
J Supercomput (2008) 43: 241–255
DOI 10.1007/s11227-007-0143-3

Modeling and simulation of parallel adaptive
divide-and-conquer algorithms

Fernando J. Barros

Published online: 28 June 2007
© Springer Science+Business Media, LLC 2007

Abstract Conventional modeling and simulation formalisms only give support to the
representation of model behavior, providing no constructs for describing changes in
model structure. However, some systems are better modeled by self-reconfigurable
formalisms. We have developed the Discrete Flow System Specification (DFSS) to
exploit dynamic structure, component-based and hierarchical model construction.
Due to structural similarity, dynamic self-configuring DFSS models offer a good
description of systems, like adaptive algorithms and reconfigurable computer archi-
tectures. In this paper, we present the modeling and simulation of a parallel adaptive
divide-and-conquer integration algorithm in the CAOSTALK modeling and simulation
framework, a realization of the DFSS formalism.

Keywords Simulation · Dynamic structure models · Adaptive algorithms

1 Introduction

A dynamic structure model can transform itself in a new model by changing its com-
ponents and/or the connections among them. A large number of systems change their
own structure; examples include reconfigurable computer architectures [5, 11, 12]
sensor networks [7] artificial neural networks [13] and biological systems [9], to
name a few. The study of these systems has been difficult due to the lack of model-
ing and simulation formalisms with structural semantics that can mimic the structural
changes in the real systems.

In previous research, we have developed the concept of general system dynamic
structure network and its specialization for describing discrete event models [1]. The
Discrete Flow System Specification formalism (DFSS) provides a component-based

F.J. Barros (�)
Department of Informatics Engineering, University of Coimbra, 3030 Coimbra, Portugal
e-mail: barros@dei.uc.pt

242 F.J. Barros

approach to modeling and simulation. DFSS components can be built hierarchically
and hierarchical components can change their structure dynamically.

The parallelization of numerical algorithms has been extensively studied and
a large efficiency has been achieved with parallel machines. State-of-the-art parallel
computer architectures involve the use of a large number of processing elements con-
nected by a communication network that can be dynamically reconfigurable [3, 8].
Other platforms developed for massively parallel computation, like grid computation
infrastructures [4], also exhibit runtime reconfiguration characteristics.

Efficient algorithms are in many cases adaptive requiring a dynamic partition of
the problem so more computational effort is put into regions where a pre-specified
accuracy is more difficult to obtain [6]. These algorithms perform commonly better
that the corresponding non-adaptive versions that use the same effort in every part of
the problem being their performance limited by the most demanding sub-problem.
In function integration, for example, a non-adaptive algorithm divides the overall in-
tegration interval in equal width sub-intervals. To obtain a given accuracy the width
needs to be chosen so it can provide a good approximation in the overall integra-
tion interval. An adaptive algorithm uses different widths to deal with the different
segments of the integration interval so it is able choose the best width to obtain the
required precision. This type of algorithms can use a large width in the regions where
the integral can be easily computed and smaller widths where the integral yields to
larger errors.

Simulation plays an important role in assessing the performance of many systems
that cannot be adequately represented with analytical models. Simulation has been
employed to study the performance of computer architectures [14] and operating sys-
tems algorithms for dynamic load balancing [15], for example. Traditional simulation
methodologies provide a good representation for static structure models [14]. How-
ever, the representation of dynamic data structures used in adaptive algorithms cannot
be conveniently described with these simulation methods. We consider that a simula-
tion methodology able to mimic the dynamic nature of adaptive algorithms provides
a superior representation and enables easier to develop and to maintain models.

We describe in this paper a modular representation of adaptive algorithms. Each
node in the algorithm is modeled by an independent simulation component. These
nodes can be created dynamically to represent the processes spawned in the un-
derlying computer to handle the new subtasks found during algorithm execution.
Transmission links need also to be created in run-time to represent the communica-
tion channels existing between a new node and the existing ones. After a task finishes
processing, it can be destroyed so the computer can be more efficiently used and
memory released. We consider that a good representation of these dynamic algo-
rithms requires operators able to change the model structure in runtime.

