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Chapter 1

Introduction

Contents
1.1 The problem of Human-Machine Interaction . . . . . . 1

1.2 The Addressed Problems . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 The problem of Human-Machine Interaction

Since the notion “robot” was created, the idea of robots replacing humans

in dangerous, dirty and dull activities has been inseparably tied with the

fantasy of human-like robots being friends and existing side by side with

humans. In 1989, Engelberger [Eng89] introduced robots serving humans

in everyday environments. Since then, a considerable number of mature

robotic systems have been implemented which claim to be servants or per-

sonal assistants (see a survey in [FND03]). The development of such robots

was traditionally oriented to conventional aspects of robotics (navigation,

localisation, planning, task accomplishment, etc.), and more recently to

issues related with the communication between machines and humans.

1



2 CHAPTER 1. INTRODUCTION

This change has been motivated by the fact that communication mech-

anisms can quite helpful in accomplishing the goals of conventional robotics,

e.g. learning new tasks by demonstration, and can contribute to the ac-

ceptance by humans of companion machines.

Interaction goes beyond simple communication. It can be said that in-

teraction happens when a human-robot pair form a closed loop: The robot

receives some input from the human and reacts accordingly. The human

perceives the robot output or reaction, and issues a related command or

performs some action.

The interaction can go beyond the traditional command-response con-

cept. If the robot is endowed with some perception and capabilities it may

start reacting to the human presence as soon as it detects it. This may

include the initiation of a dialogue or the offering of some services.

On the human side, this interaction is accepted if the user understands

that the robot “sees” him/her and that its actions are predictable and safe.

Naturally, if the robot presents a friendly appearance, humans can be more

easily attracted, and therefore develop more rapidly a higher confidence

level, what facilitates the closing of the interaction loop.

These considerations motivated probably the design of mayny hu-

manoid robots. One can mention here commercial robots like QRIO

by Sony as well as prototypes like Alpha [BFJ+05], Robox[SAB+03],

Biron [MSF+06] or Cog [FMN+03]. These systems addressed various as-

pects of human-robot interaction like: situation understanding, recogni-

tion of the human partner and understanding his intentions, coordina-

tion of motions and/or actions, and multi-modal communication. Such

systems are able to communicate with a non-expert user in a human

friendly and intuitive way, by using the available bandwidth of human

communication and interaction modalities, typically through H/R inter-

faces, speech or gestures recognition. It is an evident fact that gestures are

a natural and rich mean that humans employ to communicate, which is
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especially valuable in noisy environments where the speech-based com-

munication may be garbled or drowned out. Communicative gestures

can used to create a lexicon of symbols that correspond to commands,

e.g. waving hands for good-bye, acting hello or performing a halt sign for

“stop motion”, but also for pointing out objects or places. Unfortunately,

only a few of the designed robotic systems exhibit elementary capabili-

ties of gesture-based interaction and future developments in the robotic

community will be undoubtedly devoted to satisfy this need.

Besides the communication process, another and potentially deeper is-

sue is the flexibility as robots are expected to evolve in dynamic and var-

ious environments populated with human beings. Most of the designed

robotic systems lacks learning representations and the interaction is of-

tenly restricted to what the designer has programmed. Unfortunately, it

seems impossible to create a robot with built-in knowledge of all possible

states and actions suited to any encountered situation. To face this prob-

lem, a promising line of investigation is to conceptualize cognitive robots

i.e. permanent learners which are able to evolve and grow their capacities

in close interaction with non-expert users in an open-ended fashion. They

have no completion and continue to learn as they face new interaction sit-

uations, both with their environments and/or other agents. Basically, they

discover a human centred environment and build up an understanding of

it. Typically, a robot companion follows a human master in his/her private

home, who makes it familiarise with its new habitat. This human master

points out specific locations, objects and artefacts which she/he believes

are necessary for the robot to remember. Once such a robot has learnt, all

this information, it can start interacting, and evolving in its environment

autonomously, for instance to fetch and share/exchange objects with hu-

mans.

The robot must also learn new tasks and actions relatively to humans

by observing them and trying to imitate them. Imitation learning [AGAD06,

SGR05, NNKI02] addresses both issues of human-like motion and easy
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teaching of new tasks: it facilitates in teaching new tasks to a robot by a

human master, and at the same enable the robot to learn how move and

behave like a human. Human recognition here plays an important role, as

the human instructor must be beforehand identified, and just then granted

the right to teach the robot.

These reminders stress that activities/gestures interpretation and imi-

tation, as well as, object exchange and person following are essential for a

companion. Recall that two generally sequential tasks are involved in ges-

tures interpretation, which are tracking and recognition. Learning based

on gesture imitation also includes two principal stages: tracking, and re-

production. All these human-robot interaction modalities require, as ex-

pected, advanced tracking functionalities, and each of them imposes dif-

ferent constraints on their accuracies, or on the focus of interest. Thus, a

person following task requires coarse tracking of the whole human body

and image-based trackers are appropriate. Although these trackers pro-

vide coarse tracking granularity, they are generally fast and robust. Track-

ing hands on image plane is also sufficient to interpret many symbolic

gestures e.g “hello”, “stop” or “go” signs. On the other side, tracking

hands when performing manipulation tasks requires high accuracy and

3D-based trackers.

1.2 The Addressed Problems

Visual functionalities are of major importance for a robot to gain a true au-

tonomy and be able to interact with humans. Although many advances in

computer vision have been performed during the last decades there is still

a long way to go. Limitations on computing power, power consumption,

space, and costs, may preclude the use of many complex hardware se-

tups and algorithms. Flexibility requirements also hinder the use of many

computer vision algorithms that impose conditions like constant lighting

or perfect background segmentation, among others.
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The choice of the interaction modalities that can be used, depends on

the possibility of obtaining different kinds of information about the human

partner. In a natural human-robot interaction context, the robot must be

able to obtain answers to questions like “Who is the user?”, “Where is the

user?”, and “What is the user doing?”, so that the interaction link can be

established.

Following this line of reasoning, two problems are therefore addressed

in this thesis: on-line user recognition and user-centred tracking. The

tracking problem can also be divided in sub-classes like, user position

tracking, user posture tracking, or user gesture tracking. In the present

case the studied tracking problems are: user tracking and user gesture

tracking, both based on the use of a priori models under probabilistic frame-

works. Note that user tracking can help the robot to focus its attention on

the user, while gesture tracking can be used to follow and interpret ges-

tures as orders or indication of places or artifacts.

Two robots Rackham and Hilário are under development with the goal

to becoming interactive. Being them two prospective targets, all the devel-

opment has been done with their limitations or characteristics in mind.

1.3 Thesis Overview

This thesis is organized as follows. Chapter 2 presents the construction of

a 3D model and its use to generate 2D templates that are used to perform

measurements. This 3D model is composed of sections of cones repre-

sented by combinations of degenerated quadrics. Such primitives require

special handling both to obtain the truncated projection and remove the

hidden parts. For this, an algorithm is proposed to handle the truncation

and visibility problems.

Chapter 3 presents some stochastic filtering formalisms and algorithms

to estimate the state of a process, given a set of observations of its output. It

starts with the presentation of a model-based tracking Bayesian principle,
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which can be seen as a basis for some estimation techniques. These tech-

niques can normally be described as processes composed of two stages

(or steps), which are: prediction and update. In the first step a dynamics

model is used to predict the evolution of the system and, in the second

one, this prediction is fused with the observations to obtain a corrected

estimate. These methods are presented in order from those that use the

more restrictive assumptions to the less restrictive ones: linear/Gaussian,

nonlinear/Gaussian, and nonlinear/non-Gaussian. Following this order

we have: Kalman filters which are adequate to linear systems on the pres-

ence of Gaussian noise, Extended Kalman and Unscented Kalman filters,

which try to extend the applicability to nonlinear systems but maintaining

the Gaussian noise assumption, and finally Particle filters that remove the

Gaussian constraint and accept virtually any type of noise.

Chapter 4 proposes some methods for measuring how much a model

with a given set of parameters can correspond to an image of the target.

These methods try to produce measures like: edge-to-contour distances to

provide a shape matching information, optical-flow, which is the result of

the motion of the target and can be used to distinguish a moving target

from a static background, and colour matching level between the model

and the target, which assume that the target presents distinctive colours or

colour patterns. The advantages and limitations of each method are pre-

sented and discussed, and solutions were proposed to reduce the influence

of those limitations. All the proposed methods verify the requirement of

introducing very little computational load. Such requirement is crucial

for a real-time system, especially in the context of a particle filter, where

measures must be taken for validating every particle, whose number can

ascend to hundreds or thousands.

Chapter 5 presents the development of a set of visual functions that

aim to fulfil a basic step of interaction functionalities. Face detection and

recognition based on Haar functions and eigenfaces enable the recogni-

tion of the tutor users. A modified Haar-based classifier was created to
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detect open hands in images. User tracking to make the robot follow the

user is implemented using a particle filter that uses colour distribution

over rectangular patches as target features. In this case, the colour distri-

butions that correspond to each patch are updated on-line to account for

the changes produced by the targets motion or illumination variations. Fi-

nally a method capable of tracking the configuration of the human arms

from a single camera video flow is presented.

Chapter 6 closes this thesis by summarising the contributions and re-

sults, and opens the discussion about the future work.

1.4 Contributions

The most relevant contributions of the present thesis can be summarised

as follows:

• A method to create 3D models for articulated structures using com-

binations of truncated degenerated quadrics is presented. The ad-

vantage of such structure is on the rapid generation of the projection

that it produces on a perspective camera. This is coupled with a new

method to efficiently project the 3D articulated models and manage

the mutual occlusions that may occur between parts. This is of vi-

tal importance for particle filtering methods where the appearance

of each proposed configuration of the model has to be compared to

input images.

• The construction of robust cost functions based on the fusion of infor-

mation coming from different visual cues and kinematics properties

of the models, aiming to improve the exploration of the parameter

space by particle filters. This is applied on the visual tracking of the

3D articulated structures using a single camera applied to gestures

tracking.
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• Fusion of face detection, face recognition and tracking mechanisms

to produce a real-time face recognition system.

The results of the single camera 3D tracker were tested on the anima-

tion of the HRP2 humanoid model.

Various tracking functionalities as well as other interaction mechanisms

were integrated in two robots (Rackham and Hilário) to endow them with

some basic capabilities of interaction with humans.

1.5 Publications

On the context of this thesis several themes were addressed, like:

• Silhouette tracking of hands and heads

• Face detection, recognition and tracking

• Colour-based tracking

• Multiple cues fusion for tracking

• 3D structure tracking with monocular vision

• Interaction modalities

From their study resulted the following list of publications:

[MBL+03] Paulo Menezes, Ludovic Brèthes, Frédéric Lerasle, Patrick Danès,

and Jorge Dias, Visual tracking of silhouettes for human-robot interac-

tion, The 11th International Conference on Advanced Robotics (Uni-

versity of Coimbra, Portugal), June 30 - July 3, 2003.

[BMD04] José Barreto, Paulo Menezes, and Jorge Dias, Human-robot interaction

based on haar-like features and eigenfaces, International Conference on

Robotics and Automation (New Orleans), 2004.
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[BMLB04] Ludovic Brèthes, Paulo Menezes, Frédéric Lerasle, and Maurice Briot,

Segmentation couleur et condensation pour le suivi et la reconnaissance des

gestes humains, 14ème Congrès Francophone AFRIF-AFIA de Recon-

naissance des Formes et Intelligence Artificielle (Toulouse - France),

January 2004.

[BMLH04] Ludovic Brèthes, Paulo Menezes, Frédéric Lerasle, and J. Hayet, Face

tracking and hand gesture recognition for human robot interaction, Inter-

national Conference on Robotics and Automation (New Orleans),

May 27 - June 1 2004.

[MBD04] Paulo Menezes, José Carlos Barreto, and Jorge Dias, Face tracking

based on haar-like features and eigenfaces, 5th IFAC Syposium on In-

telligent Autonomous Vehicles (Lisbon, Portugal), July 5-7 2004.

[BBC+05] G. Bailly, L. Brèthes, R. Chatila, A. Clodic, J. Crowley, P. Danès, F. Eli-

sei, S. Fleury, M. Herrb, F. Lerasle, P. Menezes, and R. Alami, HR+

: Towards an interactive autonomous robot, Journées ROBEA (Montpel-

lier), March 2005, pp. 39–45.

[MDLC05] P. Menezes, J. Dias, F. Lerasle, and R. Chatila, Robot interface by model-

based vision tracking of human gestures, IROS 2005 Workshop on Mo-

bile Manipulators: Basic Techniques, New Trends & Applications

(Edmonton (Canada)), August 2005.

[MLDC05a] P. Menezes, F. Lerasle, J. Dias, and R. Chatila, Single camera-based

tracking of 3d gestures, International Conference on Robotics and Ap-

plications (RA’2005) (Cambridge (USA)), IASTED, October 2005.

[MLDC05b] P. Menezes, F. Lerasle, J. Dias, and R. Chatila, Suivi visuel de structures

articulées 3D par filtrage particulaire, ORASIS 2005 (Fournol - Puy-de-

Dôme), mai 2005.
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[MLDC05c] Paulo Menezes, Frédéric Lerasle, Jorge Dias, and Raja Chatila, Appearance-

based tracking of 3D articulated structures, 36th International Sympo-

sium on Robotics (Tokyo, Japan), November 2005.

[MLDC05d] Paulo Menezes, Frédéric Lerasle, Jorge Dias, and Raja Chatila, A sin-

gle camera motion capture system dedicated to gestures imitation, Inter-

national Conference on Humanoid Robots (Tsukuba, Japan), IEEE-

RAS, December 2005.

[MLD06a] P. Menezes, F. Lerasle, and J. Dias, Visual tracking based modalities ded-

icated to a robot companion, International Workshop on Vision Based

Human-Robot Interaction - Euros 2006, Euron, March 2006.

[MLD06b] Paulo Menezes, Frédéric Lerasle, and Jorge Dias, Data fusion for 3d

gestures tracking using a camera mounted on a robot, International Con-

ference on Pattern Recognition (Hong Kong), August 2006.

[MLD06c] Paulo Menezes, Frédéric Lerasle, and Jorge Dias, Visual tracking modal-

ities for a companion robot, IEEE/RSJ Int. Conference on Intelligent

Robot Systems (Beijing - China), October 2006.

[CFA+06] A. Clodic, S. Fleury, R. Alami, R. Chatila, G. Bailly, L-Brèthes, M. Cot-

tret, P. Danès, X. Dollat, F. Elisei, I. Ferrané, M. Herrb, G. Infantes,

C. Lemaire, F. Lerasle, J. Manhes, P. Marcoul, P. Menezes, and V. Mon-

treuil, Rackham: An interactive robot-guide, RO-MAN 06 (University of

Hertfordshide), 9 2006.

[FLDM07] Mathias Fontmarty, Frédéric Lerasle, Patrick Danès, and Paulo Menezes,

Filtrage particulaire pour la capture de mouvement dédiée à l’interaction

homme-robot, Congrès francophone ORASIS (Obernai), 2007.

[MLD07a] Paulo Menezes, Frédéric Lerasle, and Jorge Dias, Data fusion for 3d

gestures tracking using a camera mounted on a mobile robot, Image and

Vision Computing (submitted) (2007).
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[MLD07b] Paulo Menezes, Frédéric Lerasle, and Jorge Dias, Visual tracking-based

modalities for human-robot interaction, IEEE Transactions on Robotics -

Special Issue on Human-Robot Interaction (submitted) (2007).

[MLDG07] Paulo Menezes, Frédéric Lerasle, Jorge Dias, and Thierry Germa,

Humanoid robots, ch. Towards an Interactive Humanoid Companion

with Visual Tracking Modalities, pro literatur Verlag, 2007.
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2.1 Modelling Human Limbs

Tracking a 3D structure consists in recovering the parameters that define

the structure pose and/or configuration from direct of indirect noisy mea-

sures of these parameters, or from measurable effects related with them.

Performing visual tracking of an object in 3D space, is a difficult task, be-

cause of the lost of depth information during the perspective projection

process. This means that the parameters that depend on the depth or

relative depths between parts of the structure have to be inferred solely

from the 2D images. Recovering 3D information from (2D) images re-

quires some assumptions or prior knowledge. Two common approaches

are used to solve this problem which are: using multiple views of the same

scene and assuming that each point is visible in the two or more views, so

by triangulation its 3D information can be obtained, or having a 3D model

of the scene that helps in establishing the spacial relationships between

detected image features. Both approaches have their advantages and dis-

advantages, while the 3D dense reconstruction one is heavy in computa-

tional terms, the matching between a model and an image is not always

a simple task especially for noisy images. Figure 2.1 shows an example

where that model-to-image matching task is a difficult one, even for a so-

phisticated visual system such as the human brain, due to the presence of

noise on part of the image.

One common choice for the problem of performing 3D tracking using

visual information, is to use of a pair of cameras in a stereoscopic con-

figuration to perform a dense 3D reconstruction and then matching a 3D

model to the obtained cloud of points at each step. The matching between

the model and this cloud of points is performed by several authors by
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Figure 2.1: Due to the noise that was introduced in the bottom region of
the image, reasoning about the relative depth of the elephant’s legs is not
an easy task for the human brain.

using the Iterative Closest Point (ICP) algorithm [Zha94], or by the appli-

cation of artificial forces that push the model towards the cloud of points,

as proposed by Delamarre et al. [DF98].

The choice for this work fell on model based approach group, as there

is a priori a rough knowledge about the geometry and kinematics of the

structure that may be exploited. The idea is, therefore, to use an approxi-

mate model of the structure as prior knowledge to compensate for the lack

of depth information. This means that from the model and knowing the

camera parameters it possible to say what projection (representation) of

the structure can be expected for a given set of parameters that define its

configuration.

The problem we intend to solve at each tracking step, can be seen as

the inverse perspective one, i.e. to infer the configuration of the structure

given a view of it. As seen before, the difficulties in solving this problem

come from the following: 1) during the perspective projection the depth

information is lost, 2) there are ambiguities which appear, as some images

can be produced from more than one configuration of the structure, and

3) it is not trivial to identify to which part of the structure corresponds to

a given image point. There is indeed some knowledge that can be used to

simplify the estimation problem. Being the geometry of the model known,
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this can be used to constrain the relative position of two adjacent points of

the structure, partially compensating for the lost depth information. Some

ambiguity problems can also benefit from a priori knowledge about the

kinematic limits and dynamic evolution of the parameters, what means

that some configurations that could be hypothesised from the observation

are impossible to occur due to physical limits of some joints or because

they correspond to inter-penetration of two or more parts. The definition

of a model for the structure dynamics is also of great help as it establishes

temporal restrictions for the parameters. Consequently if some observa-

tion hypothesis would propose an instantaneous jump between the prece-

dent and the current value of some parameter which does not respect the

dynamics equations, it would be simply discarded because it cannot hap-

pen in a physical world. As will be seen later, the proposed solution is

based on a Bayesian estimation process that integrates the geometric, kine-

matic and dynamic models in the prediction or correction phase, as prior

knowledge about the parameters to estimate.

2.1.1 Types of models

The choice of a model for the human limbs raises a question of what kind

of model to use and how precise should it be. Most of the common models

could be described as being based on a skeleton that contains a set of artic-

ulations connected by links that define their relative positions. Attached

to these skeletons we can find different types of primitives which repre-

sent either parts of the body surface or some features that can be observed

or measured in the input image data.

Some authors use models that approximate very closely some parts of

the human body, in terms of shape, while others prefer simpler models

that are rough representations of the shape but precise in terms of the rela-

tive position of some particular features. Most models that are created for

animation purposes are based on splines or meshes, as they can produce

a more realistic visual representations of the body, whereas those created



2.1. MODELLING HUMAN LIMBS 17

for computer vision applications are mostly based on quadrics or other

simpler geometric shapes. Let’s give some examples of these different

modelling approaches. The works of Stenger [SMC01a], Ouhaddi [OH99],

Sidenbladh [SBF00b] and Delamarre [DF01a] employed rough geometric

models based on cylinders, spheres and even parallelepipeds. More pre-

cise models were used by Sminchisescu [ST03a] that used meshes derived

from sampling the surfaces of superquadrics, Deutscher et al. [DBR00a]

used quadrics whose surface was sampled to create a mesh of 3D points

and Lerasle [LRD99a] used a mesh of points to model a legs’ surface.

The advantage of the use of quadrics comes from their simple manip-

ulation and the possibility of applying all kinds of affine transformations

and still obtain their definition in analytical form, as well as their pro-

jection in the image plane of some camera. In the mesh based models,

their analytical expressions are not normally known. And their projection

must be done by projecting each point of the mesh while managing their

neighbourhood relationships. Although mesh-based models are adequate

for application that require a great modelling precision, they may be com-

pletely inappropriate for others that require very short computation times.

Deformable models have the advantage that they can be adjusted pre-

cisely to each tracked target, but these deformations represent additional

degrees of freedom that increase the dimensionality of the problem. An-

other reason for rejecting these kind of models is that the articulated struc-

tures, as said before, are based on a skeleton whose configuration defines

the appearance of the body. The deformations that appear on the body

surface due to some elasticity of the flesh and skin is normally small when

compared with changes in the relative position of the limbs due to rotation

around some articulations. Thus, rough models, e.g. based on quadrics,

can be more adequate for tracking applications that require models that

need to be fast, and not necessarily visually realistic.

For summarising the benefits of each modelling approach we can say

that:
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• a very realistic model would always need adjustments as the person

whose hand is to be tracked changes. Shape, size, and proportions

between parts are not constant from person to person, but obtaining

these biometric information is not possible for every new user in a

general public application e.g. a robot guide in a museum.

• A rough model which takes into account the modelling errors can be

simpler to manage than a precise one.

• The model management (and animation) should not induce an ex-

cessively high computational load and therefore making the tracking

mechanism unusable to real applications.

The remaining of this chapter will be divided as follows: The model

and the employed geometric primitives will be presented. Followed by

the generation of this model’s projection. Contrary to the work of Siden-

bladh [SBF00b] where the 3D primitives were approximated by 2D rectan-

gles before projection, in this work the true 3D projection of the model is

produced. The resulting projection consists not only of the outside silhou-

ette contours as proposed by Delamarre [DF01a] but includes every visible

contour of the 3D shape. For this a novel hidden segment handling mech-

anism was developed and will be described here. Extension of the method

to include other shapes as parallelepipeds is also described. It finishes by

describing how the elliptic (or circular) sections that are produced by the

planes that truncate the cones can be also projected.

2.1.2 Used model

Inspired on the aforementioned works and taking into account the enu-

merated requirements, the human limbs were then modelled as a 3D artic-

ulated structure composed of truncated quadrics. These geometric primi-

tives can be easily manipulated and projective geometry provides the tools

to obtain their projections in an elegant way. The truncated quadrics are
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connected between them by articulations that represent the corresponding

human articulations, e.g. elbow, shoulder, etc. Depending on the case each

articulation can contain one or more degrees of freedom, corresponding to

rotations.

Figure 2.2: An example of an arm model with four degrees of freedom.

Figure 2.2 represents the model for an human arm containing four de-

grees of freedom, where both the forearm and the upper arm are modelled

by truncated cones.

Creating a model containing two arms for bimanual gestures tracking

is a matter of duplicating this model.

Figure 2.3: The model of a hand built using truncated quadrics and a par-
allelepiped

A similar approach could be applied to model more complex structures
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as in the example of figure 2.3 which represents a hand with 21 degrees of

freedom (d.o.f.). The palm, which is the base part was modelled using a

parallelepiped, and each finger is represented by three truncated cones,

one for each phalanx.

2.1.3 Modeling the structure with quadrics

A quadratic surface, or quadric, is an implicit 3D surface of second order,

which can be represented by the following general equation,

ax2
+ by2

+ cz2
+ 2 f yz + 2gzx + 2hxy + 2px + 2qy + 2rz + d = 0.

It can be represented in vectorial form using homogeneous coordinates as

[
x y z w

]





a h g p

h b f q

g f c r

p q r d









x

y

z

w




= 0,

or

XTQX = 0. (2.1)

These quadratic forms can be divided in 17 types (imaginary and real) [Wei],

but only 4 of these types are of interest for building this model structure:

ellipsoid (not used currently), elliptic cones, elliptic cylinders, and parallel

planes, whose equations and matrices for the corresponding vector forms

are presented in table 2.1.

These quadrics can be combined in different ways to build more com-

plex forms. As an example, a truncated cone can be defined by the set of

points that verify:

{
XTQX = 0

XTΠX ≤ 0.
(2.2)
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Name
Algebraic

Expression
Q Matrix Example

Ellipsoid x2

a′2 +
y2

b′2 +
z2

c′2 = 1





1
a′2 0 0 0

0 1
b′2 0 0

0 0 1
c′2 0

0 0 0 −1





Elliptic
Cone

x2

a′2 +
y2

b′2 = z2





1
a′2 0 0 0

0 1
b′2 0 0

0 −1 0 0
0 0 0 0





Elliptic
Cylinder

x2

a′2 +
y2

b′2 = 1





1
a′2 0 0 0

0 1
b′2 0 0

0 0 0 0
0 0 0 −1





Parallel
Planes

x2
= a′2





1
a′2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −1





Table 2.1: Some quadrics and the respective equations and matrices
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where Q and Π matrices correspond to the cone and the pair of planes that

delimits the cone, respectively.

This form of representation is quite convenient as it can be used to

express a quadric in any desired position and/or orientation in space by

applying the traditional homogeneous transformations.

To show the generality of this representation let us start with a quadric

centred at the origin and aligned with the frame axes.

Any point X that verifies equation (2.1), i.e. situated on quadric’s sur-

face, like any other point in the 3D space, can be transformed by pre-

multiplying it by some homogeneous matrix H.

This matrix can represent one of the following transformations like

rotations, translations, scaling and shear, or the combination of some of

them.

As long as this transformation has inverse, we can rewrite equation

(2.1) as (
H−1HX

)T
QH−1HX = 0.

So replacing X′ = HX we get

X′TH−TQH−1X′ = 0,

then we can write

X′TQ′X′ = 0,

where Q′ = H−TQH−1.

Given this result, we can now dispose a set of quadrics in any relative

configuration by applying the required transformation to each of them.

This is also required to perform the animation of a model composed of

quadrics linked by articulations. Considering the example of the model of

a human arm, the angle parameter of the elbow articulation can be used to

write the transformation matrix to be applied to the quadric representing

the “lower” arm. For any model based on a kinematic chain, a transfor-

mation matrix needs to be computed for each parameter of the model, be



2.2. GENERATING THE PROJECTION OF THE MODEL 23

combined with matrices resulting from the precedent parameters and then

be applied to each subsequent part. The combined transformation matrix

H j to be applied to part j of the chain is given by

H j = H j−1T j

where T j represents the transformation to be applied to part j relatively

to the previous one. H0 = T0 represents the transformation encoding the

rotations and translations of the base part of the structure relative to the

world coordinate system.

2.2 Generating the projection of the model

Generating the projection of the 3D model is an important step as it fur-

nishes a 2D representation of that model as “seen” by the camera. To

generate this projection, the intrinsic parameters involved in the camera

model need to be fixed either manually or issued from some camera cali-

bration procedure [Zha00, Bou03]. The latter method of choosing the pa-

rameters is required if the generated representations of the model are to

be compared with real camera images, as is the case of the current work.

This section, after defining the camera model used, presents a con-

tributed method which generates the projection of 3D articulated models,

build on the above mentioned truncated quadrics, taking into account any

kind of concealing that may occur between model parts for a given camera

viewpoint. Its presentation is done by starting with the a normalised cam-

era case, i.e. the one whose projection matrix is of the form P = [I3×3|03×1],

then it will be extended to the general pinhole camera case and finally by

explaining how the hidden segments removal is performed.
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Figure 2.4: Left: First drawing of a pinhole “Camera Obscura” by Gemma
Frisus De Radio, a astronomer that used a pinhole in his darkened room to
observe a solar eclipse 1544. Right: Drawing by Brook Taylor - Leonardo
da Vinci gave a clear description of the “Camera Obscura” in the 16th cen-
tury.

2.2.1 Pinhole camera model

A pinhole camera is a box with a very small round hole in one end and a

film or photographic paper on the other. The light rays pass through the

hole and project themselves on the opposite face forming the image over

the surface of the paper or film.

This is supposed to be known for thousands of years by the nomadic

african tribes who observed the light comming through tiny holes of their

tents made of animal skin, and forming images on the ground. There are

several records from the past that show that the image formation with pin-

holes is known since at least the 5th century B.C. by the chinese philoso-

pher Mo Ti, Aristotle in the 4th century B.C., Alhazen an arabian astronomer

and mathematician in the 10th century A.D., and Da Vinci in the 16th cen-

tury (figure 2.4) are just a few of the names that have observed and re-

ported the pinhole image formation.

Pinhole box construction is still a common exercise for people that ini-

tiate themselves to photography. Other photography passionates still use

commercially available pinhole cameras like those shown on figure 2.5

The image formation in a pinhole camera is depicted on figure 2.6. As
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Figure 2.5: Examples of pinhole cameras

image

Focal Plane
Image Plane object

pinhole

Figure 2.6: Example of a perspective projection in a pinhole camera
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can be seen, the light rays that come from the object pass through the hole

and project themselves onto the image plane. The geometric construction

shows that the formed image is inverted relatively to the original object.

It is possible to build a geometric model of the pinhole camera. It con-

sists of a retinal plane where the images are formed, and a projection centre

also called optical center and denoted by C. The distance f between the

optical center and the image plane is called the focal length. The image of

a 3D point M is obtained on the intersection of the ray that passes through

this point and the optical center, with the retinal plane, producing point

m.

It is common to define also the optical axis, which is the line which is

perpendicular to the retinal plane and passes through the optical center,

and the intersection point c and the image plane. Another plane of inter-

est is the so called focal plane which is parallel to the retinal plane and

which passes through point C. Points situated on this plane do not have

an image on the retinal plane since the line that passes through them and

the optical centre is parallel to that plane. It is said that their images are

in the infinity. The interesting thing about this simple model is that it is a

good approximation to most commercial cameras.

2.2.2 The perspective projection matrix

Associating a coordinate system, (C, x, y, z), with our pinhole camera al-

lows us to describe the objects to be viewed by the camera w.r.t. the so

called “camera coordinate system” (or standard coordinate system). A

second coordinate system is also defined for the image plane as (c, u, v).

The relationship between the 3-D space coordinates and the image co-

ordinates is easily obtained as being

− f

z
=

u

x
=

v

y
. (2.3)
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c

Focal Plane
Image Plane object

pinhole
image

z
C optical axis

y

x

u

v

Figure 2.7: Definition of the axis and coordinate systems associated with a
pinhole camera.

It is possible to write this relationship in linear form as





U

V

S



 =





− f 0 0 0

0 − f 0 0

0 0 1 0









x

y

z

1




(2.4)

where u = U/S and v = V/S if S 6= 0.

U, V and S can be interpreted as being projective coordinates in the

retinal plane of the camera. Similarly, equation ( 2.4) can be rewritten using

the projective coordinates (X, Y, Z, T) of the 3-D point:





U

V

S



 =





− f 0 0 0

0 − f 0 0

0 0 1 0









X

Y

Z

T




(2.5)

This expresses the fact that the relationship between the image and space

coordinates is linear in projective coordinates and can be written in matrix
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form as

m = PM (2.6)

where m = [U, V, S]T and M = [X, Y, Z, T]T.

We may now consider a transformation of coordinates in the retinal

plane composed of a scaling and translation transformations given respec-

tively by the 2× 2 S matrix defined as

S =

[
ku 0

0 kv

]

and by the 2× 1 t vector. So, the coordinates of a pixel, given by the ho-

mogeneous vector m, can be transformed by

m′ = Hm

where the 3× 3 H matrix is given by

H =

[
S t

0T
2×1 1

]

where vector t represents the coordinates of the principal point in the im-

age plane. This transformation allows to change from the camera frame

coordinates (in meters) to image coordinates (in pixels).

Combining this new transformation with the projection matrix of equa-

tion (2.4) we get a modified projection matrix P′ = HP which can be writ-

ten as

P′ =





− f ku 0 u0 0

0 − f kv v0 0

0 0 1 0





which is valid when the world reference frame is the standard coordinate
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system of the camera. The parameters f , ku, kv, u0, v0
1, are called the in-

trinsic parameters of the camera. With the exception of the focal length f

which can vary by changing the lens, all the remaining intrinsic parame-

ters are considered fixed.

There is a special case where the P′ matrix is





1 0 0 0

0 1 0 0

0 0 1 0





which can be obtained by normalising the coordinate system of the cam-

era. This corresponds to a normalised camera which can be defined as one

whose retinal plane is at a unit distance from the optical centre. In this case

this plane is on the other side of optical centre with respect to the retinal

plane, and consequently the produced image is inverted when compared

to the original one.

Moving the camera makes the world coordinate system to be no longer

coincident with the camera coordinate system. This displacement can be

reflected on the camera model by describing the change from the camera

coordinate system to the world coordinate system by a rotation R followed

by a translation t. This can be condensed on a single homogeneous trans-

formation given by

K =

[
R t

0T
3 1

]

and applied to any 3D point as M′ = KM, so it can be described in camera

coordinates . This transformation can be also used to post-multiply the

1In fact there is an additional parameter, which is called the skew parameter, and
that accounts for a rather unusual non-orthogonality between x and y axis of the
pixel grid. If the skew coefficient s is different from zero the matrix becomes P′ =


− f ku s u0 0

0 − f kv v0 0
0 0 1 0



.
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projection matrix

Pn = P′K

and obtain a matrix able to describe to projection of any 3-D point. The

parameters that compose the K matrix are called the extrinsic parameters

of the camera and depend solely from its pose in the world coordinate

system.

2.2.3 Projection of a quadric in a normalised camera

Recall that a quadric is defined in the projective space P
3 as

XTQX = 0

where X is a 4× 1 vector and Q a 4× 4 symmetric matrix.

