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ON THE INERTIA SETS OF SOME SYMMETRIC SIGN PATTERNS
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Abstract. A matrix whose entries consist of elements from the set {+, —,0} is a sign pat-
tern matrix. Using a linear algebra theoretical approach we generalize of some recent results
due to Hall, Li and others involving the inertia of symmetric tridiagonal sign matrices.
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1. INTRODUCTION

Several authors have studied properties of a matrix based on combinatorial and
qualitative information such as the signs of entries in the matrix. A matrix whose
entries are from the set {4+, —,0} is called a sign pattern matriz (or simply, sign
pattern). For each n X n sign pattern A there is a natural class of real matrices
whose entries have the signs indicated by A, i.e., the sign pattern class of a sign
pattern A is defined by

Q(A) ={B; signB = A}.

We are interested in symmetric matrices and in the sign symmetric classes
Qsym(A) = {B; signB = A and B = BT}.

Define the inertia of an n x n real symmetric matrix H as the triple In(H) =
(m,v,0), where 7 is the number of positive eigenvalues, v is the number of negative
eigenvalues and § = n—m —v is the number of zero eigenvalues. For a symmetric sign
pattern A, we define the inertia (set) of A to be In(A) = {In(B); B € Qsym(4)}.
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We say the sign pattern A requires unique inertia and is sign nonsingular if every
real matrix in QQ(A) has the same inertia and is nonsingular, respectively. If two sign
patterns A; and Ay are congruent, i.e., if for all B; € Qsym(A1) and B € Qsym(As2)
there exists a nonsingular real matrix S such that B; = SByST, then we say that
Ay and Ay are sign congruent and write Ay ~ As.

By Sylvester’s law of inertia we may say that two sign congruent patterns have
the same inertia. For example, the symmetric sign pattern

[0+ +7
+ 0 +
L+ + 04
is sign congruent to
[0 + 07
+ 0 0
LO 0 —1]

and, therefore, requires the unique inertia (1,2, 0) and, consequently, is sign nonsin-
gular. On the other hand, the tridiagonal sign pattern

+ + 0
+ + +
Lo+ +
is sign congruent to
[+ 0 0
0 = 01,
L0 0 +
where x is 0, + or —, and, therefore, requires the inertias (2,0,1), (3,0,0), and

(2,1,0).

A diagonal sign pattern each of whose entries is + or — is called a signature
pattern. The square of a signature pattern is a signature pattern with all nonzero
entries equal to +. A sign pattern such that there is exactly one entry in each
row and each column equal to + and all other entries are 0 is called a permutation
pattern. Two sign congruent patterns by the way of a signature pattern and of a
permutation pattern are called, respectively, signature congruent and permutation
congruent patterns.

In this paper we generalize recent results on some symmetric sign patterns due to
F.Hall, Z.Li and others (cf. [3], [4], [6], [7]). The results of these authors are based on
a graph theoretical approach. Here we use mainly tools from congruences between
matrices developed, e.g., by B. Cain and E. Marques de Sa (cf. [1], [2]).
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2. SYMMETRIC TRIDIAGONAL SIGN PATTERNS

Given a symmetric tridiagonal sign pattern, the inertia does not depend on the
sign of the off-diagonal elements, since two sign patterns under these conditions are
signature congruent. Let us denote these entries by =+.

The symmetric tridiagonal sign pattern

-0 + -
+ x =+
+ 0 =+
(1) + x £
+ 0 =+
- “nXn
is congruent to
-0 + -
+ % 0
0 =+
+ x 0 ’
0 0 <=+
i.e., it is congruent to the direct sum
0 =+ 0 =+
|+ ool Tew
if n is odd, and to
0 =+ o 0 =+
+ x o + x

if n is even. Since the inertia of each block

L

is (1,1,0), we can generalize now Proposition 3.1 in [6].
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Proposition 2.1. For the symmetric tridiagonal sign pattern defined in (1),

(a) ifn is even, then A is sign nonsingular and In(A) = (3, 5,0),

(b) if n is odd, then A is sign singular and In(A) = (%51, 251, 1).

Note that the above proposition is still true for the n x n sign pattern

“x 4+ -
+ 0 +
+ %
0 =+
+ x &+

provided n is even.

Let us consider the n x n sign pattern

+ =+
+ 4+ =+
+ +

With the + in the (1, 1)-entry we can, by congruence operations, “eliminate” the
off-diagonals entries (1,2) and (2,1). If the new (2, 2)-entry is 0 and n > 2, then we
can decompose the sign pattern so that the first block is

+ 0
0 0 +]|,
+ 0

which has inertia (2,1,0). In the case of n = 2, the block is simply

+ 0

0 0]’
which has inertia (1,0,1). If the new (2, 2)-entry is a —, then we can decompose the
sign pattern so that the first block is

b

which has inertia (1,1,0). The new (3, 3)-entry is always a + and we restart the
procedure from here.