In this paper, we present the model and the simulation of a parallel divide-and-
conquer adaptive numerical integration algorithm using hierarchical and dynamic
structure components. Models are described in the CAOSTALK simulation envi-
ronment. The benefits of a recursive component-based approach are discussed and
simulation results are presented.

Parallel adaptive divide-and-conquer algorithms 243

2 The DFSS formalism

The Discrete Flow System Specification formalism (DFSS) is a system theory based
formalism aimed to represent dynamic structure models [1]. DFSS provides a hi-
erarchical and modular approach to modeling and simulation activities. Two types
of models are supported in the formalism, namely, basic and network models. Basic
models interact through a well-defined set of input and output values, enabling a soft-
ware component-based orientation to model representation. These models have their
definition based on the Discrete Event System Specification (DEVS) [14]. Basic mod-
els can be combined to form dynamic structure networks, providing the constructs to
the representation of complex self-reconfigurable models.

2.1 Basic model

In DFSS basic models are defined by the structure [14]

M = (X,Y,P,ω, s0, δ, λ),

where X is the set of input values, Y is the set of output values, P is the set of partial
states (p-states), ω : P → R+

0 is the time advance function, S = {(p, e)|p ∈ P,0 ≤
e ≤ ω(p)} is the state set and e is the time elapsed in the current p-state p since the
last transition, s0 ∈ S is the initial state, δ : S × Xφ → P is the transition function,
with φ representing the absence of value Xφ = X ∪ {φ}, λ : P → Y is the partial
output function.

The transition function describes how a component changes its state. A compo-
nent in state (p, e) will change to the state (δ((p, e), x),0) when it receives an input
x after e time units elapsed since component last transition. A component in state
(p,0) receiving no input during the interval [0, ω(p)] will change autonomously to
state (δ((p,ω(p)),φ),0). A component at state (p, e) produces the output value λ(p)

when e = ω(p) and no value (φ) when e �= ω(p).

Example (Non-buffered server model) To show the behavior of atomic models we
consider the representation of a non-buffered server system. When the server is idle,
an arriving job will be sent out after service time. For simplicity, we consider deter-
ministic service times. A job arriving when the server is busy is sent immediately
without being serviced.

The server can be in several phases according to its status. The set of phases is
given by � = {idle, busy, reneging}. The model of the server is given by

NBS = (X,Y,P,ω, s0, δ, λ),

where
X = {j1, j2, . . .} is a set of jobs
Y = {(port, job) | port ∈ {#out, #ren}, job ∈ X}
P = {(phase, β, job, rt,out)| ∈ �,β ∈ R+

0 , job ∈ Xφ, rt ∈ R+
0 ,out ∈ Yφ}

ω(phase, β, job, rt,out) = β

s0 = ((idle,∞, φ,∞, φ),0)

244 F.J. Barros

δ((idle,∞, φ,∞, φ), e, j) =
(busy, 5, x,∞, (#out, j))

δ((busy, β, job, rt,out), e,φ) =
(idle, ∞, φ,∞, φ)

δ((busy, β, job, rt,out), β, j) = //e = β

(busy, 5, x,∞, (#out, j))

δ((busy, β, job, rt,out), e, j) = //e < β

(reneging, 0, job, β − e, (#ren, j))

δ((reneging, 0, job, rt, out), e,φ) = //j = φ

(busy, rt, job, ∞, (#out, job))
δ((reneging, 0, job, rt, out), e, j) = //j ! = φ

(reneging, 0, job, rt, (#ren, j))

λ(busy, β, job, rt, out) = out

Server phase diagram is represented in Fig. 1. In the diagram component, au-
tonomous transitions at the end of time β are represented by dashed arrows.

The current implementation of the formalism is made in the CAOSTALK modeling
and simulation environment [2], a Smalltalk implementation of the DFSS formalism.
The transition function is represented in Listing 1.