Assuming a pinhole camera model and a camera whose centre is lo-

cated at the origin, and whose image plane is perpendicular to the Z axis

at a distance of one unit from the origin, a generic projection ray intersects

the image plane at the point, x = [x y 1]T. Therefore, every point on this

projection ray can be defined as

X =

[
x

s

]

(2.7)

where s is a scalar.

As the pencil of lines (called here projective rays) that pass through the

camera centre, sweep the 3D half space situated in front of the camera, it

is possible to rewrite equation (2.1) as

[
x

s

]T [
A b

bT c

][
x

s

]

= 0 (2.8)

or

xTAx + 2sbTx + s2c = 0 (2.9)
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This is a second order equation in s that for each x can have zero, one

or two solutions. The case of interest is the one where the projection rays

are tangent to the quadric, i.e. touch it at the visible to invisible transition

line, and that corresponds to the single solution case of the above equation.

This implies that this equation’s discriminant must be equal to zero:

(2bTx)(2bTx)− 4cxT Ax = xTbbTx− cxT Ax = 0

This expression can be rewritten to obtain

xT(bbT − cT A)x = 0. (2.10)

This corresponds to the quadratic equation of a conic in the image

plane, which is, actually, the desired contour of the quadric’s projection.

It is now possible to infer the 3D points of the quadric that project onto

selected points of the conic by obtaining the necessary s0 value that com-

pletes the X vector in (2.7). This value is retrieved by solving (2.10) for

each chosen x0 point and replacing the discriminant by zero, giving

s0 =
−2bTx0±

√
0

2c

= −bTx0/c (2.11)

2.2.4 Generalising for a non-normalised camera

Being the above presented method only valid for the normalised camera

case, its generalisation is an absolute requirement in order to make it use-

ful for real applications. In such context the set of intrinsic camera parame-

ters such as focal length, pixel dimensions and sensor size, vary from cam-

era to camera, and are by consequence quite different from the normalised

ones. When considering the extrinsic camera parameters, although being

a common practice to consider the camera centre at the origin, this is no

longer possible in a multi-camera application as no two cameras can share
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the same position in space. In the following will be shown how to apply

the above method while using a real camera.

Considering a general camera case whose projection matrix is P, it is

possible to chose a matrix H such that

PH =

[
I 0

]
.

Manipulating the expression of the projection of a generic point X re-

sults in

x = PX

= PHH−1X

=

[
I 0

]
H−1X. (2.12)

This means that projecting a point X in a camera represented by matrix P

is equivalent to projecting the transformed point H−1X by the normalised

camera.

Therefore, using the same principle it is possible to transform a generic

quadric of matrix Q intro a new one, of matrix Q̂

XTQX = 0 ⇔ X̂TQ̂X̂ = 0. (2.13)

The transformed quadric is obtained by making X̂ = H−1X and Q̂ = HTQH.

This means that the projection of Q̂ using the normalised camera
[

I 0
]

is equivalent to the projection of Q that could be obtained using projection

matrix P.
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2.2.5 Projection of parts represented by truncated degener-

ated quadrics

This subsection and the following will focus on the projection of the model

parts which are degenerated quadrics representing cones or cylinders, trun-

cated by other type of degenerated quadrics representing pairs of parallel

planes. These kind of geometric primitives have some properties that per-

mitted the development a fast algorithm to perform their projection while

taking into account their clipping by the truncating planes as well as hid-

den parts management.

The image of a degenerated quadric, obtained by projective projection,

is a degenerated conic. Depending on the point of view, i.e. the relative

positions between the camera and the quadric, its image can be a pair of

parallel lines, a pair of concurrent lines or a single point. Each of this cases

is simple to identify when the conic’s matrix is diagonal. Table 2.2.5 shows

Parallel lines




1 0 0
0 0 0
0 0 −a








0 0 0
0 1 0
0 0 −a





Concurrent lines




1 0 0
0 −b 0
0 0 0





A point




1 0 0
0 0 0
0 0 0








0 0 0
0 1 0
0 0 0





where a and b are positive constants.

Table 2.2: The three cases of interest for the degenerated conic and the
corresponding configuration of the quadric represented by truncated part
of it, for a camera oriented perpendicularly to the page.
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the possible matrices for the three cases, where a and b are real positive

scalars. One should note that a diagonal matrix corresponds to the case

where the conic is centred at the origin and its axes aligned with image

plane ones.

From these considerations, and after having obtained the projected

conic’s matrix given by equation (2.10), one should find the transforma-

tion T that will make this matrix diagonal, then obtain two points on each

line and finally apply the inverse transformation T−1 to bring these points

back to their true positions. These points will define the straight lines that

correspond to the true projection of the cylinders or cones. Although the

diagonalisation of conic’s matrix can be done by the usual singular value

decomposition, a more geometric method was used to do so, which is pre-

sented hereafter.

2.2.5.1 Centring and aligning the conic

Starting from the conic equation (2.10) and by rewriting it as

[
x y w

]




a b d

b c f

d f g









x

y

w



 =

ax2
+ 2bxy + cy2

+ 2dxw + 2 f yw + gw2
= 0 (2.14)

and by making w = 1, this expression becomes the well known general

expression of a planar quadratic curve

ax2
+ 2bxy + cy2

+ 2dx + 2 f y + g = 0. (2.15)

By looking at this equation, it can be rapidly seen, that it contains some

terms that are not present when the conic is centred and aligned with the

frame axes. So, performing the required alignment consists primarily in

determining and applying the transformation that forces these terms to

vanish.
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Starting with the term xy, it can be eliminated by a suitable rotation.

For a rotation of an arbitrary angle θ, the rotation is performed by

[
x

y

]

=

[
cos θ sin θ

− sinθ cos θ

][
x′

y′

]

so, by computing the expressions of x, y, xy, x2 and y2 as

x = x′ cos θ + y′ sin θ

y = −x′ sin θ + y′ cos θ

xy = −x′2 cos θ sin θ + x′y′(cos2 θ− sin2 θ) + y′2 cos θ sin θ

x2
= x′2 cos2 θ + 2x′y′ cos θ sin θ + y′2 sin2 θ

y2
= x′2 sin2 θ− 2x′y′ sin θ cos θ + y′2 cos2 θ.

then substituting into (2.15) and grouping terms

x′2(a cos2 θ + c sin2 θ− 2b cos θ sin θ)

+x′y′[2a cos θ sin θ− 2c sinθ cos θ + 2b(cos2 θ− sin2 θ)]

+y′2(a sin2 θ + c cos2 θ + 2b cos θ sin θ)

+x′(2d cos θ− 2 f sin θ) + y′(2d sinθ + 2 f cos θ)

+g = 0.

Comparing again with (2.15) it can be written as

a′x′2 + 2b′x′y′ + c′y′2 + 2d′x′+ 2 f ′y′+ g′ = 0 (2.16)
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where the coefficients are

a′ = a cos2 θ− 2b cos θ sin θ + c sin2 θ

b′ = b(cos2 θ− sin2 θ) + (a− c) sin θ cos θ

c′ = a sin2
+2b sin θ cos θ + c cos2 θ

d′ = d cos θ− f sin θ

f ′ = d sin θ + f cos θ

g′ = g.

The term 2b′x′y′ can be made to vanish by making

b′ = b(cos2 θ− sin2 θ) + (a− c) sin θ cos θ

= b cos(2θ)− 1

2
(c− a) sin(2θ) = 0

this implies that

cot(2θ) =
c− a

2b
≡ K. (2.17)

Using the fact that

cos[cot−1(x)] =
x√

1 + x2

and defining

L ≡ K√
1 + K2

then

sin θ =

√
1− L

2

and

cos θ =

√
1 + L

2

can be used to compute the coefficients of the quadric rotated by

θ =
1

2
cot−1

(
c− a

2b

)



2.2. GENERATING THE PROJECTION OF THE MODEL 37

that becomes

a′x′2 + c′y′2 + 2d′x′+ 2 f ′y′ + g′ = 0. (2.18)

Now it is possible to translate the conic so it becomes centred on the origin

by noting that the above expression can be made

a′
(

x′2 +
2d′

a′
x

)
+ c′

(
y′2 +

2 f ′

c′
y′
)

+ g′ = 0 (2.19)

so

a′
(

x′+
d′

a′

)2

+ c′
(

y′ +
f ′

c′

)2

= −g′+
d′2

a′
+

f ′2

c′
. (2.20)

Now it suffices to define x′′ ≡ x′ + d′/a′, y′′ ≡ y′ + f ′/c′, and g′′ ≡ −g +

d′2/a′ + f ′2/c′ to have

a′x′′2 + c′y′′2 = g′′ (2.21)

and if g′′ 6= 0 then dividing by g′′ gives

a′′x′′2 + c′′y′′2 = 1 (2.22)

So the aligned conic relative to equation (2.10) in matrix form is

[
x′′ y′′ w′′

]




a′ 0 0

0 c′ 0

0 0 g′′









x′′

y′′

w′′



 = 0 (2.23)

and the transformation that makes this conic gain its original configura-

tion is

T =





cos θ − sinθ 0

sin θ cos θ 0

0 0 1









1 0 −d′/a′

0 1 − f ′/c′

0 0 1



 . (2.24)

We have now both the aligned conic and the transformation that can

be used to produce the original one. Similarly, such transformation can

be applied to any point belonging to the aligned conic bringing it to the

corresponding position on the projected conic.
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2.2.5.2 Defining the projected lines

Being the case where the projection reduces to a single point, rare, unin-

teresting, and of trivial solution, we will devote our attention to the other

ones.

Having obtained the expression of the centred and aligned conic, which

is known to be degenerated and corresponding to two lines for the projec-

tion of cylinders or cones, two points will be easily chosen on each of these

lines.

For the parallel line cases, we known that all the points have coordi-

nates either y′′ = ±
√

g′′ for any x′′, and x′′ = ±
√

g′′ for any y′′, for the

horizontal and vertical cases respectively. So after knowing the value of

the constrained coordinate it suffices to choose any convenient value to

the other.

For the concurrent lines case, we have x = ±
√

b′.y, so replacing y′′ by

any two values e.g. 0 and 1 will give the corresponding x′′ values.

These four points are then brought back to their original configuration

by the application of the T−1 transformation previously computed, where

each pair define one of the lines in its true configuration.

2.2.5.3 Clipping the cones

As the cones (or cylinders) are truncated ones, their projection must also

reflect this. By consequence after defining the lines that correspond to the

projection of the degenerated quadrics, one has to find the clipping points

that will become the extremities of the line segments. We present hereafter

the method which is illustrated on figure 2.8.

Starting with two points {xi}, i = 1, 2 on each of the projected lines,

finding the corresponding 3D counterparts Xi is an easy task, as they are

simply computed by

Xi =

[
xi

si

]

(2.25)
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Intersection with a truncating plane

x2

projection centre

Intersection with a truncating plane

image plane

x1

X1

X2

Figure 2.8: Projecting quadric and truncating projected segments

for

si = −bTxi/c, (2.26)

where b and c are blocks of the Q quadric matrix, as seen in expression (2.8).

The frontier of visibility of the quadric, i.e. the set of the two lines that

project onto the silhouette contour. One of them is the line that passes

through points X1 and X2, by consequence any other point situated on the

line that they define can be written as

Xn = X1 + λX2 (2.27)

Replacing the expression of the line’s generic point on the truncating

planes equation gives

(X1 + λX2)TΠ(X1 + λX2) = 0 (2.28)



40 CHAPTER 2. FROM THE 3D MODEL TO ITS APPEARANCE

that can be rearranged to regroup the terms in λ resulting in

λ2XT
2 ΠX2 + 2λXT

1 ΠX2 + XT
1 ΠX1 = 0. (2.29)

As both points X1 and X2 are known, the above expression is a second

degree equation in λ, which can be solved giving the two λ values that

once replaced in (2.27) will give the required 3D intersection points. The

same procedure is repeated for the second line, and the projection of these

points gives the end points of each of the line segments that correspond to

the projection of the truncated cones.

2.2.6 Handling occlusions between parts

Being the human body a structure with many degrees of freedom, it is very

prone to generate self occlusions as in many configurations a part can hide

another one or part of it.

For a given configuration and/or pose, some parts of the articulated

model can conceal partially or completely other ones. As the result of pro-

jecting the model is a set of line segments, it is necessary to remove the

hidden segments or their hidden portions, to produce a realistic represen-

tation of the model view.

The are several algorithms available in the literature to manage the

hidden parts of a projected model [Mut98, SSS74], being many of them

computationally heavy or inadequate for either the current problem, the

chosen approach or the representation. A recent algorithm developed

by Stenger et al. [SMC01b] although being quite adequate to the prob-

lem presents a complexity that depends on the size of the projected parts

and on the required precision as it verifies the visibility of each point that

compose the projected contour. In the current work, the use of quadrics

of conic or cylindric permitted the development and the use of an algo-

rithm whose complexity depends only on the number of projected parts

and not on their size or precision. This algorithm requires, consequently,
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less computational power than the former ones. Another advantage is the

fact that it is well adapted to the current problem as the information about

the parent quadrics that generate each of the contours is not lost during

the projection process.

2.2.6.1 Division of the segments

The first step of the occlusion handling algorithm consists in the compu-

tation of all the strict intersections amongst the whole set of projected seg-

ments. It should be noted that strict intersection between two segments is

defined as the case where two segments intersect in a point which is not an

extremity of either segment. Then, for each intersection point, the two im-

plicated segments are sectioned at this point. the result of the application

of this process to the whole set of projected segments is a list of (smaller)

segments that do not present any strict intersection between them.

The computation of these intersections can benefit from the use of the

sweeping line algorithm [NP82], especially if the number of projected seg-

ments is large. This algorithm, has linear complexity with respect to the

number of segments while the usual brute force method exhibits a quadratic

one.

2.2.6.2 Hidden segment removal

For each of the segments of the new set, its middle point pm is computed,

which in conjunction with C (the camera centre) defines a projective ray.

A search is then performed to find possible intersections between this pro-

jective ray and any of the quadrics that compose the 3D structure.

The intersection points are then ordered using their distance to the

camera centre. The segment is then marked as visible or invisible, whether

the first point of intersection in the list belongs or not to the quadric that

originated it (through projection).

Figure 2.9 illustrates this idea, xm is the middle point of an image seg-

ment, r is the projective line that passes by xm and C, and A, B and Xm the
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B

Xm

C

r

A

xm

Figure 2.9: Hidden segment testing

intersection points with the two quadrics. From this test it results that the

projected segment is not visible as both the points A and B are closer to C

than Xm which is the one that is on the surface of the cone that originated

this segment.

This is done by defining that any point on the projective ray that passes

through xm will have projective coordinates of the form

Xm =

[
xm

s

]

where s is a scalar. Then replacing Xm in the equation of each quadric, a

second degree equation in s will be obtained. Then for each obtained s

the resulting point Xm is tested to see if it is situated between the corre-

sponding cone truncating planes, in other words, if the point verify the

inequality XT
mΠXm ≥ 0 then it belongs to the truncated cone, otherwise it

belongs to the cone but it is out of the zone delimited by the two clipping

planes.

It should be noted that comparing distances between the intersection

points can be done by just comparing the respective perspective coordi-

nates, s, wereas the larger this value, the smaller the distance from the

considered point to the camera centre.

The results of the application of this algorithm are illustrated in fig-

ure 2.10 which shows the projection of a structure before and after hidden
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Figure 2.10: Projection of a model before (left) and after (right) hidden line
removal

segment removal.

2.2.7 Projection of parts represented by parallelepipeds

The use of parallelepipeds to model certain parts was also considered. Par-

allelepipeds can be simply represented by a set of connected corners. So,

given the projection matrix of a camera, projecting a segment is straightfor-

ward as if suffices to project each of the corners and connect the projections

that correspond to the endpoints of the same edges.

Actually, a more complicated method is required for making possible

the removal of those parallelepiped segments which are hidden by the

cones. Recalling that the quadrics were transformed in a way that they

could be projected by a normalised camera. To test the visibility of the

parallelepiped segments with respect to the quadrics both must be rep-

resented in the same transformed space. This means that corners (and

implicitly segments) must suffer the same transformation as the quadrics.

So for each corner a transformed point is computed by,

X′corner = H−1Xcorner, (2.30)

where H−1 is the same matrix used in relation (2.12). Now projecting each
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of these points consists in simply dividing their x and y coordinates by the

respective z.

2.2.8 Parallelepiped hidden edges removal

A parallelepiped viewed by a single camera, like any other solid object

and even if no additional objects are present, presents both visible and

invisible regions separated by a line which marks the visibility frontier.

This kind of shape can be described as a set of planar faces, edges and

corners, so our interest is in verifying which of them, or eventually which

parts of them, are visible and which ones are invisible.

Being a special case of a convex shape, an edge of a parallelepiped

either it is completely visible or completely invisible. Another propriety is

that the edges that are connected to an invisible corner are also invisible.

We can refer also to a rule that will be useful later and that is that a face

is only visible if and only if all of its corners (and thus all of its edges) are

visible.

So it is only necessary to test the visibility of the corners and then prop-

agate this visibility state to the edges and faces.

A generic point is hidden by a parallelepiped if it is behind any of the

latter’s faces. We can even add that a point is hidden if it is behind any of

the visible faces of the parallelepiped, w.r.t. the camera .

Using this properties, a test was created to verify if any given point

was hidden or not by a rectangular surface. This surface, together with

the camera centre defines a pyramid

So as can be seen from figure 2.11 it is necessary to test whether the

point is inside or not the pyramid defined by the camera centre and the

edges of the rectangle. For this it suffices to define, for each of the four

rectangle edges, a plane that contains this edge and the camera centre. The

point is inside the pyramid if is is on the same side (“above” or “bellow”)

all the four planes.

A point Xt is “above” a plane if, given a point Xp on the plane as well
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Hidden point

Hidden zone

Visible zone

Visible zone

Visible zone

Camera

Visible point

Figure 2.11: A rectangular surface in front of a camera hides any point
placed behind this surface and the pyramid defined by the edges of the
rectangle and the camera centre

as the plane normal ~n, the following condition is verified:

(Xt−Xp).~n ≥ 0 (2.31)

where the dot symbol stands for the dot product.

If the point is verified to by outside the pyramid then it cannot be

hidden by this rectangle, otherwise its visibility depends on whether it

is closer to the camera than the plane containing the rectangle or not. To

verify this, a line containing the point and the camera centre is defined and

its intersection with the rectangle plane is computed. If the intersection is

farther from the camera than the point, the latter is visible, otherwise it is

invisible.

This test is repeated for each of the visible faces of the parallelepiped,

but as soon as a point is marked invisible the test can be stopped.
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2.2.9 Parallelepiped-cones mutual occlusion

After removing the non-visible edges of the parallelepiped, a last step is

necessary to remove the segments, resulting from the projection of the

cones, which are hidden by the parallelepiped as well as the parallelepipeds

edges hidden by the cones, when these two kind of primitives coexist.

All the projected segments will undergo through a step of finding the

intersections between them and dividing the intervening segments at the

intersection points. Recalling that each of the new sub-segments are either

completely visible or invisible, it suffices to test the visibility of a single

point to infer the visibility of the whole segment.

The visibility test for the cone resulting segments against the paral-

lelepiped is the same as the one presented in subsection 2.2.8.

The segments that result from the projection of the parallelepiped are

included in the search for intersections described in section 2.2.6.1 and

then each of the new segments are also to be tested against the quadrics to

find if they are visible or not.

Recalling from section 2.2.6.2, this test is done by selecting the middle

point of the segment, finding its 3D counterpart and then testing the vis-

ibility of the latter. This means that the middle point of each subsegment

must be found as well as its 3D counterpart.

For each projected segment two new parameters are added to the ex-

tremities, which are the “lambda” values that correspond to each end-

point, as is illustrated in figure 2.12. As any point on this segment can

be obtained from

xn = x1 + λ(x2− x1),

it is also true that the 3D point Xn that projects in xn has the same kind of

relationship with the 3D segment endpoints,

Xn = X1 + λ(X2−X1).
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Projected Segment

Camera center

Original 3D segment

x2, λ2 = 1

X1

X2

Xn

x1, λ1 = 0

λ3

λ4

λn

Figure 2.12: Finding the 3D points that correspond to projected ones on a
segment

So, knowing the “lambda” value for a point on the projected segment suf-

fices to find the corresponding 3D point.

For implementation purposes of this method, whenever a segment is

divided and two others result from it, the new segments are assigned not

only the endpoints but also the corresponding lambda values that relate

these endpoints to the original ones. This way, when it is necessary to com-

pute the visibility of a segment’s middle point, the corresponding lambda

value is computed by

λ = (λ1 + λ2)/2

and the 3D corresponding point is readily computed from the endpoints

of the original 3D segment.

2.2.10 Projection of the cones’ bases

In this section we will explain how the circles that appear on the extrem-

ities of the truncated cones (or cylinders) can be projected and drawn on

the image plane. The method that is about to be presented, although cen-

tred on the circle projection, is also applicable to ellipses, as in the case of
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elliptical cones or cylinders.

A circle in space can be defined as a particular conic that is contained

on the surface of a plane in space. In this plane it can be defined using

projective coordinates as

[
x y w

]




1 0 0

0 1 0

0 0 −R2









x

y

w



 = 0 (2.32)

The plane that contains this circle is defined by the normal vector n

and by the 3D point X0 that belongs to the plane. This plane equation is

defined as

nT(X−X0) = 0, (2.33)

whose left hand side can be transformed as

nT(X−X0) = nTX− nTX0

=
nTX

−nTX0
+ 1

= π
TX + 1. (2.34)

By consequence we can write the plane equation in using homogeneous

coordinates as

ΠTXm = 0, (2.35)

where Π =

[
π

1

]
and Xm =

[
X

1

]
.

Considering a camera whose projection matrix is P = [P̃|p], the images

of the points the above plane are

xm = PXm (2.36)
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or rewriting

xm = [P̃|p]

[
X

1

]
(2.37)

Using (2.34) it can be written

xm = [P̃|p]

[
X

1

]

= [P̃|p]

[
X

−π
TX

]

= [P̃|p]

[
I3×3

−π
T

]
X (2.38)

Finally the relationship between the point in the plane and the image

point is

H = [P̃|p]

[
I3×3

−π
T

]

= P̃− pπ
T. (2.39)

In fact there is a problem with some cases where the plane passes by

the origin of the coordinate system, in this case it is represented by

Π =

[
π

0

]
(2.40)

and then it can no longer be used in (2.38).

This can be solved by translating both the plane and the camera in the

direction of the plane’s normal, and thus maintaining the relative positions

between the two.

Setting the forth coordinate of the plane to 1 as it represents the dis-

tance between the plane and the origin of the coordinate system.

Now applying to the camera a translation of π̂ makes the projection

matrix become

P′ =
[

P̃ p− P̃π̂

]
(2.41)
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where

π̂ =
π

||π|| .

Using this modified camera matrix it is now possible to construct the ho-

mography between plane and image plane using equation (2.39).

It must be noted that this homography relates pairs of 3D points which

are situated on two planes, and not two sets of 2D points. It requires then,

the transformation of the plane (or image) coordinates of each point be-

longing to Π to its corresponding 3D coordinates before applying the re-

ferred homography.

This transformation between the plane and world coordinates is given

by

X = RX′ + t

where R represents a rotation matrix, t a translation vector, X a 3-D point

in world coordinates, and P′ a 2-D point of the plane. As the generic plane

points have coordinates of the form [x′, y′, 0]T, then





x

y

z



 =

[
Rc1 Rc2 Rc3

]




x′

y′

0



+ t (2.42)

which is equivalent to writing





x

y

z



 =

[
Rc1 Rc2 t

]

︸ ︷︷ ︸
Tr





x′

y′

1



 (2.43)

where Rc1, Rc2, Rc3 are the columns of R.

The homography is then represented by

H′ = HTr. (2.44)

As it becomes clear, obtaining the Tr matrix requires only the computation
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of the translation vector, the rotation axis, and the rotation angle.

For the rotation, its axis can be obtained from the vector product be-

tween a unitary vector, ẑ, with the direction of the world Z axis, and the

unitary vector normal to the concerned plane as

vr = ẑ∧ π̂. (2.45)

For the computation of the rotation angle there are available both

sin(α) = sα = ||vr||

and

cos(α) = cα = ẑ · π̂

then the angle is just computed by

α = arctan(sα, cα)

where arctan(., .) is the arc-tangent function which, from the the sinus and

cosinus values received, returns the corresponding angle in the [−π, π]

interval.

In fact a second rotation should be used to align the axes of the two

planes but, as the figures of interest are circles, this step can be skipped.

Now that both rotation axis vr and the rotation angle α are known, they

can be used to construct a quaternion

q = cos(α/2) + sin(α/2)(vxi + vyj + vzk)

and from its coefficients obtain the required rotation matrix, by noting w =
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cos(α/2), x = sin(α/2)vx, x = sin(α/2)vy, x = sin(α/2)vz,

R =





w2
+ x2− y2− z2 2xy + 2wz 2xz− 2wy 0

2xy− 2wz w2− x2
+ y2− z2 2yz + 2wx 0

2xz− 2wy 2yz−wx w2− x2− y2
+ z2 0

0 0 0 1




.

(2.46)

It should be noted that the element R(4,4) = 1, as it represents the expres-

sion of the norm of a rotation quaternion which has, by definition, unitar-

ian norm.

Now applying the inverse rotation to the point that corresponds to the

origin of the coordinates of the plane, denoted as Op, gives the correspond-

ing translation vector

t = RTOp. (2.47)

Once the homography H′ that relates the plane points and the image

points is known, then it can be written

xm = H′Xm⇔ Xm = H′−1xm (2.48)

so

Xm
TCXm = 0

(
H′−1xm

)T
C
(

H′−1xm

)
= 0

xT
mH′−TCH′−1xm = 0 (2.49)

the projection of the circle in the image plane can be obtained by

[
x y w

]
H′−T





1 0 0

0 1 0

0 0 −R2



H′−1





x

y

w



 = 0. (2.50)

From this it is clear that for the circle in each extremity of the truncated
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cone, one must obtain a vector normal to the plane that contains the circle

(i.e. the truncating plane) and a point that belongs to that plane. This is a

simple task as both truncating planes are known.

There is indeed, one case for which this method of obtaining the circle

projection onto the image plane does not work. This happens when the

plane that contains the circle contains the camera centre. As the projection

matrix is

P =
[
P̃|p
]
=
[
P̃| − P̃c

]
(2.51)

where c is the vector of the coordinates of the camera projection centre.

Multiplying equation (2.39) by c we get

Hc =
(

P̃− pπ
T
)

c =

(
P̃ + P̃cπT

)
c =

P̃c(1 + π
Tc) =

P̃c(0) = 0

from equations (2.32) and (2.34). Then c belongs to the kernel of H if the

plane passes through it and therefore H does not have full rank. There-

fore its projection cannot be defined by equation (2.49) as H−1 cannot be

defined.

Nevertheless, it can be easily seen that the plane that contains the circle

and the image plane, intersect each other on a line. By consequence, the

projection of the circle, is for this case, a line segment if the camera centre

is outside the circle or the whole intersection line for the cases where the

camera centre is inside the circle. So, for the line segment case, to find its

endpoints, it suffices to compute the points of the circle where the rays

passing through the camera centre are tangent to it. Once these points

are found, their projection is obtained and the line segment is the one that

connects them.
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These tangency points are still possible to be determine even if the

method is somewhat laborious.

Lets define the projected conic matrix C′ = H−TCH, so the projected

conic is

x−TC−1x = 0.

So for a line that passes through both the camera centre, v, and another

point m, any other point on that line can be given, considering projective

coordinates, as

x = v + λm. (2.52)

If the point x is a point of conic then it can be written

xTC′x = (v + λm)TC′(v + λm) = 0 (2.53)

and expanding the expression

vTC′v + 2λvTC′m + λ2mTC′m = 0. (2.54)

It can be solved for λ using

λ =
−vTC′m±

√
mTC′v mTC′v−mTC′m vTC′v

2mTC′m
(2.55)

and for the line to be tangent to the conic there should be only one solution,

thus

mTC′v mTC′v−mTC′m vTC′v = 0 (2.56)

that makes (2.55) become

λ =
−vTC′m
2mTC′m

(2.57)

In the case where the point v belongs to the conic then vTC′v = 0,

so (2.56) simplifies to

mTC′v = 0 (2.58)

whose only solution is m = v unless C′ is not of full rank.
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For the other cases (2.56) can be written as

mTC′vvTC′m−mTC′mvTC′v = 0 (2.59)

but as γ = vTC′v is a scalar, then if is can be made

mT
(

C′vvTC′−C′γ
)

m = 0. (2.60)

So the tangency points are found by finding the solutions of (2.60). This

should give two tangency points for the case where v is exterior to the el-

lipse, 1 if it is situated on the ellipse contour and 0 (or perhaps 2 imaginary

points) if it is an interior point.

Analysing the matrix C′vvTC′ −C′γ we can say that

• it is symmetric because all matrices involved are symmetric

• rank(C′vvTC′−C′γ) < 3

While the first is clear, the second can be verified from the fact that

(
C′vvTC′− γC′

)
v =

C′vγ − γC′v = 0

as γ = vTC′v, and then v belongs to the kernel of C′vvTC′− γC′. In addi-

tion, if exists a vector x such that

C′x = 0

then

(
C′vvTC′− γC′

)
x =

C′vvTC′x− γC′x =

γC′vvT0− 0 = 0
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that means that the vectors that belong to the kernel of C′ also belong to

the kernel of C′vvTC′− γC′.

In fact it cannot be said if the vector v is orthogonal to the vectors of

the kernel so, the only known truth is that,

rank(C′vvTC′− γC′) < 3. (2.61)

This means that the set of points that verify equation (2.60) lie on one or

two lines (that can be real or imaginary).

Now it suffices to choose a point from each of the lines and replace each

of them on (2.57) to obtain the λ value that gives the required correspond-

ing point using (2.52).

2.2.11 Drawing the projected circles

A circle centred on the origin can be drawn approximately by drawing line

segments between the points Xk that are obtained by rotating a point by

an amount θ. Thus, starting for instance with

X0 =





R

0

1





the succession of points are given by

Xk = RXk−1 (2.62)

where

R =





cos θ − sinθ 0

sin θ cos θ 0

0 0 1





and θ =
2π
p being p the number of points to generate.

For the case on an ellipse centred on the origin and with axes parallel to
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the coordinate axes, it suffices to generate the points of a circle of radius = 1

and apply the a scaling transformation to each generated point. So if the

ellipse has equation ax2
+ by2

= 1 then the points of the ellipse are obtained

from the circle ones by

Ek =





1/
√

a 0 0

0 1/
√

b 0

0 0 1



Xk (2.63)

Considering now that the ellipse is rotated, i.e. its axis are not aligned

with the coordinate one but instead make an angle α with these ones, and

it is centred on some arbitrary point (xc, yc), then the points can be trans-

formed by

Ek =





1 0 −xc

0 1 −yc

0 0 1









cosα − sin α 0

sin α cos α 0

0 0 1









1/
√

a 0 0

0 1/
√

b 0

0 0 1



Xk.

(2.64)

From this it can be seen that it is quite simple to obtain the contour

of an ellipse by obtaining its expression when centred on the origin and

with its axes aligned with the coordinate ones, the orientation of its major

axis and the coordinates of its centre. This can be done using the method

presented on section 2.2.5.1.

2.3 Implementation

From the above an implementation was build which is able to manage

models composed of truncated quadrics like cylinders and cones, as well

as parallepipeds. These geometric primitives can be connected to other

ones by rigid links or by the way of articulations.

It includes a parser which can interpret and build the internal model

from a “structure definition file” like the one shown in table 2.3.
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/* Definition of a structure */

upperarm:=cone{

<0,0.0,0.0>,40;

<0,250,0>,45;

translate <0,0,0>;

rdof <0,0,1>,0,180,150;

name "Braco";

};

lowerarm:=cone{

<0.0,0.0,0.0>,40;

<0,250,0>,35;

rdof <0,0,1>,-120,120,0;

name "Antebraco";

};

link (upperarm,lowerarm){

translate <0,250,0>;

};

base:=upperarm;

Table 2.3: Example of file containing the definition of two truncated cones
to approximate an arm with 2 degrees of freedom.

This example structure has two degrees of freedom, one rotation be-

tween the base fixation point and the first part, and another rotation be-

tween the first and the second parts.

After building the model, this implementation produces a 3-D visu-

alization of it using OpenGL and generates the projection of its contours

using the methods above described, which include hidden segments re-

moval. The generated contours, which correspond to what should be seen

by a virtual camera, are stored as a list that include the information about

its originators that helps in a appearance based filtering mechanism. Pro-

ducing an image containing the projected contours is then a simple but im-

portant step as it can help to visually verify the results. Figure 2.13 shows
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the interface of the developed application with the OpenGL viewport and

the projected segments window.

Figure 2.13: Graphical user interface of the developed application showing
the OpenGL view of the model and the projection of its contours.

2.4 Results

Some of the above described methods were tested individually to verify

their usability and confirm the expected results. The final application al-

lowed to verify their integrated use.

From simple models to more complex ones, they showed to be possi-

ble to manage with these methods on the developed application. Hereafter

some examples will be presented. The first is a simple model to approxi-

mate a human arm, which is shown on figure 2.14a), and that is composed

of 2 truncated conics with 4 degrees of freedom. In addition to the pro-

jected contours there are some small marks that correspond to the pro-

jection of special points of the structure, whose interest will be described
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a)

b)

c)

Figure 2.14: a) OpenGL visualisation of an arm model and the generated
projections of its contours in different configurations. b) OpenGL visual-
isation of a model composed of trunk and two arms and the generated
projections of its contours in different configurations. c) Projection of the
model of a hand from different points of view.

later.

Figure 2.14b) shows the OpenGL representation of model composed of

a trunk and two arms using truncated quadrics and its projection for some

configurations of the arms.

More complex models can be also built. An example is show in fig-

ure 2.14c) which shows the projection of a model of a human hand from

various viewpoints. In this case, in addition to the truncated quadrics, a

parallelepiped was also used to represent the palm of the hand.

