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Abstract This paper presents a comparative study of
two path-following controllers developed for guiding
autonomous vehicles in semi-structured outdoor en-
vironments. Part of this paper is focused on the per-
formance of two path-following controllers, which are
implemented using two different approaches, the first
using fuzzy logic and the second using chained sys-
tems theory. The control effort and the errors mag-
nitude along the path are evaluated in a comparative
way. A magnetic guidance system for autonomous ve-
hicles navigation in semi-structured outdoor environ-
ments is also described, integrating redundant encoders
data and absolute positioning data provided by on-
board magnetic sensors and magnetic markers buried in
the road. Simulation and experimental results are pre-
sented showing the effectiveness of the overall control
system.
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1 Introduction

A new approach for mobility providing an alternative
to the private passenger car, by offering the same flexi-
bility but with much less nuisances, is emerging, based
on fully automated electric vehicles, named cybercars
[6, 18]. A fleet of such vehicles might be an important
element in a novel individual, door-to-door, transporta-
tion system to the city of tomorrow. These vehicles must
be user-friendly, easy to handle and functioning with
total safety, not only for passengers but also for other
road users. These vehicles are already in operation in
specific environments featuring short trips at low speed
[3, 6].

For fully automated operation, path-following and
lateral controllers have been widely investigated, using
different control strategies, such as fuzzy-logic, slid-
ing mode and chained form based controllers. In [22],
a simplified nonlinear kinematics model is proposed,
intended to ease the design and implementation of a sta-
ble lateral controller. Fuzzy-logic controllers (FLC) are
described in [10, 11]. The design and simulation eval-
uation of trajectory-tracking and path-following con-
trollers based on sliding mode control is described in
[21].
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Fig. 1 Navigation system
architecture. Two lateral
controllers were developed.
Although only one runs for
each set of experiments they
are both represented in the
figure as fuzzy logic module
and chained form module

This paper describes developments of an au-
tonomous navigation system applied on guiding a
four-wheel actuated electrical vehicle moving in semi-
structured outdoor environments. Its purpose is to pro-
vide guidance control with anti-collision behaviour for
low-speed vehicles moving in cybercars scenarios. Cy-
bercars [6] have to satisfy challenging requirements
like following a path, with high accuracy, in narrow
spaces shared with other vehicles and in some areas
with pedestrians, providing ride comfort, with low level
of jerk and assuring complete safety with human driver-
less control. A suitable controller has to be chosen ful-
filling the previous requirements, which motivated the
comparative study of the two lateral control strategies
presented in this paper.

Odometry being essential for autonomous naviga-
tion is not enough due to its relative and integrative
nature. So, it is required to complement odometric data
with absolute positioning. Data fusion of ABS sensors
and GPS for outdoor localization, based on an Extended
Kalman Filter (EKF) had been presented in [4]. Self-
localization, given a map of the environment, and the
more challenging problem of simultaneous localization
and mapping are two examples of key mobile robot
problems requiring positioning data. The most com-
monly used localization probabilistic approaches em-
ploy Kalman filtering (e.g. [13]), grid-based Markov
localization [9] and Monte Carlo methods [8]. On
the other hand, the California Partners for Advanced
Transit and Highways (PATH) Program has been
given important contributions in the development of a

reference system based on magnets for vehicle lateral
guidance/control [24, 27].

1.1 Navigation architecture

The overall navigation system (see Fig. 1) is composed
of three main subsystems, which are designated by
path-following controller (PFC), vehicle’s pose esti-
mator (VPE) and multi-target detection and tracking
system (MTDTS). The MTDTS is described in [16],
while the PFC and VPE modules are addressed in this
paper. The PFC is made up of two main modules: the
velocity planner (VP) and the lateral controller (LC).
The VP provides local target points of the reference
trajectory and computes the maximum and the com-
fortable velocities, taking into account external factors.
The considered external factors are tyre characteristics
and passenger comfortable lateral and longitudinal ac-
celerations.

Two lateral controllers, one fuzzy-logic-based and
another using chained form theory, were developed
which are described and compared in this paper.

2 Kinematics and odometry model

2.1 Kinematics model

A Robucar (manufactured by Robosoft) is used in
the autonomous navigation experiments. It is equipped
with four wheels, each one driven by an independent
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Fig. 2 Illustrative construction of lateral and heading errors (in
real situation the discrete path points Pi are much closer between
each other, when compared with the vehicle dimensions). Pi de-
note the points that define the reference trajectory; dcp

e and d ra
e

are the lateral errors at CP and rear axle, respectively; d tg
e is the

perpendicular distance between the rear axle midpoint and the

current tangent to the path; θ , θ cp
e and θd are the orientation of the

vehicle, heading error and desired heading, respectively. W � and
R� represent respectively the world coordinate system and the
vehicle local coordinate system with its origin at the midpoint of
the rear axle and its x-axis aligned with the longitudinal axis of
the vehicle

motor equipped with its own encoder. The vehicle has
the ability to steer both the rear and the front pair of
wheels [19], but in our models and experiments only
front steering has been used due to uncertainties on
the odometry model of a double steered vehicle. The
classical model considers an imaginary wheel at the
midpoint of the wheels axles, so that it is oriented in
the direction of the steering command.