The transition δ(p, e, x) is implemented by the method delta:x:. Given the object
orientation of Smalltalk, p-states are a property of components and they are not used
in the parameter set. Equality of real numbers is checked by method equalTo: and
the absence of value is represented by nil.

2.2 Network model

Network models are a combination of DFSS basic models. In contrast to conven-
tional modeling and simulation formalisms, the structure of a DFSS network can
undergo dynamic transformations, the representation of self-reconfigurable systems.
The DFSS dynamic structure network is formally defined by [1]

HFNN = (XN,YN,η,Mη),

where N is the network name, X is the set of input values, Y is the set of output
values, η is the name of the dynamic structure network executive, Mη is the model of
the executive η.

The model of the executive is an extended DFSS model, defined by

Mη = (
Xη,Yη,Pη,ωη, s0,η, δη, λη,	

∗, γ
)
,

where 	∗ is the set of network structures, γ : Sη → 	∗ is the structure function.

Fig. 1 Phase diagram of
non-buffered server

Parallel adaptive divide-and-conquer algorithms 245

delta: e x: j
phase = #idle ifTrue: [

phase := #busy.
job := j.
out := #out@j.
ˆbeta := 5.0

].
phase = #busy & (j isNil)
ifTrue: [

phase := #idle.
ˆbeta := HFSS::Infinity

].
phase = #busy & (e equalTo: beta)
ifTrue: [

job := j.
out := #out@j.

ˆbeta := 5.0
].
phase = #busy ifTrue: [

phase := #reneging.
rTime := beta − e.
out := #ren@j.
ˆbeta := 0.0

].
phase = #reneging & (j isNil)
ifTrue: [

phase := #busy.
out := #out@job.
ˆbeta := rTime

].
phase = #reneging ifTrue:[

out := #ren@j.
ˆbeta := 0.0

].

Listing 1 Non-buffered server transition

The network structure 	j,e ∈ 	∗, corresponding to the state (pj,η, e) ∈ Sη, is
given by the 4-tuple

	j,e = γ (pj,η, e) = (
Dj, {Mi,j,e}, {Ii,j }, {Zi,j,e}

)
,

where Dj is the set of component names associated with the executive state (pj,η, e)

for all i ∈ Dj , Mi,j,e is the model of component i for all i ∈ Dj ∪ {η,N}, Ii,j is
the sequence of components influencers of i for all i ∈ Dj ∪ {η}, Zi,j,e is the input
function of component i, ZN,j,e is the network output function.

246 F.J. Barros

For simplicity, we assume here that the models, input function and network output
function do not change with executive elapsed time e and thus, Mi,j,e = Mi,j and
Zi,j,e = Zi,j .

These variables are subjected to the following constraints for every sj,η ∈ Sη:

η �∈ Dj, N �∈ Dj, N �∈ IN,j ,

Mi,j = (Xi,j , Yi,j ,Pi,ωi, s0,i , δi,j , λi,j) is a basic model, for all i ∈ Dj,with

δi,j : Si × Xi,j → Pi,

Zi,j : ×
k∈Ii,j

Vk,j → Xi,j , for all i ∈ Dj ∪ {η},

where

Vk,j =
{

Yk,j if k �= N,

XN if k = N.

The network output function is given by

ZN,j : ×
k∈IN,j

Yk,j → YN .

Structural changes include modifying network composition by adding or removing
components. Component interaction can also be configured in runtime by changing
the set of influencers, input function and network output function.

3 Adaptive integration algorithms

Divide-and-conquer (D&C) algorithms provide efficient methods for solving numeri-
cal problems [6]. The parallel implementation of these algorithms can further increase
their performance. The efficiency depends on the algorithm design, the computer ar-
chitecture and the mapping of the algorithm into the computer. The architecture can
be dynamic, adjusting itself to the algorithm. Performance can also be increased by
the dynamic assignment of processes to computer processing elements in order to
reduce communication and computation time.

