections, in the sense that similar initial modes of deformation are
generated for any cross section type, and the formulation shall be as general as
possible.

1) The procedure developed for the closed mono-cellular and open non-branched
sections passes over unchanged to branched sections, open or closed, for the
basic modes related to the warping of the inner nodes, since these are
established directly and do not need any compatible rendering process.

1) The procedure developed for the closed mono-cellular and open non-branched
sections passes over unchanged to branched sections, open or closed, for the

basic modes related to plate bending or plate transverse extension, since these

231
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modes require only the computing of the appropriate prescribed displacements
in the cross section’s plane for the setting up of the appropriate displacements
method problem, in order to derive the transversal rotations; in these two types
of modes, no longitudinal nor plate distortion occur along the cross section.

In the GBT analyses of closed mono-cellular and open non-branched sections
of the Chapter 5, the warping modes were established with no distortion and the
plate distortional modes were established with no warping, but it was observed
that the basic modes of deformation associated with warping of the main nodes
and distortion of the main plates interact between each other during the
orthogonalization procedure; so, in order to perform the compatible rendering
of cross section’s plane displacements at branching points for these two types of
modes, it is fair to combine them from the beginning, since it was observed they
will combine in the final part of the orthogonalization process, in previous
cases.

Nevertheless, the setup procedure for the warping-distortional modes shall
generate all possible displacement patterns that may appear, in order to provide
the most complete information to the member’s equilibrium system, so that it
may be necessary to neglect the traditional GBT scheme’s assumption that only
one mode of deformation corresponds to the warping displacement’s pattern of
each main node (Schardt 1989); therefore, from now on, two or more initial
modes of deformation may have the same warping displacements pattern along
the cross section.

However, all modes of deformation that are considered in the member’s
analysis must be linearly independent one from the others. Therefore, in the
following, some modes can be rejected if it is observed that they are linearly
dependant of the remaining ones — a mathematically grounded procedure to

extract them may be needed,;
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So, for the analysis of a general cross section, only the modes that deal with
warping of the main nodes and distortion of the main plates need to be adapted for the
compatible rendering of the cross section’s plane displacements, to assure cross section’s
continuity. The remaining modes of deformation — inner nodes warping, plate bending and
plate transverse extension — pass over unchanged for the analysis of general cross sections
and constitute no special difficulty. It is only required to consider the proper cross section
stiffness matrix and the appropriate prescribed displacements and/or fixation forces for the
latter two types of modes of deformation, in the context of the displacements method
procedure presented above, and the inner nodes warping modes are established directly, as
before. Also, for all modes, the determination of the transverse bending moments is made
trivially through the displacements method, using exactly the same procedure that was
used in Chapter 5, so the existence of branching represents no special difficulty to this step,
highlighting the advantage of the displacement method when compared to the force
method adopted in the classical GBT theory.

The explanation presented below expresses chronologically the way the
enhancement was derived. It was first derived for the I-section, after for the bi-cellular
section with right angles between plates. For these cases it was seen that the traditional
orthogonalization scheme performs properly, just as for open non-branched and mono-
cellular sections. Subsequently, the analysis was extended to a general cross section,
illustrated here without loss of generality by the hollow-flange beam section, and it was
observed that the scheme generates an exaggerated number of modes of deformation, some
of them being linearly dependant from the remaining ones — the excessive modes could be
obtained as linear combinations of the remaining ones, those that form a vector base space.
So, a zero-step was introduced in the orthogonalization procedure, associated only with
matrix C, to extract the linearly independent warping-plate distortional modes of

deformation that constitute the base of the vector space of the modes of deformation. Like
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for the open non-branched and closed mono-cellular section cases, for the new section
cases the resulting orthogonal modes of deformation can be grouped in three main sets: 1)
the traditional modes of axial elongation and bending related to the principal axes,
associated with zero-values in the D and B matrices, ii) the torsion and shear-lag modes,
associated with zero values in matrix B but non-zero values in the main diagonal of matrix
D, and, finally, iii) the cross-sectional distortional modes that generate non-zero values in
the main diagonal of matrix B, present null warping displacements and some present null
terms in matrix C.

Finally, for each cross section case, an illustrative example was presented, showing
the critical behaviour for uniform compression and/or major axis uniform bending, and
post-buckling behaviour for specific lengths. Each example was benchmarked with the
finite-strip program CUFSM (Schafer 2003) for the critical behaviour using one half-wave
coordinate function per mode of deformation, which corresponds to the use of only the first
polynomial function derived in Chapter 3, and a perfect agreement of the two analyses was

observed for all examples.

6.2 — The I-section

6.2.1 Introduction

In the context of GBT, the I-section constitutes one particular and simple case of
branched sections: a plate — the web — is connected at the edges to two other plates — the
flanges — each one of these being formed by two plates with equal inclination angle, as
shown in Fig. 6.1-a). For this cross section the GBT discretization renders six main nodes
and five main plates, the corresponding numbering being presented in Fig. 6.1-b).
According to the strategy used in the previous chapters, it is considered here that the nodes

that connect the web to the flanges are main nodes, since each one connects two main
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plates. The procedure presented below is based on the extended GBT formulation
previously explained, thus keeping the unification between open and closed cross sections,
and is assessed here for the warping and plate distortional modes only. Therefore, the task
here is merely the computation of the warping displacements and the displacements along
the cross section plane necessary to the establishment of the displacements method
problem that will calculate the rotations at the nodes and transverse bending moments that

will fully define each mode of deformation.

3 Y
4 5 4 5 6
oLl O—¢——g—a

a) main plates numbering | b) main nodes numbering
and cross section orientation

Fig. 6.1 — Typical thin-walled I-section and the main plates numbering

For the establishment of the warping and the plate distortional modes, at first one
decision has to be made: is it admissible or not that a warping mode involves longitudinal
displacements of more than one main node? A positive answer to this question is
equivalent to assume that, for the warping modes associated with the warping of a main
node, other main nodes can be forced to experience longitudinal displacements in order to
render null the distortion along all plates. The alternative is to assume that any warping
mode corresponds to the longitudinal displacement of only one main node, and the
remaining ones stay longitudinally unmoved, keeping linear warping displacements
distribution along the main plates. Then, the compatibility process required to restore the

section’s continuity must disregard the condition of null distortion along the plates for the
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warping modes, implying that the distortional modes associated with some main plates
become linear combinations of some warping modes and hence must be removed from the
analysis. It is not proved that the two alternatives are equivalent, but the second option is
more general and consistent with the basic assumptions of the extended GBT formulation
derived in the previous chapter, so that, in the present work, it will be considered. The
correspondent warping basic modes of deformation are derived below assuming that some
distortions are allowed to occur in some plates, if necessary, to assure cross section’s
continuity. Also, for the warping of a main node, if various distinct ways are feasible for
the compatible rendering process, then all must be taken into account, in order to give as
many information as possible to the member’s equilibrium system. As referred above, in
the end of the cross section analysis, these modes are combined through the traditional
orthogonalization procedure to form a new and equivalent set of orthogonal modes of

deformation.

6.2.2 The basic modes involving warping of the main nodes and distortion of

the main plates

A general methodology for the establishment of the warping and distortional basic
modes of deformation in branched sections is presented here in the context of the extended
GBT formulation. First, all feasible and linearly independent modes involving warping are
set up and only after the plate distortion modes will be established — these later ones are
considered only if they are not a linear combination of the warping modes previously
established. In the following, concern is taken upon the determination of the nodal
translation displacements only for the establishment of the basic modes of deformation,
since the rotations will be determined through the displacements method by considering
that the already known translational displacements act as prescribed displacements, as
shown in chapter 5. Fig. 6.2 presents the global displacements numbering for the analysis

of the cross section, considering only the main nodes.
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Fig. 6.2 — The global displacements at the main nodes for the I-section analysis

Beginning by the warping modes, for a main node i a longitudinal displacement is
imposed while the remaining main nodes stay longitudinally unmoved. The configuration
of the plates adjacent to the main node i is then drawn, assuming at first that no distortion
occurs, in general destroying the cross section’s continuity at various folding lines.
Subsequently, the compatible rendering process starts from the main node i to the rest of
the cross section and, when possible, the continuity of two adjacent plates is restored
through the traditional GBT process (Schardt 1989). However, when two main plates have
a same inclination angle or when one main node connects three or more main plates, this
compatible rendering type is no longer possible. In this case, at first the compatible
rendering process is made for any two plates connected to the main node in question
having different inclination angle through the traditional procedure — this step defines the
final position of the main node. Then, the remaining plates connected to the main node are
forced to connect to its final position applying a distortional deformation pattern if
necessary. In this case, several options can be admissible in this compatible rendering step
for the choice of the pair of plates to be rendered compatible using the traditional GBT
process, while the others are forced to distort, each option generating a distinct mode of
deformation. Hence, associated with the warping of one main node, several linearly
independent modes of deformation can occur and all of them shall be considered in the

member’s analysis.
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After, the modes of deformation related to the distortion of the plates are generated.
Since distortional displacements patterns have already been used for the establishment of
the warping modes, it is important to find out if the present modes can or can not be
generated as a linear combination of the precedent ones, in order to do not generate an
indeterminate equilibrium system for the global member analysis.

