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AN INTERLACING THEOREM FOR MATRICES
WHOSE GRAPH IS A GIVEN TREE

C. M. da Fonseca UDC 512.643

ABSTRACT. Let A and B be (nxn)-matrices. For an index set S C {1,...,n}, denote by A(S) the principal
submatrix that lies in the rows and columns indexed by S. Denote by S’ the complement of S and define
n(A, B) = det A(S) det B(S’), where the summation is over all subsets of {1,...,n} and, by convention,

s
det A(@) = det B(@) = 1. C. R. Johnson conjectured that if A and B are Hermitian and A is positive
semidefinite, then the polynomial n(AA, —B) has only real roots. G. Rublein and R. B. Bapat proved that
this is true for n < 3. Bapat also proved this result for any n with the condition that both A and B are
tridiagonal. In this paper, we generalize some little-known results concerning the characteristic polynomials
and adjacency matrices of trees to matrices whose graph is a given tree and prove the conjecture for any n
under the additional assumption that both A and B are matrices whose graph is a tree.

1. Introduction

Throughout the paper, let us assume that A = (a;;) and B = (b;;) are square matrices of order n.
For an index set S C {1,...,n}, we denote by A(S) the |S| x |S| principal submatrix lying in the rows
and columns indicated by S. We may also write Ag or A[S] for A(S”), where S’ is the complement of S.

Define

(A, B) = _det A(S) det B(S'),
S

where the summation is over all subsets of {1,...,n} and, by convention, det A(@) = det B(&@) = 1.
Equivalently, considering

ap(A, B) = ) det A(S)det B(S"),

[S|=F
we may define
(A, B) =Y ox(4,B). (1.1)
k=0
Note that
n(Al,, —B) = det(\I,, — B), (1.2)

i.e., n(Al,, —B) is the characteristic polynomial of B. It is well known that if B is Hermitian, then the
roots of (1.2), i.e., the eigenvalues of B, are all real. Motivated by this result, C. R. Johnson [7] considered

the polynomial
n

n(AA,—B) = (=1)" Fay(4, B)A\* (1.3)
k=0
and stated the following conjecture.

Conjecture 1.1 (C. R. Johnson [7]). If A and B are Hermitian matrices and A is positive semidefinite,
then the polynomial n(AA, —B) has only real roots.
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Note that if A is not positive semidefinite, then the above conjecture is false. In fact, consider the

matrix
0 1
A_<1 O).

This matrix is obviously not positive semidefinite. Setting

we have
n(AA, —B) = =2 — )\?,
with pure imaginary roots

M =iV2, A= —iV2.

If all roots )\f(B), ¢=1,...,n, of the polynomial (1.3) are real, then we assume that they have been
arranged in increasing order:

M(B) <... < M{(B).

Considering the so-called Cauchy interlacing inequalities for the eigenvalues of principal submatrices of
Hermitian matrices (cf., e.g., [3]), R. B. Bapat in [1] and C. R. Johnson in [8] conjectured the following.

Conjecture 1.2. If A and B are Hermitian matrices and A is positive definite, then )\KAl(Bl), for £ =
1,...,n — 1, interlace )\f(B), for{=1,...,n,ie.,

AMY(B) <N (By) < ML(B), £=1,...,n—1. (1.4)

For example, let us consider the matrices

3 i 21— 1 2 147 1
i 20 0 2 -2 0 0
A=1 9 o4 o | B=|12: 0 -1 o
144 0 0 5 1 0 0 3/2

The matrix A is positive definite and
NAA, —B) = 13 — 24\ — X% — 2123 + 44)*
has roots
A1 = —1.49421, A9 = —0.41081, A3 =0.22289, X4 = 2.15941.
On the other hand,
N(AAy, —B1) = —3 — 5\ + 38)\% 4+ 40)°
has roots
w1 = —1.00000, w2 = —0.25000, w3 = 0.30000.
Hence
A1 < p1 < A2 < p2 < pg < Ag

The Cauchy interlacing inequalities lead us to a more general conjecture.

Conjecture 1.3. Let S be a subset of {1,...,n} with k elements. If A and B are Hermitian matrices

and A is positive definite, then )\?S(Bs), for ¥ =1,...,n — k, interlace )\f(B), for £ = 1,...,n, in the
following way:

MYB) < A\JS(Bs) < MAy(B), €=1,....n—k. (1.5)
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If Conjecture 1.2 is true, then (1.5) can be obtained by repeated application of the interlacing in-
equalities (1.4) and, therefore, Conjecture 1.3 is also true.

Conjecture 1.1 has been verified for the case n = 3 by Rublein [11]. In order to obtain the result,
three subcases are considered. The treatment is quite complicated, and it seems that the proof will not
carry over easily to orders n > 4. On the other hand, Bapat in [1] gave the solution for n < 3 in a very
concise and elegant way. As a matter of fact, in [1] we can find the only effort to solve Conjecture 1.1
(and Conjecture 1.2) for any n so far, namely when both A and B are tridiagonal.