The configuration of the vehicle can be described
without ambiguity by (x, y, θ ) (see Fig. 2):

– x and y are the coordinates of the rear axle centre
with respect to the W � coordinates;

– θ is the vehicle heading with respect to the W �

coordinates.

The vehicle kinematic equations are derived ac-
cording to pure rolling, non-slipping and rigid body
assumptions. Therefore, a linear velocity vector and
instantaneous rotation centre exists at the reference
frame located at the midpoint of the rear axle R� and
the velocity is directed along the vehicle axle. Kinemat-
ics models have the property of keeping the steering and

velocity of the vehicle completely decoupled, therefore
turning easy the kinematics-based control design. The
kinematic model of the vehicle, for a reference frame
located at the midpoint of the rear axle R�, is

⎡⎢⎢⎢⎣
ẋ

ẏ

θ̇

ϕ̇

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
cos(θ )

sin(θ )
tan ϕ

L

0

⎤⎥⎥⎥⎦ v1 +

⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ v2 (1)

where v1 represents the linear velocity of the vehicle,
v2 is the steering angular velocity, L is the distance
between the rear and front axles, ϕ is the front steer-
ing angle and θ is the vehicle orientation in the world
coordinate system, as depicted in Fig. 2.

A different point of view and more useful in terms of
path-following is the one that describes the vehicle be-
haviour in terms of the path coordinates [14]. Assuming
that the vehicle has to follow a path defined by its arc
length, one can define the following error variables:
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� d tg
e the perpendicular distance between the rear axle

midpoint and the current tangent to the path.� θ
tg
e the angle between the current tangent to the path

and the x-axis of the vehicle.

Under these assumptions, one can derive the kine-
matic model in terms of the path coordinates,

⎡⎢⎢⎢⎢⎣
ṡ

ḋ tg
e

θ̇
tg
e

ϕ̇

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ tg
e )

1−d tg
e c(s)

sin(θ tg
e )

tan ϕ

L − c(s) cos(θ tg
e )

1−d tg
e c(s)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
v1 +

⎡⎢⎢⎢⎣
0

0

0

1

⎤⎥⎥⎥⎦ v2 (2)

where c(s) is the curvature of the path.

2.2 Odometry model

Let the vehicle position be represented by the middle
point rear axle M with Cartesian coordinates (xk, yk)
at time tk , as shown in Fig. 3. The vehicle local co-
ordinate system is defined as having origin M and its
x-axis aligned with the longitudinal axis of the car. θk

is the vehicle heading angle at time tk . Assuming that
the vehicle’s motion is locally circular, its position and

Fig. 3 Vehicle geometrical configuration

Table 1 Vehicle geometrical configuration parameters

L Car length (distance between rear and front axle)
e Half-track (half car width)
ϕR Steering angle from right wheel
ϕL Steering angle from left wheel
ϕ Steering angle of the virtual front wheel
D Curvature radius of virtual front wheel
ρ Curvature radius of the rear axle center

orientation at time tk is given by⎧⎪⎨⎪⎩
xk+1 = xk + � cos(θk + ω/2)

yk+1 = yk + � sin(θk + ω/2)

θk+1 = θk + ω

(3)

where � is the arc length and ω the elementary rotation.
Assuming that there is no wheel slippage and using only
data from the rear wheels encoders, then

� = �RR + �RL

2
, ω = �RR − �RL

2e
(4)

where e is the half distance between wheels and �RR

and �RL are calculated using the right and left wheel
encoders measurements, respectively.

The vehicle geometrical configuration parameters
are illustrated in Fig. 3 and are summarized in
Table 1.

3 Path-following controllers

The vehicle can execute a point-to-point stabilization,
path-following and trajectory tracking. Point-to-point
stabilization requires that the vehicle moves from point
A to point B with no restrictions on its movement be-
tween these two points. While in path-following, the
vehicle must move along a geometric path, in trajec-
tory tracking, the vehicle must move along a geometric
path at a given speed.

This paper addresses the path-following problem.
The PFC is made up of two main modules: VP and
LC. Two LCs are described in this section with the
following set of inputs:

– for the chained-form-based controller:

uCF = [
θ tg

e , d tg
e , c(s)

]
(5)
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– for the fuzzy controller:

uFL = [θ cp
e , dcp

e , �θ cp
e , �dcp

e , timp, dile, c(s), v]

(6)

where v denotes the linear reference velocity, timp is the
time-to-collision computed in the MTDTS, dile is the
inline lateral error (see Section 3.2.2) and the differen-
tial errors �dcp

e and �θ
cp
e , at the control point (CP) are

given by

�dcp
e = dcp

e (k) − dcp
e (k − 1) (7)

and

�θ cp
e = θ cp

e (k) − θ cp
e (k − 1) (8)

Collision avoidance is achieved by controlling the ve-
hicle’s reference velocity, reducing or even stopping
the vehicle in situations of eminent danger. The main
goal of the path-following controller is to ensure that
the vehicle follows the predefined reference path with
appropriate orientation. For the fuzzy logic controller
this can be understood as a task of minimizing the ve-
hicle lateral and heading errors (dcp

e , θ
cp
e ) with respect

to the reference path, at a given control point (CP) lo-
cated at a distance La denoted by lookahead distance,
as illustrated in Fig. 2.