In the following the above statements will be applied to the establishment of the
basic modes of deformation of the typical I-section shown in Fig. 6.1. Starting at the
establishment of warping mode associated with node 1, the process goes as shown in Fig.
6.3. First, a unitary longitudinal displacement is imposed to node 1, neglecting the cross
section’s continuity at node 2 — see Fig. 6.3-a). After, the compatible rendering between
plates 1 and 3 is established by using bending displacements only, because these plates are
the ones having different inclination angle that connect at node 2, where discontinuities
happen — see Fig 6.3-b. The compatible rendering related to plate 2 is only achieved by

imposing a distortional deformation pattern to this main plate.

a) imposing a warping displacement to node 1, b) compatible rendering of the cross section,

neglecting the contlnu:‘f}cll of the cross section at where & = —
X+dx

1

Fig. 6.3 — Setting up the warping mode associated with node 1
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For the establishment of the warping mode related to a unitary longitudinal
displacement of node 2, plates 1, 2 and 3 are involved in the first step, while plates 4 and 5
remain unmoved, as shown in Fig. 6.4-a). Two ways of compatible rendering are now
possible: at first one can render compatible the discontinuity displacements between plates
1 and 3 or between plates 2 and 3. After, the remaining plate will experience transversal
bending and distortion to restore cross section continuity. In order to enable the maximum
generality to the method, both ways shall be considered since they are distinct, hence the
warping of mode 2 gives rise to two independent modes of deformation as expected above.
Fig. 6.4 shows the scheme for the first option. At first, the warping displacement is
imposed to node 2, neglecting cross section’s continuity — see Fig. 6.4-a).Then, a
compatible rendering process is established between plates 1 and 3 in the classical form,
and a distortional deformation pattern, together with bending displacements, is imposed to
plate 2 to assure the cross section’s continuity, as illustrated in Figures 6.4-b) and 6.4-d),
resulting in the final shape given in Fig. 6.4-c). Fig. 6.5 resumes the procedure for the
alternative option, where the traditional GBT compatible rendering process is used
between plates 2 and 3, and plate 1 distorts. All in all, for each option, the first step is to
impose the warping displacement along the cross section, assuming that no distortion
occurs along the cross section, which implies the existence of uniform displacements along
the local Os axis for all main plates connecting to node 2, as shown in figures 6.4-a) and
6.5-a) for both cases. Then, the discontinuity between one horizontal plate and the web is
rendered null using the traditional GBT process, which, for each option, defines the final
position of main node 2. At last, the remaining horizontal plate is forced to connect to the
final position of node 2 by a combination of bending and distortional displacements. These
two independent modes of deformation are associated with the same warping
displacements pattern and, for this cross section, only two options occur, but if plates 1 and
2 did not have the same inclination angle, more options to the compatible rendering

scheme could exist and should be considered in the analysis — this fact is explored below
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for the general cross section analysis. Therefore, as the cross section becomes more
complex, more ways of rendering compatible the discontinuity displacements may exist
and thus, in order to assure the scheme’s generality, all of them should be considered in the
analysis. At this stage the establishment of the remaining warping modes for the I-section

is trivial.

b) compatible rendering of the
discontinuity between plates 1

a) introduction of the warping c¢) compatible rendering of

displacement at main node 2 and 3 plate 2
plate 1 plate 2
A
\
D/-iJ‘ yplate2
\ 3
‘yplate2

d) detail of the compatible rendering of plates 1 and 2, high lightening the distortion that occurs at
plate 2, for Fig. 6.4 b)

Fig. 6.4 — Setting up the warping mode associated with node 2 — option 1
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b) compatible rendering of the
discontinuity between plates 2
and 3

¢) compatible rendering of
plate 1

a) introduction of the warping
displacement at main node 2

plate 1 plate 2

1

1
yplatel IL-
L l.

\\\\\\\\\\\ Vplate] ,I

d) detail of the compatible rendering of plates 1 and 2, high lightening the distortion that occurs at
plate 2

Fig. 6.5 — Setting up the warping mode associated with node 2 — option 2

Focusing now on the distortional modes of deformation, they are associated with a
distortional deformation pattern of the main plates, with no longitudinal displacements
along the cross section, as shown in Chapter 5. For the I-section under analysis, only three
main plates are considered for these modes: the web and the two flanges, since it is
physically impossible to impose a distortional deformation pattern to one half of the flange
without imposing the same pattern to the other half, when no warping is allowed.
However, the distortional mode associated with the top flange can be derived from the

warping modes in the following way: for the warping modes related to node 2 shown



242 CHAPTER 6

above, if one subtracts option 1 from option 2, a pure distortional pattern for the upper
flange is encountered. So, owing to the use of distortional deformation patterns to establish
the warping modes, some distortional modes become now redundant and must be removed
from the global analysis. Therefore, only the distortional mode associated with the web is
considered, since it is linearly independent of the remaining modes, and is established by
imposing to the web a constant and unitary displacement along the Os axis, as shown in
Fig. 6.6-a). The compatible rendering scheme, shown in Fig. 6.6-b) follows the normal
process and considers also the strategy exposed in chapter 5.3.6. Due to the fact that both
plates forming each flange have the same inclination angle, and as a consequence of the
right angle between the web and the flanges, only one compatible rendering scheme is
possible. However, if any of the flanges was composed by plates having different
inclination angles, more than one procedure would be possible and all possibilities should
be considered, as above, hence the equal inclination angle of the two plates forming the

web introduces a simplification in the GBT analysis.

f.;,azlg
a) introduction of the distortional deformation b) compatible rendering of the discontinuity
pattern to the web displacements along the cross section

Fig. 6.6 — Setting up the mode of deformation related to the distortion of the
web
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6.3 — Illustrative example for the I-section

6.3.1. Presentation and derivation of the modes of deformation

The buckling and post-buckling behaviour of a thin-walled I-section member under
uniform compression or bending, whose geometric properties and cross section
discretization are presented in Fig. 7.27, is analysed here. The member consists of an I-

section, is made of steel (£ =2/0GPa and x=0.3), and is regarded as two channel

sections perfectly glued by their webs, in such a way that both channel webs can be
modelled as one single web for the I-section. The member is simply supported with end
plates of negligible bending inertia, so the coordinate functions (3.24) for mode 1 and

(3.37) for the remaining modes are used.

| O @ O
- = L |
T lf/:] mm
3
S _"t_w=2mm @ !
. -
—
60 mm 55) @ @
a) geometric properties and discretization b) member overview

Fig. 6.7 — The analysed cross section and the adopted nodes

For the uniformly compressed column case, an inner node at the mid-height of the
web is introduced and a set of 20 orthogonal modes of deformation, whose unitary
displacements patterns are shown in Figures 6.8 and 6.9, is formed. Modes 1 to 10 are
associated with null values of matrix B, thus can be considered as rigid body modes. Mode
1 corresponds to the axial elongation, mode 2 and mode 3 to major axis and minor axis
bendings, respectively, and mode 4 corresponds to the Vlasov’s torsional mode referred to

the cross section shear centre. Note that, once again, in open sections the classical Vlasov’s
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torsional mode appears explicitly and is associated with null membrane distortion, since
the corresponding term ““D; vanishes. Modes 5 to 10 are associated with membrane
distortion, thus are not considered in the classical thin-walled theory, and it is observed that
their stiffness is very high, corresponding to high values in matrix C and D. The remaining
modes, the distortional ones, imply cross section deformation in its own plane: modes 11 to
15 are associated mainly with transversal bending and modes 16 to 20 refer to the
transversal extension of the cross section plates. For I-sections the present GBT scheme
establishes more modes of deformation than the procedure of Haakh (2004), where the
modes involving, for example, transversal extension of the plates and multi-linear

longitudinal displacements between main nodes are not present.

6.3.2. The simply supported column under uniform compression

6.3.2.1 The buckling behaviour

Applying the standard stability procedures to the perfect column shown in Fig. 6.10
the critical loads of Figures 6.11 and 6.12 and are obtained for a length’s range between 50
and 3500 mm, together with the corresponding modal participation coefficients, presented
in Fig. 6.13. Fig. 6.11 highlights the perfect agreement between GBT and CUFSM
analyses, while Fig. 6.12 shows the influence of the number of coordinate functions per
mode of deformation 2 and higher in the member’s behaviour, highlighting the wave effect
along the plate buckling range. Fig. 6.13 illustrates the two buckling domains: for smaller
lengths, between 50 and 900 mm, the plate bending modes rule the member’s buckling,
corresponding to a local plate buckling mode of the webs. For lengths higher than 900 mm,

the minor axis bending governs the bifurcational behaviour.
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Fig. 6.8 - The unitary longitudinal warping displacements shapes for the
orthogonal modes of deformation
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Fig. 6.9 - The unitary displacements shapes along the cross section plane for the

orthogonal modes of deformation
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Fig. 6.11 — Buckling loads for the compressed I-section column: benchmark
comparison between GBT (with only one polynomial — with one half-wave — as
coordinate function for each mode of deformation) and CUFSM analysis
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Fig. 6.12 — Buckling loads for the compressed I-section column: decrease of the
critical load with the number of adopted polynomials per mode of deformation

100
80 t — 1\.{1:!(18 3
——  Mode 8
60
===- Mode 11
40t -——  Mode 14
20

— L (mm)
500 1000 1500 2000 2500 3000 3500

Fig. 6.13— Modal participations at the critical state for the compressed I-section
column, considering 5 polynomials per mode of deformation

6.3.2.2 The post-buckling behaviour in the distortional range
Having identified the active coordinates and calculated the critical loads, the post-
buckling equilibrium paths are determined for a column length of 400 mm, and, due to
computer limitations, for modes 2 to 20 only the first three polynomials of expression