The goal of this research is to study the performance of parallel adaptive divide-
and-conquer algorithms used in numerical integration. These algorithms pose a new
challenge to computers architecture for they require sophisticated techniques for dy-
namic load balancing. Algorithms can also benefit from self-reconfiguring computers
able to adapt their intercommunication network in order to reduce communication
time among processes [11].

D&C algorithms have a recursive nature and work by dividing problems into
smaller ones that can be solved independently. After this phase, solutions are com-
bined to yield an overall solution to the problem.

A common choice in numerical methods is to apply the integration algorithms over
the whole interval and to estimate the corresponding error. If the error is too large,
the interval is divided into sub-intervals and the same method is applied recursively

Parallel adaptive divide-and-conquer algorithms 247

in each of the intervals. After the partial solutions are found, they are combined to
produce the integral of the original interval.

The adaptive solution exhibits better performance over fixed step algorithms, since
smaller intervals can be used where the function to be integrated produces a large er-
ror and larger intervals can be used where the error is small. On fixed step algorithms,
the step size is chosen for the worst case, involving many unnecessary computations.

D&C algorithms have been successfully parallelized by exploiting the ability to
solve simultaneously independent sub-problems in different processing elements [6].
We consider in this paper the use of the DFSS formalism to represent the dynamic
nature of the adaptive algorithms. The ideal solution would be a reconfigurable
computer that can self-adapt its configuration in order to minimize inter-process com-
munication by, for example, creating shorter paths between processes that exchange
information [11]. However, we take into consideration the more widespread recon-
figurable computers [3] by modeling computation times and communication delays
as stochastic processes.

The simulation requirements of adaptive algorithms can be described with a sim-
ple example. A node is created with the information of the function to be integrated
and the limits of the integration interval [a, b]. The node computes the value intab , an
approximation to the integral based on some integration algorithm, like the Gaussian
quadrature or Simpson’s rule, for example, and computes the value errorab , an esti-
mate of the error. If errorab < maxError then the value intab is accepted as a good
approximation to the function integral in the interval [a, b]. Otherwise, the node cal-
culates the middle point m of the interval and creates two new nodes to compute the
sub-integrals intam and intmb. The integral is then given by intab = intam + intmb .

A typical behavior of D&C adaptive algorithm is described in Fig. 2, where the
computation over the interval [0, 8] is described. A first node is created to handle the
overall interval as depicted in Fig. 2a.

The computation of the function integral yields a large error in the interval and
two nodes are created to handle the sub-intervals [0, 4] and [4, 8] as represented in
Fig. 2b. The first interval needs no further refinement. However, the interval [4, 8]
needs to be divided into new intervals, Fig. 2c. When the computation of interval
[0, 4] ends, the corresponding node is deleted, Fig. 2d. When node [4–6] finishes
its tasks, the structure becomes represented by Fig. 2e. After node [6, 8] has been
removed (Fig. 2f), node [4–8] is also removed, returning the structure to the original
one (Fig. 2a). This sequence of structures is just illustrative since other structures may
have been created depending on the time computations will actually take.

4 D&C algorithm modeling and simulation

We detail now the description of the adaptive algorithm in the DFSS formalism,
giving the implementation details in the CAOSTALK environment. The integral of
a function f (x) in the interval [a, b] can be approximated by

∫ b

a

f (x) dx ≈
4∑

i=0

R2[ai, ai+1]f,

248 F.J. Barros

Figure 2 Structural changes

where R2[ai, ai+1]f is the Simpson five-point rule given by

R2[ai, ai+1]f = hi/12
{
f (ai) + 4f (ai + hi/4) + 2f (ai + hi/2)

Parallel adaptive divide-and-conquer algorithms 249

start
super start.
transmitionStream := Exponential new: 3 mean: 7.0.
computationStream := Exponential new: 5 mean: 2.0.
creationStream := Exponential new: 7 mean: 10.0.

phase := #create.
beta := creationStream next.