In all cases, the joints between consecutive parts like the elbows (or be-

tween the phalanx) were not modelled and as a consequence some “holes”

appear in the projection. The finger tips are equally absent, because even

if the method for generating the projection of the truncature sections was
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Arm Trunk and 2 arms

(2 quadrics and 4 trun-
cating planes)

(5 quadrics and 10
truncating planes)

Transform quadrics 5.00× 10−5s 1.38× 10−4s

Project contours 1.56× 10−4s 3.47× 10−4s

Remove hidden parts 1.10× 10−4s 5.25× 10−4s

Totals 3.16× 10−4s 1.01× 10−3s

Table 2.4: Processing times for the operation of projecting two different
models in a Pentium-IV 3GHz processor

developed and presented in section 2.2.10. Although this model is perhaps

too simple and its projection is not visually appealing, it should noted that

this projection is to be used solely as a template for performing measure-

ments on the camera images, and not for the generation of realistic views.

The current implementation is based on a non-optimised matrix imple-

mentation. A simple performance evaluation was done for the single arm

model and the trunk and two arms model cases. The obtained results are

shown in table 2.4 for the following operations: transform the whole set

of quadrics (cones and truncating planes), project them, and remove the

contours that correspond to hidden parts.

2.5 Closure

This chapter is focused on the model and its appearance on a camera.

Starting with the problem of choosing the kind of model to use, we have

briefly analysed the types of models used in recent works that address also

the problem of tracking articulated structures from video streams.

One of the frequent questions is how precise should be the model, and

the answer naturally depends on the application. Using a precise model

for the structure just means, for some cases, heavy computation and lit-

tle gain with respect to a simpler and rougher model. We must be aware
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that in a appearance based approach there is always some loss of infor-

mation in the projection and imaging process. If some measures are to

be performed that relate the model projection and the real images of the

modelled object or structure, one should ask the question of how will the

additional precision in the model contribute to the precision of the mea-

sures? In many cases the answer may simply be that there is no gain as

that precision of the model will be buried in the measurement noise or

hidden in the pixel resolution. These reasons led to the choice of quadrics

as the elementary primitive used to build the models.

After a recall of the pinhole camera model, it is shown that the pro-

jection of a quadric in a pinhole camera is a conic section which can be

obtained in closed form. Being the primitives used cylinders and cones,

they correspond to degenerated conics and their projections (normally)

straight lines. As in the current case the quadrics are truncated by pairs

of planes, also modelled as quadrics, their projections are line segments.

The use of parallelepipeds to extend the range of models to create is also

considered, being their projection trivial.

The projective geometry has been exploited to efficient and elegantly

project the quadrics that compose the model. Although inspired from The

occlusion handling is one of the contributions of this thesis as an algo-

rithm based on the test of a single point of each segment of proposed and

tested. This represents and important reduction in the computing load

when compared to other algorithms, like the one proposed by [SMC01b]

that test the visibility of every point along the projected contours. Finally

some examples of obtained projections are shown from simple to more

complex models.
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3.7 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Like many other problems in science, the present work bases itself on

estimating the state of a system that changes over time, using a sequence

of noisy measurements made on some variable that are related to this sys-

tem. Given the characteristics of the problem to solve, a state space model

for the dynamic system written using a discrete-time formulation seems

the most adequate. By consequence, the evolution of the system is mod-

elled using difference equations, and the measurements are assumed to

be available at discrete times. All the attention is focused on the state

vector which should contain all the relevant information to describe the

system. In a tracking problem, this information is normally related to the

kinematic characteristics of the target. The measurement vector represents

noisy observations that are somehow related to the state vector. Although

this is not a requirement, the measurement vector is in general of lower

dimension than the state vector.

Two models are required to analyse and infer about a dynamic system.

The first one, known as the system model describes the evolution of the

state with time and the second one relates the noisy measures to the state,

being known as the measurement model. We assume that both of these

models are available in a probabilistic form.

The probabilistic state space formulation and the requirement for up-

dating of the state information upon the reception of each new measure-

ment are well suited to a Bayesian approach. In such approach one at-

tempts to construct the posterior probability density function (pdf) of the

state given all the available information, which includes the set of received

measurements. For the cases where an estimate must be obtained when-

ever a measurement is received, a recursive filter is an adequate solution.

This filter is normally divided in two stages: prediction and update (or

correction). In the first stage, the system model is used to predict the state

pdf at the next measurement time, from the previous one. Due to the pres-

ence of noise (which models the unknown disturbances that affects the
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system), the predicted pdf is generally translated, deformed and spread.

The reception of a new measurement permits the adjustment of this pdf

during the update operation. This is done using the Bayes theorem as

the mechanism to update the knowledge about the system state upon the

reception of new information.

This chapter starts with the description of the tracking problem and

its optimal solution. It will be shown that within certain constraints this

optimal solution is tractable. A set of different approaching methods of

the optimal solution are then presented.

3.1 Bayesian Tracking

What is the meaning of tracking? The term is commonly associated with

a process of following a signal or some object that moves in a space, but

it is no more than the estimation of a set of variables that can be used

to describe the behaviour of a process accordingly to some model of the

same process. The use of an estimator is justified by the fact that some of

variables that appear in the model, cannot be measured directly or because

they are just an adequate abstraction to our approximation of the process

and thus they do not exist in the physical sense.

Lets consider that

xk = fk(xk−1, vk−1)

represents the state evolution from time k− 1 to time k, where fk() is possi-

bly a non-linear function that may evolve over time, xk represents the state

at time k and {vk−1}, k ∈ N is a i.i.d.1 process noise sequence. Our purpose

is to estimate the current state xk using the previous state information and

all the input data received so far. Being the state not directly accessible,

the data, that can be used to infer it, is normally composed of measures

of some physical manifestation of this state. Once again, a model that re-

lates the output of this system and its internal state is required. Thus the

1i.i.d. stands for “independent and identically-distributed”.
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available input data would be related to the state by

zk = hk(xk, nk)

where hk(.) is a function (possibly non-linear) and nk represents the sensor

noise.

A tracking process can also be described in a probabilistic form. For

this the state can be represented as a random vector for it a probability

density function would be the most adequate way to describe it.

In this case the whole process is modelled through the use of pdf’s

and their evolution, where the process model is replaced by the con-

ditional distribution p(xk|xk−1, z0, ..., zk) and the measurement model by

p(zk|xk, z0, ..., zk−1).

We can divide the estimation in a two step process which are prediction

and update2.

Denoting z1:k = [z1, z2, ..., zk], for the prediction step and starting from

the prior p(xk−1|z1:k−1), we can use the Chapman-Kolmogorov equation to

do the prediction as

p(xk|z1:k−1) =

Z

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.1)

where p(xk|xk−1, z1:k−1) = p(xk|xk−1) represents a first order Markov pro-

cess3.

The state evolution described by the probabilistic model p(xk|xk−1) is

defined by the system model and the noise vk−1 statistics.

The update step is performed when the input measures zk become

available at time k and for this we can use Bayes rule as

2As will be seen later, on the auxiliary particle filter, the prediction-update cycle is
replaced by one with 4 steps that could be called: tentative prediction, validation, guided
prediction, and update

3A Markov process of order N is a process where the current state only depends on
the previous N states. In this case of order one the current state only depends on the
previous one.
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p(xk|z1:k) =

measure model︷ ︸︸ ︷
p(zk|xk)

prior︷ ︸︸ ︷
p(xk|z1:k−1)

p(zk|z1:k−1)︸ ︷︷ ︸
normalising constant

where

p(zk|z1:k−1) =

Z

p(zk|xk)︸ ︷︷ ︸
measure model

p(xk|z1:k−1)︸ ︷︷ ︸
prior

dxk

depends on the likelihood function p(zk|xk) and the statistics of nk. The

measurement zk is used on the update stage to compute the likelihood

value of the previous state estimate to modify the prior density and obtain

current state posterior density.

Unfortunately these equations cannot be solved in closed form for the

general case but, for the restricted case of linear models and Gaussian

noise an optimal solution is the Kalman Filter[Kal60].

For the nonlinear cases, the Extended Kalman Filter is the best known

algorithm that addresses the nonlinearity by linearising through a Taylor

expansion and using the first term. This method uses the assumption that

the state is a Gaussian random variable which is propagated through the

first order linear approximation of the nonlinear system. This can intro-

duce large errors in the true posterior mean and variance that may lead to

sub-optimal performance or even divergence of the filter [WvdM00].

The Unscented Kalman filter proposed by Julier et al. [JU97] is another

extension that addresses this problem by using a deterministic sampling

approach. The state distribution is still modelled by a Gaussian distribu-

tion but this time it is represented by a set of carefully chosen points. These

points are propagated through the true nonlinear system and capture the

posterior mean accurately to the third order (Taylor series expansion) for

any nonlinearity. This filter still has the limitation that it requires the esti-

mated quantities to be well described by Gaussian distributions.
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The Particle filter based algorithms, like the UKF, use a set of samples to

approximate the distribution but, contrary to the latter, they don’t impose

the Gaussian restriction any longer.

3.2 Kalman Filter

If the envolved densities are Gaussian, they can be described by using

solely the respective means and covariances. By consequence, the recur-

sive estimation process can be constructed by predicting the evolution of

the mean and covariance of the system state and then correcting them by

integrating the measurement information. The Markovian dynamic sys-

tems for which the transition and observation probabilities are Gaussian,

are linear systems with additive white Gaussian noise defined by:

xk = Fkxk−1 + Gkwk, xk ∈ R
n (3.2)

yk = Hkxk + vk, yk ∈ R
m (3.3)

where wk and vk represent independent white Gaussian noises whose co-

variances are respectively Qk and Rk, and the system’s initial condition is

also a Gaussian distribution centred on x̄0 with covariance P0 noted

p(x0) = N (x0− x̄0, P0).

It should be noted that in general a deterministic input is also considered

in equation (3.2), but as for the current application such input does not

exist, it is suppressed for the sake of simplicity. In this particular case and

knowing that the affine transformation of a Gaussian variable is also a

Gaussian variable the transition probability can be found to be

p(xk|xk−1) = N (xk − Fkxk−1, GkQGT
k ). (3.4)
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One should note that, if the GkQGT
k matrix is singular, which is a fre-

quent case as the number of disturbances can be inferior to the state di-

mension, this definition makes sense if its equations are considered as

relationships between distributions. In the same way, the observation’s

probability density with addictive white Gaussian noise is expressed as

p(yk|xk−1) = N (yk −Hkxk−1, HkPk|k−1HT
k + Rk) (3.5)

The estimated distribution for the system state, which is also Gaussian

due to the fact that only linear transformations are involved, has the fol-

lowing form

p(xk|y0:k) = N
(

xk− x̂k|k, Pk|k
)

. (3.6)

The required mean and covariance can be recursively estimated by the

following set of equations:

x̂k|k−1 = Fkx̂k−1|k−1 (3.7)

Pk|k−1 = FkPk−1|k−1FT
k + GkQkGT

k (3.8)

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
(3.9)

x̂k|k = x̂k|k−1 + Kk

(
yk −Hkx̂k|k−1

)
(3.10)

Pk|k = Pk|k−1− Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk

)−1
HkPk|k−1 (3.11)

where, by definition, ∀s ≤ k, x̂k|s ≡ E
[
xk|y0:s

]
and Pk|s ≡

E

[
(xk − x̂k|s)(xk − x̂k|s)

T|y0:s

]
. As said before, this algorithm performs

the estimation in two steps, prediction and correction or update. In the

prediction step, we estimate the evolution of the system’s state x̂k|k−1,

and related covariance Pk|k−1. The measures yk are then used to correct

them and obtain the final estimates of the system’s state x̂k|k and related

covariance Pk|k.

Algorithm 1 summarises the steps of the Kalman filter in a form that is

ready to be implemented on a digital computer.
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Algorithm 1 Kalman Filter

1: x̂0← E[x0] {Initialise mean state vector}
2: P0 ← E[(x0 − x̂0)(x0 − x̂0)T] {This covariance matrix can be initialised

with very high values if we have little knowledge about the initial sys-
tem state}

3: k← 0
4: loop
5: {— Prediction phase — }
6: x̂k|k−1← Fkx̂k−1

7: Pk|k−1← FkPk−1|k−1FT
k + GkQkGT

k

8: {— Gain computation and update phase —}
9: Kk← Pk|k−1HT

k (HkPk|k−1HT
k + Rk)−1

10: x̂k← x̂k|k−1 + Kk(yk −Hkx̂k|k−1)
11: Pk|k← (I−KkHk) Pk|k−1
12: k← k + 1
13: end loop

where Fk, Hk are the process evolution matrix and measure matrix respec-
tively, and Qk and Rk are respectively the process and measure noise co-
variances.

The importance of this filter comes from its ability to adapt the gain

used in the update phase. Actually, this gain just relates the confidence

level on the estimate of system’s state and the confidence on the obtained

measures. If, for instance, the initial state is unknown, it can be set to some

random value and the initial covariance can be virtually set to infinity. This

guarantees that only the measures are taken into account to drive the es-

timated system’s state towards the true value. This makes the covariance

of the estimated system’s state to progressively increase the contribution

of the model prediction phase, receiving the benefits of consequence noise

reduction on the estimated quantities.

The presented algorithm only works with linear models for both the

system evolution and the measurement functions. For the cases where

one or both of these functions is non-linear, a modified version must be

used. Another aspect is that that starting from an arbitrary state is only
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possible for the linear case for reasons that will be explained later. The fol-

lowing section presents an extended version of the algorithm to overcome

the difficulties introduced by the mentioned non-linearities.

3.3 Extended Kalman Filter

The normal reaction of the engineer to the nonlinearities is to use a linear

tangent approximation of the nonlinear functions. The Extended Kalman

Filter, commonly abbreviated as EKF, is based on this principle. The sys-

tem, which may present nonlinearities both on the system and measure-

ment models, is described as

xk = f (xk−1) + g(xk−1)wt (3.12)

yk = h(xk) + vk (3.13)

where wk and vk are independent white Gaussian noises whose covari-

ance matrices are respectively Q and R. We assume that the functions f

and h are continuously differentiable and that g is a known function. If

it is assumed that the nonlinearities are not “too strong”, it is correct to

substitute the functions f (.) and h(.) by their linear approximations in the

neighbourhood of point x̄ which is considered as the best approximation

to the unknown state xk. Function g(xk) will be approximated by its value

on this point, g(x̄). The probability density functions can then be approxi-

mated locally by Gaussian density functions:

p(xk|y0:k−1) ≈ N
(

xk− x̂k|k−1, Pk|k−1

)

p(xk|y0:k) ≈ N
(

xk− x̂k|k, Pk|k
)

The choice of the point x̄, around which the linearising is to be done, is

both simple and natural. For the function f (xk−1) the natural choice is to
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linearise around x̂k−1|k−1, which is considered as the best estimator avail-

able. For the h(xk), it is linearised around that predicted value, i.e. x̂k|k−1.

The linear approximation of the model given by equations (3.12) e (3.13)

leads to the following Gaussian approximation of the posterior probability

density

p(xk|y0:k) ≈ N
(

xk− x̂k|k, Pk|k
)

(3.14)

Like in the linear version, we only need to compute the mean and co-

variance of the distribution which is done recursively by the following set

of equations

x̂k|k−1 = f (x̂k−1|k−1) (3.15)

Pk|k−1 = A(x̂k−1|k−1)Pk−1|k−1

(
A(x̂k−1|k−1)

)T
+ g(x̂k−1|k−1)Q

(
g(x̂k−1|k−1)

)T
(3.16)

x̂k|k = x̂k|k−1 + Kk

(
yk− h(x̂k|k−1)

)
(3.17)

Kk = Pk|k−1C(x̂k|k−1)T
(

C(x̂k|k−1)Pk|k−1C(x̂k|k−1)T
+ R

)−1
(3.18)

Pk|k = (I−Kk) C(x̂k|k−1)Pk|k−1 (3.19)

where A and C refer respectively to the Jacobian matrices of f and h. This

can be implemented as presented on algorithm 2.

3.3.1 Limitations of the EKF

The nonlinear characteristic of the system may naturally be reflected on

the existence of multiple local minima and maxima. The construction of

a filter based on a Gaussian assumption leads to one such filter that is

able to locally minimise (or maximise) an error function. In other words,

for a given solution in the state space, this filter will search for the mini-

mum that exists in the neighbourhood of this solution and not, as would

be desirable, the global one. One other aspect is that the first order ap-

proximation of the nonlinearity makes the reconstruction of the Gaussian

distribution only possible for “small nonlinearities”. It should also be said
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Algorithm 2 EKF - Extended Kalman Filter

1: x̂0← E[x0]
2: P0← E[(x0 − x̂0)(x0− x̂0)T]
3: k← 0
4: loop
5: {— prediction —}
6: x̂k|k−1← f (x̂k−1|k−1)

7: Pk|k−1← Ak−1Pk−1|k−1AT
k−1 + Bk−1QBT

k−1

8: {— update —}
9: Kk← P−

k|k−1
CT

k (CkPk|k−1CT
k + R)−1

10: x̂k|k← x̂k|k−1 + Kk(yk − h(x̂k|k−1))
11: Pk|k← (I −KkCk)Pk|k−1
12: k← k + 1
13: end loop

where Ak−1 =
∂ f (x)
∂x

∣∣∣
x=x̂k−1|k−1

, Bk−1 = g(x̂k−1|k−1), Ck =
∂h(x)
∂x

∣∣∣
x=x̂k|k−1

and Q,

R are the covariances of the process and measure noise respectively.

that the computation of the Jacobian matrices impose an important com-

putational weight. There are also, frequent singularity points in the state-

measurement link, where the computation of the Jacobian is not possible.

In the following sections other estimation methods will be presented that

try to overcome these limitations.

3.4 The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) tries to solve some of the prob-

lems encountered on the local linear approximation made when using the

EKF [WVdM01]. The state probability distribution is still considered as be-

ing Gaussian, but its evolution is now represented using a set of carefully

chosen representative sample points. These points are selected in a de-

terministic way given the characteristics of the probability distribution of

the considered random variable, e.g. the system state. The evolution of the

state distribution is approximated using the images of these sample points
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after being individually propagated through the true nonlinear system up-

date function. It is possible to compute both the mean and the covariance

of the state distribution, from these sample points that, once propagated

through the true nonlinear system, capture the posterior mean and covari-

ance accurately up to the 2nd order of the Taylor expansion. Apart from

the increased accuracy, there is another advantage which is the removal of

the Jacobian computation and the associate computational weight, as the

true nonlinear system model is now used, instead of its first order approx-

imation as in EKF. This form of propagating, known as unscented trans-

formation, is presented hereafter followed by the UKF algorithm, which is

based on it.

3.4.1 Unscented Transformation

The unscented transformation (UT), proposed initially by Julier and

Uhlmann [JU97] is a method for computing the statistics of a Gaussian

random variable x that undergoes a nonlinear transformation y = f (x).

Assuming that x has mean x̄ and covariance Px, a matrix X is constructed

by concatenating the 2L + 1 vectors X i, also called sigma points, which are

defined as:

X 0 = x̄ (3.20)

X i = x̄ +

(√
(L + λ)Px

)

i
, i = 1, ..., L (3.21)

X i = x̄−
(√

(L + λ)Px

)

i−L
, i = L + 1, ..., 2L (3.22)

where L is the dimension of the state vector x, λ = α2(L+κ)− L is a scaling

parameter. The constant α controls the spread of the sigma points around

x̄ and it is given usually a small positive value, e.g. 1e−4 ≤ α ≤ 1. κ is

another scaling parameter that is usually set to 0 or 3− L (see [JU97] for

more details), and
(√

(L + λ)Px

)
i

is the i-th column of the matrix square

root (e.g. lower triangular Cholesky factorisation).
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These sigma points are propagated through the nonlinear function

Yi = f (X i), i = 0, ..., 2L (3.23)

and the mean and the covariance of the transformed density can then be

computed by weighting the contribution of each of the sigma points.

ȳ ≈
2L

∑
i=0

W(m)
i Yi (3.24)

Py ≈
2L

∑
i=0

W(c)
i {Yi − ȳ}{Yi − ȳ}T (3.25)

with weights Wi given by

W(m)
0 = λ/(L + λ) (3.26)

W(c)
0 = λ/(L + λ) + 1− α2

+ β (3.27)

W(m)
i = W(c)

i = 1/{2(L + λ)}, i = 1, ..., 2L. (3.28)

where β = 3 is the optimal value to be used for Gaussian distribu-

tions [WVdM01]. Although the sigma points can be related with the sam-

ples used in Monte-Carlo sampling methods, there are fundamental dif-

ferences: the choice of the sigma points in the UT is deterministic and not

random as happens with the MC methods and the number of points used

in the former is orders of magnitude inferior to the required in the latter.

The interesting point is that although being very simple, this approxima-

tion is accurate to at least 2nd order.

3.4.2 Unscented transformation accuracy

In this section we will compare the accuracy of the unscented transforma-

tion with the linearisation used in the EFK.

We start by considering that the prior variable x is perturbed about its
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mean x̄ by a perturbation δx which has covariance Px. Taking the Taylor

expansion of f (x) about x̄ we have

f (x) = f (x̄ + δx) =

∞
∑

n=0

[
(δx∇x)n f (x)

n!

]

x=x̄

. (3.29)

If we define the operator

Dn
δx

f ,
[
(δx∇x)n f (x)

]
x=x̄

(3.30)

and substitute on the Taylor expansion we get

f (x) = f (x̄) + Dδx
f +

1

2
D2

δx
f +

1

3!
D3

δx
f +

1

4!
D4

δx
f + · · · (3.31)

Now we can write the true posterior mean as

ȳ = E[y] = E[ f (x)] (3.32)

= E[ f (x̄) + Dδx
f +

1

2
D2

δx
f +

1

3!
D3

δx
f +

1

4!
D4

δx
f + · · · ] (3.33)

Assuming that x is a random variable symmetrically distributed, then

all the odd moments are null.
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The mean of y can be written as

ȳ = f (x̄) + E[Dδx
f ]

︸ ︷︷ ︸
=0

+E[
1

2
D2

δx
f ] + E[

1

3!
D3

δx
f ]

︸ ︷︷ ︸
=0

+E[
1

4!
D4

δx
f + · · · ] (3.34)

= f (x̄) + E[
[
(δx∇x) f (x)

]
x=x̄

]
︸ ︷︷ ︸

=0

+E[
1

2

[
(δx∇x)2 f (x)

]

x=x̄
] +

+E[
1

3!

[
(δx∇x)3 f (x)

]

x=x̄
]

︸ ︷︷ ︸
=0

+E[
1

4!
D4

δx
f + · · · ] (3.35)

= f (x̄) + E[δx]︸ ︷︷ ︸
=0

[∇x f (x)]x=x̄ +
1

2
E[δ2

x][∇2
x f (x)]x=x̄ + E[δ3

x]︸ ︷︷ ︸
=0

1

3!
[∇3

x f (x)]x=x̄ +

+E[
1

4!
D4

δx
f + · · · ] (3.36)

= f (x̄) +
1

2
E[δ2

x][∇2
x f (x)]x=x̄ + E[

1

4!
D4

δx
f + · · · ] (3.37)

where one should note that E[δxδT
x ] = Px, so the expression can be written

as

ȳ = f (x̄) +
1

2
(∇TPx∇x) f (x)]x=x̄ + E[

1

4!
D4

δx
f + · · · ]. (3.38)

The unscented transformation computes the mean from the sigma points

after having passed them through the nonlinear function. The sigma points

are given by

X i = x̄±
(√

(L + λ)Px

)

i
(3.39)

= x̄± σ̃i (3.40)

where the index i on the right hand side selects the ith column of the pre-

ceding matrix. The transformed sigma points can be written as

Yi = f (Xi) (3.41)

= f (x̄) + Dσ̃i
f +

1

2
D2

σ̃i
f +

1

3!
D3

σ̃i
f +

1

4
D4

σ̃i
f . (3.42)
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Thus the mean can be computed using the sigma points expansion, as

ȳUT =
λ

L + λ
f (x̄) +

+
1

2(L + λ)

2L

∑
i=1

(
f (x̄) + Dσ̃i

f +
1

2
D2

σ̃i
f +

1

3!
D3

σ̃i
f +

1

4
D4

σ̃i
f + · · ·

)

= f (x̄) +
1

2(L + λ)

2L

∑
i=1

(
Dσ̃i

f +
1

2
D2

σ̃i
f +

1

3!
D3

σ̃i
f +

1

4
D4

σ̃i
f + · · ·

)

Once the sigma points are symmetrically distributed around the mean,

the odd terms are annulled. Thus the expression can be simplified to

ȳUT = f (x̄) +
1

2
[(∇TPx∇) f (x)]x=x̄ +

1

2(L + λ)

2L

∑
i=1

(
1

4
D4

σ̃i
f + · · ·

)
(3.43)

The error in the mean is

em = ȳ− ȳUT = E[
1

4!
D4

δx
f + · · · ]− 1

2(L + λ)

2L

∑
i=1

(
1

4
D4

σ̃i
f + · · ·

)
(3.44)

which does not present any terms of order lower than 4, thus it can be

concluded that the UT is accurate up to the fourth order of the Taylor ex-

pansion.

In a similar way one can verify the accuracy of the covariance. Starting

by noting that the true covariance is given by

Py = E

[
(y− ȳ)(y− ȳ)T

]
= E[yyT]− ȳȳT (3.45)

where the expectation is taken over the distribution of y. Substituting y

and ȳ by the corresponding Taylor expansions and recalling that the odd

moments are zero due to the symmetry of the distribution, we can perform
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the expansion of the state error which gives

y− ȳ = f (x̄ + δx)− ȳ

= Dδx f +
D2

δx f

2!
+

D3
δx f

3!
+

D4
δx f

4!
+ · · · −E

[
D2

δx f

2!
+

D4
δx f

4!
+ · · ·

]

Then the true covariance is obtained by

Py = E

[
Dδx f (Dδx f )T

+
Dδx f (D3

δx f )T

3!
+

D2
δx f (D2

δx f )T

2× 2
+

D3
δx f (Dδx f )T

3!

]

−E

[
D2

δx f

2

]
E

[
D2

δx f

2

]T

+ · · ·

= APxA T
+ E

[
Dδx f (D3

δx f )T

3!
+

D2
δx f (D2

δx f )T

2× 2
+

D3
δx f (Dδx f )T

3!

]

−
[(∇TPx∇

2

)
f

][(∇TPx∇
2

)
f

]T

+ · · ·

Py = AxPxA T
x −

1

4

{[
(∇TPx∇) f (x)

][
(∇TPx∇) f (x)

]T
}

x=x̄

+E

[
∞
∑
i=1

∞
∑
j=1

1

i! j!
Di

δx f
(

D
j
δx f
)T
]

︸ ︷︷ ︸
i 6= j=1

−
T

∞
∑
i=1

∞
∑
j=1

1

(2i)!(2 j)!
E

[
D2i

δx f
]

E

[
D

2 j
δx f
]

︸ ︷︷ ︸
i 6= j=1

where Ax is the Jacobian matrix of f (x) evaluated at x̄.

Using a similar approach to that used for the posterior mean, the pos-

terior covariance computed by the UT requires the values of Yi − ȳ. These
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are given by

Yi − ȳ = Dδx f +
D2

δx f

2
+

D3
δx f

3!
+

D4
δx f

4!
+ · · ·

− 1

2(n + κ)

2n

∑
i=1

(
D2

δx f

2
+

D4
δx f

4!
+ · · ·

)

Y0− ȳ = − 1

2(n + κ)

2n

∑
i=1

(
D2

δx f

2
+

D4
δx f

4!
+ · · ·

)

noting that

1

2(n + κ)

2n

∑
i=1

Dσi
f (Dσi

f )T
=

1

2(n + κ)

2n

∑
i=1

Aσi(k)σT
i (k)A T

= APxA T

so the predicted covariance is

Py
(UT)

= APxA T

+
1

2(n + κ)

2n

∑
i=1

(
Dσi

f (D3
σi

f )T

3!
+

D2
σi

f (D2
σi

f )T

2× 2
+

D3
σi

f (Dσi
f )T

3!

)

−
[(∇TPx∇

2

)
f

][(∇TPx∇
2

)
f

]T

+ · · ·

or rearranging it results in

Py
(UT)

= AxPxA T
x −

1

4

{[
(∇TPx∇) f (x)

][
(∇TPx∇) f (x)

]T
}

x=x̄

+
1

2(L + λ)

2L

∑
k=1

[
∞
∑
i=1

∞
∑
j=1

1

i! j!
Di

δx f
(

D
j
δx f
)T
]

︸ ︷︷ ︸
i 6= j=1

−
∞
∑
i=1

∞
∑
j=1

1

(2i)!(2 j)!4(L + λ)2

∞
∑
k=1

∞
∑

m=1

D2i
σ̃k

f
[

D
2 j
σ̃m

f
]T

︸ ︷︷ ︸
i 6= j=1

.
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Comparing the expressions for the true posterior covariance and for the

posterior covariance computed via the UT we see that they agree up to

second order terms. Errors appear only on the fourth and higher terms.

3.4.3 Unscented Kalman Filter

The Unscented Kalman filter is the application of the unscented transfor-

mation to the recursive estimation of the system state.

In the EKF process noise is considered as additive that influences the

covariance of the estimate without accounting for the effect of the process

noise on the mean. Although additive noise is sufficient for many cases,

there are others where noise is injected in a non-linear fashion, e.g. mul-

tiplicative terms. To account for any possible source of noise [JU96] 4, the

state vector is augmented with the inclusion of the noise variables becom-

ing:

xa
k =

[
xT

k vT
k nT

k

]T
.

The sigma point selection scheme is applied to this new augmented state.

It is important to note that on this algorithm no derivatives are calculated,

what alleviates significantly the complexity of its implementation. Algo-

rithm 3.4.3 shows the details.

The unscented transformation is exploited in the prediction phase of

the algorithm, obtaining this way the images of the sigma points after the

state update. From the updated sigma points the corresponding measure-

ment points are obtained which are then used to compute the expected

measure and compare it with the true one.

4If only additive noise is considered, there is no need for this state augmentation, and
the filter can be implemented using only the state variables.
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Algorithm 3 UKF Algorithm

1: x̂0← E[x0]
2: P0← E

[
(x0− x̂0)(x0− x̂0)T

]

3: x̂a
0← E[xa] = [x̂T

0 0 0]T

4: Pa
0← E

[
(xa

0− x̂a
0)(xa

0− x̂a
0)T
]
=




P0 0 0
0 Rv 0
0 0 Rn





5: for k = 0...∞ do
6: {— obtain sigma points —}
7: X a

k−1 =

[
x̂a

k−1 x̂a
k−1 + γ

√
Pa

k−1
x̂a

k−1− γ
√

Pa
k−1

]

8: {— prediction phase — }
9: X x

k|k−1
← F(X x

k−1, uk−1, X v
k−1]

10: x̂−
k
← ∑

2L
i=0 W(m)

i X x
i,k|k−1

11: P−
k
← ∑

2L
i=0 W(c)

i [X x
i,k|k−1

− x̂−
k

][X x
i,k|k−1

− x̂−
k

]T

12: Yk|k−1← H[X x
k|k−1

, X n
k−1]

13: ŷ−
k
← ∑

2L
i=0 Yi,k|k−1

14: {— update —}
15: Pỹkỹk

← ∑
2L
i=0 W(c)

i [Yi,k|k−1− ŷ−
k

][Yi,k|k−1− ŷ−
k

]T

16: Pxkyk
← ∑

2L
i=0 W(c)

i [Xi,k|k−1− x̂−
k

][Yi,k|k−1− ŷ−
k

]T

17: Kk← Pxkyk
P−1

ỹk ỹk

18: x̂k← x̂−
k

+ Kk(yk − ŷ−
k

)

19: Pk← P−
k
−KkPỹk ỹk

KT
k

20: end for

where, xa
= [xT, vT, nT]T, X a

= [(X x)T, (X v)T, (X n)T]T, γ =
√

(L + λ), λ is
the composite scaling parameter, L the dimension of the augmented state,
Rv the process noise covariance, Rn the measurement noise covariance,
and Wi the weights.
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Figure 3.1: A set of samples drawn from a Gaussian distribution and the
resulting distributions obtained by application of linear or nonlinear trans-
formations

3.4.4 Limitations of the UKF

The major limitation of the UKF is the Gaussian assumption. Although

performing a better approximation than the EKF, it still relies on the hy-

pothesis that the prior distribution is Gaussian and that the posterior is

still well approximated by such type of distribution. In fact even if we ac-

cept the prior Gaussian restriction, after transforming the random variable

through a nonlinear function the result will no longer be Gaussian. This

can be seen on figure 3.1 which was created by generating a set of samples

from a Gaussian distribution and transforming these samples by 3 differ-

ent functions: being the first one linear and the other two nonlinear ones.

The resulting histograms show the expected results, i.e. the linear trans-

formation maintains the Gaussian shape although changing the mean and

standard deviation, but for the non linear transformations the resulting

shapes are not even close to the bell shape.
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In the following section we will perform an analysis of some sampling

based approaches that do not require the Gaussian assumption for the in-

volved distributions.

3.5 Monte Carlo-Based Approaches

The previous sections presented recursive Bayesian estimation ap-

proaches, which are the Kalman filter and two of its suboptimal exten-

sions, the EKF and the UKF. These extensions are adaptations of the al-

gorithm for the case of non-linear system and/or measurement models.

While the Jacobian computation was removed for the UKF, both approxi-

mations are still based on the Gaussian assumption for the density distri-

butions. This Gaussian assumption is not adequate for tracking applica-

tions in the presence of clutter or multiple targets because p(xk|z1:k) can be

multi-modal [DNBB99a].

The particle filter methods are sequential Monte Carlo methods for on-

line learning in a Bayesian framework, which can be used in a non-linear

and non-Gaussian framework. They are based on the Sequential Impor-

tance Filter (SIS) and are known as: particle filters, sequential sampling-

importance re-sampling (SIR), bootstrap filters, interacting particle approx-

imations, survival of the fittest or condensation algorithm.

