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Abstract We apply the asymptotic analysis procedure to the three-dimensional static
equations of piezoelectricity, for a linear nonhomogeneous anisotropic thin rod. We
prove the weak convergence of the rod mechanical displacement vectors and the rod
electric potentials, when the diameter of the rod cross-section tends to zero. This
weak limit is the solution of a new piezoelectric anisotropic nonhomogeneous rod
model, which is a system of coupled equations, with generalized Bernoulli–Navier
equilibrium equations and reduced Maxwell–Gauss equations.
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1. Introduction

In a previous paper we have mathematically justified a new nonhomogeneous an-
isotropic piezoelectric plate model (cf. Figueiredo and Leal [7]). This was achieved
considering the three-dimensional static equations of piezoelectricity, and using
the asymptotic analysis method to compute the limit of the plate mechanical dis-
placement vectors and of the plate electric potentials, as the thickness of the plate
approaches zero (see also Maugin and Attou [9], Rahmoune et al. [10], Sene [12],
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and Raoult and Sene [11] for works reporting different asymptotic models for
piezoelectric plates, Collard and Miara [3] for asymptotic models for piezoelectric
shells, and Ciarlet [2] for a detailed description of the asymptotic analysis procedure
to elastic plates).

In the present paper, we consider again the three-dimensional static equations
of piezoelectricity, but for a thin rod, whose cross-section is a function of a small
parameter and made of a nonhomogeneous and anisotropic material. Our purpose is
to use once more the asymptotic analysis to obtain the limit of the three-dimensional
rod mechanical displacement vectors and rod electric potentials, as the diameter of
the rod cross-section tends to zero (cf. also Trabucho and Viaño [13] for a description
of the asymptotic analysis method for elastic rods). Thus the resulting asymptotic
model constitutes a simplified rod model that may be used with confidence by
engineers.

The technique used in this paper is very similar to that described in Figueiredo and
Leal [7], and likewise the latter paper, one of the main difficulties is the anisotropy
and the nonhomogeneity of the material: We suppose the material is monoclinic and
nonhomogeneous and the piezoelectric and dielectric coefficients are functions and
not constants.

The main result of the paper is the existence of a weak limit for the three-
dimensional rod mechanical displacement vectors and for the rod electric potentials,
as the rod cross-section goes to zero (cf. Theorems 3.1, 3.2 and 3.3). In addition we
show that this weak limit is the solution of a new nonhomogeneous anisotropic piezo-
electric rod model (cf. Theorem 4.1, formulas (69)–(76), or equivalently, Theorem
4.2, formulas (103)–(110)), which can be briefly interpreted in the following way: It
is a system of two coupled equations, with generalized Bernoulli–Navier equilibrium
equations and reduced Maxwell–Gauss equations, where the limit rod mechanical
displacement vector and the limit rod electric potential are interdependent. Unlike
the plate case (cf. Figueiredo and Leal [7]) we were not able to determine the exact
expression of the limit rod electric potential as a function of the limit rod mechanical
displacement vector. In fact, in the limit rod problem there appears a third unknown
that is coupled simultaneously with the limit mechanical displacement and the limit
electric potential, which yields a very complex limit model. Moreover due to this
complexity it was not possible to prove the uniqueness of solution for the limit rod
problem.

To finish this introduction we briefly sketch the contents of the paper. In the next
section, the three-dimensional piezoelectric rod model is introduced. The asymptotic
analysis is done in Section 3; here a weak limit of the rod mechanical displacement
vectors and the rod electric potentials is computed, and the variational formulation of
the limit problem is described. Section 4 concerns the description of the differential
formulation of the limit problem, firstly defined in the scaled rod and secondly in the
original rod.

2. The Three-Dimensional Piezoelectric Rod Model

In this section we first introduce some notation. Then, we describe the boundary
value problem associated with the static three-dimensional piezoelectric model,
for a nonhomogeneous anisotropic rod, as well as, its corresponding variational
formulation.
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2.1. Notation

Let ω ⊂ IR2 be a bounded domain with a Lipschitz continuous boundary ∂ω and γe a
subset of ∂ω, such that, the measure of γe satisfies meas(γe) > 0.