(n > 20) ifTrue: [self error: ‘Not converging’].

self addOutputIFD: #Executive.
self outputFunctionD: [:sol :_| sol].

(n == 0) ifTrue: [|a m b|
a := pa x.
b := pb x.
m := (a + b) ∗ 0.5.
pa := Point x: a y: (f value: a).
pm := Point x: m y: (f value: m).
pb := Point x: b y: (f value: b).

].

Listing 2 Component initialization

+ 4f (ai + 3hi/4) + f (ai + hi)
}

with hi = ai+1 − ai .
The Simpson three-point rule is given by

R1[ai, ai+1]f = hi/6
{
f (ai) + 4f (ai + hi/2) + f (ai + hi)

}
.

The approximation to the integral of function f on an interval [x, y] is accepted
when [10]

∣∣R2[x, y]f − R1[x, y]f ∣∣ < 15ε/2r ,

where r is the level of interval (x, y) considering that the overall interval (a, b) is at
level 0 and ε is the tolerance.

Each processing node is modeled by a dynamic structure network model. The
executive component is responsible for both structural changes and calculations.
The initialization of this component is made by the start method described in List-
ing 2.

Three exponential streams are created to represent node creation, computation
and data transmission times, named creationStream, computationStream and trans-
missionStream, respectively. The starting node (n = 0) computes the integral on the
overall interval. The variables pa, pm and pb have the format of pairs (x,f (x)) and

250 F.J. Barros

Figure 3 Node phase diagram

keep the information of the minimum, middle and maximum abscissas of the inte-
gration interval with the corresponding function value. DFSS network executives as
implemented in CAOSTALK have access to a set of methods developed to support
structural changes. These methods permit to add and remove components, to change
the set of influencers and to define component input functions. Other methods are
used to change network set of influencers and network output function. The meth-
ods are:

add: aModel name: aName initialState: aBlock, adds a component with model
aModel using aBlock to define the initial state;

remove: aName, removes a component;

component: aName addIFD: bName, adds an influencer;

component: aName inputFunctionD: aBlock; sets the input function;

component: aName removeIFD: bName, removes an influencer;

addOutputIFD: aName, adds an influencer to the network;

outputFunctionD: aFunction, sets the network output function.

Each node goes through a sequence of actions described in Fig. 3. The node starts
in the create phase. After creation time, the node changes to the compute phase. In
this phase, it calculates a first approximation to the integral. If the approximation is
accurate enough, the node changes into the solution phase that models the time to
transmit the solution to the parent. If the first solution has not the desired accuracy,
the node creates two children and changes to phase wait. In this phase, the node waits
until it receives both solutions and it then goes to phase solution. After sending the
solution, the node changes to phase stop and it waits to be removed.

The detailed description of node behavior is given in Listing 3. To simplify the
model we consider that a parent only removes its children after receiving results from
both.
The method simpson: function pa: a_fa pm: m_fm pb: b_fb receives the function
to be integrated and the three points corresponding to the extreme points and the mid-
dle point of the integration interval. The method produces a four-value array with (err,
int, p2, p4) where err is the error estimate, int is the function integral, p2 and p4
are the new points computed by the method in addition to the three points received as
arguments, so the Simpson five-point rule can be used. These points are sent as output
values so they can be used by the children nodes, avoiding their re-computation. The
Simpson component starts with a network containing only the executive, as depicted

Parallel adaptive divide-and-conquer algorithms 251

Figure 4 The Simpson network

in Fig. 4a. The executive is created with an interval and a function. If the execu-
tive cannot calculate the integral with the required accuracy, it creates two nodes for
handling the sub-intervals, Fig. 4b. The new children receive a first approximation
to the integral computed at the parent node. The children nodes repeat this process
recursively.

When a value arrives from one of the children, the parent node stores the result.
After receiving both results, the parent node deletes the two children and sends the
sum to its own parent. The ability to represent this recursive algorithm with a recur-
sive model yields a direct representation, permitting models to be easily developed.