(3.37) were adopted per mode of deformation, generating a critical load of 83.3 kN. For
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this discretization, the most critical coordinate is # a, associated with mode of deformation
11 and with three half-waves, i.e., with coordinate function (3.37-c). Figures 6.14 and 6.15

present the vertical displacement w for node 1 and the horizontal displacement v for node 4

at x :g, respectively. These graphs show a symmetrical and stable post-buckling

behaviour. Fig. 6.16 presents the member’s deformed configuration for P = 1.08 x P, for

each post-buckling equilibrium branch, showing also the non-deformed (initial) position of
the edge cross section at x=L, highlighting the axial shortening of the member. Figures
6.17 to 6.19 show the evolution of the longitudinal membrane stress at some relevant
points of the member for x=L. Fig. 6.17 puts in evidence the decrease of the applied stress
at node 1 — an edge node — while for nodes 2 and 4 the stresses increase in the post-
buckling range, more pronounced in node 4, as shown in Figures 6.18 and 6.19. Figures
6.20 to 6.22 show the evolution of the longitudinal membrane stress along the member’s
length for nodes 1, 2 and 4, respectively, and it is noted that this stress always increases for
nodes 2 and 4, while in certain parts of the member’s length some decrease in the post-
buckling domain is observed for node 1. Figures 6.23 and 6.24 present the longitudinal
stress diagrams for the upper flange and for the web, highlighting that near main nodes
corresponding to folding lines the stress increases in the post-buckling range, while near
the edges, for the web, or in the middle of the plate, for the flange, the stress decreases.
Figures 6.25 and 6.26 show the transverse membrane stress for nodes 1 and 2 — this stress
is only significant in the neighbourhood of the edge sections due to the restriction of the
Poisson effect provoked by the adopted coordinate functions. Fig. 6.27 presents the
membrane shear stress at node 1 along the member’s length, showing always negligible

values in comparison to the longitudinal stresses.
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Fig. 6.17 — Longitudinal membrane stresses at node 1, for x = L
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Fig. 6.18 — Longitudinal membrane stresses at node 2, for x = L
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Fig. 6.19 — Longitudinal membrane stresses at node 4, for x = L
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Fig. 6.21 — Longitudinal membrane stresses at node 2 along the longitudinal
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6.3.3. The simply supported beam under uniform major axis bending

moment

6.3.3.1 Introduction
For the I-section beam under uniform major axis bending moment, presented in
Fig. 6.28, a more refined discretization was adopted in the web to allow the transverse
bending of a portion of the web, which may occur in the post-buckling behaviour of the
beam if the web and/or the flanges buckle. So, three web nodes were considered, as shown
in Fig. 6.29, and 24 modes of deformation were obtained, being presented in Figures 6.30
and 6.31. It was obtained twelve modes of cross section’s rigid body motion and twelve of

cross section distortion, the last five involving transversal extension of the plates.

Fig. 6.28 — The I-section beam under major axis uniform bending moment
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Fig. 6.29 — The cross section and the adopted nodes for beam analysis
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Fig. 6.30 - The unitary longitudinal warping displacements shapes for the
orthogonal modes of deformation
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Fig. 6.31 - The unitary cross section displacements shapes for the orthogonal
modes of deformation

The load was introduced as a longitudinal stress pattern a(s) illustrated in Fig.

6.32, whose stress distribution is equivalent to a binary with resultant 1 kNm, and these
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stress distributions were applied with opposite sense, in relation to the other, in each edge

cross section, so that the potential of the external loading is computed through the

_J, (6.1)

and becomes a polynomial related to the generalized coordinates related to modes 2, 6, 8§,

traditional way, i.e., using the expression:

1 ZnIZW): '[to-(s)x:L “uds x kA’x_L}LMth G(S)x:() Kuds x*A4'
k=1 - g X

k=1

and 12, since for these modes only the following integral

It o(s),, ‘uds, (6.2)

is non null. Therefore, only these modes are present in the potential of the external work
and the corresponding coordinate functions were computed from the cinematic boundary
conditions only, i.e., they are given by expressions (3.38), while for the remaining modes
the corresponding coordinate functions were computed from the cinematic and the static
boundary conditions, corresponding to expressions (3.37). It is noted here that, in the
forthcoming examples of beams, the potential of the external loading is modelled this way,

and so only the modes involved in potential of the external loading will be referred.

0=-144.221

0=144.221

Fig. 6.32 - Longitudinal stress pattern o(s) for the introduction of the major axis
bending moment — the units are computed to originate a resulting moment of 1
kNm
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6.3.3.2 The critical behaviour

The critical behaviour is investigated here, and Fig. 6.33 validates the critical
bending moments obtained using GBT by comparing them against the FSM solutions using
CUFSM (Schaefer 2004). The agreement is perfect, despite the differences between both
methods of analysis. The effect of the number of adopted coordinate functions per mode of
deformation is illustrated in Fig. 6.34, showing that the critical bending moments are
constant for the smaller lengths range, about 1.75 kNm, and the number of adopted
polynomials is very important for this lengths range. For higher lengths, the global modes
govern the buckling behaviour and the number of adopted polynomials has negligible
influence in the critical behaviour of the beam. Fig. 6.35 shows the participation factors of
the modes at the critical state and highlights the existence of the two referred buckling
regions. For members with length smaller than /000 mm modes 11, 12 and 14 rule the
critical state, hence denoted by local plate buckling of the compressed web. For bigger

lengths mode 3 rules the critical behaviour and buckling becomes global.

Mer (KNm)
175 |
15 |
i GBT — 1 ppm
12,5
---- (CUFSM
10 |
7.5
5
2.5
— e e =T ()
1000 2000 3000 4000 5000

Fig. 6.33 — Buckling moments for the simply supported I-section beam under a
constant major axis bending moment: benchmark comparison between GBT
(with only one polynomial — with one half-wave — as coordinate function for

each mode of deformation) and CUFSM analysis
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Fig. 6.34 — Buckling moments for the simply supported I-section beam under a
constant major axis bending moment: the decrease of the critical moments with
the increase of the number of adopted polynomials per mode of deformation
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Fig. 6.35 — The simply supported I-section beam under a constant major axis

bending moment: the participation of the modes of deformation at the critical
state, considering 5 polynomials per mode

6.3.3.3 Post-buckling behaviour in the local plate buckling range

The post-buckling behaviour is analysed here for the length L=400 mm, once more
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through the procedures presented in Chapter 3. For this length modes 8, 11, 12 and 14 are
the most active ones. Due to the limitations of the available computer resources, the post-
buckling analysis was performed using only the first three polynomials from expressions
(3.37) and (3.38) for the coordinate functions per mode of deformation, thus the resulting
critical bending moment becomes equal to 2.987/49 kNm.

Fig. 6.36 shows the vertical displacements observed at the compressed flange edge
nodes, highlighting a stable symmetric post-buckling behaviour, while Fig. 6.37 presents

the member’s deformed shape for an applied moment of 5.75 kNm.
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Fig. 6.36 — Vertical displacement of the compressed flange edge nodes 1 and 3
at the mid-span cross section
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Fig. 6.37 — Member’s deformed configuration for M = 1.93x M ., (all
displacements are amplified by factor 5)
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Figures 6.38 to 6.40 present the evolution of the longitudinal normal membrane

stresses at the initial edge cross section, and it can be clearly observed, in Fig. 6.39, the

shift of the neutral axis to the compressed part of the member, due to the decrease of the

compressed stress in some points of the compressed part — actually, in certain points, the

longitudinal stresses reach tensile values, implying a decrease of the member’s stiffness.
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Fig. 6.39 - Longitudinal normal stresses o, along the web for x=0
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Fig. 6.40 - Longitudinal normal stresses o, along the traction flange for x=0
(similar for the positive and the negative branches of the post-buckling path)

6.4 — The bi-cellular closed cross section

6.4.1 Introduction

The extension of the GBT methodology to the analysis of multi-cellular closed
cross sections with perpendicular plates is realized here and, for the quest of simplicity, is
illustrated by a two cells section, described in Figure 6.41 — the generalization to a n-cells
section becomes trivial. Just like in the I-section case, the inner nodes warping, plate
bending and plate transversal extension modes pass over unchanged from Chapter 5 to the
analysis of multi-cellular cross sections, and only the warping and plate distortional modes
are transformed in order to accommodate the new cross section type geometric properties.
For these later mode types, the scheme follows closely the one developed for I-sections
and is explained here for the warping-plate distortional modes associated with main nodes
1 and 2 — once again, the generalization for the warping-plate distortional modes associated

with the remaining nodes is trivial.
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Fig. 41 - The two cells cross section

6.4.2 The basic modes involving warping of the main nodes and distortion of

the main plates

Taking into account the wall and node numbering presented in Fig. 6.41and starting
by establishing the warping mode associated with main node 1, first a unitary warping
displacement at node 1 is introduced in a two-cells member with longitudinal length dx
(along which it is considered that the modal amplitude function “4 for any mode of
deformation £ is constant, together with its any order derivative, just like the previous
cases), neglecting cross section continuity and in such a way that no plate distortion occurs
at plates 1 and 6, as shown in Fig. 6.42-a). Then, continuity between consecutive plates is

restored in terms of nodes translations, and so plate 2 is forced to twist an angle of

(6.3)

to accommodate the translation of node 2 in the perimeter’s direction. After, plates 6, 1, 2,
3,5, 6 and 7 bend transversally to render compatible the translational displacements
between them. Finally, the resulting translational displacements are introduced in a

displacements method problem related to the cross section, as shown in Chapter 5, to
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derive the nodal rotations, again similarly to the I-section, and the cross section shows the
shape presented in Figure 6.42-b).
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a) imposing a warping displacement to
node 1, neglecting the continuity of the b) compatible rendering of the cross section
cross section at x+dx

Fig. 6.42 - Setting up the warping mode associated with node 1

For the warping modes associated with node 2, one starts by imposing a unitary
longitudinal displacement this node, neglecting cross section continuity, as shown in Fig.
6.43-a). For the compatible rendering of translational displacements in cross section plane
at node 2, two ways are possible: 1) plates 1 and 7 suffer transverse bending with no
distortion, and plate 2 has to suffer distortion — Figure 6.43-b), or ii) plates 2 and 7 bend in

the transversal direction while plate 1 suffers also distortion — Fig. 6.43-c. Since these two
distinct configurations are possible, both shall be considered in the analysis and, similarly

to the open I-section previously analysed, two distinct modes of deformation correspond to
the warping of one main node.
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a) imposing a warping b) 1* option: ¢) 2" option:
displacement to node 2, compatible rendering compatible rendering
neglecting the continuity of the cross section, of the cross section,
of the cross section at x+dx with distortion at plate 2 with distortion at plate 1

Fig. 6.43 - Setting up the warping modes associated with node 2

The establishment of the warping modes for nodes 3, 4 and 6 follows the procedure
of mode 1, and the two warping modes related to node 5 follow the scheme of the modes
associated with warping of node 2. Finally, 8 modes are obtained, involving distortion of
plates 1, 2, 4 and 5. So, for the establishment of the plate distortional modes, only those
associated with twist of plates 3, 6 and 7 are retained, since the plate distortional modes
related to the remaining plates can be obtained as linear combination of the first 8 modes.
In the end, 11 warping-plate distortional modes are obtained and, in the following example,

these modes are illustrated for a real bi-cellular cross section.
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6.5 — Illustrative example for the bi-cellular closed cross section

6.5.1 Presentation and derivation of the modes of deformation

To illustrate the extension of the GBT scheme to multi-cellular rectangular cross
sections explained in the paragraph just above, the buckling and post-buckling behaviours
of a two-cells member, whose cross section is defined in Figure 6.41, are analysed. The
GBT analysis of this cross section starts by generating 11 warping-plate distortional modes
shown in Figures 6.44 and 6.45, which, together with the remaining plate bending, inner
nodes warping and plate transversal extension modes, generate the 32 orthogonal modes of
deformation shown in Figures 6.46 and 6.47, 16 of them being classified as rigid-body

modes since they show no transverse bending nor transverse extension.