The underlying idea is to represent the posterior density function us-

ing a set of random samples or particles with associated weights and com-

pute estimates based on these samples and respective weights. Common

to all the Monte Carlo characterisations is the fact that the description of

the density function improves as the employed number of samples grows.

Due to the fact that it is rarely possible to sample directly from the distribu-

tions we want to describe, it is necessary to use the importance sampling

principle that is going to be described later.

Considering a probability distribution p(x), why is often hard to sam-

ple from such distribution? The first reason is that, although it may be
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possible to evaluate p(x) within a multiplicative constant, this constant is

typically hard to be computed. The second reason is that, even if we know

the normalising constant, drawing samples from a distribution is not a

trivial task, apart from some cases like the Gaussian distribution. What

may seem confusing is that for many distributions we can easily plot its

graph but we still do not have a way to draw samples from it. Lets con-

sider that we want to estimate expectations F of some function f (x) under

the distribution p(x). This would be done as

F =< f (x) >≡
Z

p(x) f (x)dNx

where x is a N-dimensional vector and
R

Π(x)dNx represents the integra-

tion of Π(x) on the N dimensions. This integral can be approximated by a

discrete sum using random samples {xk}Ns
k=1

as

F̂ =
1

Ns
∑
k

f (xk).

If the random samples were generated from p(x) then F̂ would approxi-

mate the expectation of F and this approximation would be improved as

the number of samples grows. But, as it was said before, one can rarely

sample from p(x) then, the normal temptation is to use uniformly spaced

samples and then if it is possible to evaluate p∗i = p(xi) then we can com-

pute

Z = ∑
i

p∗i

and

pi =
p∗i
Z

.

The limitation of this method appears for large values of the dimension of

the state space, because the computation of Z implies the evaluation of p∗i
for every point in space. Considering, as an example, only 100 points in

one dimension, then for N dimensions a number of 100N points would be
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needed.

Agreeing that it is not possible to visit every point in the state space,

we can try to compute the referred expectancy using random samples and

evaluating p∗(x) at these samples, then

ZN =

N

∑
k=1

p∗(xk)

and estimate F through the approximation

F̂ =

N

∑
k=1

f (xk)
p∗(xk)

ZN
.

Being N a finite number, there is a great interest in choosing points xk for

which p∗xk > 0, otherwise we will spend a huge effort evaluating f (xk at

points whose contribution is almost null. Therefore, using an adequate

distribution to generate the samples is of major interest. This is the basis

for the importance sampling method that will be explained after present-

ing two methods for generating samples from arbitrary distributions.

3.5.1 Sampling from an arbitrary distribution

Considering the computation of the expectation of some function g(.) given

the distribution p(x|z), it is given by the (possibly high-dimensional) inte-

gral

I(g) = Ep(x|z)

[
g(x)

]
≡

Z

g(x)p(x|z)dx. (3.46)

Because it may occur in a high-dimensional space, the distribution may be

non-standard, or else, this integration may actually be intractable. Thus,

instead of trying to find an analytic solution, a numerical one obtained via

Monte Carlo integration can be an acceptable approximation. This is done

by

IN ≡
1

N

N

∑
i=1

g(x(i)),
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where {x(i) : i = 1, ..., N} are drawn independently from p(x|z). Although

being a simple and adequate method for high dimensional cases, Monte

Carlo integration requires the ability to sample independently from p(x|z).

By consequence, if this distribution is a non-standard one, sampling from

it can be a very difficult problem. The next subsection present techniques

to generate samples from an arbitrary distribution followed by the par-

ticle filtering methods which are a natural consequence of one of these

techniques.

3.5.2 Rejection Sampling

Given a distribution π(x|z), suppose that it is possible to find a constant C

such that

Cπ(x|z)≥ p(x|z)

for all x. The algorithm 4, known as the rejection sampling algorithm,

xmax

x

0 x(i)

ac
ce

p
t

re
je

ct

p(x|z)C

xmax

− p(x(i)|z)

p(x(i)|z)

C

xmax

Figure 3.2: Example of rejection sampling, using an uniform proposal dis-
tribution π(x|z) = U[0,xmax].

can be shown that it produces samples (the accepted ones) that follow the

distribution p(x|z)

The probability of acceptance is, in the general case,

Pr(accept|z) =

Z

Pr(accept|x, z)π(x.z)dx = 1/C.
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Algorithm 4 Rejection Sampling

1: draw x(i) ∼ π(x|z)
2: r← p(x(i)|z)/

(
cπ(x(i)|z)

)

3: draw u ∼ U[0,1]

4: if u ≤ r then
5: Accept x(i)

6: else
7: Reject it
8: end if

By consequence, for large values of C this method becomes quite ineffi-

cient in generating samples from p(x|z). It would be desirable to chose C

the smaller the possible but for this we would need to known the maxi-

mum value for p(x|z)/π(x|z). But, as p(x|z) may be of any kind, this may

become a difficult nonlinear optimisation problem in itself. Although be-

ing widely used [Pre02], given its relative inefficiency, the rejection sam-

pling method is not adequate for real-time applications.

To evaluate the efficiency of the algorithm a simple experiment was

performed which consisted in the generation of samples from a distribu-

tion and counting the number of rejections. The chosen distribution was a

sum of two Gaussians given by

p(x) =

(
1√
2π

exp

(
− (x− 3)2

2

)
+

1

0.5
√

2π
exp

(
− (x− 6)

2(0.5)2

))
/2

and the proposal distribution was π(x) = U[0,10]. Choosing C = 2.5 and

taking 10 million samples, the algorithm rejected 68.55% of the generated

samples. An histogram of the selected samples, composed of 100 bins was

created whose plot is shown on figure 3.3.

3.5.3 Metropolis-Hastings Algorithm

Proposed initially by Metropolis [MRR+53] and extended later by Hast-

ings [Has70], the Metropolis-Hastings algorithm’s idea is to simulate a
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Figure 3.3: Histogram of the selected samples obtained using the rejection
sampling algorithm. During the 10000000 cycle run, 3144707 samples were
selected and 6855293 rejected.

Markov chain in the state space of x such that its stationary distribution

is p(x|z). This is the inverse problem of the one commonly found when

dealing with Markov chains, that is given a transition function to find the

corresponding stationary distribution. In this case the idea is given a sta-

tionary distribution, find a transition function that reaches its equilibrium

point efficiently. This method is described on algorithm 5 This algorithm

Algorithm 5 Metropolis-Hastings

1: Draw x̃∼ π(.|x(i))

2: r(x̃, x(i))←min
(

1, p(x̃|z)π(x(i)|x̃)

p(x(i)|z)π(x̃|x(i))

)

3: draw y ∼ U[0,1]

4: if u ≤ r(x̃, x(i)) then
5: x(i+1)← x̃
6: else
7: x(i+1)← x(i)

8: end if

can draw samples from any distribution p(x|z) requiring only that the den-

sity can be evaluated at x. It depends on a proposal density π(x|x(i)) which

can be for instance a Gaussian density centred on the current state, x(i).

The algorithm is typically started using an initial state x(0) and runned
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for a few thousand iterations so that the initial state is “forgotten”. This ini-

tial run is commonly named “burn-in”. Notice that unlike rejection sam-

pling, this method does not require the maximisation of p(x|z)/π(x|z). In

fact as p(.|z) appears both on the numerator and denominator of r(x̃, x),

we only need to evaluate it up to a normalising constant.

The Metropolis-Hastings algorithm has two drawbacks that can make

it unsuitable for some real-time applications. The first one is the need of

executing the burn-in before the chain reaches its stationary distribution

and samples can be collected. The second problem is that the samples are

dependent. May researches choose to take only every nth sample (where

n can be 50 or 100), in order to reduce the correlation between consecutive

x(i).

3.5.4 Importance Sampling

Two approaches were presented that permit to generate samples from ar-

bitrary distributions, being their sole problems related with computational

efficiency. Importance sampling permits us to approximate the integral us-

ing any density that can be sampled easily. The only restriction is that is

must be non-zero for the region of the state space where p(x|z) is non-zero.

The integral (3.46) can be rewritten as

I(g) =

Z

g(x)p(x|z)dx (3.47)

=

Z

g(x)
p(x|z)

π(x|z)
π(x|z)dx (3.48)

Making

w(x) =
p(x|z)

π(x|z)
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and recalling that π(.|.) is a distribution from which it is simple to generate

samples, the integral can be computed via Monte Carlo approximation as

ÎN(g) =
1

N

N

∑
i=1

g(x(i))w(i)

where w(i) is shorthand for w(x(i)). The values {w(1), w(2), ..., w(N)} are

called the importance weights.

Till now it was considered that p(x|z) can be evaluated, but this is not

always true. In fact the samples can be obtained from a Markov chain but

the true distribution is not necessarily accessible for evaluation. The likeli-

hood p(z|x) and the prior p(x) can usually be evaluated while the normal-

isation term p(z) is often intractable. With this in mind, the integral (3.48)

can be rewritten using Bayes rule, giving

I(g) =
1

p(z)

Z

g(x)
p(z|x)p(x)

π(x|z)
π(x|z)dx (3.49)

=

R

g(x)
p(z|x)p(x)

π(x|z)
π(x|z)dx

R p(z|x)p(x)
π(x|z)

π(x|z)dx
(3.50)

=

R

g(x)w(x)π(x|z)dx
R

w(x)π(x|z)dx
(3.51)

where

w(x) =
p(z|x)p(x)

π(x|z)

can be computed. The normalisation term has been expanded as the inte-

gral that appears in the denominator. In this case a set of samples can be

used to estimate both integrals in (3.51), producing an approximation for

I(g).

ÎN =

1
N ∑

N
i=1 g

(
x(i)
)

w(x(i))
1
N ∑

N
j=1 w(x( j))

=

N

∑
i=1

g(x(i))w̄(i)
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where

w̄(i)
=

w(x(i))

∑
N
j=1 w(x( j))

.

Although ÎN(g) is biased because of being a ratio of estimates, the strong

law of large numbers still applies making this estimate tend to the true

value of I(g) as the number of samples tend to infinity.

The approximation can be expressed using the Dirac delta measure

δx(i)(x) = δ(x(i)− x) as,

ÎN(g) =

N

∑
i=0

[
Z

g(x)δx(i)(x)dx

]
w̄(i) (3.52)

=

Z

g(x)
N

∑
i=0

[
δx(i)(x)w̄(i)

]
dx (3.53)

The empirical measure

p̂N(x|z) =

N

∑
i=0

δx(i)(x)w̄(i)

can then be defined and the following relationship can be made

ÎN(g) =

Z

g(x)p̂N(x|z)dz≈
Z

g(x)p̂(x|z)dz

whose approximation improves as N →∞. The outcome of the impor-

tance sampling method can be seen as a Monte Carlo approximation for

the integral
R

g(x)p(x|z)dx, or as an empirical approximation of the poste-

rior p(x|z). This technique is well suited for real-time applications given

that samples are taken directly from the proposal distribution, without re-

jection or burn-in periods. However in its simpler form it is not adequate

for recursive estimation. For being really useful it must be adapted to pro-

duce an estimate each time it receives a new data measurement.
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3.5.5 Sequencial importance sampling algorithm

Suppose that there is a probability distribution p(x), from which it is very

difficult to draw samples, but we know that it is proportional to another

distribution π(x) which can easily be evaluated.

Let x(i) ∼ q(x), i = 1, ..., Ns be samples that are easily generated from

a proposal distribution q(.), called importance density. Then, a weighted

approximation to p(.) is

p(x) ≈

Ns

∑
i=1

w(i)δ(x− x(i))

where w(i) ∝ π(x(i))
q(x(i))

is the normalised weight of the i-th particle.

Thus, if the samples were drawn from an importance density q(x0:k|z1:k)

then weights are

w(i)
k
∝

p(x(i)
0:k
|z1:k)

q(x(i)
0:k
|z1:k)

(3.54)

If we factorise the importance density as

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k)q(x0:k−1|z1:k−1)

then we can obtain samples x(i)
0:k
∼ q(x0:k|z1:k) by augmenting the existing

samples x(i)
0:k−1

∼ q(x0:k−1|z1:k−1) with the new state x(i)
k
∼ q(xk|x0:k−1, z1:k).

We start by expressing p(x0:k|z1:k) in terms of p(x0:k−1|z1:k−1), p(zk|xk)

and p(xk|xk−1)

p(x0:k|z1:k) =
p(zk|x0:k, z1:k−1)p(x0:k|z1:k−1)

p(zk|z1:k−1)

=
p(zk|x0:k, z1:k−1)p(xk|x0:k−1, z1:k−1)p(x0:k−1|z1:k−1)

p(zk|z1:k−1)

=
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
p(x0:k−1|z1:k−1)

∝ p(zk|xk)p(xk|xk−1)p(x0:k−1|z1:k−1)
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Substituting this in equation 3.54 results in the following weight up-

date expression

w(i)
k
∝

p(zk|x(i)
k

)p(x(i)
k
|x(i)

k−1
)p(x(i)

0:k−1
|z1:k−1)

q(x(i)
k
|x(i)

0:k−1
, z1:k)q(x(i)

0:k−1
|z1:k−1)

=
p(zk|x(i)

k
)p(x(i)

k
|x(i)

k−1
)

q(x(i)
k
|x(i)

0:k−1
, z1:k)

p(x(i)
0:k−1
|z1:k−1)

q(x(i)
0:k−1
|z1:k−1)

=
p(zk|x(i)

k
)p(x(i)

k
|x(i)

k−1
)

q(x(i)
k
|x(i)

0:k−1
, z1:k)

w(i)
k−1

If q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk) then (we can just store xk and discard

x0:k−1 and z0:k−1).

w(i)
k
∝ w(i)

k−1

p(zk|x(i)
k

)p(x(i)
k
|x(i)

k−1
)

q(x(i)
k
|x(i)

k−1
, zk)

and the posterior density can be approximated by

p(xk|z1:k) ≈
Ns

∑
i=1

w(i)
k

δ(xk− x(i)
k

)

Based on this, the Sequential Importance Sampling algorithm (SIS) is

based on the recursive propagation of the weights of the points. This re-

cursive update is performed each time a measurement is received. Its de-

scription can be seen on algorithm 6.

There is an important particular case of this framework that arises

when the prior distribution is chosen as the importance distribution. In

this case the importance weights satisfy wi
k ∝ wi

k−1p(zk|x(i)
k

). It should be

noted that although this special case is widely used, the importance sam-

pling method is far more general than this.

The deficiency of this algorithm is that that most of the particles af-

ter some iterations show negligible weights. This means that most of the

computational load used in updating these weights is worthless as these
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Algorithm 6 Sequencial Importance Sampling Algorithm

1: for i = 1 : Ns do
2: x(i)

k
∼ q(xk|x(i)

k−1
, zk) {Draw sample, using proposal distribution}

3: w(i)
k
← w(i)

k−1

p(zk|x(i)
k

)p(x(i)
k
|x(i)

k−1
)

q(x(i)
k
|x(i)

k−1
,zk)

4: end for
5: for i = 1 : Ns do

6: w̃(i)
k
← w(i)

k

∑
N
j=1 w(i)

k

{Normalise the importance weights}
7: end for

particles make (almost) no contribution to approximate the desired distri-

bution.

A measure for the degeneracy of this algorithm is the effective sample

size Ne f f defined as

Ne f f =
Ns

1 + Var(w∗i
k

)

where

w∗ik =
p(xk|z1:k)

q(xk|xk−1, zk)

is referred as the “true weight” . This cannot be evaluated exactly, but an

estimate can be obtained

N̂e f f =
1

∑
Ns
i=1(w(i)

k
)2

where w(i)
k

is the normalised weight. Note that Ne f f ≤ Ns and a small Ne f f

indicates severe degeneracy.

Two solutions exist to reduce this effect, which are: a good choice of

importance density, and the use of re-sampling. The choice of a good im-

portance density is not easily obtained for most of the cases. On the other

side, the second method is, in general, much simpler to implement being,

therefore, the most common choice.
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3.5.6 Re-sampling

The re-sampling is a technique that can be used whenever a significant

degeneracy of the samples’ weights is observed (Ne f f < Nthreshold).

The basic idea of the method is to eliminate the particles with small

weights and concentrate on particles with large weights. This involves

generating a new set
{

xi∗
k

}
i=1,...,Ns

by re-sampling (with replacement) Ns

times from an appropriate discrete representation of p(xk|z1:k) given by

p(xk|z1:k) ≈
Ns

∑
i=1

w(i)
k

δ(xk− x(i)
k

)

in a way that Pr(xi∗
k = xi

k) = w
j
k
. The obtained samples are i.i.d. samples

from the discrete density and the weights are reset to 1/Ns. Several al-

gorithms for implementing the re-sampling are available that guarantee

the number of operations to be O(Ns). The algorithm 7 shows one of the

preferred by most authors [IB96].

Algorithm 7 Re-sampling algorithm

1: c1← 0 {Construct the Cumulative Distribution Function (CDF)}
2: for i = 2 : Ns do
3: c(i)← ci−1 + w(i)

k
4: end for
5: i← 1 {Start at the bottom}
6: u1 ∼ U[0, N−1

s ] {Draw a starting point}
7: for j=1:Ns do
8: u( j)← u1 + N−1

s ( j− 1) {Move along the CDF}
9: while u( j) > c(i) do

10: i← i + 1
11: end while
12: x

( j)
k
← x(i)

k
{Assign particle}

13: w
( j)
k
← N−1

s {Reset weight}
14: end for
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3.6 Particle Filters Methods

3.6.1 Generic Particle Filter

The generic particle filter based on the sequential importance sampling algo-

rithm and integrating the re-sampling step is shown in algorithm 8. Al-

though it solves the degeneracy problem it presents some limitations:

• Since all particles are combined, there is little opportunity to create

parallel implementations distributing particle evaluation and weight-

ing by several processors.

• As the particles with small weights will have strong chances of not

being selected, this may lead to a loss of diversity as the new samples

will concentrate only around the “stronger ones”. This is known as

sample impoverishment and in the cases of small noise the particles

will rapidly collapse to a single one in a few iterations.

• Once the diversity of the particles is reduced so will be the paths

described by them, and smoothed estimates based on the particles’

paths will degenerate.

Although there exist schemes to avoid these problems they will not be

studied in this work.

The sample importance sampling (SIS) algorithm forms the base for

most particle filters developed so far. The various versions of particle fil-

ters can be regarded as special cases of SIS by appropriate choice of im-

portance sampling density and/or modification of the re-sampling step.

Examples are Sampling Importance Re-sampling (SIR) filter, and Auxil-

iary Sampling Importance Re-sampling (ASIR) filter, among others.
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Algorithm 8 Generic particle filter

1: for i = 1 : Ns do
2: x(i)

k
∼ q(xk|x(i)

k−1
, zk) {Draw particle}

3: w(i)
k
← w(i)

k−1

p(zk|x(i)
k

)p(x(i)
k
|x(i)

k−1
)

q(x(i)
k
|x(i)

k−1
,zk)

{Assign the particle weight}
4: end for
5: t← ∑

Ns
i=1 w(i)

k
{Calculate total weight}

6: for i = 1 : Ns do
7: w(i)

k
← t−1w(i)

k
{Normalise particle weight}

8: end for
9: Calculate N̂e f f

10: if N̂e f f < NT then
11: Re-sample using algorithm 7
12: end if

3.6.2 Sampling Importance Re-sampling Filter

This is a Monte Carlo method that can be applied to recursive Bayesian

filtering problems, and is known by several names like: Particle fil-

ter [FCP97, Kit96], SIR Filter [AMGC02], Bootstrap filter [GSS93] or CON-

DENSATION [IB96].

This method can be derived from the SIS by setting the importance

density q(xk|x(Ii)
k−1

, z1:k) = p(xk|x(i)
k−1

) and applying the re-sampling at every

step. As usual it requires the knowledge of the system dynamics f (., .)
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Figure 3.4: Illustration of the SIR algorithm
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and measurement equation h(., .). It must be possible to draw samples

from the noise vk−1 and from the prior. The likelihood function p(zk|xk)

must be evaluated point-wise.

This implies that the sample xi
k ∼ p(xk|x(i)

k−1
) can be generated by draw-

ing a noise sample vi
k−1 ∼ pv(vk−1) and making x(i)

k
= fk(x(i)

k−1
, v(i)

k−1
) where

pv is the probability density of vk−1.

The weights are then updated by

wi
k ∝ w(i)

k−1
p(zk|x(i)

k
)

but as the resampling is applied in every step, we have w(i)
k−1

= 1/N,∀i, it

results in

wk ∝ p(zk|x(i)
k

)

These weights are normalised before the re-sampling stage as can be

seen in algorithm 9 describes the SIR. One iteration of this algorithm is

also illustrated on figure 3.4.

Algorithm 9 Sampling Importance Re-sampling filter

1: for i = 1 : Ns do
2: x(i)

k
∼ p(xk|x(i)

k−1
){Draw particle (prediction)}

3: w(i)
k
← p(zk|x(i)

k
) { update phase 1}

4: end for
5: { update phase 2 (normalisation)}
6: t← ∑

Ns
i=1 w(i)

k
7: for i = 1 : Ns do
8: wk← t−1w(i)

k
9: end for

10: Re-sample using algorithm 7

The advantages of this method are the simplicity of both computing

the weights and sampling the importance density. It has the following

disadvantages: the importance density is independent of the measure zk

and thus the state space is blindly explored, what can make this algorithm

quite inefficient under certain situations. As the re-sampling is applied in
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Figure 3.5: Plot of a measurement density and a proposal density where
the former is much peaked than the latter

every iteration, it leads to the known sample impoverishment.

3.6.3 Auxiliary particle filter

The Auxiliary Particle Filter (also known as Auxiliary Sampling Impor-

tance Resampling Filter) is a variant of the SIR filter introduced by Pitt &

Shephard [PS99]. This variant aims to increase the efficiency of the filter

for the cases where the measurement is highly peaked when compared

with the proposal density, as seen on figure 3.5. In other words, if the

measurement density is much more concentrated in a region of the state

space, and the proposal is more flat then many samples will be thrown

out to explore uninteresting regions of the state space. If, by another

side, these samples would be concentrated around the “interesting” re-

gion, they could improve the accuracy of the estimate.

Here the importance density is defined as q(xk, i|z1:k) which samples

{x( j)
k

, i( j)}Ns
j=1, where i j is the index of the particle in the previous iteration.

We can obtain a proportionality for p(xk, i|z1:k) applying the Bayes rule
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Algorithm 10 Auxiliary particle filter

1: for i = 1 : Ns do
2: compute µi

k

3: wi
k← q(i|z1:k ∝ p(zk|µi

k)wi
k−1

4: end for
5: t← ∑

Ns
i=1 wi

k
6: for i = 1 : Ns do
7: wi

k← t−1wi
k

8: end for
9: resample with algorithm 11

10: for j = 1 : Ns do

11: draw x
j
k
∼ q(xk|i j, z1:k) = p(xk|xi j

k−1)

12: w
j
k
← p(zk|x

j
k
)

p(zk|µi j

k
)

13: end for
14: t← ∑

Ns
i=1 wi

k
15: for i = 1 : Ns do
16: wi

k← t−1wi
k

17: end for

Algorithm 11 Re-sampling algorithm with parent assignment

1: c1← 0 {Construct the CDF}
2: for i = 2 : Ns do
3: c(i)← ci−1 + w(i)

k
4: end for
5: i← 1 {Start at the bottom}
6: u1 ∼ U[0, N−1

s ] {Draw a starting point}
7: for j=1:Ns do
8: u( j)← u1 + N−1

s ( j− 1) {Move along the CDF}
9: while u( j) > c(i) do

10: i← i + 1
11: end while
12: x

( j)
k
← x(i)

k
{Assign particle}

13: w
( j)
k
← N−1

s {Reset weight}
14: i( j)

= i {Assign parent}
15: end for
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as

p(xk, i|z1:k) ∝ p(zk|xk)p(xk, i|z1:k−1)

= p(zk|xk)p(xk|i, z1:k−1)p(i|z1:k−1)

= p(zk|xk)p(xk|x(i)
k−1

)w(i)
k−1

(3.55)

Sampling from p(xk, i|z1:k) and omitting i in the obtained pair (xk, i)

to produce a sample of the marginalised density p(xk|z1:k). Approximat-

ing (3.55) by

q(xk, i|z1:k) = p(zk|µ(i)
k

)p(xk|x(i)
k−1

)w(i)
k−1

(3.56)

where µ(i)
k

can be the mean, the mode, a draw or some other value associ-

ated with some characterisation of xk given xk−1. Writing

q(xk, i|z1:k) = q(i|z1:k)q(xk|i, z1:k)

and defining

q(xk|i, z1:k) ≡ p(xk|x(i)
k−1

)

from (3.56) it follows

q(i|z1:k) ∝ p(zk|µ(i)
k

)w(i)
k−1

.

The sample, {x( j)
k

, i( j)}Ns
j=1 receives the weight

w(i)
k
∝ wi

k−1

p(zk|x( j)
k

)p(x
( j)
k
|xi( j)

k−1)

q(x
( j)
k

, i( j)|z1:k)

=
p(zk|x( j)

k
)

p(zk|µ(i( j))
k

)

The method is described in algorithm 10. It presents as advantages

the fact that it generates points from the sample at the previous at k− 1

which are conditioned on the current measurement and thus likely to be
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close to the true state. It can be seen as a resampling at the previous time

step, based on some point estimates, µ(i)
k

, that characterise p(xk|x(i)
k−1

). If the

process noise is small, then p(xk|x(i)
k−1

) is well characterised by µ(i)
k

. But, on

the other side, if the process noise is large a single point does not provide

a good characterisation and the performance is degraded.

3.7 Closure

This chapter was dedicated to present some methods that can be used to

estimate the state of a process given a set of observations of its output.

Starting with the presentation of a model-based tracking Bayesian princi-

ple, which can be seen as a basis for some estimation techniques. These

techniques can normally be described as processes with two steps, which

are: prediction and update. In the first step a dynamics model is used to

predict the evolution of the system and this prediction is fused with the

observations to obtain a corrected estimate. The presented methods are

ordered from the more restrictive assumptions to the less restrictive ones:

linear/Gaussian, nonlinear/Gaussian, and nonlinear/non-Gaussian. Fol-

lowing this order we have: Kalman filters which are adequate to linear

systems on the presence of Gaussian noise; Extended Kalman and Un-

scented Kalman filters try to extend the applicability to nonlinear systems

but maintaining the Gaussian noise assumption; finally Particle filters re-

move the Gaussian constraint, accepting virtually any types of noise. As

will be shown in chapter 5 these filtering techniques were applied to de-

velop different interaction functionalities using some measurement func-

tions which are presented in the next chapter.
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A tracker can be described as a process that follows some observable

manifestation of the state of a system, commonly called measure, and infer

that state from the observed manifestations. In many situations the state is

composed by some set of physical quantities which are not always directly

observable, requiring therefore an indirect estimation process.

Frequent are the cases where the observed measures are the result of

some combination of the state components, possibly including nonlinear

transformations. In cases where nonlinearities are present in the state-

measure link, the state estimation is frequently performed by an error

minimisation procedure using gradient descent-based methods. An alter-

native approach is the maximisation of a likelihood function that encodes

the answer to the following question: “How possible is, that the current

measure be a manifestation of the hypothetical state x ”?

Being the measures normally corrupted by noise produced by various

sources, the tracking mechanism must be robust enough to be able to infer

the true state of the system even using noisy information. Another aspect

that must be taken into consideration, is that, for most cases, the system’s

state can vary dynamically, so the tracking process must be able to con-

verge to the true state values even if it is continuously changing.

There are cases where, neither a measure error function, nor the likeli-

hood of the state given the measure, can be obtained explicitly. However

some mechanisms still allow to perform the state estimation from mea-

sures only requiring to evaluate punctually some function related to this

state-measure likelihood by an unknown proportionality constant.

The success of a tracker depends on the use of an appropriate model for

the system dynamics which will guide correctly the predictions of the sys-

tem state, on the ability of the tracker to explore the state space avoiding

local minima, and on the shape of the error or likelihood function. In fact,
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even if a tracker shows some weakness in one of these properties it can

still exhibit a good behaviour if there is a compensation effect in the other

ones. For the optimal case, this function presents a single minimum for

the error function (or maximum for the likelihood function) and that the

local derivatives of this function exists for every point of the state space.

In these situations the extreme point searches are guided by the directions

of these derivatives. Unfortunately, in many cases these conditions are not

verified and multiple local maxima or minima exist which can attract and

trap the tracker at locations of the state space which are quite “far” from

the true state.

This is one of the problems that one faces when doing the tracking of

objects in natural environments using visual information. The interpreta-

tion of any 3D scene from 2D images obtained by perspective projection,

has the intrinsic ambiguities that result from losing the depth information.

In other words, such ambiguities result from the fact that every 3D point

located on a projective ray share the same image point.

Although stereo systems are normally used to try to remove these am-

biguities, their use is limited to textured zones of the scenes, where the

usual Lambertian assumption can be used to establish the correspondences

between pixels of the two images.

In this work the choice felt on the use of a single camera to track known

objects in 3D. Without the use of the 3D reconstruction, a model is then

mandatory to establish a relationship between the observed image fea-

tures and the model configuration. This requires also the use of a robust

approximation of the measure-state likelihood function, to guide the esti-

mation process containing the least ambiguities as possible. An approxi-

mation of this likelihood function can be made by a building a cost func-

tion combining information from different sources. This mixture of mea-

sures aims to shape the cost surface so it can minimise the effects of false

local extrema which exist in each of the individual measures, in a way that

each additional measure intends to remove the false attractors still present
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on the combination of the preceding ones.

This chapter is centred on the construction of such cost function, which

is to be used in the weighting step of a particle filter, that is in turn ex-

pected to provide a solution of the human motion estimation problem

from visual data. Given the high dimensionality of the problem, the ill-

conditioning that results from the ambiguities in the pose-appearance link,

and the unavoidable visual clutter that appears in a real-world applica-

tion, we pay special attention to the construction of such robust likelihood

function in a way to minimise the effects of these undesirable properties.

This function employs a combination of parameters obtained from vari-

ous cues extracted from the images of the input sequences, from values

derived from the structure properties, and from the a priori knowledge

about the behaviour of some parameters.

For the M different used measurement sources (z1
k , ..., zM

k ), which are

assumed to be independently conditioned on the state xk, they can be in-

tegrated for the creation of a global (or joint) likelihood using

p(z1
k , . . . , zM

k |xk) =

M

∏
m=1

p(zm
k |xk).

As already mentioned, the resulting robust likelihood function will be

used in the weighting step of a particle filter. This means that, for cur-

rent problem, each particle proposes a configuration for the model, which

is then scored by computing the corresponding likelihood value. The fol-

lowing sections will explain in detail how the information is obtained from

each of the sources, explaining also how its integration is performed, and

which are the benefits it introduces.

4.1 Edge cues

Image edges are sharp variations of some intensity function over an image.

For the case of grey-scale images this intensity function corresponds to the
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pixels’ brightness. For coloured images, edges can be defined as sharp

colour transitions.

These image edges appear as the result of textures in the surfaces of

objects, depth discontinuities, or light-shade transitions. Depth disconti-

nuities are normally associated to true object edges or boundaries, which

mark the visible to invisible transition of the object’s surface. Consequently,

the edges of an object or structure, which are extracted from some image

representing it, are strongly related to the object’s pose and its configura-

tion parameters, and to the intrinsic and extrinsic parameters of the cam-

era.

The image edges can be extracted by differentiation of the images,

which is performed rapidly by simple convolution with an adequate mask.

This and the fact that a relationship between object’s shape and pose and

the expected edges can be defined, makes their use quite attractive to com-

puter vision applications like object recognition and model-based object

tracking. These used models can be either 2D templates of the expected

edges or more complicated 3D models of objects from which it is possible

to generate the expected viewed edges. The process of using a genera-

tive 3D model to produce the predictable viewed edges was presented on

section 2.2, for a model built with cones and cylinders. It is shown how

the projection of these models can be obtained, given the relative pose be-

tween the camera and the object, the kinematic configuration of the object,

and the camera parameters.

Having a set of contours, that may either belong to a 2D template or

result from the projection of a 3D model, it is now desirable to have a

measure that defines the similarity between the predicted contours and a

subset of the real image edges. Such measure should express the match-

ing level between the model or template contours and the edges extracted

from the input image, for some given parameters that may define things

like position, orientation, scale and appearance, of the template or model.

To attain real-time performance some authors [LOW92, Har92, IB96]
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have restricted the comparison between the model contours (or template

curves) and the image, to a set of sparse measuring points on the contour.

For each of these points, a line normal to the contour’s tangent is defined

as the search space where the corresponding image features (e.g. edges)

are expected to be found. The position of an edge found on each of these

lines corresponds to the distance between the measure point and the edge.

It is common to assume that this distance measure, d, between some

measure point x and the corresponding image edge z follows a normal

distribution with zero mean and standard deviation σ,

p(d|x) =
1√
2πσ

exp− d2

2σ2
(4.1)

where d is |z− x|, and x and z are scalars that represent positions on a

search line. A measure, can thus be defined as a function of the distances

between a set of uniformly distributed points along the model’s projec-

tion and the nearest image edges, by searching along the corresponding

contour normals [IB96]. The principle is illustrated on figure 4.1 where,

for a template placed over an image containing the extracted edges the

measure lines are drawn with the found matches marked. This template

can be controlled by parameters like, e.g. position, orientation, and scale,

which may correspond to the state we are willing to estimate.

4.1.1 Statistical models for measures

As each measure follows the distribution given by (4.1), now considering

that they are independent, and that the measure points xi can be related to

some vector of parameters x, we can write

p(d0, d1, ..., dN|x) = p(d0|x)× p(d1|x)...× p(dN|x).

