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Abstract Let Xn, n ≥ 1, be a strictly stationary associated sequence of random
variables, with common continuous distribution function F. Using histogram type
estimators we consider the estimation of the two-dimensional distribution function of
(X1, Xk+1) as well as the estimation of the covariance function of the limit empirical
process induced by the sequence Xn, n ≥ 1. Assuming a convenient decrease rate of
the covariances Cov(X1, Xn+1), n ≥ 1, we derive uniform strong convergence rates
for these estimators. The condition on the covariance structure of the variables is sat-
isfied either if Cov(X1, Xn+1) decreases polynomially or if it decreases geometrically,
but as we could expect, under the latter condition we are able to establish faster con-
vergence rates. For the two-dimensional distribution function the rate of convergence
derived under a geometrical decrease of the covariances is close to the optimal rate
for independent samples.
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1 Introduction, assumptions and definitions

A sequence of random variables Xn, n ≥ 1, is said to be associated if for any m ∈ IN
and any two real-valued coordinatewise nondecreasing functions f and g it holds

Cov
(

f (X1, . . . , Xm) , g (X1, . . . , Xm)
)

≥ 0 ,
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whenever this covariance exists. This dependence concept, introduced in Esary et al.
(1967), occurs naturally in every frame-work that depends on monotone transforma-
tions of random variables such as reliability theory, censored or truncated sampling
(see, for example, Barlow and Proschan (1975)). The dependence notion appears also
in statistical mechanics referred to as FKG inequalities (see Fortuin et al. (1971)).

Let Zn(t)= n−1/2 ∑n
i=1

(
I(−∞,t](Xi) − F(t)

)
be the empirical process induced by

the random variables Xn, n ≥ 1, with common continuous distribution function F,
where IA represents the indicator function of the set A. For associated random vari-
ables, under suitable assumptions on their covariance structure (see Louhichi (2000)
and Oliveira and Suquet (1995, 1998) for the best known results on the covariance
decrease rates for the convergence in D[0, 1], L2[0, 1] or Lp[0, 1], respectively), Zn
converges weakly to a centered Gaussian process with covariance function

�(s, t) = F(s ∧ t) − F(s)F(t)

+
∞∑

k=1

(
P

(
X1 ≤ s, Xk+1 ≤ t

) − F(s)F(t)
)

+
∞∑

k=1

(
P

(
X1 ≤ t, Xk+1 ≤ s

) − F(s)F(t)
)

. (1)

As it is well known, the asymptotic behavior of the empirical process is of great
interest in many statistical applications. In several fields of statistics we often find
transformations of the empirical process for which it is of interest to characterize
their limit in distribution. The results about the asymptotic behavior of the empiri-
cal process are a valuable tool to accomplish this. Some classic examples are several
goodness of fit tests statistics, such as the Kolmogorov–Smirnov and the Cramér–von
Mises ω2 test statistics, which are, respectively, the sup-norm and the L2[0, 1] norm
of the uniform empirical process (the empirical process of U[0, 1] distributed random
variables). Another example of application may be found in Shao and Yu (1996), who
are interested in integral functionals of the empirical process and in the mean residual
life processes in reliability.

The above comments and remarks motivated the interest in the estimation of
the covariance function (1). For this we will estimate the terms appearing in the
series and sum a convenient number of these estimates to approximate �. We will
concentrate on histogram estimators and in proving uniform strong convergence
rates.

For each k ∈ IN0 = IN ∪ {0}, the estimator for Fk(s, t), the distribution function of
(X1, Xk+1), is defined by

F̂k,n(s, t) = 1
n − k

n−k∑
i=1

(
I(−∞,s](Xi)I(−∞,t](Xi+k)

)
. (2)

The asymptotic properties of this estimator were studied by Henriques and Oliveira
(2003), who derived conditions on the covariance structure of the sequence Xn, n ≥ 1 ,
for the uniform almost sure consistency of this estimator and for the convergence in
distribution of the finite dimensional distributions. Furthermore, the convergence rate
of the mean square error was characterized. However, no rates were provided for the
uniform strong convergence.
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Combining the estimator F̂k,n(s, t) with the empirical distribution function
defined by F̂n(s) = n−1 ∑n

i=1 I(−∞,s](Xi) , we obtain a natural estimator for the terms
ϕk(s, t) = Fk(s, t) − F(s)F(t), namely,

