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Abstract We apply the asymptotic analysis procedure to the three-dimensional static
equations of piezoelectricity, for a linear nonhomogeneous anisotropic thin rod. We
prove the weak convergence of the rod mechanical displacement vectors and the rod
electric potentials, when the diameter of the rod cross-section tends to zero. This
weak limit is the solution of a new piezoelectric anisotropic nonhomogeneous rod
model, which is a system of coupled equations, with generalized Bernoulli-Navier
equilibrium equations and reduced Maxwell-Gauss equations.
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1. Introduction

In a previous paper we have mathematically justified a new nonhomogeneous an-
isotropic piezoelectric plate model (cf. Figueiredo and Leal [7]). This was achieved
considering the three-dimensional static equations of piezoelectricity, and using
the asymptotic analysis method to compute the limit of the plate mechanical dis-
placement vectors and of the plate electric potentials, as the thickness of the plate
approaches zero (see also Maugin and Attou [9], Rahmoune et al. [10], Sene [12],
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and Raoult and Sene [11] for works reporting different asymptotic models for
piezoelectric plates, Collard and Miara [3] for asymptotic models for piezoelectric
shells, and Ciarlet [2] for a detailed description of the asymptotic analysis procedure
to elastic plates).

In the present paper, we consider again the three-dimensional static equations
of piezoelectricity, but for a thin rod, whose cross-section is a function of a small
parameter and made of a nonhomogeneous and anisotropic material. Our purpose is
to use once more the asymptotic analysis to obtain the limit of the three-dimensional
rod mechanical displacement vectors and rod electric potentials, as the diameter of
the rod cross-section tends to zero (cf. also Trabucho and Viafio [13] for a description
of the asymptotic analysis method for elastic rods). Thus the resulting asymptotic
model constitutes a simplified rod model that may be used with confidence by
engineers.

The technique used in this paper is very similar to that described in Figueiredo and
Leal [7], and likewise the latter paper, one of the main difficulties is the anisotropy
and the nonhomogeneity of the material: We suppose the material is monoclinic and
nonhomogeneous and the piezoelectric and dielectric coefficients are functions and
not constants.

The main result of the paper is the existence of a weak limit for the three-
dimensional rod mechanical displacement vectors and for the rod electric potentials,
as the rod cross-section goes to zero (cf. Theorems 3.1, 3.2 and 3.3). In addition we
show that this weak limit is the solution of a new nonhomogeneous anisotropic piezo-
electric rod model (cf. Theorem 4.1, formulas (69)—(76), or equivalently, Theorem
4.2, formulas (103)—(110)), which can be briefly interpreted in the following way: It
is a system of two coupled equations, with generalized Bernoulli-Navier equilibrium
equations and reduced Maxwell-Gauss equations, where the limit rod mechanical
displacement vector and the limit rod electric potential are interdependent. Unlike
the plate case (cf. Figueiredo and Leal [7]) we were not able to determine the exact
expression of the limit rod electric potential as a function of the limit rod mechanical
displacement vector. In fact, in the limit rod problem there appears a third unknown
that is coupled simultaneously with the limit mechanical displacement and the limit
electric potential, which yields a very complex limit model. Moreover due to this
complexity it was not possible to prove the uniqueness of solution for the limit rod
problem.

To finish this introduction we briefly sketch the contents of the paper. In the next
section, the three-dimensional piezoelectric rod model is introduced. The asymptotic
analysis is done in Section 3; here a weak limit of the rod mechanical displacement
vectors and the rod electric potentials is computed, and the variational formulation of
the limit problem is described. Section 4 concerns the description of the differential
formulation of the limit problem, firstly defined in the scaled rod and secondly in the
original rod.

2. The Three-Dimensional Piezoelectric Rod Model

In this section we first introduce some notation. Then, we describe the boundary
value problem associated with the static three-dimensional piezoelectric model,
for a nonhomogeneous anisotropic rod, as well as, its corresponding variational
formulation.
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2.1. Notation

Let w C IR? be a bounded domain with a Lipschitz continuous boundary dw and y, a
subset of dw, such that, the measure of y, satisfies meas(y,) > 0.
For each real parameter 4, with 0 < & < 1, we set

o' =hw, y"=00"=hdw, y!=hy., (1)
and
Q" =w"x(0,L), Th=0"x{0), T"=0"x{L),
h=reJre.  rh=y"x0.0),
Ty =yl x(,L), Tiy=aa"\1h, ()

The closure of the set Q", Q" = @" x [0, L], represents the rod, which has length L
and cross-section " = ho. The two extremities of the rod are T and I'}, and the
set I'% is its lateral surface. The set '}, is a portion of the lateral surface of the rod
and finally I'? is a part of the boundary 3Q" of Q", which is disjoint from I'#,. An
arbitrary point of Q" is denoted by x" = (xf’, xé‘, xg‘) where (x{‘, xéz) = (hxy, hx,), with
(x1, x2) € w, and the third component xé’ = x3 € (0, L) is independent of 4. We also
denote by vh = (v{‘, vé’, vé‘) the outward unit normal vector to 9Q". Moreover, we
assume that the fixed coordinate system OX; X, X; is a principal system of inertia
associated with w x (0, L);

/xlda)=/x2dw=/x1x2da)=0. (3)