By replacing the marginal densities by the corresponding expressions, which

come from (4.1), and dropping the normalisation terms, it results in a
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Figure 4.1: Example of measuring the correspondence between a predicted
contour and the image edges.

function which is proportional to the joint density as

p(d0, d1, ..., dN|x)∝
N

∏
i=0

exp

(

− d2
i

2σ2
i

)

(4.2)

By considering that the standard deviation is the same for every mea-

surement line, expression (4.2) can be condensed as

p(d0, d1, ..., dN|x)∝ exp

(
−dcontour

2σ2

)
(4.3)

where

dcontour =

Ni

∑
i=0

d2
i . (4.4)

4.1.2 Limiting the effects of discontinuities in edges

When using real data, it is possible that, due to a variety of reasons, part

of an edge be missing, and what was expected to be a continuous con-

tour may appear divided into several smaller pieces of the same contour.

In this case, the line search started from a model contour may not find

the corresponding image edge, making the search to continue till it finds
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Unmatched measure points

Search window limits

image edges

model contourscontour-edges distances

Figure 4.2: Measuring the distance between contour points and the image
edges

some other edge or eventually reach the image limits. The consequence

of this, is that a single missing correspondence between model and im-

age edges, may introduce an enormous penalty on the measure defined

by equation (4.3), even if all the remaining parts of the contour match per-

fectly. Figure 4.2 illustrates one of such situations, where the distances are

measured regularly between the model’s contours and the image edges.

For positions where the corresponding edges are interrupted, the normal

search lines do not find the corresponding edges, therefore generating a

wrong measure.

To avoid such situations, a search window is defined so that the search

on the normal lines is constrained by this window’s limits. For the cases

where the search reaches the imposed limits without finding an image

edge, we take this limit as the measurement point. This makes a miss-

ing part of an edge to produce, as before, a penalty on the matching score,

but a limited one this time.

Although it may sound strange, that a non existent edge contributes

with a finite distance to the overall cost function, it means in fact, that

away from the edges, the cost function becomes flat, corresponding to a

uniform distribution in terms of model-image likelihood. Though these

flat regions of the likelihood function are far from optimal in an estimation

context, a particle filter can survive as it will tend to spread the particles all

over the space without imposing any restrictions on them. Consequently
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Figure 4.3: Three frames from a head tracking sequence showing the mea-
surement lines of each particle

they are free to reach regions where this function has a different shape and

where the maximum likelihood search can have again an expression guid-

ing the tracking mechanism. Figure 4.3 show three frames of a tracking

sequence where the measurement normals corresponding to each parti-

cle are superimposed on the input image. The red contour represents the

estimated position for the target.

4.1.3 Approximating distances

Performance issues may require that the overall process of computing the

set of distances between the sample points of a template contour and the

image edges be as fast as possible. Some authors [BI98] suggest that, in-

stead of computing the edges over the whole image, the edge search be

performed only along the search line. This can be achieved by computing

the derivative along the line, that, for a limited number of search lines,

is substantially faster than computing the bi-dimensional derivative for

the whole image. In a particle filter context, this measure needs to be

computed for the contours generated by every particle. Consequently, de-

pending on the number of particles involved, it can generate an important

computation effort. Therefore, for a large number of particles, the applica-

tion of a preliminary edge detection operation to the whole image can be

less costly than computing the derivative for every line of search. There is

another disadvantage on the use of the derivatives along the lines to look
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for image edges, in a larger sensitivity to image noise, as there is no spa-

cial relationship between one edge pixel and its neighbours. We can recall

that optimal edge detectors like the one proposed by Canny [Can86] use

neighbouring information to extracted each edge.

For cases where there is a large number of distances to be computed

between image locations and the closest image edges, there is normally a

computational advantage of using the so called distance transforms (DT).

These transforms generate a new image where each pixel contains an ap-

proximation of the distance to the closest edge of the input image. By

using this kind of approximations, the operation of getting the distance

between a point and an edge, may be reduced to a simple peeking of the

corresponding DT pixel [GGS04]. Thus, although its initial computation

represents an additional computing effort, the subsequent distance mea-

surements are significantly alleviated, resulting in a drastic reduction of

the required computing power for cases where a large number of distance

measurements is performed.

The distance transform, also called chamfer distance transform, tries

to approximate the distance between a pixel and the nearby edges by as-

suming that its value can be deduced from the distances of its neighbours.

These transforms can be computed by using a sequential algorithm, which

was introduced by Rosenfeld and Pfaltz [RP66], and that performs two

raster scans of the image using the half-masks shown on figure 4.4, as fol-

lows: In the forward sweep, mask a) is used, starting from the upper left

corner and going right and down. On the backward scan, using mask b),

it starts at the lower right corner and moves from right to left and from the

bottom to the top. In each step, the distances d1 or d2 of the mask pixels

are added to the pixel values of the distance map and the new distance

value, for the position corresponding the 0 pixel in the mask, is computed

as the minimum of the five sums.

This algorithm can be applied to approximate the city block, the chess

board or the Euclidean, among other types of metrics. The choice of the
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Figure 4.4: Half-masks used on the two passes of the chamfer distance
transform

values for d1 and d2 dictate which of the metrics it approximates the best.

The city block metric can be approximated by choosing d1 = 1 and d2 =∞,

for the chess board the values are d1 = 1, d2 = 1, and for the Euclidean

metric Borgefors [Bor84] suggests d1 = 0.955 and d2 = 1.3693. She sug-

gests also the use of integer values d1 = 3, d2 = 4 with a posterior division

by 3 as to avoid the floating point operations. In order to reduce the error

in the approximations, the masks are extended in [Bor86] from 3× 3 to

5× 5 and even 7× 7, although the results from the use of last one were

not convincing due to the very small increase in precision and substantial

increase in the computational load.

Two main advantages come out from using the distance transform as

an intermediary, instead of performing the direct computation of the dis-

tances between the points of the model contours and the edges extracted

from the input images. The first one is that, matching our model contours

against a DT image, rather than computing the distance between contour

points and input image’s edges, results in a smoother similarity measure

with respect to the model parameters. The second advantage is that it

reduces considerably the involved computations, as the DT is computed

only once for each input image, and its use is faster than performing the

traditional contours search.

In fact for each predicted point of the template, where the distance to
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the contours is to be computed, we simply need to peek the correspond-

ing pixel’s value in the DT image. There is, however, an important differ-

ence between the distance values obtained from the DT image and those

computed directly. In reality, the values obtained from the DT image do

not correspond to the distance to the closest edge in the direction of the

corresponding contour’s normal, but instead of that it corresponds to the

smallest distance between the current pixel and the nearby edges in any

direction as can be seen on figure 4.5.

Contour normals

image edges

projected contours

contour-edges shortest distances

Figure 4.5: In a Distance Transform, each pixel contains the distance to the
closest edge and not the distance along the contour normals.

Figure 4.6 shows one input image, the respective extracted edges, by a

Canny edge detector, and the associated distance transform shown as an

image where each pixel grey level is a representation of the distance to the

closest edge. On the second row it shows a template that resembles to a

hand silhouette, and two plots that show a function of the sum of the dis-

tances between points of this template and the nearest edges on the image,

obtained for every possible position of the template on the image. The left

plot uses distances computed along the normals to the template, whereas

the right one is based on the values obtained directly from the distance

transform. As mentioned the distance transform does not give any infor-

mation about the direction of the closest edge, but only the distance to it.

In situations where this is information is absolutely required, multiple dis-

tance transforms can be computed and used, so that each one represents
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Figure 4.6: Top row: input image, image edges, distance transform. Bot-
tom row: Similar plots are obtained by computing a function of the sum
of distances between the presented template points and the nearest edges,
by searching along contour normals and by using the distance transform.

the minimum distance to the edges in one predefined direction [Gav98].

This could permit to known which is the direction of the closest edge to

any pixel by simply peeking on the pixel’s location of the whole set of DTs,

choosing the smallest value and noting which DT gave it. The drawback

is that this requires N times more memory than the simple DT, where N is

the number of directions used, with the associated increase in the compu-

tation time for building the whole set of DTs.

4.1.4 Defining the likelihood function

Having defined a way of measuring the matching level between a proto-

type contour and the edges extracted from the input images, we are now

in position to use it as a function of the model parameters. This means that

for a model that contains, for instance, 2 parameters encoding the position

or the configuration of the prototype contours, the values of this matching

measure can be plotted as a surface. Each point in the parameter space,
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which is a plane in this example, corresponds to an hypothesis of con-

figuration for the prototype model. After an adequate normalisation, the

matching measure can be seen as a likelihood measure of the current set

of edges given the hypothetical parameters. The estimation of the set of

parameters that correspond the best to the input observed edges, can be

now seen as a maximisation of that likelihood function.

In the particle filter context, each particle corresponds to one point in

the parameter space, i.e. one configuration hypothesis. So, this match-

ing function can be used to produce a contour-based likelihood, p(zk|x(i)),

of the state, x(i), proposed by particle i, given the current input image(s),

which is given by

p(zk|x(i)) ∝ exp(
−
(

d(i)
ch

)2

2σ2
ch

), (4.5)

using the chamfer distance dch which is defined as

d(i)
ch

=

M

∑
j=0

d(i)
1 ( j). (4.6)

Index k refers to the image sequence number and that will be omitted for

compactness reasons, j indexes the M model points, d1( j) refers to the pixel

value of the DT image at the jth sampling point, and σch, which is the

typical standard deviation of the measures, acts as a weighting factor.

Figure 4.7 plots the likelihood given by expression (4.5) for an example

where the prototype is a 2D elliptical template whose dimensions corre-

spond coarsely to those of the head of the right person on the input image,

and two parameters define its relative position on the image. From this

example it is clear that using only the shape cue for a model-to-image fit-

ting is not sufficiently discriminant (figure 4.7.(b)), as even the background

clutter may attract the tracker. Contrary to what is desirable, this function

produces several peaks, and even if the majority of them are smaller than

the one that corresponds to the face position, each of them may attract and
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(a) (b)

Figure 4.7: (a) Input image and (b) plot of shape-matching likelihood using
the DT for each position of the image

trap a tracker, leading to a wrong estimation of the state. To overcome

this limitation, and thus refine the true state search, other cues must be

included to reinforce the estimation process. The next subsections present

the development of some other cost functions that once combined try to re-

duce this multi-modality and related ambiguity of a joint likelihood func-

tion.

4.1.5 Results

In figure 4.8 two examples of templates are shown: one that approximates

the silhouette of the human head and shoulders and a second one that

models the silhouette contours of a human hand in a open-fingers config-

uration.

Figure 4.8: Examples of contour templates for a head and a hand

A successful tracking sequence is shown in figure 4.9 for the tracking of
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Figure 4.9: Hand tracking example

Figure 4.10: Example of tracking a head comparing edges and template of
a silhouette

a hand using the hand silhouette model shown above. This was produced

using a particle filter using the contour matching function, computed from

the distance transform as shown in equation (4.5), for weighting the parti-

cles. The state vector x is composed of the x and y image coordinates and

by a scale factor s. The state evolution is governed by constant velocity

dynamics. Figure 4.10 shows another successful tracking example, where

the used model is a spline roughly models the shape of the head-neck-

shoulders set.

Results have shown that, even if the particle filter is adequate for use

with multi-modal distributions, the truth is that, if the measuring function
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is not discriminant enough it cannot be used to guide the tracker towards

the true estimate of system’s state. This is what happens with the case

shown in figure 4.11 where the large number of edges produced by the

background clutter, e.g. the shirt’s pattern in this case, may confuse the

tracker instead of making it converge towards the target.

Figure 4.11: Example case where the criterion, based only on the distance
to edges, fails due to the large number of edges produced by the back-
ground texture.

One may conclude that although edges may provide valuable informa-

tion about the scene and the represented objects, they are not discriminant

enough to be used as the only source of information for tracking objects

in cluttered scenes or for targets producing edges that cannot be related

with some template model. For this reason, the next subsections introduce

other kinds of cues that can, eventually, be used in conjunction with edge

cues to provide more discriminant measures to be used to make tracking

less sensitive to the mentioned disturbances.

4.2 Motion cues

Besides the detectable features of the objects like corners, edges or pat-

terns, the apparent motion of an object in the image can be an important

source of information. It is well known that the image motion field can

give important information about an object shape [ST96], or simply to dis-

tinguish an object from the image background[WM97].
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It is well known that the motion of an object observed from a static

camera induces in the image plane an apparent motion of brightness pat-

terns, what is called optical flow. Similarly, a moving camera in front of a

static scene will also generate the same kind of optical flow. This kind of

vector field can give important advices, not only about the relative motion

between the object(s) and the camera, but also about the structure of the

objects or the scene.

Being this motion field the resulting effect of the relative motion be-

tween the objects and the camera, it is in general very difficult to separate

the effects induced by the camera motion, also known egomotion, from

those produced by the motion of the object. Although this ambiguity ex-

ists, some works that showed that under some restrictions it is possible to

follow moving objects by a camera mounted on a pan-and-tilt (like) unit,

using solely optical flow information [ABPD96]. Although there are lim-

itations on the use of this kind of information in a robotics context due to

the optical flow field induced by the robots egomotion and the characteris-

tics of the tracked object, it can still be used as a source of information that

may complement other ones, especially when the robot is not moving.

The optical flow, is normally computed by using the constant bright-

ness assumption, i.e. considering that the brightness of a pixel will not

change between two successive image frames. This results in the motion

constraint equation given by

∂i

∂t
(x, y, t) +

∂i

∂t
(x, y, t).u +

∂i

∂t
(x, y, t).v = 0, (4.7)

where i(x, y, t) represents the pixel (x, y) intensity at time t and u = (u, v)t

is the apparent velocity vector.

The problem now is how to use the optical flow information to solve

the current problem of tracking moving objects. The choice depends on

each application case and its particularities, let’s invoke some examples:

1. If the objects are expected to move rigidly in a fronto-parallel plane
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w.r.t the camera, then the image can be segmented into different re-

gions of coherent motion.

2. If the objects approach or move away from the camera, then the ob-

served optical flow changes along the visible surface of the model,

but it can be used to measure locally the projected velocity of each

object’s point.

3. In any case the optical flow measures can be combined with other

sources of measure to produce some combined cost function required

by the tracking process.

4.2.1 Object edges selection using optical flow

As presented in the preceding subsection, the edges extracted from the

images may result, not only from the contours of the object of interest, but

also from the background clutter.

The edges produced by the scene background clutter may generate lo-

cal minima on the designed contour-edge cost function, that act as unde-

sired attractors.

Being the context of application of the current work that of human-

robot interaction, we make the assumption that during the interaction pro-

cess the robot is stopped in front of the user and the background is static.

As soon as the robot starts moving the optical flow information can be

discarded as its value becomes much less important.

Using this assumption, it is possible to determine which regions of the

image correspond to observable the moving objects and which do not,

thus a simple segmentation would be enough to separate them. This can

help in selecting the “moving” edges from the “non-moving” ones. Dur-

ing normal operation, the user may stop, and if only moving edges are

considered any tracker may diverge during these periods as no measures

are available. For this reason a cost function should be build in a way that

favours the moving edges without removing the static ones. The result is
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that a tracker based on this would prefer to stick with the moving edges,

but in their absence its fallback is to use the static ones.

4.2.2 Implementation

The integration of the optical flow information in the edge based likeli-

hood function is performed as follows.

From the initial image containing the edges a second one is obtained

where the non-moving edges are filtered out, using the optical flow in-

formation. This second image of edges is obtained from the first one by

removing all the edges (or portions) for which the corresponding vectors

in the optical flow field have negligible norms. These two contour images

are shown in figure 4.12.

Figure 4.12: Left: all the extracted contours. Right: contours filtered by the
optical flow

Two distance transforms are then computed, one for each set of edges.

The distance expression (4.6) is now modified to use these two sources of

information, becoming

d(i)
f

=

M

∑
j=0

min
(

d1( j), K.d f ilt( j)
)

(4.8)

where 0 < K < 1 allows to select a moving edge and to reject a static one

even if the Euclidean distance latter is larger. d1 and d f ilt are respectively

the distance values obtained from non-filtered and from the filtered dis-

tance transforms, for the j-th point of the contours. The likelihood function
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Figure 4.13: Likelihood obtained by combining motion information to the
oval shape position information.

can now be defined as

p(zmotion
k |x(i)) ∝ exp



−

(
d(i)

f

)2

σ2
m



 . (4.9)

Figure 4.13 plots the likelihood function (4.9) for an example where the

target is the right person who is moving. As expected, this likelihood is

clearly more discriminant than the one plotted on figure 4.7, as most of

the peaks, produced by the background clutter were removed. It should

be noted that the static edges are not discarded, but make simply less at-

tractive for the tracker. This enables the tracker keep locked on the target

even during periods where it remains stopped.

4.2.3 Results

Adding the motion constraint to the tracker matching criterion has per-

mited to improve its performance. Actually, this made it converge in situ-

ations where it would normally fail. One example was given in figure 4.11

where the background texture generates so many edges that makes the

edge-based cost function have minima everywhere over the pattern what
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did not allow the successful tracking of a hand silhouette. The addition

of the motion constraint removed most of the false maxima of the likeli-

hood function, and the tracker was now able to track the hand silhouette

as shown in the sequence of figure 4.14.

Figure 4.14: Tracking example with a cluttered background

4.3 Colour Cues

Colours, texture and patterns are also important characteristics of objects.

Objects have, frequently, parts with very distinctive colours or colour pat-

terns, which apart from the decorative role may play an important role

for a visual process. In Nature, colours also play important roles mak-

ing the identification of members of a group a simple task, as in almost

every species of animals or plants their members share the same colours.

Its is frequently possible to identify part of an animal’s body or part of a

plant by its colours, e.g. in a plant, a flower is easily distinguished from

the leaves by their quite distinctive colours, or the mouth of an animal has

colours that are quite different colours from those of his claws.

This is also the case for humans, where frequently the head, the hair,

or the hands have colours, or colour patterns, that differ markedly from
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those of the worn clothes. Another frequent human habit, is to wear si-

multaneously clothes with different colours or colour patterns, which can

be used to simplify some visual tasks like distinguishing the human body

or limbs from the background.

Consequently, for a body part (or for an object), the local colour or the

local colour distribution, can be an important and discriminative source of

information that can be used in a tracking context.

If the target we intend to track, presents some distinctive colour char-

acteristics, then it may be possible to identify it or parts of it, by sim-

ple application of colour segmentation techniques separating the regions

formed by the pixels which present some characteristic from the other

ones. One example of application, which is frequently used, is the classifi-

cation of pixels by their colours to aggregate them into skin and non-skin

regions [BMLH04].

4.3.1 Colour Spaces

Colours can be represented in different colour spaces. The natural ques-

tion is why should we need different spaces to represent the same colours.

In fact each of these colour spaces either try to model the response of the

human vision system or to describe device dependent colour appearances.

Naturally the definition of colour is defined in terms of the human eye ca-

pabilities. The device dependent definitions are accurate for each device

but when the same colour is shown on two different devices the results

can be drastically different. There are, however, device independent defi-

nitions which, for properly calibrated devices, produce the same outputs.

From the point of view of a human visual sensation a colour can be

defined by three parameters: hue, colourfulness and luminance.

- The hue parameter represents the colour nuance. It represents the

perception of each part of the rainbow.

- Colourfulness represents the perception of saturation, or purity of a
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colour. One can vary from a light blue to a dark blue by changing

this parameter.

- Luminance represents the perception of the quantity of light emitted

by a surface, which is also called brightness. An image can be blurred

or enhanced by modifying this component.

The designation of colour space comes from the use of these three compo-

nents, which may be seen as vectors spawning a space.

For the devices, it is common to specify a colour by the amount of each

of the primary colours (Red, Green and Blue) as used in CRTs, or sec-

ondary colours (Cyan, Magenta, Yellow) as used on printers. Although

RGB is a popular method for specifying colours, especially by program-

mers, it is not the most adequate to represent the appearance of a colour

as a simple variation in light intensity will induce a variation of the three

components. By this reason it is common to choose device independent

colour spaces like HSV, YUV or others for colour segmentation or recogni-

tion purposes, as they provide a better independence between the colour

components and the amount of used illumination. It is possible to con-

vert a colour definition in one colour space into the equivalent one in an-

other colour space. The possibility to perform conversions between colour

spaces can be very useful, because, as will be seen later, a particular colour

representation can more adequate for some kinds of operations then the

others.

4.3.2 Segmentation of coloured regions

The search for a given target in images can start by the selection of the

regions that may represent it based on some colour property which is a

priori known. In some cases, the object’s colour cannot be defined pre-

cisely but it can be said that it belongs to a range of tones. This variations

can represent the diversity of the samples’ colours or the result of obser-

vations under different illumination conditions. One such case, is that of



4.3. COLOUR CUES 129

the human skin colour which, although varying from person to person, it

is possible define a representative class that encloses the variations within

the Caucasian, Asiatic or other people.

As already mentioned above, colour definition based on three primary

colours is not necessarily the most adequate for colour based pixel clas-

sification. The reason is that with this representation, the colour of an

object, under different levels of illumination, will show a variation of the

three components, whereas using other colour definitions may isolate that

variation on a single component leaving the two other ones almost con-

stant. Bases that separate the luminance from chrominance components

are more interesting as the effects of illumination variation appear more

markedly on the luminance component and less on the chrominance ones,

making the latter adequate for colour comparison purposes. In another

words, using RGB colour space, the colour of an object under varying

illumination exhibits simultaneous variation for the three components,

whereas there are other colour spaces in which the same effect is reflected

on the variation on a single component. One of these bases is I1I2I3, pro-

posed by Ohta [OKS80], which is known to perform a good separation of

colours classes, being by consequence frequently chosen for colour based

classification of pixels.

The colourimetric subspace of interest is frequently modelled by a para-

metric approximation composed by one or more ellipses that try to enclose

the most important region of one or more Gaussian surfaces that have been

fitted to the observed colour distribution.

Another approximation is the use of the occurrence histograms ob-

tained directly from the learning samples, without trying to fit any special

function to it [VSA03].

An example of application of colour pixel classification based is the

skin colour segmentation problem, whose aim is to segment skin-coloured

blobs corresponding to skin-coloured human limbs (hands, face). This

is normally performed by computing the probability of a given pixel of
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colour C being skin, and then select those that are above a certain thresh-

old. This can be obtained by application of the Bayes rule as

p(skin|C) =
p(C|skin)p(skin)

p(C)
. (4.10)

where these probabilities can be approximated by using two learnt his-

tograms htotal, which is the histogram of all observed colours, and hskin,

the histogram of the observed skin colours, as

p(skin) =
Nskin

Ntotal

p(C) =
htotal(C)

Ntotal

p(C|skin) =
hskin(C)

Nskin

where Ntotal is the number of pixels in the sample images used in the learn-

ing phase, and Nskin the number of skin pixels observed in the same set of

images. Replacing in expression (4.10) gives

p(skin|C) =
hskin(C)

htotal(C)
.

The requested probability is then given by the simple ratio between the

bins of the two histograms corresponding to the colour C, which is the

one to be classified.

Figure 4.15 shows the results of the application of this method to iso-

late regions on images representing body parts by using skin colour-based

classification of image pixels. In the first row a successful example is

shown where a hand is well segmented from the rest of the image. The sec-

ond row shows a case where this segmentation fails as many background

pixels are also labelled as being of skin type as their chrominance compo-

nents are similar of some skin tones previously learnt.

This method is as shown adequate for detecting skin regions on the
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Input image Skin classification result

a)

b)

Figure 4.15: a) Example of segmentation based on pixel colour classifica-
tion. b) example showing a situation where the segmentation fails par-
tially as the background contains colours close to the skin in terms of
chrominance.

input images, like the hands, face, or other body parts. Although it may

fail due to the presence of background colours which may be similar to the

ones that are expected to be observed on the target’s surface, this method

can serve as a pre-filtering stage which removes regions of no interest.

The filtered images can then be used to perform measures in a tracking

application, e.g. shape based matching criterion presented in section 4.1.

In some cases, colour segmentation cannot be used because the target

has not an uniform colour on its surface. Nevertheless, it may contain re-

gions in its structure that, although not being uniformly coloured, exhibit

some very discriminant colour patterns, which are the subject for the next

subsection.
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Figure 4.16: Example of markers used by the ViconTM motion capture sys-
tem

4.3.3 Using Colour Distributions

Special markers distributed over the body have been used for a long time

in motion capture systems. These markers have very discriminative colours,

so they can be easily identified in images captured by a set of cameras. Fig-

ure 4.16 shows a example of the use of these markers placed on the body

of the person whose motion is to be tracked. In this case, the markers

are very reflective for infrared light which is emitted by special lightening

and image capture is performed by infrared cameras. Using the appropri-

ate wavelength filters, the markers can be easily distinguished from the

rest of the scene by simple thresholding of the images.

The colour distribution on some body parts can also be a very dis-

criminative attribute, specially if clothes with distinctive colours or colour

distributions are used. So, instead of sticking artificial markers on some

points of the body of the person who’s motions we intend to follow, we

can use directly some salient portions, in terms of colour or texture, as

natural markers avoiding the need to place the artificial and cumbersome

ones.
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In some situations it could be desirable to estimate the motion param-

eters of some character on a pre-recorded movie. In such cases, it is com-

pletely impossible to add those artificial markers needed for tracking. The

solution could then be the use of some existing features on the character’s

body and establish a connection between them and parts of a model.

The use colour distributions has the interesting property of being in-

variant, within some extent, to scale, rotation on the image plane and de-

formation. Another point is that, as will be shown below, the comparison

of two colour distributions can be performed in a simple and computa-

tionally efficient manner.

In the current human arms tracking application it is clear the hands or

face can be easily segmented from the remaining parts of the image by us-

ing colour information, as their tints are remarkably different from those

of the clothes, hair, or other body regions. In what concerns pose estima-

tion, this is indeed an important information as locating the positions of

the hands and face on the input images, can be used to constrain their

corresponding model positions and, consequently, constrain the search in

the configuration space to the regions where the hand and face pose agree

with the detected in the input images.

4.3.4 Comparison of Colour Distributions

A colour distribution function represents how probable is to find a range

of colours in an image. In digital images we can approximate the colour

distribution by normalised (3D) histograms, but is each component is rep-

resented by an eight bit value, then we should consider 16777216 bins.

This would require a prohibitive amount of memory for representing each

histogram. Several possibilities exist to reduce the required amount of

memory. The first one is to consider a bi-dimensional colour space in-

stead of the tri-dimensional one by choosing the appropriate representa-

tion from a predefined colour space or by using a Principal Components
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Analysis to define the most representative axes of a colour space; A sec-

ond possibility is to use a parametric representation when an adequate

function can be fitted to the colour distribution;

Another representation, which was tested with good results, consists

in the use of independent histograms for each of the three components in-

stead of their traditional Cartesian product. It is clear that this does not

correspond to a colour distribution but only to a “simultaneous compo-

nent distributions”.

Using this representation, we want to have a measure of the matching

level between two image patches by comparing their respective colour dis-

tributions represented by normalised histograms.

Being hc
re f the histogram of reference with Nb bins connected to the

colours, the colour channel c can be indexed, such that (c ∈ {R, G, B}):

hc
re f = (hc

1,re f , . . . , hc
Nb,re f )

The colour distribution hc
x = (hc

1,x, . . . , hc
Nb,x

) of a region of interest Bx,

selected by some proposal for the system state x, is given by:

hc
j,x = cH ∑

u∈Bx

δ j(b
c
u), j = 1, . . . , Nb

where bc
u ∈ {1, . . . , Nb} indexes the histogram’s bin that corresponds to the

level of pixel u for channel c, δa is the Kronecker symbol at a, and cH is a

normalisation term, which makes:

Nb

∑
j=1

hc
j,x = 1.

From within the set of different similitude measures which are avail-

able to compare two distributions h1 = {h j,1} j=1,...,Nb
and h2 = {h j,2} j=1,...,Nb

,
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the choice felt on the Bhattacharyya coefficient

ρ(h1, h2) =

Nb

∑
j=1

√
h j,1.h j,2

mainly due to its simplicity.

Based on it, a distance function was defined as

di(h1, h2) = (1− ρ(h1, h2))1/2 (4.11)

that can be applied to the three RBG channels, giving

di
bh

2
= ∑

c∈{R,G,B}
di2

(hc
x, hc

re f )

As expected, the more similar are the distributions, the smaller is this dis-

tance value.

For the current work, the choice fell on the first presented method but

using a reduced number of bins. The colours in the RGB space are dis-

tributed by Nb × Nb × Nb bins, what corresponds to make colours which

are adjacent in the colour space correspond to the same bin.

Here the histogram of reference, hre f , has N3
b bins indexed by the triple

related to the colour components:

hre f = (hi jk,re f ), i = 1 . . . N− b, j = 1 . . . Nb, k = 1 . . . NN

The colour distribution hx of a region of interest Bx selected by a pro-

posed state x, becomes:

hi jk,x = cH ∑
u∈Bx

δi jk(bu), i = 1 . . . NB, j = 1 . . . NB, k = 1 . . . NB

where bu ∈ {(1, 1, 1), . . . , (NB, NB, NB)} indexes the histogram’s bin that

corresponds to the RGB components of pixel u, δa is the Kronecker symbol
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at a, and cH is a normalisation term, which makes:

NB

∑
i=1

NB

∑
j=1

NB

∑
k=1

hi jk,x = 1.

The Bhattacharyya coefficient which compares the two histograms be-

comes

ρ(h1, h2) =

NB

∑
i=1

NB

∑
j=1

NB

∑
k=1

√
hi jk,1.hi jk,2. (4.12)

which is the used as before in (4.11) to provide a distance like function.

From the distance function built from this measure it is possible to de-

fine a likelihood function as which relates some state we want to estimate

to the current observed input image as

p(zk|x(i)) ∝ exp(
−
(

d(i)
bh

)2

2σ2
bh

). (4.13)

This likelihood function can be combined with the contour based likeli-

hood function and used in the weighting phase of a particle filter, to make

it more discriminant by removing some of the ambiguities produced by

edges that result from the background clutter.

Figure 4.17.(b) plots the value ρ(h1, h2) which compares the colour dis-

tribution of the region of interest marked on figure 4.17(a), against the

colour distribution inside a window of similar dimensions placed on all

possible positions of the input image.

Figure 4.18 plots the likelihood of each possible position of the image

corresponding to the right hand of the subject by comparing their respec-

tive colour distributions. Plots a) and b) show, respectively, the results

obtained for a σ = 0.3 and for σ = 0.5. It is clear that adjusting this param-

eter will enable the choice of how sharp will be this likelihood function.
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Figure 4.17: (a) Region of interest marked over the hand, (b) values of
Bhattacharyya coefficient (×255) calculated between the histogram of the
marked region and a research window centred on each image pixel
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Figure 4.18: Bhattacharyya-based likelihood for the position of the win-
dow over the input image computed for sigma values of a) 0.3 and b) 0.5.

4.3.5 Results

Tests were performed on the use of colour information in two different

trackers with successful results. The fist test used a combination of edge

and colour cues to track a human head [BMLH04]. Apart from the image

edges extracted from the input images, an image mask is obtained through

a selection of skin colour-like pixels. This mask is then used to weight the
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a) b)

Figure 4.19: Example of a a) DT image and a b) DT image weighted by a
skin-colour classification process

DT obtained from the edges image. Figure 4.19 shows an DT image and

a weighted-DT image, being the latter used to validate configurations of a

head-shoulders silhouette template. This validation is done in the weight-

ing step of a particle filter, where each particle corresponds to an hypoth-

esis of a position, orientation and scale of the head-shoulders silhouette

template. This reduces the influence of background clutter as edges that

are related with skin regions have a stronger contribution for the criterion

used on particles’ weighting step. Figure 4.20 shows some frames of a

tracking sequence using this principle. As can be seen the template is not

attracted by the background edges thanks to reduced contribution to the

weighted DT image.

Figure 4.20: Example of tracking a head using combined edges and skin
colour classification measures.

In the second test a particle filter estimates the position of a window
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over the input images that corresponds the best to the tracked face. The

window is positioned manually for the first image of the sequence and

the corresponding colour distribution is learnt and saved as the reference

one. In subsequent tracking instants each of the particles receives a weight

which is accounts for the similarity between the colour distribution in

the corresponding window and the reference distribution using expres-

sion (4.13).

There are however some targets whose appearance changes over time

due to a variety of reasons. For the case of the example given, i.e. tracking

a human head, it is enough that the person turns his/her back to the cam-

era to change completely the appearance. Unless that person is completely

bald, the face’s skin is replaced progressively by the person’s hair, during

the rotation. In such case, the tracking is lost as the colour distribution

of the target no longer agrees with the one that was learnt initially. Two

possibilities come to hand, which are the on-line adaptation of the model,

or the use of multiple models of the same object. The former method, is

normally considered as being dangerous as it leads to target loss, if care

is not taken. For the second one the problem is that creating a multiple

view model of the target is not always possible, especially if it deals with

targets which are not fixed initially, in other words their appearance can

not be predefined with precision. This is the case for examples like people

tracking by a surveillance system in a metro station.

Figure 4.21 shows a sequence where the target person moved in a way

that he had his back turned to the camera. Although the expressive changes

in the appearance of the observed side of his head, the system was able to

continue the tracking thanks to the on-line model adaptation. The adapta-

tion of the model was performed using by slowly incorporating a contri-

bution of the best colour distribution into the reference one, as long as the

Bhattacharyya distance between the two is bellow a given threshold. This
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is done for each frequency of the reference histogram by

h
re f
i jk,t = αh

re f
i jk,t−1

+ (1− α)hbest
i jk,t.

The parameter α determines how fast is performed the “incorporation”

of the new data into the reference histogram. It must be small enough to

avoid the inclusion of bad data with the consequent drift, but sufficiently

large to enable the adaptation of the model to the changes in appearance

of the target avoiding loosing it.

Figure 4.21: Tracking a changing target by its colour distribution using a
Bhattacharyya coefficient based measure and an adapting model.

To guarantee that no model drift occurs, its updates should only be

performed when some other measure of high confidence is available. Nat-

urally a question can arise about why should we need an adaptable colour

model when another measure can give precise information about the tar-

get position. The truth is that when those measures exist they may have a

large computational cost, or they may be intermittent, being only available

from time to time. To obtain a more robust tracker and avoid drifts, one

possibility is to fuse this colour based measure with a shape based one.
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4.4 Example: Multi-Cue Tracking of 3D Gestures

This section describes the use of multiple image cues in an approach to

track 3D articulated structures, i.e. human gestures, from a monocular per-

spective image sequence using particle filters.