ϕ̂k,n(s, t) = F̂k,n(s, t) − F̂n(s)F̂n(t). (3)

The estimators for the infinite sum in the expression of �(s, t) and for �(s, t) itself are,
respectively,

an∑
k=1

ϕ̂k,n(s, t) (4)

and

�̂n(s, t) = F̂n(s ∧ t) − F̂n(s)F̂n(t) +
an∑

k=1

(
ϕ̂k,n(s, t) + ϕ̂k,n(t, s)

)
. (5)

where an −→ +∞ is such that an
n −→ 0.

It is well known that the covariance structure of a sequence of associated random
variables determines its approximate independence (see, for example, Newman (1984)
for a number of results regarding this). As a natural consequence, when dealing with
associated samples it is common to have assumptions on the covariance structure of
the random variables. Introducing the assumptions to be used in the results of this
article we define

u(n) =
∞∑

j=n+1

Cov1/3(X1, Xj). (6)

Note the exponent 1/3 in the definition of u(n). In the literature on associated vari-
ables this exponent is usually not present. Here it is convenient to include it in the
definition of u(n), as we are concerned with indicators of the associated variables
rather than in the variables themselves. The need for this exponent is explained by
inequality (7) below.

We now introduce two general assumptions to be used throughout the article.

(S1) Xn, n ≥ 1, is an associated and strictly stationary sequence of random variables
having density function bounded by B0; let B1 = 2 max(2/π2, 45B0).

(S2) Let θ > 0. There exists a constant C0 > 0 such that u(n) ≤ C0n−θ , for all n ≥ 1.

Note that under (S2),

u(0) =
∞∑

j=1

Cov1/3(X1, Xj) < ∞.

In order to be able to identify explicit convergence rates for the proposed estima-
tors, we consider the following assumptions on the decay rate of the covariances of
the random variables.

(G) Suppose that there exist a0 > 0 and a > 1 such that Cov(X1, Xn) = a0a−n.
(P) Suppose that Cov(X1, Xn) = a0n−a, with a0 > 0 and a > 3.

Note that, under (G) assumption (S2) holds for all θ > 0, while under (P)
assumption (S2) holds for all θ ∈ (0, a/3 − 1].
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Under (S1) we may apply relation (21) in Newman (1980) and Corollary to The-
orem 1 in Sadikova (1996) to find (see Lemma 2.6 in Roussas (1995) for details)

Cov
(
I(−∞,s](Xi), I(−∞,t](Xj)

) ≤ B1Cov1/3 (
Xi, Xj

)
, s, t ∈ IR , (7)

where B1 is defined in (S1).
In Henriques and Oliveira (2003), the authors have already derived uniform strong

convergence rates for the estimators studied here. The method used in Henriques and
Oliveira (2003) was based on exponential inequalities, and required quite fast decay
of Cov(X1, Xn). In fact, the results in Henriques and Oliveira (2003) hold under a
geometric decay rate of the covariances (G), but not under a polynomial decay (P).
More precisely, under (G), it was established that the estimators F̂k,n and ϕ̂k,n are
uniformly strong consistent with a convergence rate of order n−1/3 log2/3 n. Further-
more, also under (G), it is shown that the estimators for the infinite sum

∑∞
k=1 ϕk(s, t)

and for �(s, t) converge almost surely at a rate of order n−1/3 log5/3 n. Here, we will
improve these results in two ways. First we will be able to characterize the rate of
convergence not only under (G) but also under (P); second, under (G) we will de-
rive faster rates of convergence than those mentioned previously. Furthermore, for
the estimation of Fk(s, t), under (G), we obtain convergence rates which approach
the best possible ones for independent samples (see, in Sect. 3, the comment just
before Theorem 3.3). The starting point for the derivation of these rates is a mo-
ment inequality for associated random variables by Shao and Yu (1996). Our method
was inspired by Masry (2002), who uses moment inequalities to obtain convergence
rates for the estimation of the density and its derivatives, considering also associated
samples.