Throughout the paper, Latin indices i, j, k, [... belong to the set {1, 2, 3}, Greek
indices «, B, u... vary in the set {1, 2} and the summation convention with respect
to repeated indices is employed that is a;b; = Z?:] a;b;. Moreover we denote by a -
b = a;b; the inner product of the vectors a = (a;) and b = (b;), by Ce = (Cjjxsex;) the
contraction of a fourth order tensor C = (Cjjx;) with a second order tensor e = (ey;)
and by Ce : d = Cjjisexd;; the inner product of the second order tensors Ce and d =
(d; ;). Given a function 6(x") defined in Q" we denote by a,ﬁe its partial derivative with

respect to x/', that is, 9/'6 = 25

2.2. The Three-Dimensional Boundary Value Problem

In the sequel we consider a static three-dimensional piezoelectric rod model, disre-
garding the thermal and magnetic effects, and for the case of small deformations
and linear piezoelectricity. This model is governed by three groups of equations
and boundary conditions, which are described below (cf. Bernadou and Haenel [1],
Eringen and Maugin [4], Ikeda [8]):

Mechanical equilibrium equations

—divo"(uh, ") = ! = —dlo)iw", " = f, in Q"
ohh, v =g — 0{}(14", %) v;’ =gt on T, 4)
u"=0, on T&,
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Constitutive equations

L

ol ¢" = Che ") — PP E"¢") = ot = Cly e, ) — Pl Bl (@), in @,
D", "y = Phe () + " EM(¢") «— D,f kl/e”(u)—i—sklE (¢), in Q",

®)
Maxwell-Gauss equations
divD"u", (ph) =0 < 8ihDih(uh, (ph) =0, in &,
D"w", "W =0 < D!w", "W =0, on T, (6)

" =9, on T,

The unknown of the piezoelectric rod model (4)-(6) is the pair (1", "), where u” :
Q" — IR? denotes the mechanical displacement vector field and ¢" : Q" — IR is a
scalar field, representing the electric potential. For each point x" € Q", the vector
u"(x") is the mechanical displacement that the point x* undergoes and ¢ (x") is the
electric potential at x". The mechanical equilibrium equations express the balance
of mechanical loads and internal stresses. We suppose that f” is the density of the
applied body forces acting in the rod ", g’ is the density of applied surface forces
on I', and we assume that the rod is clamped at its extremities I'*) = [ JT%. The
constitutive equations represent the electromechanical interaction that characterizes
piezoelectricity. They constitute a relation between the stress tensor o : Q" — IR,
the electric displacement vector D" : Q" — IR?, the linear strain tensor ¢"(«") and
the electric field vector E"(p"), where

1
' = 5(vhuh +(V"u"T) and  E'(p") = V"M, (7)
or, equivalently, componentwise
1
el (u") = E(aﬁ W+ 0ty and  Ele") = -0l (8)

Moreover C" = ( ”k,) is the elastic fourth order tensor field, P" = (Pi’;k) is the
piezoelectric third order tensor field, and & = (si"j) is the dielectric second order
tensor field. Finally the Maxwell-Gauss equations are the equations that control the
electric displacement vector field D”. We assume that ¢ is the electric potential
applied on I'") and there is no electric loading in Q" nor on I'?y, (which means the
rod Q"is a perfect dielectric body).

In addition we suppose the following hypotheses on the data: The applied forces
and applied electric potential have the regularity

ffre[r2e@h, [T, ol e HETHY), )

and the three tensor fields C* = (C o) P= (Phk) and &" = (e ") are independent
of h but depend on x = (xl,xz,X3) € w x [0, L] that is there ex1st tensor fields
C = (Gijk1), P = (P,j) and & = (g;;), such that, for any x" = (hx,, hx,, x3) € Q" with
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(x1, X2) € @, then

C,-h]-kl(xh) = Cijri(x),
Pl (") = Pj(x), and x=(x,x,x)€dx[0,L], (10)

el (x") &ij (x),

where Cjji/, Pji and ¢;; are independent of 4. We also assume that Cjjx;, Pji, €;; are
smooth enough functions defined in @ x [0, L] that satisfy the following symmetric
and positivity properties:

e inwx|[0,L]

Cijki = Cjiki = Criij,  Cupyz = 0= Cyzs3,
Pijk = Py, &ij = &ji, (11)

e there exists constants ¢; > 0 and ¢, > 0, such that

3 3
Cijki(X)MM;; > c Z(Mij)2 and &;(x)0;0; > CzZQizy (12)

ij=1 i=1

for every symmetric 3 x 3 real matrix M and any vector 6 € IR*, and for every
x € x [0, L]

The hypotheses Cop,3 = 0 = C,333 mean that the rod has elastic symmetry with
respect to the plane x; = 0 (cf. Green and Zerna [5]). Consequently the material is
monoclinic in the plane OX; X, and the number of independent elastic coefficients
(Cijk1) is equal to 13.

Due the elastic properties (11), the components of the elasticity tensor C can be
identified with the following matrix C

Cinn Cunz Cuz O 0  Cuss
Coii Coiz Ciz O 0  Ciss
Conit Cniz Con 0 0 Cuss
0 0 0 Ciziz Cisg 0
0 0 0 GCuiz Gaz 0
Gt Cio Gz O 0 Gsss3

(13)

The first positivity hypothesis in (12) guarantees that the matrix C is positive definite,
consequently, C3333 > 0, and the sub-matrices

Ciunt Cuiz Cun Cisis Crans
M=| Cpa Cpaiz Cox and N = T (14)
Coziz Cyns
Cnii Cunip Cox

are also positive definite. In particular, for a homogeneous and isotropic material, the
elasticity coefficients C;jx; are constants, defined by,