4.4.1 Introduction

Motion capturing systems, e.g. VICON or Elite, are commonly used to

track the motion of human limbs. These systems acquire time series of

positions of the markers placed at special anatomical points of the tracked

subject. The human body is there modelled by using a multi-link chain

structure. The used markers are either passive, e.g. reflector markers, or

active, e.g. infrared blankers or electro-luminescent light emitting diodes,

what makes their detection/recognition process a simple one. Such sys-

tems, which are widely used by the Biomechanics community, are hard

to implement, and the use of artificial markers is not intuitive and is fre-

quently questionable.

Since the pioneering work done by Hogg [OB80, Hog83], many re-

searchers of the Vision community have interested themselves in the de-

velopment of markerless motion capturing systems, using one or more

cameras. Such a system could be run using conventional cameras and

without the use of special apparel or other equipment. To date, most of

the existing markerless approaches take advantage of the a priori knowl-

edge about the kinematic and shape properties of the human body to

make the problem tractable. Tracking is also well supported by the use

of 3D articulated models which can be either deformable [HH96, LRD99b,

KM00, MSO03, ST03b] or rigid [DF01b, STTC03, GGS04]. In fact, there is

a trade-off between the modelling error due to the use of rigid structures,

the number of parameters involved in the model, the required precision,

and the expected computational cost. In our case, the creation of a sim-

ple and light approach that would be adequate to for a quasi-real-time
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application, was one of the ideas that guided the developments. This mo-

tivated our choice of using truncated rigid quadrics to represent the limbs’

shapes. Quadrics are, indeed, quite popular geometric primitives for use

in human body tracking [DBR00b, DF01b, STTC03]. This is due to fact that

are easily handled, they can be combined to create complex shapes, and

their projections are conic sections that can be obtained in closed form.

Our projection method, which is depicted in section 2.2, although being

inspired from [SMC01c] has the advantage that is requires less computa-

tional power than this one.

Two main classes of 3D model-based trackers can be considered, 3D

reconstruction-based approaches [DF01b, UF04] and appearance-based ap-

proaches, being both widely investigated. While the former performs a re-

construction of the larger number possible of points of the tracked object or

structure and then tries to match them in 3D space, the latter tries to solve

the problem of in which configuration should the target be for its repre-

sentation being the currently observed one. Normally some characteristic

features of the object are used to in the construction of a model-to-image

fitting process. Our work is focused on the use of this kind of approach

making no assumptions about clothing and background structure.

To cope with the lack of discriminant visual features, the presence of

clutter, and the frequent occurrence of mutual occlusions between limbs,

one solution is to base the observation model on multiple views [Gav96,

LRD99b, DBR00b, DF01b, SMC01c, UF04]. Another solution [GBUP95,

SBF00a, PPA03, ST03b], which is the one we have chosen, is to use a single

view and increase the reliability and specificity of the observation model.

To do so, a robust and probabilistically motivated integration of multiple

measurement modalities is of great help. There are several examples in

the literature of such integration like, for example edges and colour cues

in [STTC03], edges/silhouette and motion cues in [ST03b] or edges, tex-

ture and 3D data cues in [GGS04]. In our case, we propose an observa-

tion model that combines edges and motion cues for the quadrics limbs,
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with local colour and texture patches on clothing acting as natural mark-

ers. Finally and inspired from [ST03b], we add joints limits and self-body

collision removal constraints to the overall model.

Like Krahnstoever et al. in [KS03], we follow the intuitive approach

of continuously acquire appearance information from image data, during

the tracking. This process must be done with care to avoid drifts or the

eventual integration of background data into the model, what would lead

to a definitive target loss. In such adaptive systems, the use of multiple

measurement modalities permits to select the moment and the pertinence

of integration new data, minimising therefore the risk of learning a wrong

appearance model.

Regarding the tracked movements, some approaches rely on simpli-

fications brought in by either using sophisticated learnt motion models,

such as walking [UF04], or restricting movements to those contained roughly

in a fronto-parallel plane [SBF00a]. Both simplification choices are well

suited to monocular approaches. No specific motion models are used in

this work as we want to be able to track general human motions. In such

unconstrained setup, a monocular estimation process suffers necessarily

from the inevitable multi-modality of the observation process.

Each of these solutions produces a local minimum in the observation

function, by consequence when any single-hypothesis-tracker is started in

a position of configuration space too far from the good one, if may simply

be trapped in one of the false minima, with the consequent tracking failure

and target loss.

Reliable tracking requires a powerful multiple hypothesis tracker capa-

ble of finding and following a significant number of minima. Local descent

search strategies [RK95, DF01b, LRD99b, KM00, UF04] do search a local

minimum, but with multi-modality there is no guaranty that the globally

most representative one is found. Like others [DBR00b, WlH01, PF02], we

address these problems by employing particle filtering techniques for the
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following reasons. Particle filtering generates random sampling points ac-

cording to a proposal distribution which may contain multiple modes en-

coding “the good places to look at”. Such probabilistic framework allows

the information from different measurements sources to be fused in a prin-

cipled manner. Although this fact has been acknowledged before, it has

not been fully exploited for 3D trackers. Combining a host of cues such as

colour, shape, and even motion, may increase the reliability of estimators

dedicated to track human limbs.

In what concerns the computational cost, particle filters techniques

normally require a substantial computation power, specially in high state-

space dimensionality cases, which make the number of required samples

to explode. Consequently, large efforts have been devoted to tackle such

problem by reducing both the model’s dimension through PCA [WlH01,

UF04], and the number of samples by testing stochastic sampling “vari-

ants” [DBR00b, ST03b]. In our case, our strategy is based on the auxiliary

particle filter algorithm.

We must note that most of the existing, approaches for the whole-

body tracking problem, remain quite heavy in computational terms. Our

tracker, in its actual form, is applied to the following of two-arm gestures

in a quasi-real-time process, which is of great interest for human/machine

interaction. One important point is that our approach could be easily scal-

able from one single to multiple views as well as to a higher number of

DOF, although it will introduce the consequent increase in computational

cost.

4.4.2 The approach

In our case, a particle filter-based tracker using a single camera as the in-

formation source, estimates the configuration of the two arms, which are

modelled as described in section 2.1.2. The model is composed of the two

arms, containing a total of 8 degrees of freedom with approach the shoul-

der and elbow articulations, whose configuration we want to estimate.
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Figure 4.22: Arm structure exhibiting its DOF.

The configuration vector, which represents a point in the 8-dimensional

configuration space, cannot be compared directly to the images. Instead

of that, the estimation is based on the observed appearance of the tracked

subject in the input the images. Unfortunately, this measure-state link

presents strong non-linearities due, not only to the projective projection

process, but also to ambiguities produced by partial concealing that occur

between body parts.

The particle filter is quite adapted to these situations as it can handle

not only nonlinear models but also non-Gaussian distributions. Contrary

to the Kalman filter, where the state distribution is represented by a mean

and covariance, the particle filter represents this distribution by a set of

weighted samples. For the current case, each sample represents an hypo-

thetic joint configuration of the two arms. Its weight is then computed

by obtaining the projection of the model corresponding to this particle,

and then compare the result to the input image. Both the construction of

the model for the arms model based on quadrics and the generation of its

projection are described on chapter 2 and on [MLDC05a].

This tracking process, can be viewed as the iterative minimisation of a

dynamic cost function, that evolves as the input view of the target changes

over time. Its robustness depends, by consequence, on the shape of this

cost function. If it presents multiple peaks, the tracker may be attracted
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to the wrong one with the consequent target loss, and if we succeed in

making it unimodal or exhibiting a strong peak around the true point of

the configuration space, the tracker will behave more robustly. One addi-

tional advantage of the particle filters is that even if the true shape of this

cost function is not available, it can still be used as long as its value can be

evaluated for any given point of the configuration space.

4.4.3 Kinematic and Dynamic Models

The set of degrees of freedom of the model is represented by a vector

which contains the four rotations of each of the two arms, defined as

xk =

[
θ0,k · · · θ7,k

]

where θ0 and θ1 (resp. θ4 and θ5) correspond to the vertical and horizon-

tal rotations of the shoulder articulation of the left arm (resp. right arm),

and θ2 and θ3 (resp. θ6 and θ7) correspond to the vertical and horizontal

rotations of the elbow articulation of the left arm (resp. right arm). The

subscript k refers to the time instant or frame number for which the con-

figuration vector is to be estimated.

The dynamics are described by an auto-regressive model of the follow-

ing form

x′k = Ax′k−1 + wk

where

x′k =

[
xk

xk−1

]

and wk defines the process noise. In the current implementation these dy-

namics correspond to a constant velocity model. The use of such model

is justified by its simplicity and by the fact that the tracking is to be done

without considering any particular task performed by the person, there-

fore no other more specific a priori model is defined.
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4.4.4 Robust cost function construction

The cost function employed is a combination of several image measures

related to the model and to some parameters that encode prior knowledge

about the model or its physical properties. Used in the weighting step of

the particle filter, this function is, by definition, proportional to the fol-

lowing probability density, p(z|x), which represents the likelihood of the

observed measure z given the configuration x. Considering that it is the

combination of a set of M measures obtained from independent sources

(z1
k , . . . , zM

k ), it can be factorised as

p(z1
k , . . . , zM

k |x) ∝
M

∏
m=1

p(zm
k |x). (4.14)

The following subsections detail the various factors employed in the used

cost function and which are related to image based measures and to phys-

ical properties of the model.

Shape

In our context, coarse 3D models of the targeted limbs can be used. In a

simple view-based shape representation, the limbs can therefore be repre-

sented by coarse silhouette contours (see figure 4.23). This kind of model,

although simplistic, permits to reduce the complexity of the involved com-

putations. Indeed, this estimation process requires a preliminary 3D model

projection with hidden parts removed (see chapter 2 for details on the

model construction and its projection). The associated likelihood is com-

puted using the sum of the squared distances between model points and

the nearest image edges [IB96]. The use of a Distance Transform, noted

IDT, obtained from the edges of the input image enables to avoid the

search for edges in the neighbourhood of the projected contours. In addi-

tion to the reduction on the computational load, the use of the DT provides

a smoother function of the model parameters.
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Figure 4.23: Example of silhouette contours used as template

The edge image is here converted into a Distance Transform image,

noted IDT, which is used to approximate the distance values. The advan-

tage of matching our model contours against a DT image rather than using

directly the edges image is that the resulting similarity measure will be a

smoother function of the model pose parameters. Moreover, this reduces

the involved computations because the DT image can be computed only

once independently of the number of particles used in the filter. The edge-

based marginal likelihood p(zS
k |x) is then given by (4.6) that is rewritten

here as

p(zS
k |x) ∝ exp

(
− D2

2σ2
s

)
, D =

Np

∑
j=0

IDT( j), (4.15)

where j indexes the Np model points uniformly distributed along each

visible model projected segments and IDT( j) the associated value in the DT

image. Figure 4.24 shows the plot of the shape based likelihood function

obtained by sweeping a subspace of the configuration space formed by

2 parameters of a human arms model. This plot’s shape shows that this

measure is not discriminant enough and so other measures are needed to

remove the existing ambiguities.

Motion

In this context as the robot remains static during the gesture interaction,

the used assumption is that the tutor arms are moving in front of a static

background. This allows to cope with cluttered scenes and reject false
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Figure 4.24: Shape based likelihood obtained by sweeping the configura-
tion subspace formed by 2 parameters of a human arms model

background attractors, by favouring the moving edges, as they are ex-

pected to correspond to the moving target. As the target can be temporar-

ily stopped, the static edges are not completely rejected, but only made

less attractive than the moving ones. This is accomplished by using two

DT images, noted IDT and I
′
DT, where the new one is obtained by filter-

ing out the static edges, based on the local the optical flow vector ~f (z).

From (4.15) and given K a constant, the new distance D is given by (4.8)

which is rewritten here as

D =

Np

∑
j=0

min
(

IDT( j), K.I
′
DT( j)

)
.

The results show that the tracking is less disturbed by the background

clutter, especially while the target is moving.

Colour

As previously presented on section 4.3, reference colour models can be

associated with regions of interest (ROI) of the target. We denote the B-

bin reference normalized histogram model in channel c ∈ {R, G, B} by

hc
re f = (hc

1,re f , . . . , hc
Nbi,re f ). The colour distribution hc

x = (hc
1,x, . . . , hc

Nbi,x
) of
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a region Bx corresponding to any state x is computed as

hc
j,x = cH ∑

u∈Bx

δ j(b
c
u), j = 1, . . . , Nbi.

bc
u ∈ {1, . . . , Nbi} denotes the histogram bin index associated with the in-

tensity at pixel u in channel c of the colour image, δa terms the Kronecker

delta function at a, and cH is a normalisation factor. The colour likelihood

model must be defined so as to favour candidate colour histograms hc
x

close to the reference histogram hc
re f .

From (4.15),the likelihood p(zC
k |x) is based on the Bhattacharyya coef-

ficient [PVB04] between the two histograms hc
x and hc

re f that is denoted as

D(hx, hre f ). The smaller D is, the more similar the distributions are. Finally,

the likelihood model p(zC
k |x) is given by expression 4.13, rewritten here as

p(zC|x) ∝ exp(− ∑
c∈{R,G,B}

D2(hc
x, hc

re f )/2σ2
C). (4.16)

It should be noted that from this measure, we can also define a like-

lihood p(zT
k |x) relative to textured patches based on the intensity compo-

nent.

Non-observable parts stabilisation

Despite the visual cues depicted above, ambiguities arise when certain

model parameters cannot be inferred from the current image observations,

especially for a monocular system. They include, but are not limited to,

kinematic ambiguities. For instance, when one arm is straight and the

edge-base likelihood (4.15) is used, rotation of the upper arm around its

axial axis is unobservable, because the model projected contours remain

static under this DOF. Leaving these parameters unconstrained is ques-

tionable. For this reason, and like in [ST03a], we control these parameters

with a stabiliser cost function that reaches its minimum on a predefined

resting configuration xde f . This enables the saving of computing efforts
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that would explore the unobservable regions of the configuration space.

In the absence of strong observations, the parameters are constrained to

lie near their default values whereas strong observations unstick the pa-

rameters values from these default configurations. The likelihood function

for a state x is defined as:

pst(x) ∝ exp(−λst||xde f − x||2). (4.17)

This prior only depends on the structure parameters and the factor λst

will be chosen in a way that the stabilising effect will be negligible for

the whole configuration space with the exception of the regions where the

other cost terms are constant.

Collision detection

Physical consistency imposes that the different body parts do not inter-

penetrate. As the estimation is based on a search on the configuration

space it would be desirable to a priori remove those regions that corre-

spond to collisions between parts. Unfortunately it is in general not pos-

sible to define these forbidden regions in closed form so they could be

rejected immediately during the sample phase. The result is that in the

particle filter framework, it is possible that configurations proposed by

some particles correspond to such impossible configurations, thus explor-

ing regions in the configuration space that are of no interest. To avoid

Figure 4.25: Examples of self-colliding configurations proposed by two
particles
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these situations, we use a binary cost function, that is not related to obser-

vations but only based on a collision detection mechanism. The likelihood

function for a state x is

pcoll(x) ∝ exp(−λco fco) (4.18)

with:

fco(x) =

{
0 No collision

1 In collision

This function, although being discontinuous for some points of the config-

uration space and constant for all the remaining, is still usable in a Dirac

particle filter context. The advantage of its use is twofold, first it avoids the

derivation of the filter to zones of no interest, and second it avoids wast-

ing time in performing the measuring step for unacceptable hypothesis as

they can be immediately rejected.

4.4.5 Implementation and Results

In its actual form, the system tracks the parameters of a model containing

eight degrees of freedom, i.e. four per arm as shown in figure 4.22. We as-

sume therefore that the torso is coarsely fronto-parallel with respect to the

camera.In addition to the projected contours of the model, a set of colour

patches are distributed on the surface model and their possible occlusions

are managed during the tracking process. Our approach is different from

the traditional marker-based ones because we do not use artificial but nat-

ural colour or texture-based markers e.g. the two hands and ROIs on the

clothes.

Regarding the particle filtering framework, we opt for the Auxiliary

Particle Filter scheme [PS99], which allows to use some low cost measure

or a priori knowledge to guide the particle placement, therefore concen-

trating them on the regions of interest of the state space. The associated

measurement strategy is as follows: (1) particles are firstly located in good



4.4. EXAMPLE: MULTI-CUE TRACKING OF 3D GESTURES 153

places of the configuration space according to rough correspondences be-

tween model patches and image features, and (2), on a second stage, par-

ticles’ weights are fine-tuned by adding edges cues, motion information,

etc.

Due to the robotics requirements, our tracker must adapt automati-

cally to the variabilities of both the clothing appearance and environmen-

tal conditions. Therefore, some heuristics allows to weight the strength of

each visual cue in the global likelihood (4.14). An a priori confidence cri-

terion of a given coloured or textured patch relative to clothes can be eas-

ily derived from the associated likelihood functions where the reference

histograms hc
re f and hI

re f are uniform ones so that for the colour hc,I
j,re f

=

1
Nbi

, j = 1, . . . , Nbi. Typically, uniform coloured patches produce low likeli-

hood values, whereas higher likelihood values characterise confident patches

because their associated colour distributions are discriminant and ensure

non ambiguous matchings. By this way, parameter λp weights the strength

of the p− th marker in the likelihood function (4.14). In the same way, pa-

rameter λs weights the edges density contribution.

The above described approach has been implemented and evaluated

over monocular images sequences acquired in various situations. Fig-

ure 4.26 shows snapshots of the results obtained from one of the evalu-

ation sequences. The right sub-figures show the model projections super-

imposed to the original images for the mean state E[xi
k] at frame k, while

the left ones show its corresponding estimated configuration. These ex-

amples combine measures that use the projected contours, three patches

per arm, and the previously described geometric constraints.

For this first scenario (figure 4.26), that shows the tracking of point-

ing gestures, the target contours are prominent and are weakly disturbed

by the background clutter. The high confident contours cue ensure the

tracking success. The patches on the uniform sweater are here of little

help while the adaptative system allows to give them a weak strength in
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Figure 4.26: From top-left to bottom right: snapshots of tracking sequence
(pointing gestures)

the global likelihood cost are weak. They do not introduce any improve-

ment with respect to their position on the arm, but their benefit comes

in the form of an “inside/outside” information, which complements the

contours specially when they failed. This permitted the tracking of the

arms even when they got out of the fronto-parallel plane thanks to all the

patches (figure 4.26).

For cluttered background the gestures tracking is also performed suc-

cessively, as shown in figure 4.27. This scenario clearly takes some bene-

fits from the discriminant patches and from the use of optical flow which

weights the importance relative to the foreground and background con-

tours. If considering only contour cues in the likelihood, the tracker would

attach itself to cluttered zones (as shown in figure 4.30) and consequently

lose the target.
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Figure 4.27: From top-left to bottom right: snapshots of tracking sequence
(moderate clutter)

These experiments demonstrate the tracker’s ability to follow a wide

range of two arms movements despite very strong variability in shape and

appearance due to both arm muscles and clothing deformations.

Due to the efficiency of the importance density and the relatively low

dimensionality of the state-space, tracking results are achieved with a rea-

sonably small number of particles i.e. Ns = 400 particles. In our unop-

timised implementation, a PentiumIV-3GHz requires about 1s per frame

to process the two arm tracking, most of the time being spent in observa-

tion function. To compare, classic systems take a few seconds per frame to

process a single arm tracking.
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Figure 4.28: From top-left to bottom right: snapshots of tracking sequence
(moderate clutter)

4.5 Closure

Some methods were proposed and tested for measuring how much a model

with a given set of parameters can correspond to an image of the target.

These methods try to produce measures like edge-to-contour distances to

provide a shape matching information, optical-flow which is the result of

the motion of the target and which can be used to distinguish a moving

target in front of a static background, and colour matching information

between the model and the target. The advantages and limitations of each

method, which are summarised on table 4.1, were presented, discussed,

and solutions were proposed to reduce the influence of those limitations.

All the proposed methods verify the requirement of introducing very lit-

tle computational load. Such requirement is crucial for a real-time system,
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Figure 4.29: From top-left to bottom right: snapshots of tracking sequence
(heavy clutter)

Figure 4.30: Example of cluttered scene and corresponding extracted con-
tours

especially in the context of a particle filter, where measures must be taken

for validating every particle, whose number can ascend to hundreds or

even thousands.

One of the advantages of using a particle filter based tracker is that the

integration of these and other measure sources can be easily accomplished.
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It suffices, indeed, to create a cost function that is a combination of all these

individual cost functions. Being the proposed cost functions of negative

exponential type in an attempt to produce likelihood functions, if they are

considered independent, they can be combined by simple multiplication,

to produce a function which is proportional to the joint likelihood. This

resulting likelihood function can then be used in the weighting phase of

the particle filter, where each of the transformations of the model (or tem-

plate) as proposed by the particles, receive a weight which is expected to

be proportional to the true likelihood function. This weight is given by the

following expression

w(i)
k

= exp
(
−λ f d

(i)
f

)
× exp

(
−λbhd(i)

bh

)
× . . .

which can be rewritten as

wi
k = exp−

(
λ f d

i
f (x

i
k) + λbhdi

bh(xi
k) + . . .

)

where the λ parameters rule the contribution of each measure to the final

weight.

A application example of the fusion of multiple sources of information

for tracking 3D gestures has also been presented. The results demonstrate

the tracker’s ability to follow a wide range of two arms movements despite

very strong variability in shape and appearance due to both arm muscles

and clothing deformations, and also other imperfections in the arm model.

For cluttered background, optical flow weights the relative importance of

the foreground versus background contours, improving significantly the

results in the analysed sequences.
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Image
Information Advantage Weakness

Edges Relationship easily estab-
lished with model contours

Edges are equally produced
by background clutter, or
by textures on the target’s
surface, what makes them
a source of information
with limited discriminative
power.

Optical Flow Can be used to segment
moving objects from the
background. Can also give
information about the object
structure

Weak information for uni-
formly coloured objects,
cannot be used with moving
cameras.

Colour
Segmentation

Easily obtained for pre-
learnt colour clusters in the
in some colour space

Many objects have multi-
coloured patterns. Their
colours can be present on
the background. Depen-
dency on illumination con-
ditions.

Colour
Distribution

Can be easily computed
and compared with refer-
ence distributions. Very dis-
criminative measure.

Can only be used to distin-
guish between regions with
different colours and cannot
be used to locate a subre-
gion inside a structure with
uniform colours or with the
same pattern of colours on
its surface.

Combined
Edges
and
Optical Flow

Can be used to select struc-
ture edges and reject back-
ground ones

Unusable for changing
backgrounds and moving
cameras.

Combined
Edges
and Colour
Distributions

Provides a stronger way
of verifying the match be-
tween the model and the tar-
get by reducing the influ-
ence of the background clut-
ter as the colour distribution
will focus on the target and
reject the background

Even if less frequent, the ref-
erence colour distribution
can still appear in the back-
ground of some scenarios.

Table 4.1: Comparison of used image measures.
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5.1 Introduction and framework

A major challenge, of the actuality, is undoubtedly the creation of a com-

panion robot. This means the development of a robot that is going to
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evolve in human environments, and for this it needs to integrate a set of

specific capabilities. One of these required capabilities which is probably

the mos important one, is the human presence detection. Making it aware

of the human presence is crucial for safety reasons and will also increase

its efficiency and acceptance by people that share the environment with

it. In fact people need to know that such a machine knows about their

presence so it is not going to move blindly colliding and possibly hurt-

ing them. On another side, we expect that robots will not only move in

a human environment, but also attain a point that they can serve or help

a person, so that human presence awareness needs to be extended to the

point of making possible the interaction between the robot and a human.

So, many functionalities need to be developed before we can build such

a robot, being an important part of them related with the human-robot

interaction problem.

The usability of a robot depends not only on its capabilities but also

on the kind of interface it offers. Mice, keyboards and joysticks are inter-

faces, that people can learn about but are unnatural. In a aging society the

robot might gain its place as a helper for elderly people, but only if it offers

natural interfaces. The perspective of enabling a mobile autonomous ma-

chine to support modalities which are common in the interaction between

humans has guided this work towards this end. Although speech can

be seen as the more natural and powerful communication mean between

people, gesture-based interaction is especially valuable in environments

where the speech-based communication may be garbled or drowned out.

It is well known that gestures can complement and simplify any speech

based communication or can make it more robust to noise. E.g. looking to

somebody’s lips while he/she is talking can help in understanding what

he/she is saying in a noisy environment.

Through the interaction with a user, a robot can also learn about the

geometry and topology of the environments, the geometry, identity and

location of objects, as well as their spatiotemporal relations. Once it has
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Figure 5.1: User interacting with Rackham.

learnt, with the help of a tutor, all this information, it can take profit of it

to evolve and interact with its environment in a more autonomous way.

In this context, work has been done on the design and construction of a

mobile robot named Rackham1, a B21r robot made by iRobot, and which

integrates some of the functionalities described hereafter. These are visual-

based interaction primitives to be used in the various phases of the inter-

action process, when the robot focuses its attention on specific persons (i.e.

tutors), as soon as they have been detected on the robot’s vicinity.

User recognition is also a required functionality, as any person must,

normally, be identified before receiving the grant to interact with the robot.

This requires the robot to continuously try to recognise the detected per-

sons until one is identified as a tutor. On another side, the maintenance of

the interaction link requires that an identity verification step be executed

repeatedly, avoiding that the robot commutes its attention from the cur-

rent person to any other person present on its neighbourhood.

Regarding a key-scenario of H-R interaction, we consider that the tutor,

after being identified, orders the robot to follow him. The robot complies,

1This work was developed initially at ISR and then integrated in the Rackham robot
which acted as a guide in the “Mission Biospace” exhibition at “La cité de l’Espace” at
Toulouse. Currently these functionalities are being integrated in a mobile robot at ISR-
Coimbra
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thanks to its basic mobility and visual analysis abilities. During this fol-

lowing task, the robot has to coordinate its displacements, even if only

coarsely, with those of the user, by tracking him, without being distracted

by other people. Once the desired place is reached, the user may signal

the mission end by some predefined gesture.

The approaches dedicated to these first modalities, although they re-

quire only a coarse tracking granularity, need to be fast and robust. Other

modalities allow an active interaction with the robot by using not only

communicative but also deictic gestures. The first type may be used to

create a lexicon normally associated with commands, while the second

one may offer an efficient modality to transmit information to the robot

about the environment it evolves in.

This gesture interface, need to perform the 2D tracking of the user’s

hands to extract their relative positions with respect to the torso or the

head, or the 3D tracking limbs.

As the interaction functionality, as well as the other ones, are to be run

aboard the robot some inherent limitations must be taken into account

for their development. The first one is that the set of embedded sensors

will not be static with respect to the environment, but instead of that will

move as the robot moves. By consequence some modalities that rely on the

assumption of static background will force the robot to be stopped during

their use.

The second limitation is related with restrictions in space and energy

consumption. This limits not only the types of sensors and actuators that

can be used and but also the processing power of the embedded comput-

ers. As the on-board computational power is limited, care must be taken

to design efficient algorithms.

Finally in what concerns the vision based functionalities, and as that

the robot is expected to evolve in environments which are highly dynamic,

cluttered, and frequently subjected to illumination changes, several hy-

potheses must be handled simultaneously. This is due to the multi-modality
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in the distributions of the measured parameters, as a consequence of the

clutter or changes in the clothing appearance of the targeted subject. To

cope with this, a robust integration of multiple visual cues is required.

Particle filtering appears a good solution for this kind of context, as it

makes no restrictive assumptions about the probability distributions and

enables the fusion of diverse measurements in a simple way. Although this

fact has been acknowledged before [PVB04], it has not been fully exploited

in visual trackers. Combining a host of cues may increase the tracker ver-

satility and reliability in a robotics context. This can achieved using one

of the different schemes presented in chapter 3, e.g. Condensation [IB96],

I-Condensation [IB98] and Auxiliary [PS99]. Some of the variants are ex-

pected to fit to the requirements of the different modalities that compose

the interaction mechanism.

This chapter is organized as follows. Section 5.2 presents the overall

architecture of the interaction mechanism. Sections 5.4 and 5.5 depict the

tracking setups dedicated to the two first modalities i.e. the user identi-

fication and the robot guidance. Regarding the gesture-based interaction,

section 4.4 details our approach for the 3D tracking of the upper human

limbs and presents the results obtained for two test sequences. All the im-

plemented trackers were evaluated using a set of sequences acquired from

the robot in a wide range of conditions like: cluttered environments, illu-

mination variations, appearance variability of the targeted subject. Last,

section 5.8 summarizes our contribution and opens the discussion for fu-

ture extensions.

5.2 Architecture of an Interactive Robot

Parts of this work were devoted to two interactive robots named respec-

tively Rackham and Hilário. Rackham project started as a visitor guide

for “Mission Biospace” at “La Cité de l’Espace”, an interactive exhibition

about an hypothetic space trip to Tau Ceti, located at 11.9 ligh-years from
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Earth. Inaugurated in Toulouse, Europe’s space capital, on 27 June 1997,

the Cité de l’espace is a scientific theme park designed for the general pub-

lic. The interactive robot Rackham evolved on-board of the space-ship Tsi-

olkovski guiding the visitors along the details of such a voyage.

Figure 5.2: Rackham and its software architecture

Figure 5.2 presents Rackham and its software architecture. It is a mod-

ular architecture based on GenoM[FHC97] which facilitates the indepen-

dent development of functionalities. The included modules can be grouped

in four classes: navigation, mapping, localisation and interaction. The

module ISY (I SEE YOU), which is a contribution of the work described in

this document to the Rachkam robot, integrates user face detection, recog-

nition and tracking.

Hilário is an interactive robot under development at ISR-Coimbra that

aims to serve as a test-bed for human-robot interaction experiments. One

of the objectives enable it to guide visitors along the ISR laboratories. For

its guiding missions become successful, the robot must present itself as a

pole of attraction by its design, responsive interaction mechanisms, and
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a) b)

c) d)

Figure 5.3: Screen shots of the designed interface to appear on Hilario’s
screen

reliability. As any tour guide, it should also give the visitors valuable in-

formation about the laboratories, experiments and ongoing projects, using

voice synthesis, possible accompanied by showing subtitles on screen for

hear impaired people, and also showing pictures or even videos of some

current and past experiments. Here, interaction design and evaluation

methods [SRP07] can play an important role, helping us in the selection

of what is really important and what is superfluous or undesirable. For

instance a well designed user interface to appear on the robot’s screen can

serve both to give informations about the state of the robot, the current

localisation, and to establish an emotional link with the visitor. Hearing

impaired people naturally will focus on the informations that appear on
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the screen and for such cases there should appear some text explaining ev-

ery step of the visit. Speech synthesis can also be used as complement of

the graphical interface or as guiding resource for visually impaired people.

Figure 5.3 shows the results of some preliminary design effort both on the

identification of interaction modalities and on the creation of a graphical

interface. From top-left to bottom-right images we have four prospective

screen shots, which are:

a) Normal interface showing a talking head, some informations about

the place the user is located on, some images related to it, and infor-

mations about the rest of the visit.

b) Zoomed text that is being spoken by the talking head aiming both

visually- and hearing-impaired people

c) Full screen video showing a demonstration of a project.

d) Feedback screen where the user can leave a comment about the visit.

This is just an example of what is expected to have on the robot’s screen

in the near future. For it, some of the basic functionalities have been al-

ready integrated while other are still under development. Like Rackham,

Hilário is based on GenoM architecture. As shown on figure 5.4 most of its

current functionalities are devoted for interacting with humans. In terms

of navigation it currently uses a virtual force mechanism to avoid obsta-

cles while following any planned trajectory. The embedded computer of

the SuperScout platform was replaced by a laptop to both provide more

computational power and reduce the energy draining from the on-board

batteries. The laptop screen together with its sound card are used to give

some visual and audio feedback to the user.

All the modules are controlled by a tcl script [WJH03] that serves both

as a supervisor and takes care of any visual or audio feedback. Lack-

ing a touchscreen interface, the idea is to provide a more natural inter-

action mechanism using gestures and later speech recognition. Gestures
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Figure 5.4: Hilário and its software architecture

can serve both to select items on the interface acting as a mouse, or to give

commands through a gesture recognition mechanism. Visual input is pro-

vided by a camera mounted on a pan and tilt unit which is used to detect,

recognise and track users, as well as for the gesture-based interface.

Finally a speech synthesis system coupled with a 3D human head is

used to create a more affective link with the user. This enables the robot

to inform the user about what the robot is doing or to give informations

about places. The speech synthesis is synchronised with the lips of the

model to give a more realistic impression of the robot as a partner. In

order to improve the interactive link with the user, the eyes of the head

model are expected to be coupled with user tracking. This will produce the

impression that the robot is paying attention to the orders or commands

given by the user.

The remaining of this chapter is dedicated to the mechanisms that are

related with user machine interaction.
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5.3 Talking Head

One of the basic functionalities of an interacting robot is speech synthesis.

Through it the robot can give some feedback to the user, or to describe

something using speech. One interesting application of this functional-

ity is in a guiding application where the robot can describe places or ob-

jects around. A synthetic face appearing on a screen can help in the es-

tablishment of a more friendly link between the user and the robot. This

motivated the inclusion of a talking head able to express in Portuguese

language.

The head is a modified version of the Expression Toolkit initially de-

veloped by Gedalia Pasternak [Pas00]. Its modifications include two new

possible faces, which are shown in figure 5.5, the definition of the set of

visemes that correspond to the Portuguese phonemes, and a communica-

tion scheme that enables it to receive sequences of visemes and respective

durations produced by a modified text-to-speech (tts) converter.