In Sect. 2, we will present some auxiliary results needed to establish the above
mentioned convergence rates. The moment inequality referred to earlier is included
in this section. The results establishing rates of uniform strong convergence are pre-
sented in Sects. 3 and 4, Sect. 3 dealing with the estimators F̂k,n(s, t) and ϕ̂k,n(s, t) and
Sect. 4 with the estimators

∑an
k=1 ϕ̂k,n(s, t) and �̂n(s, t).

2 Auxiliary results

As mentioned earlier, the convergence rates that will be established in this article
follow from a moment inequality, which is stated in the next lemma. This result is a
version of Theorem 4.2 of Shao and Yu (1996), for bounded and strictly stationary
random variables, where we took (referring to notation of Shao and Yu (1996)) f to
be the identity function, r = ∞, θ = p−2

2 and ε = p
2 − 1.

Lemma 2.1 (Shao and Yu (1996)) Let Yn, n ≥ 1, be a strictly stationary sequence of
associated random variables satisfying E(Yj) = 0 and

∣∣Yj
∣∣ ≤ M < ∞, for j ∈ IN. Let

p > 2 and assume that there exists a constant C1 > 0 such that, for each n ∈ IN,

∞∑
j=n+1

Cov(Y1, Yj) ≤ C1 n− p−2
2 .
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Then, there exists a constant K = K(p) such that, for all n ∈ IN ,

E

∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣
p

≤ K np/2

⎛
⎜⎝E |Y1|p +

⎛
⎝max

i≤n

n∑
j=1

Cov(Yi, Yj)

⎞
⎠

p/2

+ Mp−2C1

⎞
⎟⎠ .

Based on the previous result we establish an inequality that will be essential in
proving convergence rates.

Lemma 2.2 Let k ∈ IN0 be fixed and let εn be a sequence of positive numbers. Suppose
(S1) and (S2) are satisfied with θ = p−2

2 , for some p > 2, for the latter. Then, there
exists a constant K = K(p) such that, for each n > k and s, t ∈ IR,

P
(∣∣F̂k,n(s, t) − Fk(s, t)

∣∣ > εn
) ≤ D

ε
p
n(n − k)p/2

(8)

with

D = K
(

1 + (10B1u(0))p/2 + ck

)

and

ck = B1 max
{
4C0(k + 1)θ , 3C0 + 2u(0)kθ

}
.

Proof For each n ∈ IN and fixed s, t ∈ IR define

Wk,n = I(−∞,s](Xn)I(−∞,t](Xk+n) − Fk(s, t)

so that we can write

F̂k,n(s, t) − Fk(s, t) = 1
n − k

n−k∑
i=1

Wk,i .

Given (S1), since the Wk,n are decreasing functions of the variables Xn, the
sequence Wk,n, n ≥ 1, is associated and strictly stationary. Furthermore,

∣∣Wk,n
∣∣ ≤ 1

and E(Wk,n) = 0, for each n ≥ 1.
We want to apply Lemma 2.1 to the sequence Wk,n, n ≥ 1, so that we need to check

that there exists a positive constant C1 such that, for all m ≥ 1,
∞∑

j=m+1

Cov(Wk,1, Wk,j) ≤ C1 m−θ . (9)

Applying a classical inequality by Lebowitz (1972) and (7) we obtain

Cov(Wk,1, Wk,j) ≤ B1

[
Cov1/3(X1, Xj) + Cov1/3(X1, Xk+j)

+ Cov1/3(Xk+1, Xj) + Cov1/3(Xk+1, Xk+j)
]

. (10)

Thus, on account of (S2), we get, for every m > k,
∞∑

j=m+1

Cov(Wk,1, Wk,j) ≤ 2B1u(m) + B1u(m + k) + B1u(m − k)

≤ 2B1C0m−θ + B1C0(m + k)−θ + B1C0(m − k)−θ

≤ 4B1C0(m − k)−θ

≤ 4B1C0(k + 1)θ m−θ ,
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where, for the last step we used the fact that
{(

m
m−k

)θ

, m > k
}

is a nonincreasing

sequence in m, so bounded above by the first-term.
Moreover, for any m ≤ k, we obtain from (10),

∞∑
j=m+1

Cov(Wk,1, Wk,j) ≤ 2B1u(m) + B1u(m + k) + B1

∞∑
j=m+1

Cov1/3(Xk+1, Xj)

≤ 2B1u(m) + B1u(m + k)

+B1

⎛
⎝

k−m+1∑
j=1

Cov1/3(X1, Xj) +
∞∑

j=2

Cov1/3(X1, Xj)

⎞
⎠

≤ 2B1u(m) + B1u(m + k) + 2B1u(0).