For both controllers the curvature along the path c(s)
is estimated as described in [15]. From the third row of
(2) one can obtain a linearly parameterizable system in
c(s) written by

y = wa (9)

where

y = v1d tg
e tan ϕ

L
− θ̇ tg

e (10)

w = v1 cos(θ tg
e ) + v1d tg

e tan ϕ

L
− θ̇ tg

e d tg
e (11)

a = c(s) (12)

Knowing w and y, an estimate of a, i.e. â, is obtained
using the least squares estimator:

J =
∫ t

0
(y − wâ)2 dτ (13)

Solving for â so as to minimize J , the following update
equation for â is obtained:

˙̂a = P(wy − w2â) (14)

where P and its update equation Ṗ are given by:

P = 1∫ t
0 w2dτ

(15)

Ṗ = −P2w2 (16)

Each controller has to provide the same control vec-
tor ([ϕc, vc, ϕsw]) to the traction control level, where
ϕc (in degrees) is the steering angle, vc (m s−1) is the
velocity command and ϕsw is the rear steering switch
that controls the two possible driving modes: dual and
park modes. In dual mode the rear axle steers in op-
posite direction of the front axle, while in park mode
the rear and front axle steers in the same direction. The
chained form controller provides a steering angle ve-
locity command (ϕ̇c) which has to be integrated before
being issued to the traction control level (see Fig. 4).

The traction controller is common for any controller
type, thus providing modularity to the system architec-
ture. For each wheel and steering axle there is an in-
dependent PID controller as shown in Fig. 4, enabling
control of wheel slippage and the two possible driving
modes: front steered and double steered. Although it
is possible to use the double steered option, only front
steering was used in the implemented controllers.

3.1 Velocity planner

The VP module calculates the linear reference veloc-
ity, as well as determines the local reference trajectory
points. One main objective taken into account was to
make the trip as comfortable as possible, i.e. to give the
system the capability of fully controlling the smooth-
ness of the acceleration profile either lateral or longi-
tudinal.

A Canadian study [7] used a highway testing ground
to test speed and lateral acceleration on both wet and
dry pavement on horizontal curves. They found that
“comfortable lateral acceleration” and “speed environ-
ment” limited the driver’s speed, while pavement sur-
face conditions (dry or wet) and the driver’s gender did
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Fig. 4 Lateral and traction
control structures

not. Drivers adjusted their comfortable speed accord-
ing to their comfortable lateral acceleration tolerance,
approximately between 3.43 and 3.92 m s−2. Another
study [26] revealed the comfortable longitudinal ac-
celeration, i.e. steady deceleration under expected-stop
conditions; drivers generally exert an average steady
braking force of −3.43 m s−2. This amount of braking
force seems comfortable for most drivers.

The previous acceleration limits were used to set
up the maximum comfort acceleration amc and maxi-
mum comfort velocity vmc. The maximum acceleration
without slipping amws and maximum velocity without
slipping vmws still had to be computed to cope with un-
expected situations. To estimate vmws, it is necessary

to know the forces that actuate on the vehicle, which
are basically the horizontal forces, the wheel ground
contact forces, the force that the vehicle exerts on the
ground and the wind force over the vehicle (air resis-
tance). In this study we consider a plane road and no
wind force effects are taken into account.

The friction force is proportional to the normal re-
action, where the proportionality factor is the friction
coefficient μ (static or dynamic).

Taking into account the previous assumptions one
can derive the maximum velocity without slipping

vmws =
√

rg(μ cos(ψ) + sin(ψ)) (17)
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Fig. 5 Vehicle following a given path. In the figure some sam-
pling points are marked (11, 21, 31 and 41 ) (x-axis and y-axis
are in meters)

where g is the gravity acceleration, r the curvature ra-
dius and ψ denotes the roll angle of the vehicle.

An estimate of μ is obtained by the following equa-
tion:

μ(S) = (c1(1 − e−c2 S) − c3S)e−c4 Sv
(
1 − c5 F2

z

)
(18)

where S is the resultant slip and the constants ci

(i = 1 . . . 5) are characteristic parameters of various
types of road [12]. The velocity vmc determines the
intended vehicle velocity used in the vehicle motion.
The vmws has a more ruggedness profile, as can be ob-
served in Fig. 6, which shows the velocity profiles
corresponding to the example of a vehicle following
the path depicted in Fig. 5. In order to fulfil the amws,
or the amc constraints, the vehicle should start braking
in advance being more restrictive for the amc profile
(see Fig. 7). The profit of being more restrictive is a
smoother variation on the amc profile.

3.2 Fuzzy logic lateral controller

The fuzzy LC is composed of four independent mod-
ules: front steering controller, rear steering switch,
velocity command generator and lookahead distance
computation (see Fig. 8). In order to properly avoid
collisions with obstacles the time-to-impact timp (also
referred here as time-to-collision), provided by the
MTDTS, is integrated in the velocity command gener-
ator. All modules are fuzzy logic based. Figure 8 shows
the LC identifying the fuzzy logic inference flow from
the input variables to the output variables.