Cijrr = A8ij0kr + n(Sikdj1 + S8i18jk)s (15)
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where A and p are the Lamé constants, §;; = 0ifi # j,§;; = 1 ifi = j, and the matrix
C in (13) becomes

A4+2n 0 A 0 0 A
0 7 0 0 0 o0
_ A 0OrA+2px 0 0 A
€= 0 0 0 uw 0 0 (16)
0 0 0 0 n O
A 0 A 0 0 A+4+2u
2.3. Variational Formulation of the Three-Dimensional Rod Model
We define the space of admissible displacements
vh = {vh e [H'@)F: Wl = o} 17)
D

with the norm [|v"||ys=|le" (v")|;12(a#y» and the space of admissible electric potentials
wh = {wh e H'(@Y: v, = o} (18)

with the norm [|Y"]|gn = |V || 12 Let @ = ¢ — @li, where ¢! is a trace lifting
in H'(Q") of the applied potential acting on '/}, (cf. (6)). In the sequel we denote
by (p(’} the trace lifting as well as its boundary value at I'?,. Then, the variational
formulation of the system (4)—(6) is defined by

Find ", ") € V" x W" such that: 19
ah((uh, "), ", W’)) = yhy, V! Yt e VI x w,
where
a(wh, "), ", yM)
_ hoohy . b by gk Cah=h b h g h
= QhCe W :e"(W")dx +/;2h81]8,-<p ;v dx (20)
[ P @ = el )
and
lh(Uh, I/Ih) — fh A l)h dxh +/ gh . Uh dl"}]i,
@ i 1)

—/h £ij 0] Oy dx” — /' P g € (") dx".
Q Qh

To obtain (19) we first do the inner product of the first equation of (4) by v € V"
and we multiply the first equation of (6) by " € W”; afterwards adding the two
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resulting equations, integrating in Q", applying the Green’s formula, and using all the
boundary conditions and the constitutive equations defined in (4)—(6) we get (19).
The definition of a”(., .) clearly implies that

a (", "y, @, yhy)
(22)
= / Ceh(vh) : eh(vh) dx" +/ &ij Bl-hl//h 3;’1//’1 dx",
Qh Qh

and therefore, by the positivity properties (12), the bilinear form a”(., .) is coercive.
Consequently, by the Lax-Milgram lemma, the variational problem (19) has a unique
solution.

3. Asymptotic Analysis

In this section we apply the asymptotic analysis procedure (as developed for elastic
plates by Ciarlet [2], and for elastic rods by Trabucho and Viafio [13]) to the
variational problem (19). We first transform the three-dimensional piezoelectric rod
problem (19), into an equivalent problem depending on /4, but posed over the scaled
rod Q = w x (0, L) independent of & (we use appropriate scalings of the unknowns
u", ¢ and convenient assumptions on the data). Then, we study the behavior of
the scaled displacements, electric potentials, stresses and electric vectors as & — 0F.
The Theorems 3.1 and 3.2 prove the existence of the weak limits. The Theorem 3.3
characterizes the limit model.

3.1. The Scaled Three-Dimensional Rod Model

We redefine here the three-dimensional variational problem (19) in the domain Q =
o x (0, L) independent of h. Each x = (x, x,, x3) € Q is associated with the element
x" = (hx1, hxy, x3) € Q", and we also consider the subsets defined in (1)—(2) for the
choice h = 1, that is

Q=wx(0,1), To=wx{0), T.=wox/{L),
FD=FOUFL» Iyn=yx(0,L), y=0o,
Cep = ye x (0, L), Ten =02\ Tep. (23)

We denote by v = (vy, v2) = (v,) the unit outer normal vector along dw, and by 9; =

% and 9;; = %, the first and second partial derivatives with respect to x; and x;.

We suppose that the data satisfy the hypotheses
fi " =nfu0, AN =), xeq,
ga(x") = Wga(x), gi(x") =hgs(x). xeTlw,

Ph(x") = hgo(x), xeQ, (24)
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where f; € I*(Q), g € I*(Ty) and ¢y € H(Q). For the unknowns, u"e V"
and ¢" € W, and for any admissible displacement or electric potential, respectively,
v" € V" and ¢ € W, the following scalings are assumed:

ul (" = hlug(h(x), WM =uws(h(x), x e Q,

V") = k() (), Vi = (), xeQ,

o"(x") = hp(h)(x), xe€Q,

Y (") = hy(h)(x), x € Q. (25)

We remark that the assumptions and the scalings indicated in (24)—(25) for the
mechanical forces and the displacements correspond exactly to the contravariant
and the covariant transformations of the components of the mechanical forces
and the displacements, respectively, and which are associated with the coordinate
change (x1, X2, x3) € Q@ — x" = (hx1, hxy, x3) € Q" (cf. [14], p. 439). Moreover these
assumptions and scalings are the same as in Trabucho and Viafio [13], pages 516-517
and Remark 2.1. The scaling orders of ¢! and ¢" (as well as of ¥") are chosen so
that an asymptotic solution exists for the variational problem (32), which means that
these are selected in such a way that we are able to compute the limit of the scaled
three-dimensional rod model (32) as 2 — 0. We also note that a similar reasoning is
used for example in Rahmoune et al. [10] and Sene [12].