For each real parameter h, with 0 < h ≤ 1, we set

ωh
= hω, γ h

= ∂ωh
= h∂ω, γ h

e = hγe, (1)

and

�h
= ωh

× (0, L), 0h
0 = ωh

× {0}, 0h
L = ωh

× {L},

0h
D = 0h

0

⋃
0h

L, 0h
N = γ h

× (0, L),

0h
eD = γ h

e × (0, L), 0h
eN = ∂�h

\ 0h
eD. (2)

The closure of the set �h, �̄h
= ω̄h

× [0, L], represents the rod, which has length L
and cross-section ωh

= hω. The two extremities of the rod are 0h
0 and 0h

L, and the
set 0h

N is its lateral surface. The set 0h
eD is a portion of the lateral surface of the rod

and finally 0h
eN is a part of the boundary ∂�h of �h, which is disjoint from 0h

eD. An
arbitrary point of �h is denoted by xh

= (xh
1 , xh

2 , xh
3 ) where (xh

1 , xh
2 ) = (hx1, hx2), with

(x1, x2) ∈ ω, and the third component xh
3 = x3 ∈ (0, L) is independent of h. We also

denote by νh
= (νh

1 , ν
h
2 , ν

h
3 ) the outward unit normal vector to ∂�h. Moreover, we

assume that the fixed coordinate system OX1 X2 X3 is a principal system of inertia
associated with ω × (0, L);∫

ω

x1 dω =

∫
ω

x2 dω =

∫
ω

x1 x2 dω = 0. (3)

Throughout the paper, Latin indices i , j , k, l... belong to the set {1, 2, 3}, Greek
indices α, β, µ... vary in the set {1, 2} and the summation convention with respect
to repeated indices is employed that is ai bi =

∑3
i=1 ai bi . Moreover we denote by a ·

b = ai bi the inner product of the vectors a = (ai ) and b = (bi ), by Ce = (Ci jklekl) the
contraction of a fourth order tensor C = (Ci jkl) with a second order tensor e = (ekl)

and by Ce : d = Ci jklekldi j the inner product of the second order tensors Ce and d =

(di j ). Given a function θ(xh) defined in�h we denote by ∂h
i θ its partial derivative with

respect to xh
i , that is, ∂h

i θ =
∂θ

∂xh
i

.

2.2. The Three-Dimensional Boundary Value Problem

In the sequel we consider a static three-dimensional piezoelectric rod model, disre-
garding the thermal and magnetic effects, and for the case of small deformations
and linear piezoelectricity. This model is governed by three groups of equations
and boundary conditions, which are described below (cf. Bernadou and Haenel [1],
Eringen and Maugin [4], Ikeda [8]):

Mechanical equilibrium equations−divσ h(uh, ϕh) = f h
⇐⇒ −∂h

j σ
h
i j (u

h, ϕh) = f h
i , in �h,

σ h(uh, ϕh) νh
= gh

⇐⇒ σ h
i j (u

h, ϕh) νh
j = gh

i , on 0h
N,

uh
= 0, on 0h

D,

(4)
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Constitutive equations[
σ h(uh, ϕh) = Cheh(uh)− Ph Eh(ϕh) ⇐⇒ σ h

i j = Ch
i jkle

h
kl(u

h)− Ph
ki j Eh

k(ϕ), in �h,

Dh(uh, ϕh)= Pheh(uh)+ εh Eh(ϕh) ⇐⇒ Dh
k = Ph

ki j e
h
i j (u)+ ε

h
kl Eh

l (ϕ), in �h,

(5)

Maxwell-Gauss equationsdivDh(uh, ϕh) = 0 ⇐⇒ ∂h
i Dh

i (u
h, ϕh) = 0, in �h,

Dh(uh, ϕh)νh
= 0 ⇐⇒ Dh

i (u
h, ϕh)νh

i = 0, on 0h
eN,

ϕh
= ϕh

0 , on 0h
eD.

(6)

The unknown of the piezoelectric rod model (4)–(6) is the pair (uh, ϕh), where uh
:

�h
→ IR3 denotes the mechanical displacement vector field and ϕh

: �h
→ IR is a

scalar field, representing the electric potential. For each point xh
∈ �̄h, the vector

uh(xh) is the mechanical displacement that the point xh undergoes and ϕh(xh) is the
electric potential at xh. The mechanical equilibrium equations express the balance
of mechanical loads and internal stresses. We suppose that f h is the density of the
applied body forces acting in the rod �h, gh is the density of applied surface forces
on 0h

N and we assume that the rod is clamped at its extremities 0h
D = 0h

0

⋃
0h

L. The
constitutive equations represent the electromechanical interaction that characterizes
piezoelectricity. They constitute a relation between the stress tensor σ h

: �h
→ IR9,

the electric displacement vector Dh
: �h

→ IR3, the linear strain tensor eh(uh) and
the electric field vector Eh(ϕh), where

eh(uh) =
1

2

(
∇

huh
+ (∇huh)T

)
and Eh(ϕh) = −∇

hϕh, (7)

or, equivalently, componentwise

eh
i j (u

h) =
1

2

(
∂h

i uh
j + ∂h

j uh
i ) and Eh

i (ϕ
h) = −∂h

i ϕ
h. (8)