The fuzzy controller is characterized in Table 2. The
fuzzification transforms numerical variables into fuzzy
sets, which can be manipulated by the controller. The
controller uses fuzzy triangular membership functions
and trapezoidal membership functions to encode inputs
and outputs. The controller uses min and max connec-
tives and a singleton sum–product inference mecha-
nism. The center of gravity defuzzification method was
used. Because more than one output term can be eval-
uated as valid, the defuzzification method must be a
compromise between different results. The center of
gravity method was chosen because it takes into ac-
count, better than any other method, the distribution of
the resultant fuzzy set. In this method, the defuzzified
value u is a weighted sum of the term membership:

u =
∑

i μ(xi )xi∑
i μ(xi )

(19)

where xi is the degree of activation of the i th rule and
μ(xi ) is the output membership function.

The input sets, the output sets, part of the fuzzy
knowledge base and some of the membership functions
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Fig. 6 Velocity profiles for
the example of Fig. 5
(x-axis denotes the
sampling points and y-axis
is in m s−1)
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Fig. 8 Fuzzy lateral controller modules

are presented in [2]. The knowledge base of the LC
expresses how the system should react, a complete de-
scription can be found in [1].

3.2.1 Front steering module

The front steering module computes the steering com-
mand ϕc. The purpose is to minimize both the orien-
tation error θ

cp
e and the lateral error dcp

e . A steering
increment fuzzy variable (ϕinc) is computed in order to
achieve a faster recovery from an undesirable pose. ϕinc

is the output of a fuzzy module which has as inputs c(s)
and �θ

cp
e .

Table 2 Fuzzy controller structure

Fuzzy system Structure

Input variables 8
Output variables 4
Intermediate variables 1
Rule blocks 5
Rules 615
Membership functions 48

3.2.2 Rear steering switch module

The rear steering switch module enables dual mode or
park mode. The inputs of this module are �dcp

e and the
inline lateral error dile given by

dile =
∣∣∣∣dcp

e

dcg
e

∣∣∣∣ + |θ cp
e | (20)

If �dcp
e is decreasing and dile is small, this module

steers the rear wheels in the same direction as the front
wheels; the result is a decrease in the vehicle’s yaw
motion. The yaw motion is necessary for executing a
manoeuvre but is not desired from the point of view
of the vehicle’s stability control [20]. This module was
only implemented and tested in simulations.

3.2.3 Velocity command generator module

The inputs of this module are �dcp
e , dcp

e , �θ
cp
e , θ cp

e and
the timp. This module computes a weight factor assign-
ing a level of significance to the reference velocity,
i.e. if the errors have a high magnitude or the time-to-
collision has a low magnitude then the velocity must be
decreased, otherwise the reference velocity is applied.
This module is of extreme importance since collision
avoidance is decided here, i.e. if the timp is small, then
the vehicle velocity is reduced or the vehicle is even
stopped.

3.2.4 Lookahead distance computation module

This module computes the lookahead distance, La ,
which is a function of the vehicle velocity, v. If the
velocity increases, the damping factor of the closed
loop system gets worse and is improved by increasing
the lookahead distance. The lookahead distance pro-
vides a prediction behaviour to the controller, since it
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enables the control point to be far ahead of the CG of
the vehicle, see Fig. 2.

3.3 Chained-form-based lateral controller

The control law designed here, based upon the kine-
matics model, uses the chained systems theory [5]. Al-
though mobile robot models cannot be linearized, it has
been proven that one can convert the nonlinear system
in an almost linear system, termed as chained form. A
2-input and n-state chain form system (2, n) has the
following structure:

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 (21)

...

ẋn = xn−1u1

The vehicle model from Equation (2) can be con-
verted into chained form using the following change
of coordinates and input transformations [14], respec-
tively:

x1 = s

x2 = − c′(s)d tg
e tan

(
θ tg

e

)
− c(s)(1 − d tg

e c(s))
1 + sin2

(
θ

tg
e

)
cos2

(
θ

tg
e

)
+ (1 − d tg

e c(s))2 tan(ϕ))

L cos3
(
θ

tg
e

)
x3 = (1 − d tg

e c(s)) tan(θ tg
e )

x4 = d tg
e (22)

v1 = 1 − d tg
e c(s)

cos
(
θ

tg
e

) u1

v2 = α2(u2 − α1u1) (23)

where c′(s) denotes the derivative of c with respect to
s, and

α1 = ∂x2

∂s
+ ∂x2

∂d tg
e

(
1 − d tg

e c(s)
)

tan
(
θ tg

e

)

+ ∂x2

∂θ
tg
e

(
tan(ϕ)

(
1 − d tg

e c(s)
)

L cos(θ tg
e )

− c(s)

)

α2 = l cos3(θ tg
e ) cos2(ϕ)(

1 − d tg
e c(s)

)2 (24)

and the other variables are defined in Fig. 2.
Although the system has two inputs, u1 and u2, this

model can be considered single input if u1 is known
a priori. Then the objective of the control law is to
achieve path-following under the assumption that the
vehicle linear velocity u1 is constant.

The controller was made using the smooth time-
varying feedback stabilization method described in
[14], where control is either smooth or at least con-
tinuous with respect to the robot state.