Ay

Modes 2 Modes 6 Modes 9,
Mode 1 and 3 Mode 4 Mode 5 and 7 Mode 8 10 and 11

Fig. 6.44 - Longitudinal displacements for the initial warping-plate distortion
mode of deformation

Like the closed RHS cross section analysed in Chapter 5 but in opposition to the
open section case previously analysed — the open I-section —, for present cross section the
torsion mode does not appear explicitly but can be obtained through a linear combination
of modes 5, 9 and 16. Observing the rigid-body modes, mode 1 corresponds to axial

elongation, modes 2 and 3 are the major and minor axis bendings, respectively, modes 5, 9
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and 16 are torsion modes, affected by “shear-lag”, and the remaining modes are involved
with “shear-lag” deformations, exclusively or combined with bending. For the distortional
modes, modes 17 to 25 are associated with transverse bending of the plates only, and

modes 26 to 32 correspond mainly to the transverse extension of the cross section’s plates.

Mode 10

Fig. 6.45 - Cross section plane displacements for the initial warping-plate
distortion mode of deformation
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Mode 7 Mode &

Mode 13 Mode 14 Mode 15 Mode 16 Modes 17 to 32

Fig. 6.46 - The unitary longitudinal warping displacements shapes for the
orthogonal modes of deformation
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Mode 25 Mode 26 Mode 27 Mode 28 Mode 29 Mode 30
Mode 31 Mode 32

Fig. 6.47 - The unitary displacements shapes along the cross section plane for
the orthogonal modes of deformation

6.5.2 The critical behaviour for the simply supported column

Using the coordinate function (3.24) for mode 1 and the coordinate function (3.37-
a) for the remaining modes — considering only one half-wave — the buckling behaviour of
the simply supported column of Figure 6.48 is analysed, and the graphic of Figure 6.49 is
obtained, where the critical loads from the GBT analysis are compared to those arising
from the FSM program CUFSM (Schafer 2003), a perfect agreement between both
analyses being observed. Then, the precision of the analysis is increased by augmenting the
number of coordinate functions for modes 2 to 32, as far as the available computer
resources allow, and the graphics of Figures 6.50 and 6.51 for the buckling loads and
modal participation at the critical state are obtained and show two distinct buckling zones:

for smaller lengths the compressed column buckles through a local plate pattern, for which
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modes 15, 19 and 24 are the most relevant, while for higher lengths buckling is global,
ruled almost exclusively by mode 3 — minor axis bending. As expected, the number of
half-waves is very relevant in the local plate buckling range and in Figure 6.50 it is
observed how the critical load decreases when the number of coordinate functions is

augmented in the local plate buckling domain, where the critical load becomes nearly

constant against the member’s length, with a value of P, around 78 kN.
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Fig. 6.6.49— Buckling loads for the simply supported bi-cellular section column
under uniform compression: benchmark comparison between GBT (with only
the first polynomial — with one half-wave — as coordinate function for each
mode of deformation 2 and higher) and CUFSM analysis
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Fig. 6.50 — Buckling loads for the simply supported bi-cellular section column
under uniform compression: decrease of the critical load with the number of
adopted polynomials per mode of deformation
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Fig. 6.51 — Modal participations at the critical state for the compressed bi-
cellular section column, considering 5 polynomials per mode of deformation
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6.5.3 Post-buckling behaviour in the cross section distortional range

The post-buckling behaviour is inspected here for a member’s length of 250 mm,
standing in the plate buckling lengths range, corresponding to a critical load of 80.905 kN.
As coordinate functions, for modes 2 and higher only polynomials (3.37 a), (3.37 ¢) and
(3.37 e) are adopted due to computer limitations. For the search of the post-buckling
equilibrium path, the coordinate associated with mode 19 and with coordinate function
(3.37-e) was chosen to control the calculations. Fig. 6.52 describes the displacement of the
mid-point of the lateral wall, showing a stable post-buckling behaviour, and Figures 6.53
and 6.54 present the overall shape of the member for a load of 707.852 kN, for both
branches of the post-buckling path. The post-buckling path was shown to be very stiff, so
no significant changes were observed in the longitudinal stresses due to buckling.
Observing Figures 6.52 and 6.53 it can be viewed that the longitudinal displacement for the
edge cross section has higher magnitude than the transversal ones, implying great stiffness
of the member — actually, it showed no significant reduction during the transition between

the fundamental path to the post-buckling one.
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Fig. 6.53 — Member’s deformed configuration for P

1.33x P, , for

q > 0 (all displacements are amplified by a factor 50)
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Fig. 6.54 — Member’s deformed configuration for P
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g < 0 (all displacements are amplified by a factor 50)
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6.6 — GBT analysis of a any-type cross section member

6.6.1 Introduction

From the enhancements contained in the two previous particular cases — the I- and

the bi-cellular sections — the following conclusions may be drawn with respect to the

enlargement of GBT skills to the analysis of a general cross section:

iii)

The procedure developed for closed mono-cellular and open non-branched
sections for the inner nodes warping, plate bending and plate transverse
extension modes performed perfectly in the analysis of the I- and bi-cellular
cross sections, so this strategy is kept in the analysis of a general cross section.
The basic modes of deformation associated with warping of the main nodes and
plates distortion were built together in the analysis of I- and bi-cellular sections,
and both deformation patterns were combined to perform the compatible
rendering of cross section’s plane displacements at branching points, often
generating more that one mode of deformation for one longitudinal
displacements pattern (the warping displacements are established through the
traditional GBT scheme with no need of special treatment); this constitutes the
withdraw of one traditional GBT property and did not carry any problem in the
member’s analysis, since in the end all resulting modes of deformation were
linearly independent.

The fact that several modes of deformation may have similar longitudinal
displacements patterns is related to the existence of more than one compatible
rendering possibilities for the cross sectional translation displacements,
provoked by the f; displacements, along the perimeter’s direction, that occur
after having imposed the warping displacement to the main node with null

distortion at the plates; since it was not possible to render compatible all plates
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connected to a branching node at the same time, the rendering process for a
node that connects three or more plates was performed through the traditional
GBT way by pairs of plates, the remaining plates being forced to twist — in the
end, all possible combinations were retained.

iv) This fact leads to several admissible configurations for the cross section’s
displacements, associated with only one warping displacements configuration,
and their number is increased with the increasing number of branching points at
the cross section — note that, after having analysed one branching node, if any
plate connected to this node is connected, in the other side, to other branching
node, more possibilities to the in plane’s displacements shape will exist.

V) Despite of the existence of several modes with similar warping displacements
patterns, the resulting nyp basic warping-plate distortion modes of deformation
were linearly independent and the corresponding equilibrium matrix C was
always invertible, which is strictly necessary to solve the generalized
eigenproblems involved in the orthogonalization procedure; since the calculus
of matrix C involves all displacements of a plate, u, f; (indirectly) and f; it shall
be investigated if its rank is a good measure of the number of linearly
independent warping-plate distortional modes of deformation for a general

Cross section.

All in all, based on the aspects described above, the procedure used in the above
paragraphs for the I- and the bi-cellular sections for the establishment of the warping-plate
distortional modes of deformation, will be extended below for a general cross section
having several branching nodes connecting several plates each one, and whose plates can
form a generic angle between them. Moreover, if the resulting modes of deformation are
linearly dependant, a selection process to extract the independent modes of deformation,

those that constitute the vector space basis for the modes of deformation and that will be
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used after in the member’s global analysis, will be released, based on the rank of matrix C
related only with the basic warping-plate distortional modes. Finally, in order to illustrate

the general scheme, the stability behaviour of two hollow flange sections is analysed.

6.6.2 — A general rule for compatible rendering of the cross-section’s plane

displacements

In the above examples of I- and bi-cellular cross sections, first the warping modes
were established and only after the pure plate distortional modes were built, these later by
imposing the distortional displacements patterns to those plates that did not twist during
the establishment of the warping modes. So, the problem of enhancing GBT to a general
analysis consists in creating a compatible rendering procedure for a general cross section
that generates all relevant information to the member’s equilibrium system, i.e., that is
capable of generating all possible linearly independent warping-plate distortional modes of
deformation. The strategy considered here is to generate all possible modes of deformation,
considering all feasible compatible rendering options for the cross sectional plane
displacements, and after to extract the linearly independent modes.

Starting by the compatible rendering procedure for the cross sectional’s plane
displacements, let’s admit, with no loss of generality, that Figure 6.55 represents the plates
configuration for a part of a general cross section just after having imposed the warping
displacements pattern related to a unitary longitudinal displacement at node j (the patterned
arrows represent the adopted plates direction) — at this step, only the main plates connected
to node j move along their perimeter and outwards the node, with no distortion, each plate

k experiencing a displacement along the perimeter’s direction given by:

Sk :bi, k=i+1, i+2, i+4 (6.4)

k

as shown in the figure.
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Fig. 6.55 — Cross section’s displacements just after having imposed u;=1

Now, the task is merely to derive the cross section’s plane translational
displacements at the main nodes, which will be used as prescribed displacements in the
displacements method problem that computes the rotations of all nodes (thus defining
completely all movements of the plates along the entire cross section), and that restore
continuity along the cross section, by using only feasible deformation patterns for the
plates. Therefore, concern will be taken upon the chord’s movements for all plates only.
Starting at main node j (the one that has been longitudinally displaced), plates i+1, i+2 and
i+4 must be reconnected, but it is not possible to do it for the three plates at once, only for
two at a time. Consequently, the three existing options must be carried out, as shown in
Figure 6.56-a), where plate i+4 is dragged to connect to point P;;;;+2, obtained as the
concordance point between plates i+/ and i+2 through the traditional GBT scheme, Figure
6.56-b) , where plate i+2 is dragged to connect to point P ;+;;+4, and Figure 6.56-c), where

plate i+/ is dragged to connect to point P ;i2;+4. In Figure 6.56 a), b) and c), the

displacements obtained by dragging are signalled as £, or f .