Again using (S2) we get, for every m ≤ k,

∞∑
j=m+1

Cov(Wk,1, Wk,j) ≤ 2B1C0m−θ + B1C0(m + k)−θ + 2B1u(0)

≤ 3B1C0m−θ + 2B1u(0) = (
3B1C0 + 2B1u(0)mθ

)
m−θ

≤ (
3B1C0 + 2B1u(0)kθ

)
m−θ .

Setting ck = B1 max{4C0(k + 1)θ , 3C0 + 2u(0)kθ }, (9) then follows with C1 = ck.
Thus, by Lemma 2.1, there exists a constant K = K(p) such that, for all m ≥ 1,

E

∣∣∣∣∣
m∑

i=1

Wk,i

∣∣∣∣∣
p

≤ K mp/2

⎛
⎜⎝1 +

⎛
⎝2

m∑
j=1

Cov(Wk,1, Wk,j)

⎞
⎠

p/2

+ ck

⎞
⎟⎠ , (11)

given the stationarity of Wk,n, n ≥ 1, and the fact that
∣∣Wk,n

∣∣ ≤ 1.
On account of (10) we obtain,

m∑
j=1

Cov(Wk,1, Wk,j) ≤ 2B1

m∑
j=1

Cov1/3(X1, Xj) + B1

m∑
j=1

Cov1/3(X1, Xk+j)

+B1

m∑
j=1

Cov1/3(Xk+1, Xj)

≤ 2B1u(0) + B1

∞∑
j=k+1

Cov1/3(X1, Xj)

+B1

⎛
⎝

k∑
j=1

Cov1/3(Xk+1, Xj) +
∞∑

j=k+1

Cov1/3(Xk+1, Xj)

⎞
⎠

≤ 2B1u(0) + B1u(0) + 2B1u(0)

= 5B1u(0).
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From (11) it now follows that, for all m ≥ 1,

E

∣∣∣∣∣
m∑

i=1

Wk,i

∣∣∣∣∣
p

≤ K
(

1 + (10B1u(0))p/2 + ck

)
mp/2.

Finally, using the Markov inequality we find, for all n > k,

P
( ∣∣F̂k,n(s, t) − Fk(s, t)

∣∣ ≥ εn

)
≤

(
1

εn(n − k)

)p

E

∣∣∣∣∣∣
n−k∑
i=1

Wk,i

∣∣∣∣∣∣

p

≤ D

ε
p
n(n − k)p/2

with D = K
(
1 + (10B1u(0))p/2 + ck

)
. �	

For the formulation of the next results we need to introduce some additional nota-
tion. Let tn be a sequence of positive integers such that tn −→ +∞. For each n ∈ IN
and each i = 1, . . . , tn, put xn,i = Q(i/tn), where Q is the quantile function of F. Define
then, for n, k ∈ IN,

Dn,k = sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣

and

D∗
n,k = max

i,j=1,...,tn

∣∣F̂k,n(xn,i, xn,j) − Fk(xn,i, xn,j)
∣∣ .

To prove a uniform version of the preceding lemma we will apply the following
result which is proved in Theorem 2 of Henriques and Oliveira (2003).

Lemma 2.3 If the sequence Xn, n ≥ 1, satisfies (S1), then, for each n ∈ IN and each
k ∈ IN0,

Dn,k ≤ D∗
n,k + 2

tn
a.s.