Several other conjectures were proposed by Johnson [7,8]. After some difficult and considerable
computational experimentation, Johnson suggested that the roots of (1.3) behave qualitatively very much
like the eigenvalues of B. For example, (1.3) has as many positive, negative, and zero roots as the inertia
of B would suggest. Also, the roots of n(AA, —B) seem to be the eigenvalues of some Hermitian matrix
closely related to A and B. There are also some straightforward results. For example, if B is nonsingular,
then all the roots of (1.3) are nonzero.

In this paper, we generalize some results on graphs (see [2,4,9]) and use some important ideas
developed in [1] to prove that the conjectures are true when both A and B are matrices whose graph is
a tree.

2. Weighted Trees

A graph G is a pair (V, E), where V = V(G) = {1,...,n} is the vertex set and the edge set F is
a subset of the direct product V' x V. We say that vertices ¢ and j are adjacent, and write i ~ j, if (4, 7)
is an edge of G and i # j. The symbol ~ means adjacent or equal.

A tree is a connected graph without cycles, and a forest is a graph each of whose components is a tree.
In this paper, we consider finite graphs possibly containing loops (i.e., (i,7) may be an edge). If to each
edge (7,j) a complex number is assigned, then we have a weighted graph.

If A = (a;j)is a Hermitian matrix, then the (weighted) graph G = G(A) of A is determined entirely
by the off-diagonal entries of A: the vertex set of G(A) is {1,...,n}, and i and j are adjacent if and only if
a;j # 0. The matrix A is something like the weighted adjacency matrix of G(A). If A is a 01-matrix, with
the main diagonal equal to zero, then A is the adjacency matrix of GG. In general, we consider matrices
whose graph is subordinated to a tree T, i.e., the graph of the matrix is a subgraph of T'.

If S is a subset of V(G), then G \ S is the subgraph of G induced by the vertices not in S. The
(weighted adjacency) matrix of G\ S is Ag. If e = (4,7) is an edge of G, then G \ e is obtained by
deleting e but not the vertices ¢ or j. In this case, the matrix of G \ e is equal to that of G, except for
the (i, j)-entry and, by symmetry, the (j,7)-entry, which are zero. Finally, (G, \), or simply ¢(G), is the
characteristic polynomial of A(G), i.e.,

e(G,\) = p(G) = det(A], — A(Q)).

Let us define w;;(A) = —\aij\Q if i # j and w;;(A) = a;. Sometimes we abbreviate to w;;. The next
result provides a general recurrence relation between different characteristic polynomials.

Lemma 2.1. Ife = (i,j) is an edge in a (weighted) tree T, then
p(T) = ¢(T'\ ) + wije(T \ ij). (2.1)

Proof. Let E;j be the matrix with (4, j)-entry equal to 1 and all other entries equal to zero. Denote by E
the sum aijEij + C_lijEji- Note that

A(T) = A(T \ e) + E.

Since the determinant is a multilinear function on the columns and 7T is a tree, we get (2.1). O
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Lemma 2.2. If T is a (weighted) tree and k € V(T'), then

o(T) = (A —wie) (T \ k) + D> wiip(T \ ki)
i~k

Proof. Equality (2.2) can be derived by iterating formula (2.1).

From Lemma 2.2 we can get an expression for the determinant of a tree.

Corollary 2.3. If T is a (weighted) tree and k € V(T), then
det(T) =) wyi det(T'\ ki).

i~k

Proof. Set A =0 in (2.2).

3. An Interlacing Theorem for Trees

For a square matrix A, we write A > 0 to denote that A is positive definite.

Bapat proved the veracity of Conjectures 1.1 and 1.2 in the case n = 2.

(2.3)

Lemma 3.1 (R. B. Bapat [1]). Let A and B be Hermitian matrices of order 2 with A > 0. Then
n(AA, —B) has two real roots, say a1 < ag. Furthermore, a1 < baa/azs < o, and the inequalities are

strict if bis # 0.

Note that if bjs = 0, then G(B) is the forest with two vertices.
The key tool to proving the main result is the following lemma.

Lemma 3.2. Let A and B be Hermitian matrices whose graph is a given tree. Then

(A, B) =Y (wii(A) + wii(B))n(Aw;, Bui).

i~1
Proof. Let C' = {i | i ~ 1}. For each subset P of C' consider
Ap={S|1e€S, PCS, and P NS =g}

and
Cp={S|1¢8S, PCS, and P'NS = o},

where P’ is the complement of P with respect to C'. Thus, we get a set of parts of {1,.

we have
det A(S) =) wy; det A(S \ ki),
i~k
and for S € Cp, we have
det B(S') = > wy; det B(S"\ ki).
i~k

Substituting all these expressions in (1.1), we get the result.