4.1 Simulation results

We have tested the adaptive algorithm to compute the integral of the function
f (x) = x ln(x)(x + 1.0)−3/2, in the interval [1.0, 9.0]. The nodes used to perform
the calculation are depicted in Fig. 5. The computation required 13 nodes, whereas
a constant step algorithm with a step equal to the minimum step used by the adaptive
Simpson’s rule would require 16 nodes. We have considered the tolerance ε = 10−5.

Table 1 gives, for several integration intervals, the number of nodes NA used by the
adaptive algorithm, the number of nodes NF required by an equivalent non-adaptive
algorithm, the value of the integral and the mean time to execute the algorithm. This
time is taken as the mean of 20 simulation runs. In these experiments we have used
a transmission time given by the stochastic distribution Exp(7), a computation time
given by Exp(2) and a creation time given by Exp(10). These values depend actually
on the computer architecture and on the load in each node. A reconfigurable computer
architecture providing shorter transmission paths to neighbor nodes can increase the
algorithm performance by reducing the mean time required to exchange information.

As shown in Table 1, adaptive algorithms can exhibit large gains when compared
with the non-adaptive solution. In the last experiment, we can observe that although
the solution tree has a height of 21 levels, only 495 nodes were used, whereas the non-
adaptive version would require 220 intervals. Due to the reduced number of nodes

252 F.J. Barros

delta: _ xd: xd
| left right m fm |
phase = #create ifTrue: [

phase := #compute.
ˆbeta := computationStream next

].
phase = #solution ifTrue: [

phase := #stop.
ˆself beta := HFSS::Infinity

].
left := (name asString, ‘::L’) asSymbol.
right := (name asString, ‘::R’) asSymbol.
phase = #compute ifTrue: [| error |

simpson := self simpson: f pa: pa pm: pm pb: pb.
error := simpson x.
error < (15.0 ∗ 1.0e-5 / (2.0 ∗∗ n)) ifTrue: [

phase := #solution.
out := simpson y.
ˆbeta := 0.0

].
phase := #wait.

self add: Simpson name: left initialState: [:g |
g function: f pa: pa pm: (simpson at: 3) pb: pm depth: (n + 1)

].
self add: Simpson name: right initialState: [:g |

g function: f pa: pm pm: (simpson at: 4) pb: pb depth: (n + 1)
].
self component: #Executive addIFD: left.
self component: #Executive addIFD: right.
self component: #Executive inputFunctionD: [:ls :rs :_| Array with: rs with: ls].
phase := #stop.
ˆbeta := HFSS::Infinity

].
phase = #wait ifTrue: [| ls rs |

ls := xd at: 1.
rs := xd at: 2.
ls isNil ifFalse: [

nSolutions := nSolutions + 1.
result := result + ls.

].

Listing 3 Simpson executive transition function

Parallel adaptive divide-and-conquer algorithms 253

rs isNil ifFalse: [
nSolutions := nSolutions + 1.
result := result + rs.

].
(nSolutions < 2) ifTrue: [ˆbeta := HFSS::Infinity].
self component: #Executive removeIFD: left.
self component: #Executive removeIFD: right.
self remove: left.
self remove: right.
phase := #solution.
out := result.
ˆbeta := transmissionStream next

].

Listing 3 (Continued)

Figure 5 Nodes used for
computing the integral

Table 1 Simulation results

Interval [a, b] Levels NA NF ∫
f (x)dx Mean execution time (20 runs)

[1–100] 10 55 29 = 512 52.684274 196.1

[1–1000] 14 137 213 = 8,192 309.844332 300.9

[1–10000] 18 319 217 = 131,072 1441.010241 382.1

[1–20000] 20 401 219 = 524,288 2234.302233 425.5

[1–40000] 21 495 220 3437.448710 448.6

used and to the parallel running of the numerical method, algorithm execution time
has only a small increment with the interval width, as shown in Fig. 6.