The vector fields u(h) and v(h) are in the scaled admissible displacement space
V, and the electric potentials ¢ (k) and ¥ (h) belong to the scaled admissible electric
potential space W, where V and W are defined by

V= {v eH'@P: vr, = 0},
v = {w e H'(Q): v, = 0]. (26)

The first space is equipped with the norm [v|ly = [le(v) [l (z2(e) and the second with
the norm ||[¥ |y = IV [l (22())3-

For any v € V the second order symmetric tensor field «(h)(v) = («;; (h)(v)) is
defined by

1

2 (8/3Ua + 8avﬁ),

1
kep(M) (V) = ﬁecxﬂ(v) =

1 1
Ka3(h)(v) = Eeaii(v) = ﬁ(aﬂja + aav3)a

k33(h)(v) = e33(v) = d3vs. (27)

In particular, when v = u(h) we set «(h) = k(h)(u(h)). As a consequence of the
scalings (25) and (27) we have for any v in V"

ey (") = h2eqp(v(h)) = Kkap(R) (v (R)),

el (") = h™' e (w(h) = ka3 (W) (v (R)),

e (") = exs(w(h) = k33 (h) (v(h)), (28)
therefore

"Wy = k(h)(u(h)) = k(h) and " (V") =k (h)(v(h)). (29)
@ Springer



J Elasticity (2006) 85: 85-106 93

The scalings of the stress tensor o, the electric displacement vector D" and the
electric vector E” are induced by (25) and are defined by

oij (W u(h), o(h)) = ol "), Di(u(h), p(h)) = D} ", ¢"),
Ei(p(h) = E]'(¢"), (30)
where
oy, ¢") = Gijmikmi(h) = Pij En(h)(@(h)) = 03 () (u(h), p(h)),
D', ¢") = Pumrim(h) + &ij Ej(h) = Di(h)(u(h), 9(h)),
E,(h)(p(h)) = =3,9(h),  E3(h)(p(h)) = —hdsp(h) (1)

Using all these transformations and assumptions on the data, a straightforward
computation shows that (19) is equivalent to the following scaled three-dimensional
variational rod model

[Find (u(h), p(h)) € V x ¥ such that: (32)
a(h)(wh), g(h), (v, ¥)) =l (v, ¥), Y, ¥) eV x W,
where
a(h)((wh), g(h)), (v, ¥)) = /Q Ci(h) : k(h)(v) dx +/Q8a,3 3@ (h) dpr dx
+/ Puij [0a@(h) kij(h)(v) — 0o ki (B)] dx
Q (33)
b [ e [0 320 -+ 50 2,9]
Q
+h/ Pyij [039(h) kij () (v) — 039 ki (h) ] dx + hz/ £33 03¢(h) 03 dx,
L Q Q
and
1y, ) = / fovdx +f g-vdly —/ £ap B0 D5 dx
Q Ty Q
—h/ €a3 [0a0 039 + 03900 0o ¥ | dx — hz/ €33 03¢0 3y dx (34)
Q Q
—h/ Psij 3390 ki (h) (v) dx —/ Pyij 000 kij (h)(v) dx.
L Q Q

3.2. Computation of a Weak Limit

Here we essentially compute and identify a weak limit of the scaled displacements
and electric potentials (u(h), ¢(h)) when h — 0%,
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3.2.1. Functional Spaces

In order to compute the limits it is necessary to introduce the spaces Vpy, ¥; and Wyg.
Let

Ven={veV: eyl =ep =0}
U, ={y e L2(Q): 8¢ el*(Q), a=1,2},
Vo ={ye¥: i, =0} (35)
The space Vg, which is called the Bernoulli-Navier mechanical displacement space,
is equivalently defined by
Van = {v= (1000 € Vi v x) =n(n), 1 € B0, LD,

V300, 2, X3) = 13(¥) — XuBana (¥2), 3 € HY(0, LD, (36)

and it is equipped with the norm |||y, ,, where

2 2 2
lvlly,, = lless(W 72 :/ 103113 — Xo 03300 |” dx
Q

= metlS(Cl)) ”837]3”2[12(]0,&) + (/ xﬁdw) ”833770!”2L?(]0, - (37)
9}

The space ¥, is equipped with the norm ||.||y, defined by

2 2
llle, = (nq)uiz(m +y ||aaga||iz(m) : (38)

a=1
We observe that, for any y € ¥, the trace yr,, is well defined. In fact, for any
¥ € ¥, and for any fixed x3 € (0, L), we can define x (x;, x2) = ¥ (x1, X2, x3) and x €
H'(w); the trace of x is an element of H> (ve), that satisfies || xjy, | 12.) < cllx |l 5 w)

with ¢ a constant, that does not depend on the fixed x3, therefore integrating the

previous inequality in x3, from 0 to L, we get ||1//|rd,||2L2(r = ||1/f||%pl. This latter

inequality proves that yr,, is well defined and the trace operator acting from ¥,
to I*(T,p) is continuous. Moreover, the function ||.||g, defined by

1

1l = (ZZ:I ||aaw||izm))z (39)

is a norm equivalent to the norm induced in ¥, by the norm of ¥;. In addition, the
following result can also be established.