As a first step, the variables of the chained form are
redefined

χ = (χ1, χ2, χ3, χ4) = (x1, x4, x3, x2) (25)

resulting in the chained form system

χ̇1 = u1

χ̇2 = χ3u1 (26)

χ̇3 = χ4u1

χ̇4 = u2

The above reordering is simply an exchange between
the second and fourth coordinates. Path-following is
achieved via input scaling, which requires zeroing the
χ2, χ3 and χ4 variables, independently from χ1. The
system (26) is controllable if u1 is a piecewise contin-
uous, bounded and strictly positive (or negative) func-
tion, as stated in [14]. Therefore, u2 is the only input
to the system as long has u1 is known a priori:

u2(χ2, χ3, χ4, t) = −k1|u1(t)|χ2

− k2u1(t)χ3 − k3|u1(t)|χ4 (27)

The complete deducing of the controller and its
background theory are described in [14].
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4 Vehicle pose estimator

4.1 EKF odometry

The odometry model in (3) and (4) is based only on
the rear wheels encoder. Using also the front wheels
encoders, redundant data become available, which can
be used to produce better estimates of � and ω. The
steering angle of left and right wheels can be expressed
by

ϕL = arctan

(
tan(ϕ)L

L − e tan(ϕ)

)
(28)

ϕR = arctan

(
tan(ϕ)L

L + e tan(ϕ)

)
(29)

where ϕ is the steering angle of the virtual front
wheel.

From (28) and (29) and knowing that � = ρω, a
set of equations can be established which relates the
encoders measurements (from each of the four wheels
and steering) with the parameters � and ω [4]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tan(ϕ) = L ω
�

�RL = � − eω

�RR = � + eω

�FL cos(ϕL) = � − eω

�FR cos(ϕR) = � + eω

(30)

Therefore, considering x = [�, ω]T and

y = [tan(ϕ), �RL, �RR, �FL cos(ϕL), �FR cos(ϕR)]T

the state and measurement vectors, respectively, an
EKF can be applied as in [4] to estimate the state vector,
from the redundant data.

4.2 Odometry confidence tests and simulation

In this section, the EKF odometry described in
Section 4.1 is applied. Real data measurements, gath-
ered from Robucar encoders moving along a closed
path as depicted in Fig. 9, were used in the reported
simulations. The qualitative behaviour of the EKF odo-
metric model is very satisfactory in normal road con-
ditions of adherence as illustrated in Fig. 9(a) and (b).
White Gaussian noise was added to the measures with

a signal-to-noise ratio of 10 dB. The EKF filters effi-
ciently coped with the added noise. This result is well
illustrated in Fig. 9(c), where it is shown that the EKF
odometry approaches very closely the real trajectory
(computed with the encoders data without noise), while
the trajectory computed from the noisy measurements
diverges a lot, as expected.

However, this odometric model does not solve the
problem inherent to slippages. If a big slippage oc-
curs, the Kalman filter will not eliminate its effects.
This problem can be attenuated by pre-processing the
redundant data before providing it to the EKF odome-
try algorithm. We can compute an approximate motion
of the rear wheels based on the motion performed by
the front wheels and vice versa, applying the following
equations:

�R = �RR + �RL

2
ωR = �RR − �RL

2e

�F = �FR + �FL

2
ωF = �FR − �FL

2e

(31)

�F/R = �R

cos(ϕ)
�R/F = cos(ϕ)�F (32)

�VRL = �R/F − eωF �VRR = �R/F + eωF

�VFL = �F/R − eωR �VFR = �F/R + eωR
(33)

In (31), (�R,ωR) and (�F,ωF) are the parameters with
respect to the midpoint of the rear axle and front axle,
respectively. In (32) and (33), �i/j means �i computed
based on measurements from j , with i, j = {F, R}.
Equations (33) express the designated virtual displace-
ments for each wheel. Based on (33) we define the
following confidence coefficients:

CCR = 1 − |�VRL − �RL| + |�VRR − �RR|
|�VRL + �RL + �VRR + �RR|

CCF = 1 − |�VFL − �FL| + |�VFR − �FR|
|�VFL + �FL + �VFR + �FR|

(34)

The confidence coefficients are used to decide if a
virtual measure (�VRR, �VRL, �VFR and �VFL) is used
instead of the real measure. Figure 9(d)–(f) shows re-
sults of using the algorithm in a simulation of slippages
injected on the rear right wheel at t = 10 s and t = 50 s.
As we can see from Fig. 9(d), the EKF with this data
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Fig. 9 (a) EKF estimation for � (real – encoders measures; noise
– measures with white noise; Kalman – obtained estimation);
(b) EKF estimation for ω (real – encoders measures; noise –
measures with white noise; Kalman – obtained estimation); (c)
Odometry results with and without the EKF (real – encoders
measures; noise – measures with white noise; Kalman – ob-
tained estimation); (d) � estimation with a simulated slippage
(noise – encoders measures with a simulated slippage at t = 10

and t = 50 s; EKF-CT – estimation with EKF-CT); (e) Odome-
try obtained with CT (CT – path estimated applying the CT and
odometry model (3); real – path without the simulated slippage;
EKF-CT – path estimated applying the EKF-CT); (f) Odome-
try obtained with EKF without using CT (real – path without
the simulated slippage; EKF – path estimated applying the EKF
odometry)

pre-processing, henceforth known as EKF-CT odome-
try (EKF odometry with confidence tests), will not fol-
low the slippage, hence the algorithm detected a wrong
measure and replaced it by the virtual measure, com-
puted based on the other measures. Estimated paths us-
ing the EKF-CT and the EKF algorithms are illustrated
in Fig. 9(e) and (f). In both, the solid line represents the
real path. In Fig. 9(e), the dotted line represents the es-
timated path using odometry model (3) and confidence
tests.