N
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a) Option 1: starting by rendering compatible the
displacements between plates i+/ and i+2 (plate
i+4 twists).

b) Option 2: starting by rendering compatible the
displacements between plates i+/ and i+4 (plate
i+2 twists).

¢) Option 3: starting by rendering compatible the
displacements between plates i+2 and i+4 (plate
i+1 twists).

Fig. 6.56 — Compatible rendering configurations associated with node j — step 1
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Subsequently, the compatible rendering procedure proceeds for each option of Fig.
6.56, independently from the others, and is illustrated here just for option 1, the remaining
ones being treated similarly. From now on plate i+4 can only suffer displacements
provoked by transverse bending and then, as for node j, for the compatible rendering of the
end node of plate i+4 two possibilities exist, shown in Fig. 6.57: it can be done between
plates i+4 and i+5 through the traditional GBT scheme based on transverse bending only
with distortion at plate i+6, shown in Fig. 6.57-a) (option 1.1), or between plates i+4 and
i+6, with distortion at plate i+5, shown in Fig. 6.57-b) (option 1.2). Both ways are
considered, thus generating two distinct configurations from option 1, each one generating
(at least) one distinct mode of deformation. Note that each remaining option represented
above, options 2 and 3, will give rise to more than one mode of deformation through the
present scheme, for example options 2.1, 2.2, 3.1 and 3.2, thus the total number of
resulting modes of deformation may have a great increment.

Finally, the pure plate distortional modes of deformation are computed similarly to
the I- and bi-cellular sections considering, and using the present scheme, all possibilities of
compatible rendering between plates shall be accounted for. They are computed only for
those plates that did not experience twist before — if the plate distortional modes are
computed for all plates, including those that have experienced distortion during the
establishment of the warping modes, no problem will occur since in the end only the
linearly independent modes are retained for the member’s global analysis, as it will be seen
in the following paragraph, but it was observed that it was sufficient to create the plate
distortional modes for the plates that did not twist in any previous warping-plate

distortional mode, the pure plate distortional modes being redundant.
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a) Option 1.1: compatible rendering for the displacements
between plates i+4 and i+5 (plate i+6 twists).

b) Option 1.2: compatible rendering for the
displacements between plates i+4 and i+6 (plate i+5
twists).

Fig. 6.57 — Option 1: compatible rendering configurations associated with the
end node of plate i+4

6.6.3 The extraction of the warping-plate distortional basic linearly

independent modes of deformation

Having established all admissible warping-plate distortional modes of deformation
through the tree-type scheme presented above, let’s suppose in total number nypp, it is seen
that, in general, some of the resulting modes of deformation can be obtained from the
remaining ones, which is equivalent to say that the basis dimension for the vector space

related to the warping-plate distortional modes of deformation is smaller than nypp.
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Furthermore, it can be seen that the ny,, xn,,, equilibrium system matrix C

corresponding to all the warping-plate distortional modes is not invertible, whereas in the
traditional or extended GBT formulations matrix C was always invertible, in order that the
generalized eigenproblems solution techniques, such as the Jacobi method (Wilkinson
1965), employed in the orthogonalization of the modes of deformation could be applied.
Therefore, for the classical and for the extended GBT formulations, the columns (or rows)
of matrix C form a nypp-dimensional vector space base, and the rank of matrix C is always
equal to nypp. Since for the branched sections analysed through the present tree-type
scheme the rank of matrix C is no longer equal to nypp, and since it can be observed that
some modes of deformation can be computed as linear combinations of the remaining, an
extraction procedure that gives the linearly independent modes of deformation from the

initial ones, which will form the 7;;-dimensional vector-space basis, n,, <n,,, , 1s needed.

Since it is necessary that the resulting matrix C, related to the warping-plate
distortional modes only, is invertible, its diagonalization shall render an invertible n-
dimensional diagonal matrix. Therefore, based on the eigenproblem properties (Noble and

Daniel 1998), the extraction procedure runs in the following way:

1) From the scheme presented just above, nypp warping-plate distortional

modes of deformation are established, being defined by the n , xny,,,

matrices Ajinig that store the unitary modal displacements or transverse

bending moments in columns; they generate a non-invertible n,,, X n,,,

dimensional matrix C.
i) The following eigenproblem is solved:
[c-21x}=0, (6.5)
yielding n;; non-zero eigenvalues and n,,, —n,, zero eigenvalues, and their

corresponding eigenvectors.
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iii)

Using the nppp eigenvectors determined in expression (6.5), stored as
columns of the nyppx nypp matrix Ty, the nyppx nypp matrix C is
diagonalized to the form

4

T, .C.T, = , (6.6)

0

where 4,,...,4, are the non-zero eigenvalues of C — from expression (6.6)

it is seen that rank of matrix C is nyy, thus there are n;; linearly independent
warping-plate distortional modes of deformation.

Only the n;; eigenvectors related to the n;; non-zero eigenvalues 4,,...,4

> ny;
are retained, generating a n,,, xn,, transformation matrix 77, that stores

them in columns, and the unitary modal displacements for the final linearly

independent modes of deformation are defined by the n , xn,, matrices

walls
Afina, that contains the unitary displacements or transverse bending
moments and are given by:

4 Sfinal — Ainitial T,. (6.7)

In the end, the final n;; linearly independent warping-plate distortional modes of

deformation are established and contain all the information of the initial modes, in the

sense that any initial mode of deformation may be always given as a unique linear

combination of the later modes, i.e., if a linear algebraic system of following type is

established for the unknowns c¢;:

initial

nry

= zck k5u > (6'8)

k=1
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where J;niriq Tepresents any initial mode and kéu represents the linearly independent modes
determined through the extraction procedure, this system is always possible and renders a
unique solution in ¢, for any J;u,. The linearly independent modes will then participate,
together with the remaining modes, in the orthogonalization procedure explained in
Chapters 2 and 5 that builds the transformation matrix, required to compute the orthogonal
modes of deformation. In the following, the above scheme is deeply illustrated and

validated with the GBT analysis of two hollow flange beam sections.

6.7 — Illustrative example for a general cross section: the compact hollow

flange beam section

6.7.1 Cross sectional properties and the corresponding modes of

deformation

The enhancement of the GBT scheme just presented is illustrated here, without loss
of generality, by the GBT analysis of a compact hollow flange cross section (HFB). This
cross section was invented recently in Australia by Palmer Tube Mills Pty Ltd (nowadays
known as Smorgon Steel Tube Mills) and is devoted mainly to beam elements due to its
double symmetry, high major axis moment of inertia and high torsion stiffness, provided
by the closed triangular flanges at the top and bottom of the cross section, that enables a
high critical major axis bending moment, despite a low minor axis moment of inertia. The
geometric properties of the analysed cross section are presented in Figure 6.58, and Figures
6.59 to 6.64 illustrate how the scheme presented above performs to generate the set of
orthogonal modes of deformation that will later be used in the member’s analysis. The
GBT analysis of the HFB section begins by setting up the warping-plate distortional modes
of deformation, initially 26 for the considered cross section and illustrated in Figures 6.59

and 6.60. These modes are not linearly independent one from each other, so that the
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extraction procedure at the beginning of the orthogonalization scheme excludes 15 modes,
since they are dependent from the remaining, and retains only the 11 linearly independent
modes presented in Figures 6.61 and 6.62. These later 11 modes constitute the admissible
basis of the vector space related to all the first 26 warping-plate distortional modes of
deformation, contain the same information than the initial modes and will take part,
together with the inner nodes warping, plate bending and plate transverse extension modes,
in the orthogonalization procedure that will render the final modes used in the member’s

analysis, presented in Figures 6.63 and 6.64.

20.5
41 mm -
20.5
29.5
2 mm 2 T
— s
29.5
118 mm HH 4
29.5
ﬁ —
29.5
i : 41 mm
et

45mm = 45 mm

e
225225 225 225

c) Plate d) Applied stress
numbering distribution
Fig. 6.58 - The analysed compact HFB section

a) Cross section

properties b) Nodal discretization

Modes Modes Modes Modes Modes Modes Mode
1to6 7t09 10to12 13to18 19to21 22to24 25and?26
Fig. 6.59 - The unitary longitudinal warping displacements for the initial modes
of deformation, for the compact HFB section
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Mode 10 Mode 11

Mode 15 Mode 21

4,
P
y,

Mode 22 Mode 23 Mode24 Mode 25

Fig. 6.60 - The unitary displacements along the cross section plane for the initial
modes of deformation, for the compact HFB section
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Mode 1 Mode 2 Mode 5 Mode 6

Q<

Mode 7 Mode 8 Mode 9 Mode 10 Mode 11

Fig. 6.61- The unitary longitudinal warping displacements for the linearly
independent warping-plate distortional modes of deformation, for the compact
HFB section

6.7.2 Critical behaviour of the simply supported beam

The critical behaviour of the simply supported beam is represented in Fig. 6.65,
where the critical major axis bending moments from GBT analysis are validated against
the FSM solutions arising from CUFSM (Schaefer 2003), being evident the perfect
agreement between both methods. The GBT analysis considers function (3.37) for all
modes with the exception of mode 1, which is removed from the analysis because the beam
edges are considered longitudinally fixed, thus modelling the simply supported boundary
conditions. To model modes 2, 6, 8, 12, 14 and 16 functions (3.38) are considered,
obtained by withdrawing the static boundary conditions, since for these modes the

following integral is non null:
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Mode 1 Mode 2