PROPOSITION 3.1. The space D(S2) is dense in Vyy equipped with the norm ||.||y,.
Proof. Similar to Proposition 3.2 of Sene [12]. O
3.2.2. Weak Limits and Variational Limit Rod Model

The weak convergence is proved in the following theorem:
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THEOREM 3.1. There exist u € [H'(Q), « € [I*(Q)1° and ¢ € 1*(Q) and subse-
quences {u(h)}p=0, {K(W)}n=0 and {(d1¢(h), dr9(h), hdzp(h))}nso (still indexed by h),
such that the following weak convergences are satisfied, when h — 0,

uh) ~u in [H(QP,

k() =« in [L(Q)7,

ph)y —~¢ in LX),

(019(h), 02p(h), hozp(h)) — (319, 02, 0) in  [L*(Q)T. (40)

Moreover, the limits u, k and ¢ belong to the spaces Vgy, (I*(R))° and V,, respectively,
¢ =@y on T.p, and there exists an implicit function 6 = (01, 0,,03) of u, ¢ and «
(defined in Equations (50) and (53)) and that satisfies 6;(., ., x3) € H'(w) almost
everywhere in (0, L), fori = 1, 2, 3, such that

Cazriess () + Po110a@ — 0201 Ciann Coont
—det | Cszine33(u) + Py12049 — 0200 Cioio Cain
Cazmess(u) + Punde@ + 0162 Crozn Cooz

- , 41
i det M (41)

Cin Cszniess() + Pyp19a9 — 0201 Cooiy
—det | Ci112 Cszpe33() + Py120,0 — 260 Copn
Cin Cizmess() + Puodep + 016 Com

= 42
e 2det M ’ (“42)

Cini Ciaii Gsziiess(u) + Py110,0 — 020,
—det | Ciiiz Ciaiz Csziness(u) 4+ Pyiodop — 0205
Cin Cin Cimess(u) + FPyndep + 0162

2= det M ’ (“43)
et i —1% 31009 +1%3293 C2331:|
= | —> a3zao;i</;t;\/§3193 Crs32 ’ (44)
det [ Cisai _%Paﬂaa‘/’ + %3293:|
3 = | Ci3n —fljoiiaa(ﬂ — 50165 7 (45)
K33 = ex3(u). (46)
Proof. Taking (v, ¥) = (u(h), ¢(h)) in (32) we obtain
ol + [ iy i
Q 47)

@) Pz gy + 102000 22 ) + I 830D 23, < b
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where b > 0 is a constant independent of 4. Using the Poincaré—Friedrichs inequality,
for any x; fixed in (0, L), we have

/|</_’(h)(x1,x2,x3)|2dw5
¢ (48)
sb( / 131 (h) (x1, X2, X3)|*dew + / |az¢(h)<x1,xz,x3)|2dw),

where b is another constant which does not depend on x3;. Thus, integrating the
previous inequality, in x3, from 0 to L, and using (47) we conclude that ¢(h) is
bounded in I*(2). Therefore, arguing as in Sene [12] (proposition 3.1) we have
the weak convergence indicated in (40). We remark that the weak limit ¢ of the
sequence @(h) belongs to W; hence the weak limit ¢ of the sequence ¢(h) satisfies
PIrep = q_)\rel) + @or,, = Poir. p-

Since u(h) converges weakly to « in [H'(22)]* and u(h) € V, then also u € V. In
addition, this weak convergence implies that e;;(1(h)) converges weakly to e;;(u)
in [Z*()]. On the other hand, the inequality (47) assures that «;;(h) is bounded
in I*(). Consequently, the sequences e,3(u(h)) = hiys(h)(u(h)) and eqp(u(h)) =
/’lzl(aﬂ (h)(u(h)) converge strongly to zero in L*(£2), hence eqp(tt) = 0 = ey3(u). There-
fore u € Vpy.

To obtain (41)—(43) we multiply (32) by 42, consider i = 0 and take the limit,
when & — 0" and we have

/(Cijf;pl(ij + Po(f;paa(@ + wo))eﬁp(v)dx =0, YvelV. (49)
Q

Applying theorem 3.1 of [6] to this latter variational equation we have in

Cijrikij + Po1104(@ + @o) = +0201,
Cijaikij + Pan10.(@ + @o) = —0161,
Cijiakij + Po1204(@ + @o) = +0205,
Cijookij + Pu2204(@ + @o) = —0165,
with — 3,6, = 9.6,, (50)

where 6,(., ., x3) € H'(w) almost everywhere in (0, L); the last equation is due to the
symmetry of Ci/kl, Pijk and Kij-

Remarking that ¢ = ¢ + ¢y and using the symmetry properties of C;; indicated
in (11), we easily check that the components «y, k1, and «,; are the solution of the
following system, which is equivalent to (50):

ki —Cs311e33(1) — Py11009 + 026,
M| 2kiy | = | —Cszizess(u) — Pyi20e@ + 026 | . (51)
kx —Cs322e33(1) — Pyndep — 016,

Consequently, we have (41)-(43).
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To justify the formulas for the components «13 and «,3 we can follow an analogous
procedure. If we multiply (32) by &, take ¥ = 0 and v, = 0, for @ = 1, 2, and compute
the limit when &4 — 0%, we obtain

/(Cij3ﬁ/<ij + Paspde(@ + 90))dpv3dx =0, Vus € H'(Q), vy, =0. (52)
Q

Applying again Theorem 3.1 of [6], we have in Q

Cijaikij + Pa310a (@ + @o) = +0263,
Cijaakij + Pa320,(@ + @o) = —0165, (53)

where 63(., ., x3) € H'(w) almost everywhere in (0, L). Using once more the proper-
ties (11), we conclude that (53) is equivalent to

1 1
— = Py310,0 + £ 0263

N[k13]: 2 2 , (54)
fos L Pty — Lo0
3 320 ¥ 3 173

which gives (44)—(45). Finally, the formula (46) results from the weak convergence
e;j(u(h)) — e;;(u) and the fact that x33(u(h)) = ez (u(h)). a

The weak convergence results (40) imply the following theorem, which expresses
the limit stress tensor o and the limit electric displacement vector D as functions of
the limit mechanical displacement u and of the limit electric potential ¢.