Lemma 2.4 Let εn and tn be two sequences of positive numbers such that tn −→ +∞
and εntn −→ +∞, and k ∈ IN0 be fixed. Suppose (S1) holds and (S2) is satisfied with
θ = p−2

2 , for some p > 2. Then, for every n large enough,

P

(
sup

s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ > εn

)
≤ 2p t2n D

ε
p
n(n − k)p/2

, (12)

with D defined as in Lemma 2.2.
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Proof From Lemma 2.3 and taking into account that εntn −→ +∞ we obtain, for
every n large enough,

P
(
Dn,k > εn

) ≤ P
(

D∗
n,k + 2

tn
> εn

)

≤ P
(

D∗
n,k >

εn

2

)
+ P

(
2
tn

>
εn

2

)

≤
∑

i,j=1,...,tn

P
(∣∣F̂k,n(xn,i, xn,j) − Fk(xn,i, xn,j)

∣∣ >
εn

2

)

≤ t2n max
i,j=1,...,tn

P
(∣∣F̂k,n(xn,i, xn,j) − Fk(xn,i, xn,j)

∣∣ >
εn

2

)
.

Now, apply Lemma 2.2 to complete the proof. �	

3 Uniform strong convergence rates for ̂Fk,n

Using Lemma 2.4 of the last section we will now obtain uniform strong convergence
rates for the estimator F̂k,n. In this section the letter C stands for a positive constant,
which may take different values in each appearance. In each case the value of the
constant is independent of n, but may depend on k and p.

Lemma 3.1 Let k ∈ IN0 be fixed. Suppose (S1) holds and (S2) is satisfied with θ = p−2
2 ,

for some p > 2 . Then we have, for every 0 < δ <
p−2

2 ,

sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ = O

(
(log n)

2
p+2 n− p−2−2δ

2p+4

)
a.s.

Proof Fix 0 < δ <
p−2

2 and put tn = log n
εn

in order to have εn tn −→ +∞. Now,

choosing εn = (log n)
2

p+2 n− p−2−2δ
2p+4 , we obtain from Lemma 2.4, for n large enough,

P

(
sup

s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ > εn

)
≤ C

(log n)2

ε
p+2
n (n − k)p/2

≤ C n−(1+δ) .

The sequence on the right-hand-side above being summable, the result follows by the
Borel–Cantelli Lemma. �	

Note that, p−2−2δ
2p+4 approaches 1/2 as p grows to ∞, so the convergence rate estab-

lished in the previous lemma can be arbitrarily close to n−1/2, if a sufficiently large p
can be chosen. As stated in the next theorem, this is always possible under assumption
(G), but not under (P). In fact, with polynomially decreasing covariances, in order to
have a convergence rate close to n−1/2, we need to impose a further assumption on
the covariances, namely, that this polynomial decrease is fast enough. This leads to
large values of the exponent appearing in (P).

Theorem 3.2 Let k ∈ IN be fixed and suppose (S1) holds.

(a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ = O

(
n−γ

)
a.s.
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(b) Under (P) we have, for every 0 < γ < 1
2 − 3

a+3 ,

sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ = O

(
(log n)

3
3+a n−γ

)
a.s.

Proof To prove a), fix 0 < γ < 1/2. Now, choose p > 2 and 0 < δ <
p
2 − 1 so

that p−2−2δ
2p+4 > γ . As already mentioned in Sect. 1, under (G) the assumption (S2) is

satisfied regardless of the value of θ . In particular (S2) is satisfied for θ = p−2
2 . From

Lemma 3.1, it follows that

sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ ≤ C (log n)

2
p+2 n− p−2−2δ

2p+4 ≤ C n−γ a.s. ,

proving part (a).
Under (P), as remarked in Sect. 1, assumption (S2) holds if θ ≤ a/3 − 1. According

to Lemma 3.1, to obtain the best possible convergence rate, p must be chosen as large
as possible. As θ = p−2

2 ≤ a
3 − 1, it follows that we must choose p = 2a/3 . Then, for

any fixed γ ∈
(

0, 1
2 − 3

a+3

)
, part (b) of the theorem follows directly from Lemma 3.1,

replacing p by 2a/3 and setting δ = a
3 − 1 − 2γ a+3

3 .