Mode 8 Mode 9 Mode 10 Mode 11

Fig. 6.62 - The unitary displacements along the cross section plane for the
linearly independent warping-plate distortional modes of deformation, for the
compact HFB section

j-t o, (s) “u(s)ds, (6.9)

where o, (s) refers to the applied stress distribution presented in Fig. 6.58-d), being

equivalent to a / kNm major axis bending moment. Expression (6.9) is related to the
general expression (6.1) for the potential of the external loading, for the beam under
uniform bending moment case, and the referred modes provoke a non-zero potential of the
external work, so that functions (3.38) were chosen for these modes to enable a constant
generalized modal force along the member’s length, the corresponding coordinates

appearing in /7 in a linear form.
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Mode 2 Mode 3

Mode 7

Mode 9 Mode 10 Mode 11 Mode 13 Mode 14 Mode 15 Mode 16

\\\\
N\
\
\\ \ R
\\\\ \\\*
Mode 17 Mode 18 Modes 19 to 36

Fig. 6.63 - The unitary longitudinal warping displacements for the orthogonal
modes of deformation, for the compact HFB section
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Mode 33 Mode 34 Mode 35 Mode 36

Fig. 6.64 - The unitary displacements along the cross section plane for the
orthogonal modes of deformation, for the compact HFB section

The influence of the number of coordinate polynomials per mode of deformation
adopted in the analysis is illustrated in Fig. 6.66, highlighting that for the smaller lengths
range the critical moments remain constant as the lengths increase. Fig. 6.67 informs that
for these lengths buckling is governed mainly by modes 21, 23 and 27, corresponding to
the plate buckling of the compressed flange. For higher lengths the buckling moments are
no longer constant against the member’s length and the critical states are dependent of
modes 3 and 20, i.e., a combination of minor axis bending and transverse bending of the
flange, provoking a decrease of the critical resistance from the rigid cross section analysis,
as observed in Avery, Mahendran and Nasir (2000). As the member’s length increases,
mode 20 smoothly becomes less significant, denoting that for larger members the

transverse bending phenomenon becomes less important.



TOwWARDS THE GBT ANALYSIS OF A GENERAL CROSS-SECTION 293

M, (KNm)
400 ¢
—— GBT -1 ppn
300
---- CUFSM
200
100 ¢
: . . : — L (mm)
1000 2000 3000 4000 5000

Fig. 6.65 — Critical major axis bending moments for the simply supported
compact HFB section member: benchmark comparison between GBT and
CUFSM analysis

Ay (KNm)

250

GBT 1 ppm
200 +
—_— GBT 3 ppm

f— GBT 5 ppm

wot L F -« mme==a CUFSM

; * g - : L (mun)
1000 2000 3000 4000 5000

Fig. 6.66 — Critical major axis bending moments for the simply supported
compact HFB section member: the decrease of the critical moments with the
increase of the number of adopted polynomials per mode of deformation
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————— Mode 3
%
e — Mode 16
80 LT
) I Mode 20
T, "
60 fn, 1 “‘\\ //
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o \x\ —_— Mode 23
- \\\&
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o l """'—Z;(lll.lll}
1000 2000 3000 4000 5000

Fig. 6.67 — Modal participations at the critical state for the simply supported
compact HFB section member under uniform major axis bending moment,
considering 5 polynomials per mode of deformation

6.7.3 Post-buckling behaviour of a beam in the flange-buckling mode range

The post-buckling behaviour of the compact HFB section member is investigated
here for a length of 300 mm, for which buckling is local. Due to computer limitations, only
the first 5 polynomials of expression (3.37) are considered for modes 2 and higher, with
the exception of modes 2, 6, 8, 12, 14 and 16, for which, as referred above, the static
boundary conditions are neglected in the calculus of the corresponding coordinate
functions, since the integral of the corresponding unitary warping displacements times the
stress pattern presented in Fig. 6.58 is not null, so that for these modes the first 5
polynomials of expression (3.38) are considered in the analysis. The computed critical
moment was 36.9826 kNm, and, for the search of the post-buckling path, as control it was
chosen the coordinate corresponding to mode 23 and to coordinate function (3.37-c). The
member’s configurations presented in Fig. 6.68 are obtained for both branches for a
moment of 7/.298 kNm and Fig. 6.69 shows the vertical displacement for the mid-point of

the compressed flange — end node of secondary wall 3 or initial node of wall 4, considering
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the numbering given in Fig. 6.58-c) — at x=£, illustrating a stable post-buckling

behaviour. Figures 6.70 to 6.72 present the longitudinal normal stresses along the laid-out

cross section, and it is clearly perceptible the decrease of the longitudinal stresses as the

applied load increases above M, in walls 3 and 4, for perimeter coordinate s between

60.877 mm and /50.877 mm, due to their buckling. To help the reading of these figures,

Table 6.1 presents the correspondence between the perimeter coordinate and the secondary

walls, whose numbering is given in Fig. 6.58-c).
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Fig. 6.71 — Longitudinal normal stresses G;VI along the (laid out) cross section
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Fig. 6.72 — Longitudinal normal stresses O'i‘/[ along the (laid out) cross section

Table 6.1 - The analysed slender HFB section: perimeter coordinates
corresponding to the secondary walls for the laid out cross section

5 (mm)

6.8 — Illustrative example for a general cross section: the slender hollow

flange beam section

6.8.1 Introduction, cross sectional properties and modes of deformation

According to Avery, Mahendran and Nasir (2000), there are three main buckling

modes for HFB members under uniform bending. The plate buckling mode of the

compressed flange was investigated in the previous section, just above, so that here the
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remaining two types are analysed. To do so, a new cross section is adopted, being
described in Fig. 6.73. It is noted that this cross section contains a slender web, whereas in
the previous example the cross section’s web was much shorter, therefore it was unlike to
buckle. The GBT analysis considering one intermediate node for all plates, with the
exception of the web, for which three intermediate nodes are considered, gives rise to 36
orthogonal modes of deformation, presented in Fig. 6.74 for the unitary warping
displacements and in Fig. 6.75 for the cross section displacements. Like in the previous
example, modes 30 to 36 deal mainly with transverse extension of the main plates and
modes 19 to 29 are associated with transverse bending along the cross section. Modes 5 to
18 are the so-called shear-lag modes and are associated with non-zero terms in the main
diagonal of matrix D, mode 4 corresponds to the traditional torsion mode, here appearing
explicitly despite of the two closed cells, modes 2 and 3 are the traditional bendings and
mode 1 is the axial elongation. Finally, Table 6.2 establishes the correspondence between
the perimeter coordinate s and the numbering of the secondary plates given in Fig. 6.73-d),
in order to help the reading of the stress graphics for the laid-out cross section that will be

presented below.



TOwWARDS THE GBT ANALYSIS OF A GENERAL CROSS-SECTION

299

370 mm

i i 40 mm

F—t—
45mm ~ 45mm

a) Cross section
properties

45 mm 45 mm

:20 mm

20 mm

92.5 mm

92.5 mm

92.5 mm

92.5 mm

:20 mm

_20 mm

b) Nodal discretization

c) Applied stress
distribution
pattern

Fig. 6.73 - The analysed slender HFB section
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Mode 1 Mode2 Mode3 Mode4

Mode 10 Mode 11 Mode 12 Mode 13 Mode 14 Mode 15 Mode 16 Mode 17 Mode 18

Fig. 6.74 - The unitary longitudinal warping displacements for the orthogonal
modes of deformation (for modes 19 to 36 the longitudinal displacements are
null all over the cross section), for the slender HFB section
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Mode 22  Mode 23 Mode 24  Mode 25 Mode 26

/4 \
/Q\ /L, lﬁg

Mode 28 Mode 29  Mode 30 Mode 31 Mode 32 Mode 33 Mode 34 Mode 35 Mode 36
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Fig. 6.75 - The unitary displacements along the cross section’s plane for the
orthogonal modes of deformation, for the slender HFB section
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Wall  s;,; (mm)  $.,g (mm) | Wall  s;,; (mm) ~ s,,g (mm)

0 30.104 9 395416 487916
30.104 60.208 10 487916 580.416
60.208 105.208 11 580.416 610.520
105.208  150.208 12 610.520 640.624
150.208 180.312 13 640.624  685.624
180.312 210416 14 685.624  730.624
210416  302.916 15 730.624  760.728
302916 395416 16 760.728  790.832

0| Q|| N | W~

Table 6.2 - The analysed slender HFB section: perimeter coordinates
corresponding to the secondary walls for the laid-out cross section

6.8.2 Critical behaviour of the simply supported beam

The critical behaviour of the simply supported HFB section beam is described in
Fig. 6.76, where the critical major axis bending moments are validated against the
solutions derived from CUFSM (Schaefer 2003), and in Figures 6.77 to 6.79. In Fig. 6.77,
the influence of the number of adopted polynomials in the buckling load is addressed,
showing the decrease of the buckling moments with the increasing number of adopted
polynomials per mode of deformation. Figures 6.78 and 6.79 contain the variation of the
modal participations at the critical state against the member’s length, and highlight the
existence of three buckling regions. For very short lengths, buckling is associated mainly
with modes 25 and 24, related to the plate buckling of the compressed flange, like in the
previous example. For lengths between 80 and 1200 mm buckling is associated with modes
22 and 23 and is provoked by the buckling of the compressed part of the web — hence the
designation of “slender HFB section” for the present case and “compact HFB section” for
the previous case, where buckling of the web never occurred, whichever was the member’s
length. For lengths higher than 1200 mm, buckling is ruled mainly by modes 2, 21 and 22
and becomes global, mode 2 playing and increasingly significant role as the member’s
length increases, and modes 21 and 22 disclose the influence of the web’s transversal

bending that provokes a decrease on the critical load capacity of the beam, as referred in
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Avery and Mahendran (1997) and Avery, Mahendran and Nasir (2000).