THEOREM 3.2. There exist 0 e[ L*(Q)1°, De[L*(Q)]® and subsequences {oij (W) (u(h),
©(h)}Yn=0 and { D; (h)(u(h), ¢(h))}n=o (still indexed by h), such that the following weak
convergences are satisfied, when h — 07,

oij (W) (u(h), p(h)) = 01j = Cijimkim + Paijdey in [LX(Q)T,
D; (hy(u(h), p(h)) = D; = Pymkim — €iadap  in [L* ()T, (55)

with

Oup = (—=1)* D-0p,
0u3 = (=1)* 9403,
033 = ce33(u) + pa3 0o +7(61,62), (56)

whereo* =2, ifa = land o* = 1, ifa =2, and

D; = pizes3(u) — (pe)ig dpp + 5:(0). (57)
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The coefficients, ¢, p;3 and (pe)iq, are related, respectively, to the elasticity matrix
C, to the piezoelectric coefficients P,ji, and to both the piezoelectric and dielectric
coefficients Pji and g;; by the following formulas:

detC ( )
c=— ¢ = c(x1, X2, X3),
det M detN' b
Cs311 Cazi2 Gazy O
1 P
i3 = P33z — ——— det ,
pi3 B3 deim € M P2
P
(58)
Puny
1 M P,
(pe)ia = Ejg — det M det PZZ
P B2 Py O
i P13
1 N
————det P,
detN ¢ o2
| Pz P O
The coefficients r (01, 62) and s; (0) are defined by
[ C3311 C3312 G322 O
—0,0;
01,60, = — det ,
r(©:.62) det M ¢ M —020,
L +0162
—0,6,
M —0,0,
(0) = det
5i(6) det M ¢ +016, |’ (59)
By Py Py O
— 0,63
| N
+——det 40165
detN
Fi3z Py 0

Proof. From (31) and the weak convergence (40) we deduce easily the formulas
indicated in (55) for o;; and D;. From (50) and (53) it follows (56). Introducing in
(55) the definition of « given by (41)—(46), we obtain the expressions indicated for o33

and D;.

d

The next result describes the structure of the variational formulation of the limit

rod model.
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THEOREM 3.3. The triple (u, ¢, 0), where (u, ¢) is a weak limit of the sequence
(u(h), p(h)) and 6 = (64, 65, 63) is the function of u, ¢ and k found in Theorem 3.1,
is the solution of the following variational problem:

Find (u,¢) e Vegy x ¥, and 6(,., x3) € H (w), such that:
a((w, ¢, 0), v, ¥)) =1, ¥), VY@, ¥) € Vay x Yy, (60)

¢ =¢y, on T,.p,

where

a((t, 9.9, (v, ) E/

Q

cess(u)ex3(v) dx + f (P&)ap 0up 0p dx
Q
+/ Pa3 [€33(V) 009 — €33(w) B9 | dx + / r(61, 6,) e33(v) dx — / 5q(0) 3 dx
Q Q Q

2/033633(U)dx—/ Dy 3, dx, (61)
Q Q

Cif()tﬁKi[ + Ppaﬂapga = (_l)a*aa*eﬂv
in Q,

Cijsakij + Priadpp = (—1)% 8,465,

witha* =2ifa = 1 and o* = 1 if a =2, and k;; are the components of the weak limit
Kk defined in (41)—(46), and

l(v,w)E/;Zf'vdx—i—/F g-vdly. (62)

Proof. Considering (v, ) € Vpn x W in (32), so in particular eqp(v) = e3p(v) =0,
and taking the limit when 4 — 0T we directly obtain

/Cl‘/'33lcl‘/' 633(v)dx+/ Eap aawaﬁl//dX“r‘
Q Q
(63)
/Pa333a<pe33(v)dx—/ Pa,'jaal/flqjdx :/ f-Ud)C+[ g-UdFN.
Q Q Q 'y

Using the definitions of o33 and D, given in (55), we get the variational formulation
(60) for all (v, ¥) € Vpy x . But, as D(R2) is dense in ¥y (cf. Proposition 3.3), and
D(R2) C ¥, we conclude that W is also dense in V. So, by a density argument we get
(60) for all (v, ¥) € Vy x Y. O

4. The Generalized Piezoelectric Bernoulli-Navier Rod Model

This section describes the differential formulation of the limit rod model (60). With
this objective it is necessary to first introduce additional notation and new functions.
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The limit rod mechanical displacement u belongs to the space Vpy defined in (36);
therefore it satisfies

u(x) = (U (x), w2 (x), us(x)), x = (x1, X2, %3) € 2,
Ug(X) = &4 (x3), & € H(10, L), o =1,2,
us(x) = &(x3) — X, 338, (x3), & € Hy (10, L),

e33(u)(x) = 3383(x3) — Xo 03360 (x3), (64)

where &, and &; are, respectively, the bending and the stretching components of u.
We also introduce the axial stress component

q=q<u,<p>=/

w

oy do = / [C e33(U) + pu3 dup + 1 (01, 92)] dw

= / [c 3385 = o 93380) + Pas dutp + 761, 62) | dos, (65)

the bending moment components

mg = mﬂ(u, (p) = / Xg 033 dw

[0

= / [C (xp 0383 — X Xy 03360) + Xp Pa3 0o + X5 7 (01, 92)] dw, (66)

the functions F; and Mg, associated to the applied mechanical loadings,

F = F(x3) :/ﬁ'(xlsXZax3)dw+/gi(xlstax3)dV»
[0} Y

Mg = Mg(x3) = /

w

xg f3(x1, X2, X3) dow + / xg &3(x1, X2, X3) dy, (67)
y

and finally the functions Iy, I, and Hyg,

Iy = Ih(x3) =/

w

cdw, I, =1,(x3) =/xacda),

Hy,p = Hyp(x3) = / Xo Xgcdw. (68)

w

4.1. The Limit Model Defined in the Scaled Rod

The next theorem formulates the variational limit problem (60) as a system of two
coupled boundary value problems formulated in the scaled rod @ = w x (0, L).
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THEOREM 4.1. The solution (u, ¢) of (60) satisfies