Note that with k = 0 and s = t the estimator F̂k,n(s, t) reduces to the one-dimen-
sional empirical distribution function F̂n(s). So, the convergence rates of the previous
theorem apply also to F̂n. However, under (P) it is possible to obtain a slightly faster
convergence rate for F̂n. In fact, under the conditions of Lemma 2.4, with k = 0, we
would obtain, for every n large enough,

P
(

sup
s∈IR

∣∣F̂n(s) − F(s)
∣∣ > εn

)
≤ 2p tn D

ε
p
n np/2

. (13)

Then, following the arguments of the proofs of Lemma 3.1 and Theorem 3.2, we would
find that, for every 0 < γ < 1

2 − 9
2(2a+3)

,

sup
s∈IR

∣∣F̂n(s) − F(s)
∣∣ = O

(
(log n)

3
3+2a n−γ

)
a.s.

This rate is somewhat faster than the rate given in part (b) of the previous theorem.
We note also that the convergence rate for the case of geometrically decreasing

covariances is arbitrarily near the optimal rate for F̂n, in the independent setting. In
fact, for independent samples, the Law of the Iterated Logarithm implies that the
best possible convergence rate for the one-dimensional empirical distribution func-

tion is O
(
(

log log n
n )1/2

)
, which is just slightly faster than the rate given in the previous

theorem for the case of geometrically decreasing covariances.
The next theorem is the analogue of Theorem 3.2 for the estimator ϕ̂k,n.

Theorem 3.3 Let k ∈ IN be fixed and suppose (S1) holds.

(a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈IR

∣∣ϕ̂k,n(s, t) − ϕk(s, t)
∣∣ = O

(
n−γ

)
a.s.
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(b) Under (P) we have, for every 0 < γ < 1
2 − 3

a+3 ,

sup
s,t∈IR

∣∣ϕ̂k,n(s, t) − ϕk(s, t)
∣∣ = O

(
(log n)

3
3+a n−γ

)
a.s.

Proof As

sup
s,t∈IR

∣∣ϕ̂k,n(s, t) − ϕk(s, t)
∣∣ ≤ sup

s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ + sup

s,t∈IR

∣∣F(s)F(t) − F̂n(s)F̂n(t)
∣∣

≤ sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ + sup

s,t∈IR
F(s)

∣∣F(t) − F̂n(t)
∣∣

+ sup
s,t∈IR

F̂n(t)
∣∣F(s) − F̂n(s)

∣∣

≤ sup
s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ + 2 sup

s∈IR

∣∣F(s) − F̂n(s)
∣∣

the result follows immediately from Theorem 3.2. �	

4 Uniform strong convergence rates for ̂�n

In this section, we will derive uniform strong convergence rates for the estimators
of the sum

∑∞
k=1 ϕk(s, t) and of the covariance function �(s, t). As in the previous

section, C stands for a generic positive constant, but now independent of k and n (it
may depend only on p).

Lemma 4.1 Suppose (S1) holds and (S2) is satisfied with θ = p−2
2 , for some p > 2.

Then, for each 0 < δ <
p−2

2 , if an = n
p−2−2δ

p2+3p we have

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O

(
(log n)

2
p+2 n

− p2−p(4+2δ)+4(1+δ)

2(p2+3p)

)
a.s.

Proof Let 0 < δ <
p−2

2 and take εn = (log n)
2

2+p n
− p2−p(4+2δ)+4(1+δ)

2(p2+3p) and tn = an
εn

log n.
Now, write

P

(
sup

s,t∈IR

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t) − Fk(s, t))

∣∣∣∣∣ > εn

)
≤

an∑
k=1

P

(
sup

s,t∈IR

∣∣F̂k,n(s, t) − Fk(s, t)
∣∣ >

εn

an

)
.

(14)

Note that, as 0 < δ <
p−2

2 , we have p2−p(4+2δ)+4(1+δ)

2(p2+3p)
> 0 and p−2−2δ

p2+3p
> 0, so that

εn −→ 0, an −→ +∞, tn −→ +∞ and εn
an

tn −→ ∞. Also, as p−2−2δ

p2+3p
< 1, an

n −→ 0.

From (14), applying Lemma 2.4 with εn
an

replacing εn, we conclude that there exists
a constant K = K(p) such that, for all n large enough,

P

(
sup

s,t∈IR

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t) − Fk(s, t))

∣∣∣∣∣ > εn

)

≤
an∑

k=1

K
(

1 + (10B1u(0))p/2 + ck

) 2pt2nap
n

ε
p
n(n − k)p/2

, (15)
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where ck = B1 max
{
4C0(k + 1)θ , 3C0 + 2u(0) kθ

}
.