5 Conclusions

The DFSS formalism provides a comprehensive framework for representing reconfig-
urable models. Modeling and simulation of parallel adaptive algorithms can benefit
from modeling formalisms able to represent the dynamic creation and destruction
of processes with variable topology models. The component-based characteristics of

254 F.J. Barros

Figure 6 Algorithm execution
time obtained by simulation
(95% confidence intervals)

DFSS models make the formalism suitable to represent complex systems. The recur-
sive nature of dynamic DFSS networks permits to represent the reconfigurable data
structures required by adaptive numerical algorithms. We have described an adaptive
integration algorithm based on the Simpson’s rule that exhibits a superior perfor-
mance when compared with the fixed step version of the algorithm that distributes
the computational effort equally over the integration interval. The parallel adaptive
algorithm was represented by hierarchical and modular simulation models with dy-
namic structure. This representation mimics the structural changes undergone by the
algorithm and provides easy to build and to maintain models offering an excellent
framework for simulating parallel adaptive algorithms.

Acknowledgements This work was partially supported by the Portuguese Foundation for Science and
Technology (FCT), under project POSI/SRI/ 41601/2001.

References

1. Barros FJ (1997) Modeling formalisms for dynamic structure systems. ACM Trans Modeling Comput
Simul 7(4):501–515

2. Barros FJ (2002) Modeling and simulation of dynamic structure heterogeneous flow systems. SIMU-
LATION: Trans Soc Model Simul Int 78(1):18–27

3. Compton K, Hauck S (2002) Reconfigurable computing: a survey of systems and software. ACM
Comput Surv 34(2):171–210

4. Johnston WE (2002) Computational and data grids in large-scale science and engineering. Futur Gener
Comput Syst 18:1085–1100

5. Kartachev SP, Kartachev SI (1987) Analysis and synthesis of dynamic multicomputer networks that
reconfigures into rings, trees and stars. IEEE Trans Comput 36(7):823–844

6. Kumaran S, Quinn MJ (1995) Divide-and-conquer programming on MIMD computers. In: Proceed-
ings of the 9th international parallel processing symposium, pp 734–741

7. Lim A (2001) Distributed services for information dissemination in self-organizing sensor networks.
J Franklin Inst 338:707–727

8. Mei B, Lambrechts A, Mignolet JY, Verkest D, Lauwereins R (2005) Arquitecture exploration for
a reconfigurable architecture template. IEEE Des Test Comput 2:90–101

9. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási A-L (2002) Hierarchical organization of
modularity in metabolic networks. Science 297:1551–1555

10. Ralston A, Rabinowitz P (1978) A first course in numerical analysis. Dover, New York
11. Srinivas S (1992) Design and analysis of a generalized architecture for reconfigurable m-ary tree

structures. IEEE Trans Comput 41(11):1456–1478
12. Wang IY (1986) Simulation of a modular hierarchical adaptive computer architecture with communi-

cation delay. MS thesis, Department of Electrical and Computer Engineering, University of Arizona
13. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447

Parallel adaptive divide-and-conquer algorithms 255

14. Zeigler BP (1990) Object-oriented simulation with hierarchical, modular models: intelligent agents
and endomorphic systems. Academic, New York

15. Zhou S (1988) A trace-driven simulation study of dynamic load balancing. IEEE Trans Softw Eng
14(8):1327–1341

Fernando J. Barros is an assistant professor at the University of Coimbra (Por-
tugal). He received a Ph.D. degree from the University of Coimbra in 1997. His
research interests include theory of modeling and simulation, dynamic structure
models and adaptive software architectures. Fernando Barros is currently associ-
ated editor of Simulation: Transactions of the SCS and member of the editorial
board of the International Journal of Simulation & Process Modeling.

	Modeling and simulation of parallel adaptive divide-and-conquer algorithms
	Abstract
	Introduction
	The DFSS formalism
	Basic model
	Example (Non-buffered server model)

	Network model

	Adaptive integration algorithms
	D&C algorithm modeling and simulation
	Simulation results

	Conclusions
	Acknowledgements

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