Remark 3.1. Formula (3.1) can be generalized to any vertex k in the following way:

(A, B) =Y (wri(A) + wii(B))n(Agi, Bri).

i~k

..,n}. For S € Ap,

(3.2)

Using now induction on n, we can follow the proof of Theorem 3 in [1] (included here for completeness)

and get the main result.
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Theorem 3.3. Let A and B be Hermitian matrices whose graph is a given tree, and let A > 0. Then
n(AA, —B) has real roots, say
A< A< <A
Furthermore, if
Pl S P2 S-S -1
are the roots of n(AA1, —B1), then

M <A< e <K ip—1 < A, (3.3)

Proof. For n =1 and n = 2 the result is already known. Suppose now that the result is true for matrices
of order n — 1. Let us prove that the same is true for n.
By (3.1),

’I’]()\A, —B) = ()\(111 — bll)n()\Alu —Bl) - Z()\2|a1i|2 + |b17;|2)77()\A1i, _Bli)- (34)
inl
By hypothesis, the roots pi,u2,...,pn—1 of n(AA1,—Bi) and the roots vi,vi ...,v. 5 of
n(AA1i, —Bu;), for i ~ 1, are real, and

pr <vp < p2 <. <y,

n—

9 < fip—1 for i~ 1.
Since n(AA1;, —B1;) — 00 as A — oo, for i ~ 1,
sign (ueAArg, —Bpi) = (=)7L, for i~1 andfor £=1,...,n—1.
Replacing in (3.4) A by g, we get
signn(ueA, —B) = — Zsignn(MAu, —By) = ()"t for £=1,...,n—1.
i~1

Finally, since n(AA,—B) — (£)"c0 as A — =oo, it follows that n(AA, —B) has a root in each of the
intervals

(—OO, Ml)? (/”’27 MS)? ey (Mn—Za ,U'n—l)a (Hn—lv OO)J
and therefore n(AA, —B) has n real roots which interlace pi1, p2, . .., fin—1. O

In [1], Bapat considered tridiagonal Hermitian matrices, i.e., Hermitian matrices whose graph is
a given path, which is a special example of a tree.

The graph of the matrices A and B from the second example of the initial section is the star with
4 vertices:

Fig. 1. Star with 4 vertices.

We remark that Theorem 3.3 is also true for the roots of n(AAy, —By), i.e., the roots of n(AAs, —By)
interlace those of n(AA, —B) (see [8, (3)]).
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4. Generalizations and Consequences

If we cut a set of vertices of the graphs of A and B, then we get some generalizations of previous
results.

Theorem 4.1. Let A and B be Hermitian matrices whose graph is a given tree, let A > 0, and let S be
a subset of V(G) such that |S| = k > 1. Then the n real roots of n(AA, —B), say A1 < A2 < ... < Ay, and
the n — k real roots of n(AAs, —Bg), say p1 < p2 < ... < fn_g, interlace as follows:

Ae S pe < Ay, £=1,...,n—k. (4.1)

Proof. Inequalities (4.1) can be obtained by repeated application of the interlacing inequalities (3.3) from
Theorem 3.3. ]

Consider the following tree with 5 vertices.

Fig. 2. A tree with 5 vertices.

Let us consider the Hermitian positive-definite matrix whose graph is the tree from Fig. 2:
2 1/2 0 0 0

/2 1 -1 0 0
A= 0 -1 5 -2 —1+i
o 0 -2 3 0

0 0 —-1-7 0 4
The graph of the matrix

0 2 0 0 0
2 -1 1 0 0
B = 0 1 0 —7 =1
0 0 i =1 0
0O 0 -1 0 1
is the same tree. We have
345 85
n(AA, —B) = 50\ — 54\% — 181)\3 + Txl + 7A5,

with roots
A1 = —3.20024, Xy = —0.61837, A3 =0.00000, Ag=0.44093, M5 = 1.34827.

Setting S = {2,4}, we get
n(AAg, —Bg) = —2X\ — 10A% 4 363,
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with roots
p1 = —0.13469, puo = 0.00000, ps = 0.41246.
Therefore,
AL S <Az, A S pe <Ay, A3 < s < s
Since for a Hermitian matrix A such that its graph is a given forest and A > 0 the polynomial
n(AA, —A) has only real zeros, we see that the average Fischer terms

(693 A, A
g = 2l d)
(&)
for k=1,...,n, form a log-concave sequence [5, Lemma 3.2], i.e., ﬂ,% > Pr_10k+1, for k = 1. Therefore,

) > P > ... > Bn .
Bo ~ B Br—1
This also generalizes the results of Bapat to a larger class of matrices.
Finally, we give an analog for the Schur’s result that states that if B is a Hermitian matrix, then the
eigenvalues of B majorize the diagonal entries.
For z,y € R™, we say that x is weakly majorized by y, and write z <,, y, whenever

i+t <y +- 4y foral ke{l,....n},

where 2,..., 2, denotes the nonincreasing rearrangement of z € R" (see [10]).
Bapat considered tridiagonal matrices.

Theorem 4.2 ([1]). Let A and B be positive-definite, tridiagonal matrices. Then

(bg b_> <o (M(B).... M(B)).

ail ’ Ann
Taking into account the proof of Theorem 3.3, we can state the following theorem.

Theorem 4.3. Let A and B be Hermitian matrices whose graph is a given tree, and let A > 0. Then
(E bn_n)
aii Y Ann
(M(B), .. NAB)) .

This work was supported by CMUC—Centro de Matemética da Universidade Coimbra.

1s weakly majorized by
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