Figure 5.5: Hilário’s faces

The Portuguese text-to-speech is a modified version of Lingua::PT::speaker

developed as a part of Natura project [Alm] at Universidade do Minho. Its
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modifications include the simultaneous production of SAMPA2 [Wel] se-

quences for the speech synthesiser and the corresponding sequences of

visemes to be sent for the face animation, and a communication scheme

with the head synthesis and animation. Finally the speech synthesiser is

mbrola [Gro] which has been developed at TCTS Lab of the Faculté Poly-

technique de Mons (Belgium). Upon reception of some text, the system

Visemes

Expression

mbrola

Input Text Text to speech

SAMPA

Figure 5.6: Hilario’s lip sync architecture

outputs the corresponding speech in sync with the head’s mouth. The

architecture of this talking head is shown in figure 5.6.

The inclusion of other languages is also possible, although requiring

the definition of the corresponding visemes and the inclusion of an ade-

quate TTS capable of producing SAMPA sequences.

5.4 User Face Recognition and Tracking

One important part of the human computer interaction mechanisms (HCI)

that has attracted many researchers in the recent years is the human face

2SAMPA stands for Speech Assessment Methods Phonetic Alphabet and is is a
machine-readable phonetic alphabet.
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detection and recognition. That increase is also a consequence of the con-

stantly decreasing price/performance ration of the computers, coupled

with the recent decrease in video image acquisition equipment cost. The

interest on this research field is based on the premise that the informa-

tion about a user’s identity, state and intent can be extracted from images.

In the field of robotics, the observation of a person’s facial expressions

can be used to make a robot react accordingly. Although face and facial

expressions have been studied by psychophysicists, neuroscientists and

engineers for almost 25 years, it was only recently that this subject has

become popular.

In the current work the interest falls on the methods that enable the

detection, recognition and tracking of a user that may act as a tutor for the

robot. This is to be performed in a interaction process without the use of

any artificial special purpose device, to warrant that the attention of the

robot is focused on the same person during the process.

In other words the aim is to identify or confirm the identity of the per-

son that is in the vicinity of the robot. For this a module was developed

which is composed of three parts, depicted hereafter and which are the

face detection, recognition and tracking.

5.4.1 Face detection

Face detection is a challenging problem due to the difficulties introduced

by factors like: variable relative camera-face pose, presence of glasses,

mustaches or beards, expressions, etc. There are many different methods

for face detection that can be coarsely distributed by the following cate-

gories:

• Knowledge-based methods use a set of rules that verify the presence

of some facial features and relationships between them. E.g. two

eyes, a nose, a mouse, etc. with a given spatial distribution.

• Invariant features methods, try to find some features which are easily
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detectable under varying lighting conditions, pose and viewpoint.

• Template matching methods rely on the correlation between the in-

put image and some patterns of a face or parts of it. These templates

can be built or learnt from a set of training images.

Knowledge based methods [YH94] use rules derived from the simple

observation of faces: Human faces have a set of features that characterises

them. Eyes, mouth, nose, cheeks, chin and forehead, do not form a face if

they do not respect a special spatial distribution. This kind of approaches

require that the human knowledge is translated into a set of rules. These

rules may be either too strict and fail to detect some faces that do not verify

all rules, producing false negatives. Or may be too permissive and classify

as face an image regions that does not contain one, producing therefore,

what are called the false positives.

Feature based methods rely on the principle that some invariant fea-

tures may exist that can be detected under varying lighting conditions or

poses. This idea is reinforced from the fact that humans are able to do

this task with no effort for most situations. Some approaches model the

face as a set of dark and light regions with a given relative spatial distri-

bution. Others [HZ97] try to detect individually each of the features (eyes,

mouth, nostrils, etc) and then verify their relative geometrical constraints.

Features like texture or skin colour have also been widely used as features.

Template matching is accomplished by performing correlations with

patterns that correspond to eyes, mouth, nose independently. Although

this can be implemented easily, it does not deal with variations in scale,

pose or shape. One interesting type of fixed template was proposed by

Sinha [Sin94] who noted that when the illumination changes, the relative

brightness between parts remains almost constant. Templates composed

of pairs of oriented dark-light regions are then powerful invariants that

can be combined and correlated with the images easily. Instead of pre-

defining the templates, these can be learnt from examples in images using

techniques from statistical analysis and machine learning. Many recent
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works on face detection based on learning algorithms which have shown

excellent results.

The method used in this work for face detection was introduced by Vi-

ola et al. [VJ01a] and is based on a boosted cascade of classifiers built on

Haar-like features. This detector relies on the relative contrast between

some anatomical parts like the eyes and nose/cheek or nose bridge, and

which can be compared to the templates proposed by Sinha. The cascade

of classifiers behaves as a degenerated decision tree where each stage con-

tains a classifier which is trained to detect all frontal faces and reject only

a small fraction of non-face patterns. At the end of the cascade, we can

expect that “almost” all the non-face regions have been rejected, retain-

ing for sure those containing faces. The following subsections present the

learning principle known as “boosting”, the “Adaboost” algorithm, the

application of this algorithm to learn the features needed to create this

face detector.

5.4.1.1 Weak learners and boosted learners

One important task in computer vision and robotics is the one of perform-

ing the classification of data coming from some source into the appropri-

ate class according to some predefined or learnt rules. Although it is yet

another task which is done easily by humans, it is still a hard thing to

implement as a computer program. The difficulties come normally from

the variability of the data that may be received for items belonging to a

single class. For this reason it is quite hard to devise a set of rules to be

used in building such a automatic classifier. The problem with building

a set of rules is that they should not be neither too permissive nor too re-

strictive. For this reason the learning based approaches are preferred, as

they use algorithms that automatically select these sets of rules from packs

of pre-classified examples. There are many learning methods and princi-

ples which have been used for years. The method of interest here is called

Adaboost and was proposed by Freund and Schapire [FS95] that will be
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described briefly hereafter as it is used to perform the learning of the face

detectors.

The weak learners are very simple methods that are able to classify

correctly just above the 50% figure that corresponds to the random guess.

Boosting corresponds to the selection (or training) of a set of these weak

learners and combine them to produce a strong learner.

A strong (PAC-) learning algorithm (where PAC [KV94] stands for Proba-

bly Approximately Correct) is an algorithm that, given ε, δ > 0 and access

to random examples, produces with probability 1− δ an hypothesis with

error at most ε. For a weak (PAC-) learning algorithm the conditions are

the same with ε ≥ 1/2− γ, where γ > 0 which can be constant or decreas-

ing. The Adaboost algorithm is presented on algorithm 12, without going

into theoretical analysis of this algorithm because it is out of the scope of

this work. A generalised version of Adaboost was presented by Singer

Algorithm 12 Adaboost: the adaptative boosting algorithm

Require: 1 sequence of N labelled examples {(x1, y1), · · · , (xN, yN)}
1 distribution D over the examples
1 weak learning algorithm WL
The maximum number of iterations T

1: Initialise the weight vector: w1
i = D(i), i = 1, · · · , N.

2: for t = 1 to T do
3: pt← wt

∑
N
i=1 wt

i

4: call WL with the distribution pt and receiving a weak classifier ht :
X→ [0, 1].

5: compute the error of ht =: εt = ∑
N
i=1 pt

i |gt(xi)− yi|
6: βt = ε/(1− ε)

7: update the weights wt+1
i ← wt

iβ
1−|ht(xi)−yi|
t

8: end for

9: The strong classifier is h f (x) =

{
1 if ∑

T
t=1

(
log 1

βt

)
ht(x) ≥ 1

2 ∑
T
t=1 log 1

βt

0 otherwise

and Schapire [SS99].

The weak learner WL receives the distribution that is used to select the
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examples and selects a weak classifier that gives the smaller weighted er-

ror. In other words, given a finite set of classifiers H = {h(x)}, each of them

is run through the whole set of drawn examples. The chosen classifier is

given by

ht = arg min
h j∈H

ε =

m

∑
i=1

[
yi 6= h j(xi)

]

As weak learners we have those with an infinite set H , like the perceptron

learning rule, and those based on a predefined finite set from which the

algorithm selects the best. It should be noted that the error εt must be

inferior to 1/5, so the chosen weak classifier must obey to this rule.

The Adaboost algorithm aims to find the classifier that has presents

a reduced error for a given distribution over the training examples. The

distribution is normally chosen as being uniform for the first iteration. The

algorithm computes a set of weights over the training examples so that in

the next iteration the misclassified samples are more likely to be chosen

for training the next weak classifier. The weighting vector is generated

using the new chosen classifier and the process is repeated. The process is

terminated after T iterations and the final strong classifier is a combination

of the T chosen weak classifiers.

5.4.1.2 Using Image Features as weak classifiers

Image features can be compared to weak classifiers in the sense that the in-

ference made in the presence of a single feature is, normally, only slightly

better than a random guess. Unless we are sure (or assume) that the de-

tected feature is unique, it does not give sufficient guaranty that an object

that contains that feature, is really present and its not just a similar feature

belonging to some other kind of object or even noise. On another side,

if, for a given object, a set of these features is defined, it can be used to

evaluate with great certitude the presence or not of that object.

It can also be said, that the main purpose of using features instead of
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raw pixel values as the input to a learning algorithm is to reduce the in-

class variability while increasing the out-of-class variability compared to

the raw data and thus making classification easier. Features usually en-

code knowledge about the domain, which is difficult to learn from the

raw and finite set of input data.

A detector for a simple feature can be seen as a weak classifier. If the

feature is simple enough, one such detector can be extremely fast. If a

strong classifier is to be composed of a set of these “weak features” then

Adaboost is the appropriate choice for the job. The only part of the algo-

rithm that needs to be adapted for this special purpose is the weak learner

(WL) which must select the feature that produces the lowest error.

The remaining of the problem resides in selecting a set of robust and

discriminant features of simple computation. The features are build on

rectangles which try to catch oriented brightness contrasts. This provides

a very large and general pool of simple Haar-like features, which being

combined with feature selection can, therefore, increase the capacity of the

learning algorithm. The speed of feature evaluation is also a very impor-

tant aspect since almost all object detection algorithms slide a fixed-size

window at all scales over the input image. As we will see, Haar-like fea-

tures can be computed at any position and any scale in constant time as

only 8 table lookups are needed.

Our feature pool was inspired by the over-complete Haar-like features

used by Papageorgiou et al. in [OCP+97, MPP01] and their very fast com-

putation scheme proposed by Viola et al. in [VJ01b] improved by Lienhart

et al. in [LM02]. More specifically, we use 14 feature prototypes [LM02]

shown in Fig. 5.7 which include 4 edge features, 8 line features and 2

centre-surround features.

These prototypes are used to generate a rich and over-complete set of

features, at multiple scales and multiple offsets with respect to the window

upper-left corner.

Let us assume that a rectangle of pixels, with top left corner (x, y),
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3. Center−surround features

(a) (b) (c) (d)

(a) (d) (e)

(a) (b)

(b) (c) (f) (g) (h)

2. Line features

1. Edge features

Figure 5.7: Feature prototypes of simple Haar-like features. The sum of
the pixels which lie within the white rectangles are subtracted from the
sum of pixels in the black rectangles.

width w, height h and orientation α ∈ {0o, 45o}. This rectangle is inside

a window and specified by the tuple r = (x, y, w, h, α) with a pixel sum

denoted by RecSum(r). The set of used features have the form:

f = ω1 · RecSum(r1) + ω2 · RecSum(r2) (5.1)

where the weights ω1, ω2 ∈R are used to compensate the difference in area

size between the two rectangles r1 and r2.

Note that the line features can be calculated by two rectangles only.

Here, it is assumed that the first rectangle r1 encompasses the black and

white rectangle and the second rectangle r2 represents the black area. For

instance, line feature (2a) with total height of 2 and width of 6 at the top

left corner (5,3) can be written as

f = RecSum(5, 3, 6, 2, 0o) + 3 · RecSum(7, 3, 2, 2, 0o). (5.2)

Given that the base resolution of the detector is 24× 24, the exhaustive

set of rectangle features is quite large, over 117, 000 [LM02]. Note that

unlike the Haar basis, the set of rectangle features is over-complete.
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5.4.1.3 Fast Feature Computation
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Figure 5.8: The sum of the pixels within rectangle D can be computed
with four array references. The value of the integral image at location 1 is
the sum of the pixels in rectangle A. The value at location 2 is A + B, at
location 3 is A + C, and at location 4 is A + B + C + D. The sum within D
can be computed as 4 + 1− (2 + 3).

Rectangle features can be computed very rapidly and in constant time

for any size by means of two auxiliary images. For upright rectangles the

auxiliary image is the Integral Image I I(x, y). I I(x, y) is defined as the sum

of the pixels of the upright rectangle ranging from the top left corner at

(0, 0) to the bottom right corner at (x, y) (Fig. 5.8a) [VJ01b]:

I I(x, y) = ∑
x′≤x,y′≤y

I(x′, y′). (5.3)

It can be calculated within a single pass over all pixels from left to right

and top to bottom by means of

I I(x, y) = I I(x, y− 1) + I I(x− 1, y) + I(x, y) (5.4)

−I(x− 1, y− 1),

with

I I(−1, y) = I I(x,−1) = 0.

Based on (5.3) and (5.4) the pixel sum of any upright rectangle r = (x, y, w, h, 0)
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can be determined by four table lookups (see also Fig. 5.8a):

RecSum(r) = I I(x, y) + I I(x + w, y + h) (5.5)

−I I(x, y + h)− I I(x + w, y).

For 45◦ rotated rectangles the auxiliary image is defined as the Rotated

Integral Image RI I(x, y). It gives the sum of the pixels of the rectangle

rotated by 45o with the right most corner at (x, y) and extending till the

boundaries of the image (see Fig. 5.8b):

RII(x, y) = ∑
x′≤x,x′≤x−|y′−y|

I(x′, y′) (5.6)

It can be calculated with two passes over all pixels. The first pass from left

to right and top to bottom and the second pass from the right to left and

bottom to top [LM02].

From this the pixel sum of any rotated rectangle r = (x, y, w, h, 45o) can

be determined by four table lookups (see Fig. 5.8b):

RecSum(r) = RII(x + w, y + w) + I IR(x− h, y + h)

−I IR(x, y)− I IR(x + w− h, y + w + h)

(5.7)

It becomes clear that the difference between two rectangular sums can be

computed in eight references.

5.4.1.4 Learning Classification Functions

Given a feature set and a training set of positive and negative sample im-

ages, a number of machine learning approaches could be used to learn a

classification function. A variant of AdaBoost [FS95] is used both to se-

lect a small set of features and train the classifier [FE96]. In its original
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form, the AdaBoost learning algorithm is used to created a boosted classi-

fier using a set of simple weak classifiers. Recall that there are over 117,000

rectangle features associated with each image 24× 24 sub-window, a num-

ber far larger than the number of pixels. Even though each feature can be

computed very efficiently, computing the complete set is prohibitively ex-

pensive. The main challenge is to find a small number of these features

that can be combined to form an effective classifier. In support of this

goal, the weak learning algorithm is designed to select the single rectangle

feature which best separates the positive and negative examples. For each

feature, the weak learner determines the optimal threshold classification

function, such that the minimum number of examples are misclassified.

A weak classifier h j(x) thus consists of a feature f j, a threshold θ j and a

parity p j indicating the direction of the inequality sign:

h j(x) =

{
1 p j f j(x) < p jθ j

0 otherwise
(5.8)

here x is a 24× 24 pixel sub-window of an image.

Learning classification function able to separate positive samples from

the negative ones is then performed using the Adaboost algorithm above

presented. For this case, the “weak learner” selects the feature, threshold

and parity that produces the lower classification error for the set of train-

ing examples.

5.4.1.5 Cascade of Classifiers

A boosted classifier built on simple rectangular features which can be

rapidly computed using the integral image, can be applied to successive

windows of an input image to find faces or other object for which the clas-

sifier has been built. The method of computing the features is quite effi-

cient as it requires just a few peek operations on the integral image, inde-

pendently of the size of the feature. The discriminant power of a boosted
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classifier depends on how many features it is composed of, therefore there

is a compromise between its accuracy and its rapidity. For the detection

of objects on one image, this classifier has to be applied to a window of

varying size which is swept over the input image. This implies that the

classifier is ran several thousands of times for a single image.

For not compromising the possibility of application of this method to

the real-time detection of objects on video streams, it requires that some

optimization is done. The method proposed, by Viola et al. [VJ01b], is the

use of a cascade of classifiers. The principle is that simple and smaller

boosted classifiers can be constructed which reject many of the negative

sub-windows while detecting almost all positive instances. Simpler clas-

sifiers are then used to reject the majority of sub-windows before more

complex classifiers are called upon to achieve low false positive rates.

A cascade of classifiers is a degenerated decision tree where at each

stage a classifier is trained to detect almost all objects of interest (frontal

faces or hands, in this case) while rejecting a certain fraction of the non-

object patterns [VJ01b] (see Fig. 5.9).

Each stage of this cascade was trained using the Adaboost as described

on algorithm 12.

...

1

2

N

Reject

h

h

h

h

hitrate = hN

Window f alse alarms = f N

1− f

1− f

1− f

Reject

Reject

Detected

Figure 5.9: Cascade of Classifiers with N stages. At each stage a classifier
is trained to achieve a hit rate of h and a false alarm rate of f .



5.4. USER FACE RECOGNITION AND TRACKING 183

5.4.1.6 Application to Face Detection

A 13 stage cascaded classifier was trained to detect frontal upright faces.

Each stage was trained to eliminated 50% of the non-face patterns while

falsely eliminating only 0.2% of the frontal face patterns. In the optimal

case, we can expect a false alarm rate about 0.00213
= 8 · 10−36 and a hit

rate about 0.99813
= 0.97 (see Fig. 5.9).

To train the detector, a set of face and non face training images were

used. The face training set consisted of over 4,000 hand labelled faces

scaled and aligned to a base resolution of 24× 24 pixels. The non-face

subwindows used to train the detector come from over 6,000 images which

were manually inspected and found to not contain any faces. Each classi-

fier in the cascade was trained with the 4,000 training faces and 6,000 non-

face sub-windows (also of size 24× 24 pixels) using the Adaboost training

procedure.

Figure 5.10: First and second features selected by AdaBoost. The two fea-
tures are shown in the top row and then overlaid on a typical training face
in the bottom row.

For the task of face detection, the initial rectangle features selected by

AdaBoost are meaningful and easily interpreted. The first feature selected

focus on the property that the region of the eyes is normally darker than

the region of the nose and cheeks. The second feature selected relies on

the property that the eyes are darker than the bridge of the nose (see Fig.

5.10).
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The final detector is applied across the image at multiple scales and lo-

cations. Scaling is achieved by scaling the detector itself, rather than scal-

ing the image. This process makes sense because the features can be eval-

uated at any scale with the same cost. Subsequent locations are obtained

by shifting the detector window some ∆ number of pixels. Good results

were obtained using a scale factor of 1.2 and ∆ = 1.0 pixels. Figure 5.11

shows some results of application of this face detection mechanism which

illustrate its robustness.

Figure 5.11: Examples of face detection using boosted cascade of haar clas-
sifiers
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Figure 5.12: One Haar feature detected on a hand.

5.4.1.7 Application to Hand Detection

Being the hand a privileged vehicle for an interaction process, its seems

reasonable to develop techniques that enable its detection in image se-

quences coming from a camera mounted on a robot. To attain this end,

and applying the same technique used in the face detector, a cascade of

classifiers was built and trained for the detection of hands.

The structure of this cascade is the same as before (and was shown in

fig. 5.9) built upon 13 stages of classifiers, where each one has a maximum

false alarm rate of 50% and a minimum hit rate of 99.8%. This cascade

was trained with more than 2,000 manually labelled images of upright

hands, aligned and scaled to a base resolution of 24× 24 pixels. The non-

hand subwindows used to train the detector come from over 6,000 images

which were manually inspected and found to not contain any hands.

After training with the AdaBoost algorithm, we observed that the first

rectangle feature selected by AdaBoost is quite meaningful. As can be

seen on figure 5.12, it focus on the property that the region in between the

fingers is often darker than the region of the fingers.

Although the various degrees of freedom of the hand, allow an infinite

number of movements and deformations, the hand detector is expected to

work only with hands in the upright open configuration. Nevertheless it

is quite robust on the detection of hands at various scales and with differ-

ent backgrounds and illumination conditions. It should also be noted that

it can cope with small deviations from the vertical position, which makes

it appropriate for a natural interface where one cannot expect that a user
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raises his/her hand in a strict vertical. Figure 5.13 shows some examples

Figure 5.13: Examples of hand detection with bended fingers showing that
the occlusion of less than 4 fingers does not affect the performance of the
Hand Detection system.

of detected hands for cases where some of the fingers are bent. This re-

inforces the idea that the most important feature is the transition between

the index and the middle fingers.

This hand detector can be very useful for example in the beginning

of a human-robot interaction evolving gestures recognition since it gives

the robot the information about the position of the hand whose gestures it

should interpret. In the context of this work, which was previously pre-

sented the detection of the open hand is used to trigger the transition from

the current state to a new one. So, once a hand is detected while in the

“idle” state, the head detector is launched to find their relative positions

to select the next modality to use.

5.4.2 Face Recognition

Once faces are detected and located on images, as the result of applying

the face detector just described, they become available to any subsequent

processing which can be people identification. In other words, after sep-

arating the image contents in two classes, faces and non-faces, the first

group can undergo another classification step applied to each detected

face, which we refer as face recognition.

Depending on the application, this new processing stage can be used to
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Figure 5.14: Three frames from the face recognition output. The recog-
nised subject is marked with a green rectangle.

label each face according to some previously learnt database, or just to ver-

ify which face, if any, corresponds to one predefined face. We will distin-

guish the two by calling the first face identification and the second identify

verification. The importance of these two mechanisms, in the context of

human-machine interaction, will be referred later. We’ll concentrate now

on how to perform the face recognition and show the differences which

apply to one of the other case.

An on-line face recognition mode was developed, which takes advan-

tage of the face detection and is based on the eigenfaces method intro-

duced by Turk et al. [TP91a]. Eigenvector-based methods are used to rep-

resent, the learnt faces using low-dimensional vectors, and make them ad-

equate both for storage and processing proposes.

Principle Components Analysis (PCA) is the eigenvector-based tech-

nique we use for dimensionality reduction and feature extraction in this

automatic face recognition mechanism. A limitation of this method is that

it requires that every treated image be of the same size, and that all the ob-

jects to occupy most of that image. This is an important limitation as the

relative size of the objects or faces in one image, captured from a camera,

depends on the distance between that camera and the subject. By conse-

quence this method is more adequate to identify people in identity photos

than to execute in images taken from a live video input were people may

be moving, approaching or just passing near the camera.

This is where the face detector comes to action, as it first selects from

the input image those sub-images containing faces, and then it becomes

a matter of rescaling them to the appropriate dimensions before passing
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them to the recogniser.

The principles required for implementing the face recognition are ex-

plained hereafter. Starting with an introduction for the Principle Compo-

nent Analysis, followed by the presentation of an architecture proposed

for the face recogniser, and ending with an explanation of the learning

and recognition processes. This subject is closed with the presentation of

some results of this combined approach.

5.4.2.1 Principle Component Analysis (PCA)

For a given set of images, with resolution N × N , representing faces of

several people we may consider that each image is as a point in a space

of dimension M = N × N, where the value of each pixel corresponds to a

component. If the pixels’ values vary from 0 (black) to 255 (white), then

every image will be contained in a hypercube with a corner on a black-

filled image and the remaining corners will be combinations of white and

black pixels. The whole scale of greys will be observed for one pixel along

the edge that links two adjacent corners. Given this, it is likely that the

set of faces containing faces be concentrated on some region of that large-

dimensional space and the variations inside the set will reproduce mainly

along some directions being negligible along other ones. Another hypoth-

esis is that if for a single person’s face several images are taken (with vary-

ing expressions or illumination, for instance), the corresponding points

should concentrate around some mean position in that space. If this is

true then, by simple computation of a distance, it is possible to produce

a coefficient that relates the probability of a new image correspond to one

previously learnt person. Moreover, as the significant variations, inside

the whole set, appear only along a few directions, being the variation ob-

served along other orthogonal direction mostly negligible. This means

that every face may be described using only the “interesting” directions,



5.4. USER FACE RECOGNITION AND TRACKING 189

discarding the other components, resulting in a compression of its descrip-

tor data. In other words, only the coefficients along these “principal” di-

rections are needed as the face can be reconstructed by some linear combi-

nation of images which correspond to these directions. This can be used to

perform lossy image compression or to reduce the number of parameters

to be stored and which represent the images of a given object or person.

In this application, once the determination of a set of orthogonal meaning-

ful directions is complete, these can be used to define the face subspace,

over which the images of the faces can be projected loosing some less-

representative features.

From the set of points which correspond to the face images, we can

compute the “mean face” and the covariance of the dataset. These two

statistics describe where and how the faces are distributed over the face-

space. The directions along the largest variations are observed can be sim-

ply obtained by determining the eigenvectors and respective eigenvalues

of the covariance matrix. The eigenvector which corresponds to the high-

est eigenvalue, represents the direction of largest variation. The second

eigenvalue corresponds to the largest variation in a direction orthogonal

to the first. The subsequent eigenvectors correspond to directions orthog-

onal to the precedent of decreasing importance in terms of data variation.

As some of the eigenvalues are null or very small, they can then be ig-

nored. Any image, can now be approximated as a linear combination

of the non-neglected eigenvectors, which can result in an important data

compression.

More formally, given a training set of W × H images, it is possible to

form a training set of vectors xT, where x ∈ R
N=W×H. The basis func-

tions for the Karhunen Loeve Transform (KLT) are obtained by solving the

eigenvalue problem:

Λ = ΦTΣΦ (5.9)

where Σ is the covariance matrix, Φ is the eigenvector matrix of Σ and Λ
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is the corresponding diagonal matrix of eigenvalues λi. In PCA, a par-

tial KLT is performed to identify the largest eigenvalues and eigenvectors,

and then obtain a component feature vector y = ΦT
Mx̃, where x̃ = x− x̄ is

the mean normalised image vector and ΦM is a sub-matrix of Φ contain-

ing the principal eigenvectors. PCA can be seen as a linear transformation

y = T(x): R
N → R

M which extracts a lower-dimensional subspace of the

KL basis corresponding to the maximal eigenvalues. These principle com-

ponents preserve the major linear correlations in the data and discard the

minor ones.

Using the PCA it is possible to form an orthogonal decomposition of

the vector space R
N into two mutually exclusive and complementary sub-

spaces: the feature space F = {φi}M
i=1 containing the principle components

and its orthogonal complement F̄ = {φi}N
i=M+1. The x component in the or-

thogonal subspace F̄ is called distance-from-feature-space (DFFS), while the

component which lies in the feature space F is referred to as the distance-

in-feature-space (DIFS) [MP95]. Fig. 5.15 presents a prototypical example of

a distribution embedded entirely in F. In practice there is always a sig-

nal component in F̄ due to the minor statistical variabilities in the data or

simply due to the observation noise which affects every element of x.

DIFS

F

DFFS

Figure 5.15: Decomposition into the principal subspace F and its orthog-
onal complement F̄ for a Gaussian density

The reconstruction error (or residual) of the eigenspace decomposition,

which corresponds to the DFFS in the context of the work with eigen-

faces [TP91a], is an effective indicator of similarity. This detection strategy

is equivalent to match against a linear combination of eigen-templates,
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and allows for a larger range of distortions in the input signal (which

in this case correspond to variations in lighting, moderate rotation, and

scale).

The DFFS can be thought as an estimate of a marginal component of the

probability density and a complete estimate must also incorporate a sec-

ond marginal density based on a complementary distance-in-feature-space

(DIFS). Using these estimates the problem of face recognition can be for-

mulated as a maximum likelihood estimation problem. The likelihood

estimate can be written as the product of two marginal and independent

Gaussian densities corresponding to the principal subspace F and its or-

thogonal complement F̄ :

P̂(x) = PF(x) · P̂F̄(x) (5.10)

where PF(x) is the true marginal density in F − space and P̂F̄(x) is the esti-

mated marginal density in the orthogonal complement F̄ − space [MP95].

5.4.2.2 Application in a Human-Robot Interaction Context

A face recognition system is of major importance in a user interaction con-

text. Two basic uses can be easily identified: User link maintenance and

user identification. The user-link maintenance functionality enables the

robot to focus its attention on the user that initiated the interaction, even

if many people are surrounding it. The user identification process allows

a robot to offer services only to selected users based on his/her identity.

This can be achieved by building a system composed of three modules:

face detection, face learning and face recognition. The face detection sup-

ports the other two. It acts as a data collector returning all the detected

faces to the next active module, whether it is the face learning or the face

recognition.

The learning module is responsible for collecting the set of images
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which represents the person in various positions and showing diverse ex-

pressions. This set should include images showing the face in diverse sit-

uations, namely with open/closed eyes, open/closed mouth as well as

diverse facial expressions.

The face recognition, after receiving an image of a new face, verifies to

which previously learnt face it may correspond or if it does not correspond

to any one.

These two basic functionalities are described in the following sections.

5.4.2.3 Learning Process

The learning process starts with the acquisition of a sequence of face im-

ages of the person the robot is going to interact with. The person should

stay in front of the camera until face detector detects and extracts 40 face

images. As previously said, during this phase, the person should move

the head, talk and exhibit some expressions like sad, happy, worried, etc.

20 eigenfaces

Collect 40 images of

to database
Add this eigenspace

the face window
Extracted Resize

(30x30)
Calculate the first

Figure 5.16: Learning process

Every face image extracted is converted to grey level and scaled to 30×
30 pixels. There are now two possibilities: creating a single face space

using the whole (or part of ) set of the face images of different people, or
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creating a different face space for each user. The first case is more used on

face recognition and the second in user-link maintenance.

Using the set of either 40 grey level 30× 30 face images of a single user,

or N× 40 face images of N users, the system is able to build the eigenspace

corresponding eigenspace, by first computing the mean face and the co-

variance matrix. Computing the eigenvectors and eigenvalues allows the

selection of the 40 more representative eigenfaces [TP91b]. Figure 5.16 il-

lustrates the complete learning process of a single person.

5.4.2.4 Verification of the Identity of an Interacting User

In an interaction context, it is important to verify that the person to whom

the robot is offering its services, is the one that initially requested them.

This is especially important when there are more than one person around

the robot. To accomplish this, it is necessary that when the interaction

begins, the robot learns the interlocutor’s face and then during the inter-

action process it periodically verifies that the person in front of the robot is

the one previously learnt. This verification corresponds to the recognition

of a person using a database with a single entry.

As in the learning process, the first stage of the recognition process is

the detection and extraction of faces from the input image. Once these

images are extracted, they are scaled to 30× 30 pixels and projected onto

the previously built eigenspace, which corresponds to the person the robot

is interacting with. After projecting a new image into the face-space, the

correspondence level can measured, by computing the Euclidean distance

to the origin of the eigenspace. Then a threshold value is required to make

possible to decide whether the new image corresponds to the learnt face or

not. Figure 5.17 presents the normal flow chart of the operations required

to perform both user learning and user identity verification in a user-link

maintenance context.

In this context it is necessary to compute a threshold value for the dis-

tance between the new face image to be verified and the class representing
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Figure 5.17: System Architecture

the user (which is the origin of the eigenspace in this case). If the distance

value is below this threshold the face is accepted as the interacting user

and is rejected on the other case.

Different users may have sets of training vectors which may be more

or less scattered around the mean point, consequently the threshold value

has to be adjusted for each case. This threshold adjustment could be per-

formed by computing as some factor times the highest value of the diago-

nal of the covariance matrix. Another possibility is to use that covariance

matrix to replace the Euclidean distance computation by a Mahalanobis

distance, which has the form presented in equation (5.11).
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dm =

√
(x− x̄) Σ−1 (x− x̄) (5.11)

The Mahalanobis distance is adequate to classification purposes as it helps

to take the decision on whether a sample belongs to a class of faces or

not is based, not only on the distances to their centres but also, on how

class spreads through the parameter space. This is illustrated in figure 5.18

where one has to decide whether a new point belongs to one set of points

or the other. For the chosen sample point, if the classification process was
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Euclidean distance to mean of set 1
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Figure 5.18: Left: two sets of points and a test sample; Right: evolution of
the Euclidean and Mahalanobis distances along the segment that connects
the mean point of each set.

based on the Euclidean distance, it would be classified as belonging to set

2. But as soon as the scattering of the sets is taken into account, using

the Mahalanobis distance, the same sample appears to be in the transition

border between the two sets.

The Mahalanobis distance can also be seen as the log-likelihood of

Gaussian Bayes classifier. In such framework the features are considered

to be follow a Gaussian distribution. Then for features belonging to class

k we can write

p(x|y = k) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− x̄) Σ−1 (x− x̄)

)
,

where y is the label assigned to this sample. In a classification process we
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want to chose which label to assign to a given sample. This can be per-

formed using the Bayes rule to obtain the maximum likelihood estimates

for the set of possible labels, as

p(y = k|x) =
p(x|y = k)p(y = k)

∑ j p(x|y = j)p(y = j)
.

This can be written as

p(y = k|x) =

1
(2π)d/2|Σk|1/2 exp

(
−1

2 (x− x̄k) Σ−1
k (x− x̄k)

)
πk

∑ j
1

(2π)d/2|Σ j|1/2 exp
(
−1

2

(
x− x̄ j

)
Σ−1

j

(
x− x̄ j

))
π j

(5.12)

where π j is the prior for class j, in other words for the whole set of classes,

the probability of any sample belonging to class j.

As the classification process consists in choosing the class (or label)

that presents the highest likelihood value, then for each sample under

classification the denominator of (5.12) is constant. In the face classifica-

tion/recognition context there is, in general, no reason for saying that one

face is more probable than the others. Consequently p(y = k) can be made

constant and equal to 1/N, where N is the number of classes. Given this,

for a given sample x, p(y = k|x) becomes proportional to p(x|y = k). So the

classification process can be resumed to the choice of the class which gives

the highest likelihood or equivalently presents a smaller Mahalanobis dis-

tance between its centre and the sample in question. Or as stated before,

the Mahalanobis distance between the centre of a class and a sample point

corresponds to the log-likelihood of that sample belonging the such class

minus a constant.