— 03 (10 0363 — Iy 3335(1) =F+ 33(/ (Pa3 Butp +1(61,62)) da)) in (0,0), (69)

w

333( — Ig 0363 + Hyp 333&) =

Fﬂ+a3Mﬁ+a33(/(xﬂpa3aa<p+xﬁr(91,92))dw) in (0,L), forg=1,2,
w

(70)

&(0) =&(L) =0, (71)

§.(0) = 036,(0) =0, &, (L) = 038,(L) =0, (72)

aa( _(p‘g)aﬁaﬁ‘p + Pa3€33(u) + Sa (9)) =0 in Q, (73)

D,

Dyv, =0 on Cen, (74)

© =@ on Lep, (75)
Cijapkij + Poapdpp = (—1)% 3,405,

|: JaBrij papOp * B in Q. (76)
Cijsakij + P30, = (—1)% 8,63,

witha* =2ifa =1 and a* = 1 if a =2, and k;; are the components of the weak limit
k found in Theorem 3.1.

Proof. We first notice that (71)—(72) and (74)—(75) are the boundary conditions
for u and ¢, respectively.
Considering v = 0 in (60) we obtain

/Q <_(p8)aﬂaﬂ(ﬂ + Pazess(u) + Sq (9)> 9y dx =0, (77)

Dy

and, applying Green’s formula, this equation leads to
—/8,1Dawdx+/ Dy v,y dleny =0, (78)
Q Fen

which immediately gives formulas (73)—(74).
Choosing now ¥ = 0 in (60), we get

/(ceg3(u)+pa380,g0+r(01,92)>e33(v)dx:/ f-vdx—i—/ g-vdly. (79)
Q Q r

N

o33 (u,p)
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Considering in (79) v = (0,0, n3) € Vgy (13 € Hol(]O, L[)), the formula (79) becomes

L
/ [(/ de) 0383 — (/ € Xy dw) 03380 +/ (Pa3da +7(601,602)) dw]33773 dx3
0 w w w

Iy L

L
= f F3n3 dxs, (80)
0

which clearly gives (69), after the application of Green’s formula with respect to
the variable x3;. Then, choosing v € Vgy in (79), with the stretching component
n3 =0, and such that v = (11,0, —x183m1) or v = (0, 2, —x293m2) (n € H; (10, LD)),
the formula (79) changes to

L
/ |:(/ CcXg da)) 3353—(/ C Xy Xg dw) 333%},—}—/ (x,g pa38(,<p+xﬁ r(01,92)) da):|
0 5} 5} w
Is Hup

x (—0331p) dx3

L
— / ( — Mg d3mp + Fp ﬂﬂ) dx; (with no sum on 8), (81)
0

which gives (70), for B = 1, 2, after the application of Green’s formula with respect
to the variable x;. O

Using the definitions of the axial stress component g and the bending moments
components mg, the system (69)—(76) can be rewritten in the following form

—hg=F in (0,L), (82)

— dyumg = Fg+8:5My in (0,L), forg=1,2, (83)
§(0) = &(L) =0, (84)

£4(0) = 356,(0) =0, §a(L) = 0:6,(L) =0, (85)
%Dy =0 in  Q, (86)

Dove =0 on T,y (87)

p=¢o on  Tep. (88)

Cijapkij + Poapdpp = (—1)* 3,:0p,
[ S e n Q (89)

Cij3aKij + Pp3aap(p = (_l)a*aa*gf%

witha* =2if ¢ = 1 and o* = 1 if o = 2, and «;; are the components of the weak limit
« found in Theorem 3.1.

Moreover it is interesting to remark that the system (69)—(72) constitutes a
generalization of the Bernoulli-Navier equations for the anisotropic nonhomoge-
neous case (cf. Trabucho and Viafio [13], page 678 formula (23.60)) and (73)-(75)
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correspond to reduced Maxwell-Gauss equations. Moreover in the following corol-
lary, we particularize (69)-(76) for a homogeneous isotropic material with constant
piezoelectric and dielectric coefficients.

COROLLARY 4.1. If the piezoelectric and dielectric coefficients are constants, and
for homogeneous and isotropic elastic coefficients (cf. (16)), the coefficients kg in
(41)—(46) and c, pa3, (pe)ap defined in (58) change to

Pprraaﬂ] 3;)(.0 - €33(M)(Sa/3+

A A
Kap = | =5 Poap + ——— —_—
’ [m PP du (ot ) 200+ w)

5 (=D 8405 — — :
A (t-p) ( Y (=D ap*%)éuﬂ

1 1 *
K3 = —ﬂPpwap(p + E(_l)ﬂ 8/3*93,

k33 = e33(U), (90)

with o, B*, p* =2 ifa, B, p = 1 and o*, B*, p* = lifa, B, p = 2, and

3r+2
c= RGA+ 20 (Young’s modulus of the material),

A+
A
o :Pa _7Pa s
P = B 0w
1 A 1
(pe)aﬁ = 8aﬂ + apotprpﬁpr - mpapppﬁrt + ﬁPaSpPﬁ.?/r (91)