4.3 Fusion of odometry and positioning absolute data

The vehicle is equipped with sensors which provide
absolute positioning data: (1) a SICK laser which pro-
vides range-bearing data (d, φ) associated to visible
landmarks; (2) two magnetic sensing rulers, one placed
on the front and the other on the rear of the vehicle.
The magnetic sensing rulers developed at ISR [17],
based on an array of adjacent Hall effect sensors, de-

tect robustly magnetic markers which are placed on the
ground defining centerpoints of the path to be followed
by the vehicle.

The fusion of odometry data with absolute position-
ing data is made by means of EKFs. The vehicle’s
pose is defined by the Cartesian coordinates (x, y) and
heading (θ ), which are the state variables of the EKF.
The state variables of the EKF odometry (Section 4.1)
are here treated as inputs to the EKF data fusion, i.e
uk = (�, ω) with an associated noise covariance ma-
trix �k . The range-bearing measurements associated
to each landmark are treated as measurements in the
fusion process.

(1) System model: The system model is defined by
the kinematic nonlinear equations (3), with state
vector xk = [xk yk θk]T, and input uk = [�k ωk]T,
which can be written in the compact form (includ-
ing noises):

xk = f(xk−1, uk−1, γk−1, σk−1) (35)
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Fig. 10 Measurement model variables. In figure, (a, α) denotes
range-bearing data associated to a magnet detection

where γk and σk denote the system and input noises,
with associated matrices Q and �k .

(2) Measurement model (example for the front mag-
netic ruler and laser-based detected landmarks):
let (a, α) be the range-bearing pair, associated to
a detected landmark, defined in the local robot co-
ordinate system (see Fig. 10). Thus, the following
equations yield

a =
√

(y f − yk)2 + (x f − xk)2

α = arctan
y f − yk

x f − xk
− θk (36)

where (x f , y f ) represents the Cartesian position of
the landmark. From (36) we can define the nonlin-
ear measurement model

zk = h(xk) + vk (37)

where h(xk) is the nonlinear vector function

h(xk) =
⎡⎣√

(y f − yk)2 + (x f − xk)2

arctan y f −yk

x f −xk
− θk

⎤⎦ (38)

and vk is the Gaussian sensor noise vector with co-
variance matrix Rk. The range-bearing data (a, α)
are the observation values entering the EKF, z =
[a α]T, which are calculated from sensor measures
as follows:

(a) for magnetic marker

a =
√

d2
m + L2

1

α = arctan
dm

L1

(39)

where dm is the magnetic ruler measure which
corresponds to the distance between the marker
with known position (xm, ym) and the magnetic-
sensing ruler central point, and L1 is the distance
between the front magnetic ruler and the vehi-
cle rear axis (we are assuming that the ruler is
perfectly parallel with the y-axis of robot coor-
dinate system).

(b) for laser-based detected landmark

a =
√

d2
l + L2

l + 2dl Ll cos(φ)

α = arctan
d1 sin(φ)

Ll + dl cos(φ)

(40)

where (dl , φ) are the range-bearing data de-
scribed in the laser coordinate system. It is as-
sumed that the laser coordinate system is aligned
with the robot coordinate system, with a distance
Ll , defined in the xy-plane, between them.

Another (non-standard) measurement model has
been investigated and applied as described in [23],
which consists on considering in model (37):

z = [x f y f ]T

(41)

h(xk) =
[

xk + a cos(θk + α)

yk + a sin(θk + α)

]

(3) EKF algorithm: It is composed of the following
prediction and correction stages:

Prediction stage

x̂−
k = f (x̂k−1, uk−1, 0, 0)

(42)
P−

k = AkPk−1AT
k + Bk�k−1BT

k + Q

where the system (A) and input (B) matrices
are calculated as the following Jacobian of the
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Fig. 11 (a) θ
tg
e : Heading error using the chained form controller

(dashed line) and heading error using the fuzzy logic controller
(solid line) in degrees; (b) root mean square (RMS), maximum

(MAX) and minimum (MIN) heading error (in degrees) using
the chained form controller (CF) and the fuzzy logic controller
(FUZZY) for three reference velocities (6, 7, 8 ms−1)

system f(·) function:

Ak =

⎡⎢⎣ 1 0 −�k sin
(
θk + ωk

2

)
0 1 �k cos

(
θk + ωk

2

)
0 0 1

⎤⎥⎦
(43)