Otherwise, the (2, 2)-entry is a 4, and the first block of the composition is simply
[+] and we restart the procedure from that entry.

By the above algorithm we can establish the maxima and minima for the number
of eigenvalues.
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Proposition 2.2. If

H o+
Ho+
H,

+
+ +

is an n x n symmetric tridiagonal sign pattern, then In(Ay) has the form

(n—hhoxogkglgr or(nfhka1L1<k<{gy

where | x| denotes the greater integer less than or equal to the real number x.

Given a sign pattern we say that the diagonal (¢,4)-entry is in an odd (even)
position when 7 is odd (even). The diagonal (¢,7) and (j, j)-entries are said to be in
ascending positions provided i < j (not necessarily consecutive).

We can rewrite some results from [6] and [7], generalize them and give a straight-
forward proof.

Theorem 2.3. For the symmetric tridiagonal sign pattern

-
+ x =+
A= + ,
+
+  x

where each diagonal entry is 0, 4+ or —,
(a) if n is even, then A, is sign nonsingular if and only if neither two 4+ nor two —

diagonal entries in A, are in odd-even ascending positions, respectively. In this
case In(A.) = (5, 5,0);

(b) ifn is odd, then A, is sign nonsingular if there is at least one + or — diagonal
entry in an odd position, but not both in odd positions, and neither three + nor
three — diagonal entries are in odd-even-odd ascending positions, respectively.
In this case In(A,) = (2, 2510) if there are + in odd positions, or In(A,) =
("T’l, ”T“, 0) if there are — in odd positions.

Proof. Suppose that n is even. Without loss of generality we may assume

that the first and the last diagonal entries are non-zero. In order for A, to require
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unique inertia, when we use congruence relations in order to eliminate the off-diagonal
elements, the signs of the diagonal should alternate between + and —.

By Proposition 2.1, if n is odd and neither + nor — diagonal entries are in odd
positions, then A, requires unique inertia ("T’l, ”771, 1). Without loss of generality
we may assume that the first diagonal entry is non-zero. Assume that it is a +.
Then using the congruence elimination procedure, we can not have — in odd diagonal

positions and no three + diagonal entries in odd-even-odd ascending positions. [

The sign pattern

+ +
+ —
- 0 +
0 +
+ —
L - 0]
is congruent to
0 + 0 -
Hole|! tle|? ]
and, therefore, requires unique inertia (3,3, 0).
However, the sign pattern
L4 -
+ —
0 +
+ o+
+ + -
L — 0]

is congruent to

and the inertia set is {(3,2,1), (4,2,0),(3,3,0)}.
Let us give another example. The sign pattern
S -
_l’_ — —
- + +
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is sign congruent to

L +
and hence requires unique inertia (4, 3,0), but the sign pattern
S -
Jr — —

is congruent to
Hel-leHel-loHol-lo+

and the inertia set is {(3,3,1), (4,3,0),(3,4,0)}.

3. SYMMETRIC STAR SIGN PATTERNS

We now consider a symmetric tree sign pattern matrix whose associated graph is
a star.

Theorem 3.1 [7]. Up to permutation congruence, signature congruence, and
negation, a symmetric star sign pattern

L S R
4+ %

A= |+

+ * nxn

where each diagonal entry is 0, + or —, requires unique inertia if and only if the
diagonal of A has the following forms:
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Proof. With the exception of the (1,1)-entry, if one of the diagonal entries is

zero, then
*

0 + .
A= [+ 0 ] &) . )
n—=2xn—2
and A requires unique inertia.
Suppose now that all the diagonal entries are nonzero, possibly with the exception

of the (1, 1)-entry. Then

* n—1lxn—1

In this case, A requires unique inertia if and only if all the diagonal entries different
from the (1, 1)-entry have the same sign and the (1, 1)-entry has a sign different from
the other diagonal elements or is equal to 0. 0

4. SIGN PATTERNS WITH ALL + OFF-DIAGONAL ENTRIES

Finally, let J, be the n X n symmetric sign pattern with all entries equal to +.

Then
Jn =~ [+] ® B,
where B is a symmetric sign pattern of order n — 1. Then the set of possible inertias
of J, is
{(myv,n—m—v); 1<7<n, 7+v < n}

If one considers jn, the n X n symmetric sign pattern with zero diagonal and +

off-diagonal entries, then

0 + O
J.~ |+ 0 0
0 0

@ B,

where B is a symmetric sign pattern of order n — 3. Therefore the set of possible

inertia of J,, is

This last result was obtained recently by Gao and Shao [5] via a different approach.
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