Moreover, r (01, 6;) and s,(0) defined in (59) become

A A
761, 62) = 0261 — 3162,
@0 = 0 ™ T 2
—X A +2u 1
5 () (4M()‘+M)Pa22+4ﬂ()\+/j,) 11)21—!—“ 120202 92)
A+2u 1 1
(i P g o e b Pt = Pt
and finally
nGBA+2u0)
I = , I =O’ =07 f ,
0 e meas () B Hyg ora # f
Hyo = Iof x>do (no sum on a). (93)
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Consequently, for this particular case, the system (69)—(72) becomes

—03(lp 0383) = F5 + 33(/ (Pa3 0 +7(61,62)) da)) in (0, L), (%94)

333 (Hpp 033&3) = Fp + 03 M+

95
333(/ (X8 Pa3 009 + x5 r(91,92))dw) in (0, L), forg=1,2, ©5)
&(0) = &(L) =0, (96)
§4(0) = 0:6,(0) = 0, §u (L) = 036,(L) =0, 97)
- (pg)aﬂ acxﬂgo - pa3833é'>:oz + 0,85¢(0) =0 in Q, (98)

(—(P€)apdpg + Pa3 (0383 — x,033(6)) +54(0) ) va =0 on  Ten,  (99)

Dy

¢=¢o on  T.p. (100)

Cijapkij + Poapdpp = (—1)* 3404,
[ ST e in Q (101)

Cijsakij + Ppiadpp = (—1)% 8,465,

witha* =2ifa = 1and o* = 1 if a = 2, and «;; are the components of the weak limit
k found in Theorem 3.1.

Proof. It is enough to introduce the definition of Cjjy, cf. (15)—(16), in formulas
(41)—(46) and (58) and to use the fact that F,j;; and ¢;; are constants, thus independent
of x = (x1, x2, x3). O

We remark that the system (69)—(76) (or (94)—(101)) is a coupled problem, where
the two unknowns u and ¢ are interdependent. We were not able to determine
the exact expression of the limit rod electric potential, as a function of the limit
rod displacement vector, unlike the plate case (cf. Figueiredo and Leal [7], or Sene
[12]), since the equation (73) (or (98)) is more complex than in the plate case. This
equation involves the third unknown 6 and the derivatives with respect to x; and x;.
However, if the elastic, piezoelectric and dielectric coefficients satisfy the hypotheses
of Corollary 4.1, then formula (98) shows that the limit electric potential ¢ depends
explicitly on the bending components &, of the limit displacement # and on 6, and is
independent of the stretching component.

4.2. The Limit Model Defined in the Original Rod

To interpret the limit problem, with respect to the original rod Q" = " x (0, L), for
a fixed & small enough, it is convenient to formulate (69)—(75) in Q". To achieve this,
we define &f &l gl 2 = () ), 9", 0" and k" related, respectively, to the limit
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mechanical displacement «, to the limit electric potential ¢, to the function 6, and to
k by the re-scalings

£ = & el D), gl=h""¢, and & =&, in [0, L]
(") = h'ue(x) and (") = uz(x),
#"(x") = hop(x) and  O"(x") = (RO} (x"), hOF(x"), HO2(x") = hO(x),

Kly (X)) = Kop (x), K (M) = k3 (x),  and k(") = k33 (x), (102)

for all x" = (x!, xJ, x3), with x = hx, and x = (x;, %2, x3) € @ = @ x (0, L). The
components &' and £} are respectively the bending and stretching components of
the mechanical displacement of the rod Q" = " x (0, L). The functions z/ and ¢"
are, respectively, the limit mechanical displacement and limit electric potential of the
rod Q".

We can now state the following immediate consequence of Theorem 4.1.

THEOREM 4.2. The re-scaled limit displacement 7"(x") = (&!'(x3), &8 (x3), &2(x3) —
xI 8;E"(x3)) and the re-scaled limit electric potential ¢"(x") are the solution of the
system

- 33(1(? ey — I 33355) =Fl'+ 3%(/

w

h(pa38a¢h+r(9h,9§’))da)h> in (0, L),
(103)

333( - IS dEL + Hfﬁ 33350;:)

= F£+33M§+333</-

@

(X! pus 0 +x§r(9",e§))dwh) in (0, L), for=1,2,
h

(104)

£10) = &/(L) =0, (105)

N0y = g8l =0, gD =a8D) =0, (106)

W (—(Pe)apdid" + pazess(@) +5,(0") =0 in Q" (107)

D,

Dyo'=0 on Th, (108)

=9l on TI, (109)
Cijapklt + Poogd¢” = (—1)*" .00,

[ R o n o (110)
Cijsak]; + Praadli¢" = (=1)* 901607,
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(¢ =2, if a =1 and «* = 1, if @« =2) where the functions Fl-h and M!, which are
associated with the original applied mechanical loadings, are defined by

F!' = F'(x3) =/ e X8, xs) do” +/
h

h, h _h h
8 (x)', x5, x3) dy”,
w yh

My = Myt = [

@

p x;fl féh(x{lv xé’v x3) dC() + /h xg g];(x{l’ xé’? x3) thy (111)
' Y

and the functions Ié’, I" and Hi'/g are defined by

I = Il (xs) =/ cdo”, I'=I"(x3) =/

x"cdal,
wh wh

HYy = HYy(xy) = /hx(fl' e do, (112)
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