Bk =

⎡⎢⎢⎢⎣
cos

(
θk + ωk

2

) −�k
2 sin

(
θk + ωk

2

)
sin

(
θk + ωk

2

)
�k
2 cos

(
θk + ωk

2

)
0 1

⎤⎥⎥⎥⎦
Correction stage

Once measurements (a, α) become available the fol-
lowing correction stage is done:

Sk = (
HkP−

k HT
k + Rk

)
Kk = P−

k HT
k S−1

k (44)

x̂k = x−
k + Kk(zk − h(x̂−

k ))

Pk = (I − KkHk)P−
k

where I is the identity matrix and Hk is the Jacobian of
the measurement h(·) function:

Hk = ∇x h(xk) (45)

4.3.1 Data association

In this work, we have adopted the conventional nearest
neighbour data association method, using the normal-
ized innovation distance

d̄k = υk
TSk

−1υk (46)

where υk denotes the innovation sequence υk = zk −
h(x̂−

k ) and Sk its predicted covariance, for accept-
ing/rejecting observations.

5 Simulation results

5.1 Chained form controller vs. fuzzy logic controller

In simulations, the following gains in (27) were used
as in [15]: k1 = λ3, k2 = 3λ2 and k3 = 3λ with λ = 5.
The value of λ was obtained iteratively starting from
an initial guess λ = 8.

From Figs. 11, 12, 13 and Table 3 one can ob-
serve the effectiveness of both controllers in guiding
the car along a predefined path shown in Fig. 14.
From Figs. 11(a) and 12(a), it is clear that the chained
form controller attempts to reduce the errors with a
faster response, but the reduction is only partially
achieved since afterwards the errors rise again. The
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Fig. 12 (a) d tg
e : Lateral error using the chained form controller

(dashed line) and lateral error using the fuzzy logic controller
(solid line) in meters; (b) root mean square (RMS), maximum

(MAX) and minimum (MIN) lateral error (in meters) using
the chained form controller (CF) and the fuzzy logic controller
(FUZZY) for three reference velocities (6, 7, 8 ms−1)
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Fig. 13 (a) ϕc : Steering command using the chained form con-
troller (dashed line) and steering command using the fuzzy logic
controller (solid line); (b) root mean square (RMS), maximum

(MAX) and minimum(MIN) steering command (in degrees) us-
ing the chained form controller (CF) and the fuzzy logic con-
troller (FUZZY) for three reference velocities (6, 7, 8 ms−1)

previous errors dynamics reveals a two-lobe shape
when analysed over time, which does not occur with
the fuzzy controller.

Although the fuzzy logic has a better performance
in convergence with a predefined path it also has some
drawbacks, it shows a more oscillatory behaviour on
the steering command (Fig. 13(a)).

From the analysis of Table 3, Figs. 11(b), 12(b) and
13(b) one can deduce that the fuzzy controller is gen-
erally slightly better than the chained form controller
on most of the reference velocities used in the test. The

RMS data presented in Table 3 also reveals that the
steering command effort in the fuzzy logic controller
is not greater than in the chained form controller as it
would be expected by observing (Fig. 13(b)).

Figure 14 shows the path followed by both con-
trollers: the solid line is the predefined path, dashdot
line is the path followed by the vehicle when using the
fuzzy controller and the path followed when using the
chained form controller is the dashed one. The fuzzy
controller behaves better on the curves than does the
chained form controller but it is worst when the path
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Table 3 Comparative effectiveness (reference velocity =
7 m s−1 )

RMS Max Min
(max negative)

Orientation error θ
tg
e (rad)

Chained form 0.1223 0.2862 −0.1292
Fuzzy logic 0.1146 0.1920 −0.0426

Lateral error d tg
e (m)

Chained form 0.2241 0.5631 −0.2311
Fuzzy logic 0.1190 0.2423 −0.0487

Steering command ϕc (rad)
Chained form 0.2482 0.3491 −0.3491
Fuzzy logic 0.2313 0.1463 −0.3486
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Fig. 14 Path-following simulation results, assuming no odom-
etry errors (neither measurement noise nor cumulative errors)

is a straight line. The chained form analysed here does
not embody the same prediction behaviour, described
in Section 3.2.4, as the fuzzy controller, which may be
one of the reasons of its inefficiency in curve.

Results presented in the following section concern
only with the fuzzy logic controller because when per-
forming simulations or experiments using recalibra-
tion, the heading and lateral errors feeded as inputs
are not continuous in time, showing significant val-
ues change as a result of a recalibration, for which the
chained form controller is not able to cope with.

5.2 Magnetic guidance

The VPE based on fusion of odometry and landmarks,
described in Section 4.3, has been extensively simu-
lated. Some results are shown and discussed in this
section. In the reported simulations two types of distur-
bances are considered: systematic errors and Gaussian
sensors measurement noise.

x
y

added error
added error
added error

Fig. 15 Systematic noise added to the pose (47) with K = 1.03,
[xe, ye] in meters and [θ cp

e ] in radians

Systematic errors were applied in the process by
multiplying � with a factor K , yielding

⎧⎪⎨⎪⎩
xk+1 = xk + � × K × cos(θk + ω/2)

yk+1 = yk + � × K × sin(θk + ω/2)

θk+1 = θk + ω

(47)

and so, uncertainty is introduced in the pose (xk, yk, θk).
In order to evaluate the errors introduced by systematic
errors, the magnitude of the disturbance in the vehicle’s
pose (xe, ye, θ

cp
e ) is displayed in Fig. 15.