Since k ≤ an, it follows that

ck ≤ B1 max
{
4C0(an + 1)θ , 3C0 + 2u(0) aθ

n
} ≤ C aθ

n,

so that from (15) we obtain, for n large enough,

P

(
sup

s,t∈IR

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t) − Fk(s, t))

∣∣∣∣∣ > εn

)

≤
an∑

k=1

K
(

1 + (10B1u(0))p/2 + C aθ
n

) 2pt2nap
n

ε
p
n(n − k)p/2

≤
an∑

k=1

C aθ
n

t2nap
n

ε
p
n(n − k)p/2

≤ C
t2na3p/2

n

ε
p
n(n − an)p/2

, (16)

remembering that θ = p−2
2 .

By elementary manipulations it is easy to check that

−p2 − p(4 + 2δ) + 4(1 + δ)

2(p2 + 3p)
= p − 2 − 2δ

p2 + 3p
· 3p + 4

2(p + 2)
− p − 2 − 2δ

2(p + 2)
, (17)

so, we may write εn = (log n)
2

p+2 a
3p+4

2(p+2)

n n− p−2−2δ
2(p+2) . Inserting this and the choice made

for tn on the right-hand-side of (16) it follows that

P

(
sup

s,t∈IR

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t) − Fk(s, t))

∣∣∣∣∣ > εn

)
≤ C

n
p−2−2δ

2

(n − an)p/2 .

As an
n −→ 0, we have n

p−2−2δ
2

(n−an)p/2 ∼ n−(1+δ), thus the sequence on the upper bound
above is summable. Then, from the Borel–Cantelli Lemma it follows that

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

(F̂k,n(s, t) − Fk(s, t))

∣∣∣∣∣ = O

(
(log n)

2
p+2 n

− p2−p(4+2δ)+4(1+δ)

2(p2+3p)

)
a.s. (18)

Now, we may write

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ ≤
∣∣∣∣∣

an∑
k=1

(
ϕ̂k,n(s, t) − ϕk(s, t)

)
∣∣∣∣∣ +

∣∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣∣

≤
∣∣∣∣∣

an∑
k=1

(
F̂k,n(s, t) − Fk(s, t)

)
∣∣∣∣∣ + an

∣∣F(t) − F̂n(t)
∣∣

+an
∣∣F(s) − F̂n(s)

∣∣ +
∣∣∣∣∣∣

∞∑
k=an+1

ϕk(s, t)

∣∣∣∣∣∣
.
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Thus,

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣

≤ sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

(
F̂k,n(s, t) − Fk(s, t)

)
∣∣∣∣∣

+2 an sup
s,t∈IR

∣∣F(t) − F̂n(t)
∣∣ + sup

s,t∈IR

∣∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣∣
. (19)

The convergence rate of the first term on the right-hand-side above is given in (18).

From Lemma 3.1 the second term is almost surely O
(

an (log n)
2

p+2 n− p−2−2δ
2p+4

)
. Since

3p+4
2p+4 > 1 and taking into account (17), we have

an (log n)
2

p+2 n− p−2−2δ
2p+4 < a

3p+4
2p+4
n (log n)

2
p+2 n− p−2−2δ

2p+4

= (log n)
2

p+2 n
− p2−p(4+2δ)+4(1+δ)

2(p2+3p) .

Thus,

an sup
s,t∈IR

∣∣F(t) − F̂n(t)
∣∣ = O

(
(log n)

2
p+2 n

− p2−p(4+2δ)+4(1+δ)

2(p2+3p)

)
, a.s.