Here and in the post-buckling analysis presented below, modes 2, 6, 8, 10, 14 and
18 are present in the potential of the external loading, applied, as in the previous cases, as a
normal longitudinal stress pattern given in Fig. 6.73-c) at the beam’s edge sections, so that
the correspondent coordinate polynomials are derived from boundary conditions only,
being given by expressions (3.38). The remaining modes are rendered discrete by adopting
polynomials (3.37) and mode 1 is removed from the analysis since it is supposed that the
edge cross sections are not allowed to move along the longitudinal direction — this
assumption implies that the web’s midpoint at the edge cross sections does not move
longitudinally, as seen below. In the following the post-buckling behaviour is investigated

for lengths lying in the two later buckling regions.

M (KNm)
500 | i\
[ - -- - CUFSM

300 F

200

100 f

: - - : I (pom)
1000 2000 3000 4000 5000

Fig. 6.76— Critical major axis bending moments for the simply supported
slender HFB section member: benchmark comparison between GBT and
CUFSM analysis
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Fig. 6.77 — Critical major axis bending moments for the simply supported
slender HFB section member: the decrease of the critical moments with the
increase of the number of adopted polynomials per mode of deformation
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Fig. 6.78— Modal participations at the critical state for the simply supported
HFB section member under uniform major axis bending moment, considering 5
polynomials per mode of deformation: lengths between 50 and 150 mm
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Fig. 6.79 — Modal participations at the critical state for the simply supported
HFB section member under uniform major axis bending moment, considering 5
polynomials per mode of deformation: lengths between 150 and 5000 mm

6.8.3 Post-buckling behaviour of a simply supported beam under uniform

major axis bending moment in the web-buckling mode range

The post-buckling in the web’s distortional buckling zone is investigated for a
member’s length of L=600 mm. For the discretization referred above, here limited to the
first 3 polynomials for each mode of deformation due to computer limitations, the obtained
critical moment is M_.,=204.812 kNm and the obtained post-buckling behaviour is stable
and symmetric, as displayed in Fig. 6.80, where a plot of the horizontal displacement of the
initial node of wall 8 versus the applied load is presented. The member’s global
configuration is illustrated at Fig. 6.81 for both branches of the post-buckling path and for

an applied moment of 257.485 kNm. Figures 6.82 and 6.83 present the longitudinal normal

membrane stresses at x =0 and x = % along the laid-out cross section, and they clearly

identify the reduction of the stress levels along the compressed part of the web — plates 7

and 8 — at x=0 due to buckling.
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6.8.4 — Post-buckling behaviour of a simply supported beam under uniform

major axis bending moment in the global flexural-distortional mode range

For higher lengths buckling is global-distortional and the correspondent post-

buckling behaviour is investigated here for L=7/600 mm. For the discretization referred

above and considering only the first 3 coordinate polynomials for each mode of

deformation, due to computer limitations, the resulting critical moment is M=147.812

kNm, and the most active coordinate is the one related to mode 3 and to the first coordinate

polynomial. The post-buckling behaviour is shown to be stable, as seen in Fig. 6.84, where

the horizontal displacement of the initial node of wall 7 is plotted against the applied load.

This figure illustrates another very important fact, related to the adopted stability
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procedures. As referred in chapter 3.3.4, far from the critical point the search of
equilibrium states two ways are admissible to search post-buckling equilibrium states. One
way is the solving of the transformed equilibrium system W; given by expression (3.61) or
(3.62), whereas the other option is the solving of the initial equilibrium system V; given in
expression (3.54), being both ways equivalent. In the problem under observation, profit is
taken from this fact and the post-buckling path is initially calculated using the W-

formulation, illustrated by the continuous line, but for M > .05 M the equilibrium states

are found by solving the V-system, illustrated by the dotted line. So, Fig. 6.84 illustrates
that the post-buckling equilibrium trajectories are the same, regardless of the equilibrium
systems used to find them, due to the prefect agreement between continuous sections of the

same post-buckling equilibrium path.
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Fig. 6.84 — Horizontal displacements at the initial node of secondary wall n. 7,

atXZ%

The member’s general configuration is presented in Fig. 6.85 for M=263.969 kNm

and in Figures 6.86 and 6.87 the longitudinal normal membrane stresses are presented

along the laid-out cross section for x=0 and x = % The variation of the stresses along
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the compressed flanges due to buckling is highlighted, and it is clearly perceptible that a

stress pattern associated with minor axis bending is present along the cross section, mainly

along the compressed hollow flange, which can show tension stresses due to the secondary

minor axis bending moment. Once again, it is referred that high stress levels are rached,

since the performed analysis assumes the material to be elastic, regardless of the applied

stress levels.
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6.9 — Chapter synopsis

The present chapter enhanced the extended GBT scheme to the analysis of a
member with general cross section geometry, made from plane folded plates. The general
cross section may have branching nodes and closed cells, and the correspondent basic
warping and plate distortional modes of deformation are established at the same time and
are combined to assure cross section continuity, while the remaining initial mode types are
established similarly to the closed or open non-branched sections given in Chapter 5. The
presentation traduces chronologically the way the procedure was developed: first, it was
developed for I- and bi-cellular cross sections, then for a general section: at the present
stage, any cross section made from the rigid union of plane plates, forming a prismatic
member, can be analysed through the GBT scheme. Finally, for each case, illustrative
examples of thin-walled members having I-, bi-cellular or hollow flange beam section,
under uniform compression or uniform major axis bending moment, were presented and
the correspondent critical behaviour was compared to a FSM analysis, showing perfect
agreement. Some developments contained in this chapter are already presented in two

articles presented in two scientific conferences (Simdo and Simdes da Silva 2005a, Simao

5 (nm )
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& Simoes da Silva 2005b).



7 — GENERAL CONCLUSIONS AND FURTHER WORK

7.1 — Final remarks

Emphasis in this thesis has been towards providing a consistent basis for the
buckling and post-buckling analysis of elastic thin-walled prismatic members in the
context of GBT, and, by implication, to the related numerical techniques involved.

After an introductory review of the state of the art, presented in Chapter 1, Chapter
2 contains a deep presentation of the Schardt’s GBT theory and establishes a unified
energy formulation for it, applicable to open non-branched and closed mono-cellular cross
sections only since it follows the basic Schardt’s assumptions. This energy formulation
enables the consistent post-buckling analysis of thin-walled members by deriving the
stress-strain relations consistently from the correspondent elasticity relations because the
involved strains and the correspondent stresses are conjugate. The developments presented
in this chapter are subsequently illustrated in Chapter 4 for the comparative buckling
analysis of an open channel and rectangular hollow section column, the analysis of a RHS
under uniform bending and the post-buckling analysis of a channel column. Clear benefits
from GBT are noted for the identification of the relevant mode interaction, which is
inexistent in the traditional FSM or FEM: it is there highlighted that channel columns,
undergoing buckling in the distortional range with one half-wave, have non-symmetric
post-buckling behaviour, the inwards movement corresponding to the unstable branch and
the outwards movement corresponding to the stable branch. However, as the equilibrium
state moves away from the critical one, in the inwards deformation the system regains
stability and the trajectory’s slope passes from negative to positive. This phenomenon can
not be detected if imperfections are introduced to the system since by doing it there is no
chance to analyse the member’s behaviour in the neighbourhood of the critical state.

Chapter 3 may be divided in two parts. The first part contains a consistent

313
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methodology to derive appropriate coordinate functions to the Rayleigh-Ritz method, i.e.,
to render discrete the member’s energy functional. The coordinate functions are assumed
to be polynomials that are computed from the boundary conditions of the problem, together
with a normalization and orthogonality rules, through a sequential scheme that generates a
complete set of appropriate coordinate functions. Therefore, the coordinate functions are
no longer chosen by chance and the ability of the resulting polynomials to model several
boundary conditions and to perform easy integrations is addressed and illustrated by
calculating some sets of functions for usual boundary conditions, together with a brief
discussion on the influence of the normalization factor to the numerical stability of the
solving methods. It is noted here that the range of application of the presented
methodology goes beyond the problem under observation and that the scheme can
constitute a general method to the determination of appropriate coordinate functions for the
Rayleigh-Ritz method in general: all in all, for a general problem being solved using the
Rayleigh-Ritz method, an appropriate set for coordinate functions can be extracted from
the boundary conditions of the problem itself.

The second part of Chapter 3 is devoted to the adaptation of the traditional stability
procedures of Thompson and Hunt to the post-buckling analysis of structural members
modelled by large equilibrium systems, for which algebraic manipulation and power
expansions are no longer feasible due to the large size of the problem. Therefore, a matrix
scheme is developed from the Thompson and Hunt procedures for the search of critical
points and the path switching from the trivial path to the unknown post-buckling branches.
The scheme forces the yet unknown post-buckling equilibrium states to lie outside the
trivial path and determines them explicitly by solving the member’s equilibrium system in
each equilibrium state, instead of determining them as power expansions around the
critical state. By doing this, the introduction of imperfections is avoided, so that no further
complexities are introduced in the member’s equilibrium system and, therefore, better

insights can be obtained on the post-buckling behaviour of the structural members, as
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observed in several examples along this thesis. The developed methodology proved to be
able to deal with stability points, since it uses coordinate control, although load control is
also possible, and explores, as far as the computer resources allow, the large skills enabled
by the modern symbolic programming language MATHEMATICA.