Additionally, Gaussian noise was added, denoted by
C , resulting in

⎧⎪⎨⎪⎩
xk+1 = xk + � × K × cos(θk + ω/2) + C

yk+1 = yk + � × K × sin(θk + ω/2) + C

θk+1 = θk + ω + C

(48)

In real environments, the detection of the magnets does
not return the exact center of the magnet, so in or-
der to have simulated measures similar to real ones, a
representative model of the magnetic field radiated by
the magnetic marker was used in simulations. Thus,
a magnetic marker was modelled as a magnetic dipole
with the magnetic field, B(x, y, z), at an arbitrary point
P(x, y, z), expressed as follows (in cgs units):

B = μ0 M
4πr5

(3xzî + 3yz ĵ + (2z2 − x2 − y2)k̂) (49)
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Fig. 16 Odometry results without EKF corrections

where r =
√

x2 + y2 + z2, M is the magnetic moment
of the magnetic marker and the z-axis corresponds to
the height relative to the marker center.

Results shown in Figs. 16 and 17 exemplify how the
fusion process leads to a correct vehicle path-following.
If no correction is done, the path actually followed is
much different from the reference path. In Fig. 17 the
EKF copes with disturbances by using the magnets lo-
cated at the marked points. Although the errors are
accumulated during the curves, on the straight lines it
recovers by using the detected magnets. The fusion
method also handles false detections either coming
from hardware anomaly or from incorrectly positioned
magnets.

6 Experimental results

Extensive simulations have been done, showing the ef-
fectiveness of the proposed VPE data fusion module.
Field experiments have also been done, with the pur-
pose of analysing the localization system behaviour.
Whenever a sensor ruler detects a magnetic marker,
the measure (dm) enters the data fusion algorithm and
is accepted or not depending on the validation gate re-
sult.

Two types of experiments are reported in this sec-
tion. Both concern the path-following control of a
Robucar moving along a predefined closed path (see
Figs. 18–20). Figure 18 shows the test field environ-
ment where the virtual line represents a rough approxi-
mation of the planned trajectory. In both cases the same
fuzzy path-following controller, described here and in
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Fig. 17 VPE using EKF fusion of odometry and ten magnetic
markers (five markers on each side of the loop)

Fig. 18 Field test environment

Fig. 19 Experimental results obtained using only the front mag-
netic ruler – Robucar moving autonomously under a fuzzy path-
following controller. The four bullets represent the four physical
magnetic markers used in the experiment

detail in [2], was used. However, in one case, the de-
tected magnetic markers information was used in the
on-line computation of the vehicle’s pose, and so used
in the calculation of the errors to the controller, and in
the other case it was not used either in the vehicle’s pose
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Fig. 20 Experiment without odometry calibration – one run,
Robucar moving autonomously. In this experiment 36 magnets
were used. The path followed by the Robucar was recorded using
data from the front magnetic ruler (∗), rear magnetic ruler (+)
and data from the encoders (solid line) (standard odometry (3))

estimation or in the controller. As shown in Fig. 19,
when the vehicle passes through a magnetic marker,
the odometry is calibrated based on the detected lat-
eral deviation of the vehicle. In the experimental result
shown in Fig. 19, only four magnets, all aligned on one
side of the loop, were used. This simple configuration
was enough to keep the Robucar tracking the path. So
as to compare the performance of the navigation sys-
tem, with the calibration method based on the detected
markers, Fig. 20 illustrates an experimental test where
no calibration was done to the odometry system. In the
same figure, the solid line represents the computed path
as obtained by the odometry system and the star marks
represent the path followed by the center of the front
magnetic ruler, while the cross marks represent the path
followed by the center of the rear magnetic ruler. As
can be observed, the Robucar lost track of the path on
the first loop run, when finishing the loop. Notice that
the main error is in its orientation, hence the car before
losing the track of the path, was following a straight
line but with a wrong orientation.

7 Conclusions and future work

The fuzzy controller revealed to be very robust, this
means that it was able to cope with the two types of
errors presented in the simulations and experiments:
the first ones arriving from a normal closed loop con-

troller in path-following and the second ones when it
was submitted to sudden changes in the vehicle posi-
tion, which arise in the odometry recalibration process
using the magnets. If the magnets used in the simula-
tion were disposed in such a way that it would almost
be a continuous line of magnets then the chained form
controller would also had a good performance in cop-
ing the first and second types of errors, otherwise with
less recalibration data over time its use revealed to be
unsuitable on coping with the second type of errors.

The magnetic guidance system revealed good results
in experimental tests. We are now testing extensively
the complete fusion process, integrating also range-
bearing data from laser detected natural features [23].

The majority of systematic errors associated to the
odometry relying only on encoders are eliminated by
the markers calibration. However, that procedure alone
does not solve the slippage (or high-slippage) problem,
which can be reduced by applying confidence tests as
proposed in Section 4.2.

More field experiments are being carried out to
deeply characterize the performance of the overall VPE
data fusion module.
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