In expression (5.12) the denominator is constant for each sample x, then

the classification process depends only on the numerator. If we take the

simplifying assumption that all the labels are equiprobable, what is realis-

tic in a face recogniser, then only the term p(x|y = k) really matters. This
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term, being related with a Gaussian distribution, increases when the Ma-

halanobis distance decreases. By consequence choosing the class k of high-

est probability, is equivalent to choosing the one whose centre presents the

lower Mahalanobis distance to the sample to be classified.

In the current implementation, the face with the highest probability

(or equivalently the smaller distance to the class centre) is selected as the

stronger candidate.

Using a simple comparison with the threshold value, the system is able

to decide if the candidate corresponds or not to the person that initiated

the interaction with the robot. The process is illustrated on figure 5.19. Fig-

Barreto

Input Image

Barreto
2.3%

Barreto
52%

Face Dectection

Face Recognition Result

Figure 5.19: Identifying the interacting user between two detected faces.

ure 5.20 show the evolution of the probabilities, for the cases of; a single

known (interacting) person in front of the camera, a single unkown per-

son, and two people being one known and another unknown. In each of

the graphics, the used threshold is also shown, and for the two people case

the unknown person was not detected all the time as can be seen from the

cuts in its probability line.
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Figure 5.20: Evolution of probability during a face detection sequence for:
Top Left - a single known face. Top Right - a single unknown face. Bottom
- two simultaneous faces on the image field where one is known and the
other unknown

5.4.2.5 Pre-Learnt User Recognition System

For using the recognition scheme as a user authentication mechanism, a

database was built which stores the vectors that describe the eigenspace

of each person previously learnt by the system.

This kind of recognition can be very useful for an interacting robot or

for a surveillance/security system. For the first case, this allows the robot

to recognise different people, with different levels of access, e.g. tutors

who can teach new places or actions to the robot, privileged users who

can access some kind of reserved functionalities and standard users who

can only use the normal robot functionalities.

In this recognition system, a detected face is tested to find if it corre-

sponds to any of the classes (users) previously learnt. The face is therefore

recognised if there is only one class that matches it. Matching a face to a
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Figure 5.21: Histograms approximating the distributions of distances be-
tween test images and the true classes and the non-true classes.

class consists in projecting it to the corresponding eigenspace and comput-

ing the distance to the face centre. The obtained distance is then compared

to a threshold value τ to decide if the face belongs or not to the class.

The recognition process depends therefore on the choice of τ . Using a test

set of labelled face images we can compute the distances between them

and the corresponding classes and to each of non-corresponding classes.

The densities distributions for the distances relatively to the correct class

and to the incorrect ones can be approximated by creating the respective

histograms and normalise them. Figure 5.21 shows examples of these his-

tograms. Using these distributions, τ can be obtained as the value that

minimises:

S(τ ) = λ
Z τ

0
p(d|¬Cl)dd

︸ ︷︷ ︸
+µ

Z

+∞

τ
p(d|Cl)dd

︸ ︷︷ ︸
¬Sl(τ ) Sl(τ )

with λ and µ term two weights resp. for the false acceptance ¬Sl(τ ) and
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false rejection Sl(τ ) results from test image database acquired by the robot

in a wide range of typical conditions: illumination changes, variations in

facial orientation and expression. Typically, µ is set to a value inferior to λ

to minimise false acceptances in a robotics context.

Aiming to reduce the effects of lighting changes and increase the per-

formance of the recognition process, some preprocessing techniques were

applied to both the training and test samples. Figure 5.22 shows plots of

the False Acceptation Rate (FAR) versus False Rejection Rate (FRR) which

are obtained by varying the threshold value τ , for each of the tested pre-

processing techniques. The threshold selection can be made using the

Equal Error Ratio (EER) line plotted on the figure.
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Figure 5.22: FRR vs. FAR for some image pre-processing techniques, with
EER selection.

Another important method to analyse the performance of a classifier

and help in selecting the operating point, i.e. the threshold value for this

case, is ROC3 analysis. Figure 5.23 show plots of the obtained ROC curves

for some preprocessing techniques. These curves show the trade-off be-

tween sensitivity (false positive rate) and specificity (1-false negative rate).

3ROC stands for Receiver Operating Characteristic.
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The closer the curve follows the left border and then the top border, the

more accurate is the classifier. For the current case, it is clear that the best
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Figure 5.23: ROC curves for different preprocessing techniques (true posi-
tives vs false positives).

performance is obtained for when histogram equalisation is employed for

all input images.

Good results were obtained for an eigenspace created with 20 eigen-

faces. In the case of the pre-learnt user recognition system, experimen-

tal results show that the efficiency of the application decreases when the

number of people in the database is bigger than 25. Above this number,

the discriminant ability of the PCA is not good enough to ensure the ro-

bustness of the system.

Some authors [MP95] claim that this approach has good performance

for a large database of faces. It may seem surprising that the results pre-

sented here are limited to a very small number of faces. There are indeed

a few reasons for this. Starting with the database itself, in the former case

the images of the faces are taken under controlled light conditions, against

an appropriate background and with the faces occupying approximately
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always the same percentage of the image. In this work the face recog-

nition is applied on a system that evolves on normal building where the

light can change along the time and from place to place, the background is

always changing and the subject can be at any position and distance from

the camera. To compensate this, the face detector selects image areas that

contain faces which are then rescaled to the appropriate image size. This

introduces two sources of error, the area selected normally only contain

the face and not the head, and by consequence any characteristic about

the hair, hears and so on will be lost. On the other side, the resizing pro-

cess also introduces some loss of information as the images are not always

taken with the appropriate size.

5.4.2.6 Speed of the Final Recognition System

The time that the final recognition system takes to process one frame has

two main components: detection time and recognition time. On a 2.2GHz

Pentium IV processor, the face detector can process a 320× 240 pixel image

in about 0.093 seconds and the recognition process of the faces returned by

the face detector takes about 0.140. These time values allow the system to

process about 3 frames per second. In the pre-learnt user recognition sys-

tem this value slightly decreases as the number of people in the database

increases. In the worst case tested (25 people in the database) the system

can process about 2 frames per second in the same processor.

The complete learning process of a person, previously described, takes

about 15 seconds.

5.4.3 Face tracking

During normal operation, more than one person may be in the vicinity of

the robot. In an interaction context this may raise the problem of which is

the person that it should focus on. Any face recognition mechanism can be

of great help in this case as it helps in selecting the person of interest, once
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he/she has been learnt beforehand. The solution selected for this case is

to use the above described face recognition method as follows.

When the interaction starts a sequence of pictures of the user’s face

are used to create his/her face-space. This is then used to verify that the

interaction link is kept with the user that initiated it.

The very sensitive nature of the face detector reflects itself in the pro-

duction of false negatives, especially when the user does not look directly

to the robot. This can be filtered out by using a Kalman filter to estimate

the user location in the image plane by make the approximation that the

user’s motion can be approximated by a constant velocity model. In this

case, when the face is not detected and consequently not recognised, the

used motion model enables the system to predict the face position in the

image even if this prediction is not corrected. As soon as the face is de-

tected again, the correction takes place.

As the face position is predicted in each frame it is possible to constrain

the application of the face detector to a region that surrounds the predicted

position. By reducing the size of the region where the face detection takes

place we are reducing also the time required to perform this operation.

Therefore, the inclusion of a Kalman filter serves two purposes: in-

crease the quality of the tracking and increase the processing speed. The

first purpose will help in producing estimates of the position of the tracked

face when the face detector failed. Although the cascade classifier is quite

robust it is trained to detect frontal faces only and when the user turns

slightly his head to look at something else, the classifier might fail. In such

situations, the role of the tracker is to produce an estimate that is used as

the best existing information about the target position.

A constant velocity model is used for the dynamics of the target in the

image plane. The evolution of the system’s state is given by

xk = f(xk−1, νk−1) (5.13)
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and the measurement equation is

yk = h(xk, µk) (5.14)

where xk =

[
x y s ẋ ẏ ṡ

]T

k
is the state vector that contains the posi-

tion in the image plane and a scale factor as well as their first derivatives.

νk and µk are realisations of the process and measurement noise respec-

tively. This model is used to construct a Kalman filter whose equations

can be found in [Kal60].

The search area, used for face detection, is centred on the estimated

position and its size depends on the values found on the diagonal of the

covariance matrix [MBD04]. The effect of this is that when the estimate is

good enough and the tracked face is found inside the search window the

variance is small and so is the size of this window, resulting in a higher

frame processing rate. If the face is not found inside the search window

the prediction is not corrected and the covariance grows. After a few iter-

ations without detecting the tracked face the search window will occupy

the area corresponding to the whole image what will reduce to the classi-

cal application of the classifier.

A recent tracking variant, which is well suited for this modality is pro-

posed in [BLD05]. This is based on I-Condensation scheme where impor-

tance sampling offers a mathematically principled way of directing search

according to the face detector output. Regarding the particles’ weights

definition, the measurement model fuses shape and colour cues in the

global likelihood (4.14).

5.4.3.1 Results

The introduction of the Kalman filter to reduce the search region has demon-

strated its value. Measured on a 1GHz PIII laptop, the detection and

recognition runs at a 8.6 fps whereas with the Kalman improvement its

processing rate depends on the area occupied by the face. Naturally the
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larger improvements are observed when the user’s face occupies the least

detectable area on the image. In this case processing speeds of 24 fps are

obtained.

5.4.3.2 Experiments on Real-World Situations

Figure 5.24: Three frames from a Real-Time Face Recognition system out-
put sequence.

The system was tested in some real-world situations and Fig. 5.24

presents a sequence of images captured by the robot’s camera and pro-

cessed by the real-time face recognition system. Figure 5.25 shows an ex-
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Figure 5.25: Left: Estimated position and velocity. Right: Estimated posi-
tion, measured position and prediction covariance

ample of the estimated parameters by the Kalman filter that can be com-

pared to the measured ones. Figure 5.26 shows a sequence of tracking

where it is visible that when recognition fails the search area grows, in fact

its size is related to the prediction covariance of the filter.
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Figure 5.26: Tracking sequence where it is visible the search region (black),
predicted face region (cyan) and detected face region (green).

5.5 User tracking dedicated to tutor following

Regarding the guidance task, the robot has to coordinate its displacements

with those of the guiding user. Although not requiring a great precision,

the robot has to track the user’s motion. This complements the face track-

ing functionality previously presented as when the robots starts to follow

the user, the latter’s face is not visible from behind.

As before we intend to obtain estimates of a state vector−→x = [x, y, θ, s]
′

which is composed of the position, orientation, and scale of the target in

the image. Using this information we can direct the robot’s on-board cam-

era to the subject so the user will be always centred on the image.

Instead of trying to use measures based on anatomical properties, the

measure of choice, is based on local colour distribution cues as they seem

to be well-suited for this. This is justified that the user’s face and clothes

normally present colour patterns that can be easily distinguished from the

background or even from other people passing by.

The user is therefore tracked by selecting some colour patches on his

body and clothes whose positions are estimated and corrected along the

input image sequence, coming from the video camera. The estimation

process is performed using a particle filter (Condensation) which proposes
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a set of locations, sizes and orientations for the target for each input image.

The validation is performed by comparing the pre-learnt target patches

with those selected by each particle on the input image. The comparison

is done by computing the colour distribution of each patch followed by

the computation of the Bhattacharyya coefficient between them and the

corresponding patch of reference.

and recognised

User 

detected 

and recognised?

NO

particle

and weight each 

Compare patches

of target state

Predict evolution

patches

(Re−)Initialise

YES

User face detected

Figure 5.27: The user tracking process flowchart

The process starts with the detection and identification of the user which

is used to obtain an initial estimate of the target parameters. At this mo-

ment a patch is learnt which corresponds to the face region. Whenever

the face is not detected it is the particle filtering mechanism that using a

simple constant velocity dynamics predicts the new position of the target

by making the cloud of particles to evolve. In the next step each of the
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particles are weighted by computing the colour distribution of the corre-

sponding patches which are them compared to the colour distribution of

the initial patch using (4.12). The obtained coefficient is used to weight

the particles using equation (4.13). When the user face is detected again,

the particle filter is reinitialised and the patch is re-acquired. Figure 5.27

presents a simplified flowchart of the mechanism of user tracking.

When the user does not look towards the robot and his face is not de-

tected, there may be an important difference between colour distributions

of the initial patch and the current one. When the user head starts ro-

tating, the colour distribution on the patch position becomes increasingly

different from the one that corresponds to the patch acquired initially due

to replacement of skin by hair. This reflects itself by a decrease in the

value of the Bhattacharyya coefficient showing that there is an increasing

mismatch between the two patches. Apart from the rotation of the tar-

geted user, these appearance changes can also be produced by variations

in lightening or induced by the displacement of the robot itself, with re-

spect to the user.

To overcome these appearance variations, we perform the update of

the target’s color model, allowing the on-line integration of limited varia-

tions of the observed characteristics with respect to the current reference

model [NKMVG03]. The colour model is represented by an histogram,

which is updated by

q∗i,t+1 = (1− α)× q∗i,t + α× qcur
i , i = 1..Nbin,

where Nbin is the number of bins in the histograms, q∗i,t+1 represents the

i-th bin of the reference histogram at time t + 1, and qcur
i represents the

i-th bin of the current histogram which corresponds to the estimated state

of the tracker. alpha is as weighting parameter which controls the rate at

which the reference histogram integrates the contributions of the current

one.

One must be aware that the use of dynamically updated models in
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Figure 5.28: Using a multi-part colour model, the tracker is able to track a
subject even after a temporary occlusion.

trackers can lead to drifts with the consequent loss of the target. On the

other side, if a fixed model is used and the target’s appearance can change

due to any of the above mentioned reasons, the target loss is inevitable as

the model stops corresponding to the observations [PVB04]. Some strategy

is, by consequence, required to perform model update and ensure that

model drift will not occur.

We can point out some basic solutions for this problem: periodic reini-

tialisation of the models, use of multiple patches not simultaneously up-

dated, and combination of colour patches with other kinds of information

to produce a more robust measure. All these approaches attempt to avoid

drifts in the model and the consequent loss of the target.

In the current work the approach felt on the use of multiple patches

and figure 5.28 shows some snapshots from a tracking sequence which in-

cludes temporary occlusions. If a single colour patch was used, the tracker

would naturally adapt and lock to a wrong target that passes in the fore-

ground. By using a multi-patch model, we ensure that, the tracker keeps

locked onto the correct target even after the occlusion. Introducing reini-

tialisation step of the patches when the correct face is recognised, allows

the user tracker to cope with illumination variations which are normal in

any indoor guiding operation as lightning is never constant inside a build-

ing.
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5.6 Gesture-Based Interaction

Gestures are commonly used to communicate or to simplify the commu-

nication between people. Consequently they appear as an excellent way

to transmit orders to a robot, or to refer to objects, locations, etc. Aim-

ing to an interactive robot, some basic gesture related functionalities have

been developed, which are described hereafter. The idea is to replace a

keyboard, mouse or touch-screen by a gesture based interface which may

enlarge the spectrum of potential users of a robot.

This interface relies on some of the above described functionalities,

such as face detection, recognition and tracking, and complemented by

tracking the user’s hand. The use of gestures as a way to transmit informa-

tion is of primordial importance in many situations, either to complement

or simplify speech based communication, or as a communication mean

by itself. The use of gestures together can be quite valuable in situations,

where speech may be garbled by environmental noise, or as a complement

of speech to simplify or contextualising the conversation through the use

of deictic gestures to say: this object, that person, that place, etc. Gestures

are also used by people ho cannot hear as a full communication mean by

the use of a sign language, in airports for aircraft marshalling (see exam-

ples in figure 5.29), or by any two people when speech based communi-

cation is impossible to use, e.g. divers for underwater communication,

people that are two far apart, etc.

There is a strong interest in improving and extend the usual user inter-

face of a robot or computer in complementing or replacing the traditional

keyboards, mouses and joysticks by some means that enable the use of

natural methods of communication used by humans. For this reason there

has been a strong interest in speech recognition with interesting results,

but unfortunately does not exist yet a system able to function in a com-

plete user independent and fully robust manner. This fact, and the huge

importance that may have the use of deictic gestures in a robotics context

to indicate a place to go, an object pick or a person to learn, has motivated



5.6. GESTURE-BASED INTERACTION 211

Figure 5.29: Examples of gestures used by Marshallers guiding an aircraft
along the ramp: Stop, Slow down, and Move Back

our interest in the application of tracking mechanisms to develop a basis

for these kinds of applications.

Willing to build a fully interacting robot which should serve as a guide

in ISR labs, some basic gesture tracking and recognition have been devel-

oped which are described through this section.

5.6.1 Tracking hand gestures

Gestures can be defined both as hand and finger configurations or as hand

movements. The robustness and real-time requirements of a robotics ap-

plication have made the second type of gestures the chosen one for this

application. Yet, there are several difficulties related with the varying ap-

pearance of hands and people under diverse lightening conditions. Nev-

ertheless, efforts have been made to overcome some of them and develop

an interesting gesture interface. It should be noted that the use of special
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garments which appropriate colours may simplify the detection of the per-

son and the hands by providing an adequate contrast with the remaining

scene. This is used in the aircraft marshalling above mentioned example,

where no errors can occur. In this application, we try to avoid the use of

any artifacts apart from the normal user clothes.

There is also a set of parameters that cannot be guaranteed to be con-

stant and that may influence the detection and interpretation of the ges-

tures, and which are:

• When interacting we cannot guarantee that the user places himself

at an exact location relatively to the robot.

• If more than one user is expected to interact with the robot, their

heights vary as well as body dimensions such as the length of the

arms.

• The same gesture performed twice by a user or by different users

will exhibit always small variations.

Therefore, any proposed solution must be, as long as possible, able to cope

with such a variability. In the following some of the techniques used to

overcome this variations will be presented where appropriate.

5.6.1.1 Looking at the user

For the robot to follow the user’s gestures it must be continuously “look-

ing at the user”. This was solved by employing the face tracker presented

on section 5.4.3. The filtered position of the face is used to control the ori-

entation of a pan-and-tilt unit, showed in figure 5.30-a), in a way that the

head of the user appears always in the middle-right region of the input

images as shown in figure 5.30-b).

In order to extract the full trajectories of gestures, the camera should

be oriented so that the user appears on the right part of the image, leaving

the remaining as the area where gestures can be observed. This enables
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a) b)

Figure 5.30: The pan-and-tilt unit showed on the left image is used to place
the head of the user on a position so that he/she can perform the gestures
with the right arm.
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Figure 5.31: Image based visual servoing scheme

the user to perform gestures of large amplitude that can be observed by a

robot without the need for it to be too far away for the full gesture to fall

inside the image area. This is made possible by the use of visual servoing

loop (see figure 5.31) that continuously tries to orient a camera mounted on

a pan-and-tile unit (PTU) so that the user appears on the required position

of the image.

The image stream that flows from the camera is processed to detect

human faces, followed by a recognition stage which selects the required

face among the visible ones. A Kalman filter estimator based on a constant
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velocity dynamics model is used to smooth the position parameters for

the interacting user face. Finally the error measure, which accounts for

the difference between the user face position and the desired one is used

to produce a command fed to the PTU. As the system does not require

neither a great performance nor a great precision, a simple proportional

controller was used. This is justified by the fact that during the interaction

with the robot using gestures the user does not move significantly. The

minor motions that are observed are normally involuntary and only due

to the dynamics of the gestures themselves. As the gestures are described

by the relative trajectory of the hand with respect to the users head, any

small deviation of the face position relatively to the reference position does

not introduce any error on the extracted trajectories.

Making the user appear on a fixed position of the image, it becomes

possible to define the hand trajectories with respect to this position. This

makes the gesture invariant to the user location and enables to distinguish

between a gesture performed at the head level from a similar one per-

formed below that level.

5.6.1.2 Hand tracking

This system tracks the right hand of the user using a skin colour tracker.

Such tracker is based on the segmentation of skin regions that appear on

the image using the method presented in section 4.3.2.

After obtaining all the pixels classified as skin, we can expect to have

them grouped in two blobs: one for the hand and another for the face re-

gion. Excluding the set of marked pixels that belong to the region defined

by the face detector, we can expect that the remaining ones correspond to

the hand. Assuming that the hand region can be approximated by an el-

lipse, the next step is the computation of the ellipse that best fits the hand

blob. Such ellipse is defined by five parameters: x and y coordinates, ori-

entation θ, major axis length lM and minor axis length lm.
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To improve the performance of the hand detection, the search area is

constrained to a window centred on the last recorded position and with

dimensions which are twice the length of the major axis of the ellipse last

obtained. The results of this ellipse extraction are shown in figure 5.32.

Figure 5.32: Thre examples of approximation of a hand by an ellipse

5.6.2 Hand Mouse Interface

Being able to track the user’s hand, a first tentative interface was devel-

oped based on this. It consisted on the use of the user’s hand as a virtual

mouse. In this case, the user moves the hand in front of the robot and sees

a mouse cursor moving on the robot’s screen.

This was used to build an interface application, which is shown on

figure 5.33. This application shows the map of the environment, with some

predefined positions that the user can select. By moving the hand in front

of the user can select one of the predefined locations by stopping the hand

over its mark and then confirming the selection.
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Figure 5.33: Using hand mouse interface to select a place to go on a map

It was observed that, like what happens with conventional mouse point-

ing devices, unexperienced users adapt themselves quite rapidly to this

interface, thanks to the visual feedback.

5.6.3 Gesture Recognition

Apart from the hand mouse interface, another interesting use of gestures

is for sending commands to the robot. This can be accomplished if each

trajectory can be identified. Although this seems a simple task, there are

some inherent difficulties. No two users perform the same kind of gesture

exactly in the same way. Even gestures performed by the same user will

differ from each other at certain points. These differences appear due to

some involuntary shaking, difficulties in reproducing gestures with con-

stant speed along the trajectory and anatomical constraints that vary from

person to person. Knowing this, any method used to recognise hand tra-

jectories, as communicative gestures, must be able to cope with this vari-

ability. For this experiment the option felt on the use of hidden Markov

models (HMM) given their success in speech recognition.

As HMM theory and principles are out of the scope of this work, no

introductory explanation will be given. There are, however, good articles

and tutorials on HMM theory and principles that the interested reader
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may refer to, such as [Rab89]. For this work it is only needed to recall that

an HMM-based recogniser selects the model that best fits to a given se-

quence of symbols. The first step is therefore to convert the trajectory into

a sequence of symbols. This is done by dividing the image in cells and

convert each point of the trajectory in the number of the respective cell as

shown in figure 5.34. A trajectory is therefore converted into a sequence
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Figure 5.34: Tessellation of the image in cells for conversion of a trajectory
in a sequence of symbols

of cell numbers. Depending on the speed with which the gesture is per-

formed, several consecutive points of the trajectory may fall on the same

cell. The result is that the same symbol may appear more or less repeated

in the sequence. One of the reasons that a hidden Markov model is ade-

quate to the recognition of such sequences, is that repetitions of symbols

may be absorbed by some state, i.e. transition from a state to itself. As a

result some sequence “1,2,3,4” or “1,1,2,3,3,3,4,4,4,4,4” may correspond to

the same model.

This has been implemented and tested for some gestures by repeating

each of them by one or more users. Each set of sequences of a given gesture

was used to train a HMM using Baum-Welch re-estimation formula. The

set of learnt HMM models are then used in the recognition process by

accumulating the log-probabilities of each chain using Viterbi algorithm

for any given new gesture, and then choosing the best one.
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Four different gestures were trained using 5 hidden states: circle, up,

down, right. Each of the gestures was repeated between 30 and 50 times

to ensure that the corresponding HMM will capture most of its variations.

One of the problems is to select the initial and the end point of the ges-

ture. This is done by using the assumption that a gesture starts and ends

with the user’s hand stopped. A gesture then starts when the hand starts

moving and ends when the hand stops. As some involuntary movement

may be observed, a speed threshold bigger than zero may be used.

Initial tests showed that this method is capable of recognising these

four gestures with about 90% of correct classifications. The most error-

prone gesture is the circle as it is also the more difficult to execute. One

of the ways to improve the recognition rate is to enlarge the training set

by providing more examples of each gesture. Another way is to modify

the definition of the gesture with respect to its centre and normalise its

size. This would enable that a circle, for instance, could be performed and

recognised as so, independently of its centre being at the head level or

shoulder level. The normalisation would enable the recognition of a circle

either if it has a small or a large radius.

Hand orientation, although being available was not used. Future work

should include it to allow for the extension of the lexicon, by using similar

gestures with different hand orientations.

5.7 Gestures Imitation by an Humanoid Robot

Model

A last envisaged application concerns gestures imitation by a humanoid

robot [MLDC05b]. Recently some researchers used data from human mo-

tion capturing systems to make robots dance [NNKI02] or reproduce a hu-

man walking gait [SGR05]. Imitation is also an important mean for learn-

ing used by living beings and that has been adopted by some researchers

for application in robotics [BM01].
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Figure 5.35: From top-left to bottom-right: snapshots of tracking sequence
and animation of HRP2 using the estimated parameters.

In the current example the idea was to make a humanoid robot model

HRP2 to reproduce gestures performed by a person. This involves 3D

tracking of the upper human body limbs using the method described in

section 4.4, and then mapping the joints of our 3D kinematic 3D model to

those of the robot.

For this example, the test sequence was capture in a scenario (Fig-

ure 5.35) with moderate clutter. The gestures performed in this sequence

try explore the 3D estimation behaviour with respect to problematic mo-

tions i.e. non-frontoparallel ones, elbow end-stops and observation ambi-

guities. The left column represents the input images and the projection of

the model contours superimposed while the right column represents the

animation of the HRP2 using the estimated parameters4. The first frames

involve both elbow end-stops and observation ambiguities. These particu-

lar configurations are easily dealt with in the particle filtering framework.

When elbow end-stop occurs, the sampler is able to maintain the elbow an-

gle within its predefined hard limits. Observation ambiguity arises when

4This animation was performed using the KineoWorksTM platform and the HRP2TM

model by courtesy of AIST (GeneralRobotix).
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the arm is straight. The twist parameter is temporary unobservable but re-

mains stable thanks to the stabilisation mechanisms introduced in the cost

function. As highlighted in [DNBB99b], Kalman filtering is quite unable

to track through end-stop configurations. Some frames later in figure 5.35,

the left arm bends slightly towards the camera. Thanks to the patches on

the hands, the tracker manages to follow this temporary unobservable mo-

tion, although it significantly mis-estimates the rotation during this mo-

tion.

5.8 Closure

This chapter presents the development of a set of visual functions that

aim to fulfil a basic step of interaction functionalities. Face detection and

recognition based on Haar functions and eigenfaces enable the recogni-

tion of the tutor users. A modified Haar-based classifier was created to

detect open hands in images. Diverse tracking mechanisms were explored

to fulfil the requirements of different interaction functionalities like: face

tracking, user tracking, hands tracking and human arms tracking. Some

modifications were introduced to the tracking mechanisms, namely to the

models and measures, to make possible their use in a robotics context.

Among these modifications there is the on-line update of colour models

to overcome the appearance changes due the target motion and usual il-

lumination variations that can be observed when a robot evolves along a

common building.

To reinforce the emotional link between a human and a robot during an

interactive session, speech synthesis coupled with a synthetic human head

was added. This, once coupled with the visual tracking functionalities

should give the user the impression that the robot is seeing him/her.

Using the results of the tracking mechanisms, some experiments of ges-

tures recognition were also performed. Although only a small number of

gestures were tested, the results seem promising and should be explored
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in the future by using larger training sets. In fact for an adequate training

of HMMs used for the gesture recognition, the training set should include

a very large set of examples for each gesture.

Finally an humanoid robot was animated using the results of a method

capable of tracking the configuration of the human arms from a single

camera video flow, which was presented in the previous chapter.
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The work presented on this thesis is centred on the development of

interaction modalities for a mobile robot using computer vision. For at-

taining such purpose the robot must be able to detect the human, and fol-

low some of his/her activities for the subsequent interpretation and choice

of adequate actions to take. To fulfil these requirements a system must

be able to continuously estimate, from the perceived images, information

like: Who is the user, where is the user, and what is he/she doing.

From this short list it becomes clear that for obtaining these kinds of

information, the images should be continuously scanned to find each part

of the user’s body and infer the relative positions between them and the

observing robot. Nevertheless, it is well known that from a single image

it is frequently impossible to locate parts of the body, either because they

are temporary hidden by other ones, or because they are not distinguish-

able from each other or from the background. It is the knowledge about

the evolution of their relative positions or configurations that allows the

observer to infer about where should they be when they are not detectable

from the images. This is where estimation algorithms, also known as fil-

ters or trackers, can be of help. By consequence an important part of this

223
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work was devoted to the study, implementation and test of tracking mech-

anisms like the Kalman filter and the Particle filters.

As the depth information is lost during the perspective projection, to

estimate the 3D configuration of an articulated structure either multiple

cameras should be used to try to recover the lost information, or to use

some method that includes a priori knowledge about the target. The choice

felt on the latter approach. This required the creation of a 3D model of

the human structure. Each of the degrees of freedom associated with the

model can be seen as an axis of a multi-dimensional space, known as

configuration space. This model is a combination of a set of truncated

quadrics, and it serves as a base to generate the expected view in the im-

age plane, trying to replicate what happens with the image of the target

obtained by the input camera.

Aiming to track the human structure in real-time, the dimensionality

of the problem had to be reduced to an acceptable minimum. The goal

was reached in tracking the two arms in a total of 8 degrees of freedom.

This proved that it is possible to track an articulated structure from a se-

quence of images streaming out from a single camera by using an appear-

ance based approach. As our concerns were more centered on the feasibil-

ity of the solution than on its precision, only approximated models were

used. The obtained results show that, using an approximate model from

which is possible to generate the expected appearance on the image plane,

it is possible to produce a set of measures between image features and the

synthesized counterparts of the model view. As long as these measures

can be defined as a function that takes a maximum (or a minimum) when

the model configuration corresponds to the true target configuration, an

adequate estimator can then be used. The choice of the estimator depends

basically on two aspects, the shape of the measurement function plot and

its availability on closed form. For the current problem the choice of the

estimator fell on the particle filters due to the non-linearities of the mea-

surement function and the non Gaussian distribution of the measurements
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noise. In addition to this, this kind of estimator alleviates the problem of

computing the Jacobian of both the process dynamics and measurement

function, requiring only the computation of some adequate cost function

punctually. This enabled the tracking of the two arms of a human per-

forming motions coming out of a fronto-parallel plane, w.r.t. the viewing

camera. This result was sufficient to animate the model of a HRP2 hu-

manoid robot. As soon as, sufficient code optimization is performed to

make it work in true real-time, it is to be integrated on a interaction mech-

anism for a mobile robot, allowing the use of pointing gestures to show

directions to follow, objects to be perceived, or some gesture-based lan-

guage to enable a user communicate with it.

User face detection, recognition and tracking were also studied as they

are crucial to any true user-robot interaction. There exist some previous

works on the use of the robot to guide people in retirement houses and

museums, but the lack of this functionality reduces the usability of such

system. A robot that is supposed to evolve on some environment and act

as guide for people, should be aware of the human presence and, for in-

stance, adapt its pace to the following user, instead of stopping from time

to time asking “are you still there” and expecting the user to click some

button to answer yes. Combining state of the art face tracking and face

recognition with a Kalman filter allowed to fulfill this requirement, and

with the adequate selection of the probable image zone to search, a per-

formance of video rate processing speed was reached. This functionality

was integrated initially on the Rackham robot, which has been used as a

demonstrator at “la cité de l’espace” at Toulouse, France. Later it was used

in a demonstrator built at ISR named Hilario robot, that is under develop-

ment to perform the same kind of role at ISR-Coimbra.

As an interacting user is not always facing the robot, colour based

tracking was developed to improve user tracking in such situations. This

enables the robot to keep following the user, or keep track of the user po-

sition, even in situations where the user turns to look somewhere else and
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consequently his/her face cannot be detected.

The Haar-feature based method was successfully tested to detect hands

in upright position. For this a large set of learning samples were collected

and a hand detector was trained. Although exhibiting lower performance

than the face counterpart, mainly due to the lack of detectable contrast-

ing regions on the hand, it showed to be usable to applications like the

initialisation of a hand tracker.

Colour based skin detection was also successfully tested in a planar

gesture recogniser. For this both the user face and hand were tracked on

the images allowing to infer about their relative positions. A Kalman filter

based tracker was responsible to follow the hand trajectory. The outputs

of this tracker were both used in an Hidden Markov Model based gesture

recogniser and on the use of the hand as a mouse pointer to replace the a

computer mouse or the touch screen interfaces.

Currently an interacting robot is being developed at ISR-Coimbra which

already integrates basic functionalities like path-planning, trajectory fol-

lowing, and obstacle avoidance. With the exception of the 3D gesture

tracking, all the above described interaction functionalities have been al-

ready integrated with success. In its current state the robot starts wonder-

ing in the corridors until it finds a user stopped in front of it. Then it enters

the user interaction mode, and the user can ask it to perform some action

or go to some where. Being this still a work in progress, we expect to soon

integrate some important basic functionalities, e.g. auto-localisation to cor-

rect odometry errors, and improve and extend the interaction mechanisms

to increase its usability.

6.1 Future Work

As initially stated in this thesis, the success in creating a robot capable

of interacting with humans depends on its ability to “see the user”, and
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interpret what he/she is doing. On the other side the user must be at-

tracted by the robot, trust it and see it as a partner that can be helpful in

some common tasks. We expect that Hilário continues to evolve serving

as a testbed for new interaction functionalities in the future and gradually

gaining more and more autonomy and interactiveness. To attain this goals

prospective works should include:

• Study and development of new visual tracking mechanisms with the

goal of o increasing the trackers reliability and enlarge their appli-

cability to less specially-designed or condition-controlled environ-

ments.

• Being the proposed 3D tracking appearance based approach easily

scalable to multiple cameras, evaluate its effectiveness in such situa-

tions.

• Try to improve the user detection and recognition mechanism by

testing new approaches.

• Use Interaction Design methods to ameliorate the interaction mech-

anisms and evaluate them.
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