Chapter 5 presents a GBT formulation alternative to the traditional Schardt’s one. It
starts by replacing the Force Method, for the analysis of the cross section’s plane
displacements, by the Displacement method, providing more consistency to the GBT
analysis of cross sections and the computations of the transverse bending moments, and
enabling the direct formulation of the plate’s transverse extension modes, as referred
below. The traditional Schardt’s modes of deformation pass over unchanged to the present
formulation, with the exception of the Bredt’s torsional mode around closed cells that is
removed from the analysis, while three additional modes of deformation are introduced,
some of them already present in the bibliography, using a structured procedure. The inner
nodes modes pretend to model the shear lag phenomenon, withdraw the Schardt’s
assumption of linear warping displacements between main nodes and consist merely in the
longitudinal displacement of each inner node at the time, while the remaining nodes rest
unmoved. The plate distortional modes pretend to substitute the Bredt’s torsional mode and
are defined as shear deformation patterns applied to each main plate at the time, the
remaining ones experiencing only transverse bending deformations required to assure cross
section continuity, and are used either in open or closed sections, thus unifying the GBT
analysis of open and closed cross sections, similarly to the traditional FSM and FEM. The
traditional Bredt’s torsional mode for closed cells becomes then a particular case of the
plate distortional modes. Finally, the modes of transversal extension of the plates are
formulated directly by applying, for each mode, a pair of appropriate fixation forces at the
edges of the correspondent main plate in the cross section’s Displacement Method
problem, forcing a constant transverse enlargement of each main plate at the time along the

longitudinal slice dx. The procedure is then validated by solving two illustrative examples,
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the channel column and the rectangular hollow section, and by comparing the solutions
against independent results derived from the FSM and FEM. A third example is also
solved and shows the ability of the GBT theory, together with the numerical analysis
scheme for perfect systems, to detect phenomena that otherwise would not be observed,
such as the post-buckling behaviour of the channel cross section in the flexural-distortional
(asymmetric) range.

Chapter 6 enlarges the extended GBT theory to the analysis of general cross
sections. The extension makes resource to exactly the same modes of deformation
previously defined in Chapter 5, thus keeps the generality of the GBT theory and the plate
bending, plate transverse extension and inner nodes warping modes pass over unchanged
to the analysis of general cross sections. For general cross sections the method just
combines the warping and the plate distortional modes at the initial step to assure cross
section continuity, thus keeping the generality of GBT analysis for any type cross section,
like in the FSM and FEM. The scheme is first developed to branched I-type and two-cells
sections having perpendicular main plates, and is illustrated by the analysis of a I-section
under compression or pure bending, and of a two cells section having equal area as the
RHS analysed in Chapter 5. In each of these examples, the critical behaviour was
compared to CUFSM and showed perfect agreement. After, a general procedure was
implemented, requiring an additional step, previous to the orthogonalization process, to
extract the linearly independent modes of deformation, given by the eigenvectors
corresponding to non-null eigenvalues of matrix C. The scheme is exemplified by the
analysis of two hollow flange beam sections, covering all buckling modes these sections
may present when submitted to a constant major axis bending moment. It is stressed that
the modes of deformation for general sections are the same used in the extended GBT
theory for open and mono-cellular sections, thus the generality of the GBT formulation is
kept. At last, it is worth referring that the scheme presented in this chapter takes huge profit

from the adoption of the Displacement Method for the determination of the transverse
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bending moments, since care must be taken upon the translation displacements only, which
are then introduced as prescribed displacements in the Displacement Method problem that
easily computes the transverse bending moments, branching bringing no special difficulty.
All in all, the present thesis took profit from the ability of GBT to model the modal
interaction in the buckling and post-buckling of thin-walled members, bringing much
better physical explanation of the involved phenomena than the FSM or the FEM,
extending these abilities to general cross sections, and from the ability of the adopted
numerical strategies to model a wide range of boundary conditions and to deal with the
perfect system, thus keeping the bifurcational behaviour these elements present and
analysing the behaviour in the neighbourhood of the critical states, which is an impossible

task if imperfections are introduced into the member’s equilibrium system.

7.2 — Future research

Evidently, much remains to be done in the research area of the stability of thin-
walled prismatic members. Several of the tasks presented below can be completed in the
future, bringing deeper insights to GBT theory and to the behaviour of thin-walled
members in general. Apart the evident application of the developed GBT scheme to other
cross section shapes and to other load cases and supporting conditions, which constitutes
an endless research range, other topics deserve special attention.

The modes related to the transversal extension of the plates can be refined by
associating them with the secondary plates. The adaptation requires at first an adjustment
of the plate’s displacements, introducing perimeter displacements for the inner nodes also,
as shown in Fig. 7.1, with the corresponding (trivial) changes in the plate’s stiffness matrix
and transformation matrix. Then, for each secondary plate the corresponding mode is
established by applying two opposite forces at the edges of the secondary plate, as

illustrated in Fig. 7.2 a) and b). From this point forward the procedure is similar to the one
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exposed in Chapter 5, but an adjustment to the orthogonalization procedure is necessary.
The Schardt’s orthogonalization procedure is based on the fact that for a problem with n,p
modes of deformation matrix C is invertible, so that has rank n,,,. However, looking at the
general expression of the terms of matrix C given in Chapter 5, it is expectable that the
submatrix of C related to the plates transversal extension modes becomes singular, and
therefore the traditional Schardt’s is no longer applicable, although the modes of
deformation are linearly independent one from each other. A case like this is not new: in
Chapter 5 the transverse extension modes related to edge plates are removed from the
global orthogonalization procedure since the correspondent lines and columns of C are
null. In the present case it is suggested that at first an specific eigenproblem involving the
present modes only is established between matrices C and B, and only those related to non-
null eigenvalues are included in the global orthogonalization procedure, although all modes
are accounted in the global member analysis. It shall be investigated if there is any
eigenproblem involving only the withdrawn modes and established between matrices D
and B that has special significance and introduces any significant simplifications in the

member’s equilibrium matrices.

Fig. 7.1 — Plate displacements for a main plate
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a) The transversal extension of the first secondary plate of major plate i - (i, /)

v
dgis ’
dgio @ dgi
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b) The transversal extension of the second secondary plate of major plate 7 - (i, 2)

Fig. 7.1 - The establishment of the two transversal extension plate modes for
major plate i

The extension of the scheme developed in Chapter 3 to generate a complete set of
orthogonal coordinate functions, in the context of the Rayleigh-Ritz method, to n-
dimensional problems and to problems other than structural analysis may enable deeper
understanding on the analysed phenomena and improves clearly the numerical RRM skills.
Obvious applications are the study on the influence of the supporting conditions to the
stability of plates under compressive loading, uniform or not, and the influence of the
supporting conditions on the buckling and post-buckling behaviour of thin-walled
prismatic members under a wide range of loading conditions. Also, with the development
of the computer capacities commonly available and with the recent release of 64-bit

personal computers that calculate numbers with an accuracy of 31 decimal places instead



320 CHAPTER 7

of 15 for the 32-bit PC used in this thesis, numerical accuracy of the methods presented
above, together with more refined discrete renderings, can enable better understanding of
the post-buckling phenomena.

In the near future it is desirable to release a consistent GBT based program, for the
automatic computation of the unitary modal displacements of general cross sections,
similarly to the FSM based CUFSM software developed by Schaefer (2003) that computes
the critical loading factor for prismatic simply supported members with general cross
sections. It is suggested to base the automatic process in the general Theory of Graphs
(Berge 2001, Deo 1974, Even 1979), in order to render systematic the modelling of the
cross section with general geometry and the establishment of the correspondent modes of
deformation. A useful and simple strategy is to compute the modal unitary displacements
only, thus defining completely the modes of deformation for the posterior use of the
research community and general audience.

The improved GBT formulation may be used in the near future to bring better
insights on the complex shear-lag phenomenon and can be extended to materials other than
isotropic. Actually, some extension of the GBT theory to materials other than isotropic is
already done, as referred in Chapter 1, but profit can be taken from the adoption of the
Displacement Method and the coupling between transverse extension and transverse
bending can be thus easily modelled, simply by adapting adequately the terms in the
stiffness matrix of the plates.

However, in the author’s point of view, the most challenging research topic in the
near future is the thorough study of the localized buckling in thin-walled prismatic
members, principally the passage from a multi-wave shape to a localized shape, related to
the appearing of secondary critical states (Coman 2004) in the post-buckling range. A wide
research on the localized buckling in sandwich panels (Hunt & Ahmer Wadee 1998,
Wadee 1998), in thin elastic plates (Everall & Hunt 1999) and cylindrical shells (Lord,

Champneys and Hunt 1997) has already come to light but no references appear for
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localization in thin-walled prismatic members such as RHS columns, although this
phenomenon has already been experimentally observed (Graves-Smith & Sridharan 1980),
as referred above. Moreover, due to the random shape of the geometric imperfections in
real members, localization is strongly influenced by the shape of the imperfection, as
observed by Abdelmoula, Damil & Potier-Ferry (1992) for cylindrical shells. Therefore,
the study shall consider perfect members to decrease the number of intervenient parameters
in the analysis. It is the belief of the author that the GBT theory developed in Chapter 5,
together with the numerical strategies presented in Chapter 3, by adopting an increasingly
larger number of orthogonal polynomials per mode, forms a powerful tool to the analysis
of localized buckling in thin-walled members, namely in RHS. Note that, because the
similarity between the member on elastic foundation and the thin-walled member (Schardt
1989), for the equilibrium differential equations system, has already been observed, it is
expectable that localization phenomena occur also in thin walled members, since it was
already observed in columns on elastic foundation (Sandstede 1997). The analysis shall
consider that the primary and secondary critical states are independent one from the other,
so the W-transformation must be established independently for the primary and for the
secondary paths, relating it in both cases to the original TPE, due to the conservative
character of the involved phenomena. An introductory research topic is evidently the
analysis of simple models, like the beam on elastic foundation, using the orthogonal
polynomials to render the system discrete and to extend the numerical procedures to the
search of secondary critical states and switch to terciary paths. Despite of having been
attempted, this strategy requires modern and powerful computer resources, like grid-
computing software and clusters, which are not yet available to the author. Note that, due
to computer limitations, the post-buckling analyses presented along the thesis were limited
to the adoption of a small number of polynomials per mode of deformation, thus limiting
their accuracy in spite of the orthogonality between the polynomials. As these resources

become available, the scheme presented here will be applied to the study of localized
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buckling in thin-walled members.

The last words of the thesis go, in a different speech, to express the author’s
greatest admiration for two researchers, perhaps the two most cited ones in this thesis,
whom the author has still not met. Evidently, the author is referring to Richard Schardt, the
creator of a whole new subject in solid mechanics — the GBT theory —, and to Giles W.

Hunt, for his priceless contribution to the knowledge on the stability of elastic structures.
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