Finally, we will check that the third term on the right-hand-side of (19) is of the
same order. According to (7), we have

sup
s,t∈IR

∣∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣∣
= sup

s,t∈IR

∞∑
k=an+1

Cov
(
I(−∞,s](X1), I(−∞,t](Xk+1)

)

≤ B1

∞∑
k=an+1

Cov1/3(X1, Xk+1)

= B1 u(an)

≤ Ca
− p−2

2
n ,

since assumption (S2) is satisfied for θ = p−2
2 . Now, it is easy to check that

a
− p−2

2
n = n

− p2−p(4+2δ)+4(1+δ)

2(p2+3p) ,

hence,

sup
s,t∈IR

∣∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣∣
= O

(
n

− p2−p(4+2δ)+4(1+δ)

2(p2+3p)

)

so the proof is concluded. �	
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It is worth noticing that choosing, in the previous lemma, an = (log n)
− 4

p2+3p n
p−2−2δ

p2+3p ,
we would have obtained the slightly improved convergence rate,

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O

(
(log n)

2(p−2)

p2+3p n
− p2−p(4+2δ)+4(1+δ)

2(p2+3p)

)
, a.s.

As the gain in the convergence rate is marginal, we will continue with the choice for
an as in the lemma, just remarking the slightly improved version at the end.

Theorem 4.2 Suppose (S1) holds.

(a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O
(
n−γ

)
a.s. ,

if an = n
p−2−2δ

p2+3p , with δ > 0 and p > 2 chosen such that p2−p(4+2δ)+4(1+δ)

2(p2+3p)
> γ .

(b) Under (P) we have, for every 0 < γ < 1
2 − 21 a−18

2a(2a+9)
,

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ = O
(
(log n)

3
3+a n−γ

)
a.s. ,

if an = n
3

a−3 γ .

Proof Follow the arguments of the proof of Theorem 3.2, invoking Lemma 4.1
instead of Lemma 3.1 (for the proof of part b) take δ = a−3

3 − γ
a(2a+9)
3(a−3)

). �	
The next result states the convergence rates for the �̂n.

Theorem 4.3 Suppose (S1) holds.

(a) Under (G) we have, for every 0 < γ < 1/2,

sup
s,t∈IR

∣∣�̂n(s, t) − �(s, t)
∣∣ = O

(
n−γ

)
a.s.,

if an = n
p−2−2δ

p2+3p , with δ > 0 and p > 2 chosen such that
p2−p(4+2δ)+4(1+δ)

2(p2+3p)
> γ .

(b) Under (P) we have, for every 0 < γ < 1
2 − 21 a−18

2a(2a+9)
,

sup
s,t∈IR

∣∣�̂n(s, t) − �(s, t)
∣∣ = O

(
(log n)

3
3+a n−γ

)
a.s.,

if an = n
3

a−3 γ .

Proof First write

sup
s,t∈IR

∣∣�̂n(s, t) − �(s, t)
∣∣ ≤ sup

s,t∈IN

∣∣F̂n(s ∧ t) − F(s ∧ t)
∣∣ + 2 sup

s∈IR

∣∣F̂n(s) − F(s)
∣∣

+ sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣

+ sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

ϕ̂k,n(t, s) −
∞∑

k=1

ϕk(t, s)

∣∣∣∣∣ . (20)
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Thus, under (G) the result follows directly from Theorems 3.2 and 4.2.

For the proof of part (b), fix γ ∈
(

0, 1
2 − 21 a−18

2a(2a+9)

)
. Since 21 a−18

2a(2a+9)
> 3

a+3 , obviously

γ ∈
(

0, 1
2 − 3

a+3

)
. It follows then from Theorem 3.2 that the two first terms of the

right-hand-side of (20) are almost surely O
(
(log n)

3
3+a n−γ

)
. Finally, if an = n

3
a−3 γ ,

by Theorem 4.2 the fourth and fifth-terms are of the same order. �	

As mentioned earlier, choosing an = (log n)
− 4

p2+3p n
p−2−2δ

p2+3p we would obtain a
slight improvement on our convergence rates, for the case of polynomially decreasing
covariances. In fact, in the previous two theorems, with this choice for an, we would
obtain the same convergence rate under (G), whereas under (P) (with p and δ

as in the proof of Theorem 4.2), both sups,t∈IR

∣∣∑an
k=1 ϕ̂k,n(s, t) − ∑∞

k=1 ϕk(s, t)
∣∣ and

sups,t∈IR

∣∣�̂n(s, t) − �(s, t)
∣∣ would be, almost surely,

O
(

(log n)
6a−18

2a2+9a n−γ

)

for any 0 < γ < 1
2 − 21 a−18

2a(2a+9)
.
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