Moreover Ch
= (Ch

i jkl) is the elastic fourth order tensor field, Ph
= (Ph

i jk) is the
piezoelectric third order tensor field, and εh

= (εh
i j ) is the dielectric second order

tensor field. Finally the Maxwell–Gauss equations are the equations that control the
electric displacement vector field Dh. We assume that ϕh

0 is the electric potential
applied on 0h

eD and there is no electric loading in �h nor on 0h
eN (which means the

rod �h is a perfect dielectric body).
In addition we suppose the following hypotheses on the data: The applied forces

and applied electric potential have the regularity

f h
∈
[
L2(�h)

]3
, gh

∈
[
L2(0h

N)
]3
, ϕh

0 ∈ H
1
2 (0h

eD), (9)

and the three tensor fields Ch
= (Ch

i jkl), Ph
= (Ph

i jk) and εh
= (εh

i j ) are independent
of h but depend on x = (x1, x2, x3) ∈ ω̄ × [0, L] that is there exist tensor fields
C = (Ci jkl), P = (Pi jk) and ε = (εi j ), such that, for any xh

= (hx1, hx2, x3) ∈ �̄h with
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(x1, x2) ∈ ω̄, then
Ch

i jkl(x
h) = Ci jkl(x),

Ph
i jk(x

h) = Pi jk(x),

εh
i j (x

h) = εi j (x),

and x = (x1, x2, x3) ∈ ω̄ × [0, L], (10)

where Ci jkl , Pi jk and εi j are independent of h. We also assume that Ci jkl , Pi jk, εi j are
smooth enough functions defined in ω̄ × [0, L] that satisfy the following symmetric
and positivity properties:

• in ω̄ × [0, L]

Ci jkl = C j ikl = Ckli j , Cαβγ 3 = 0 = Cα333,

Pi jk = Pikj , εi j = ε j i , (11)

• there exists constants c1 > 0 and c2 > 0, such that

Ci jkl(x)Mkl Mi j ≥ c1

3∑
i, j=1

(Mi j )
2 and εi j (x)θiθ j ≥ c2

3∑
i=1

θ2
i , (12)

for every symmetric 3 × 3 real matrix M and any vector θ ∈ IR3, and for every
x ∈ ω̄ × [0, L].

The hypotheses Cαβγ 3 = 0 = Cα333 mean that the rod has elastic symmetry with
respect to the plane x3 = 0 (cf. Green and Zerna [5]). Consequently the material is
monoclinic in the plane OX1 X2 and the number of independent elastic coefficients
(Ci jkl) is equal to 13.

Due the elastic properties (11), the components of the elasticity tensor C can be
identified with the following matrix C

C =


C1111 C1112 C1122 0 0 C1133

C1211 C1212 C1222 0 0 C1233

C2211 C2212 C2222 0 0 C2233

0 0 0 C1313 C1323 0
0 0 0 C2313 C2323 0

C3311 C3312 C3322 0 0 C3333

 . (13)

The first positivity hypothesis in (12) guarantees that the matrix C is positive definite,
consequently, C3333 > 0, and the sub-matrices

M =

C1111 C1112 C1122

C1211 C1212 C1222

C2211 C2212 C2222

 and N =

[
C1313 C1323

C2313 C2323

]
(14)

are also positive definite. In particular, for a homogeneous and isotropic material, the
elasticity coefficients Ci jkl are constants, defined by,

Ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk), (15)
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where λ and µ are the Lamé constants, δi j = 0 if i 6= j , δi j = 1 if i = j , and the matrix
C in (13) becomes

C =


λ+ 2µ 0 λ 0 0 λ

0 µ 0 0 0 0
λ 0 λ+ 2 µ 0 0 λ

0 0 0 µ 0 0
0 0 0 0 µ 0
λ 0 λ 0 0 λ+ 2µ

 . (16)

2.3. Variational Formulation of the Three-Dimensional Rod Model

We define the space of admissible displacements

Vh
=

{
vh

∈ [H1(�h)]3
: vh

|0h
D

= 0
}

(17)

with the norm ‖vh
‖Vh =‖eh(vh)‖[L2(�h)]9 , and the space of admissible electric potentials

9h
=

{
ψh

∈ H1(�h) : ψh
|0h

eD
= 0

}
(18)

with the norm ‖ψh
‖9h = ‖∇ψh

‖[L2(�h)]3 . Let ϕ̄h
= ϕh

− ϕh
0 , where ϕh

0 is a trace lifting
in H1(�h) of the applied potential acting on 0h

eD (cf. (6)). In the sequel we denote
by ϕh

0 the trace lifting as well as its boundary value at 0h
eD. Then, the variational

formulation of the system (4)–(6) is defined by{
Find (uh, ϕ̄h) ∈ Vh

×9h such that:

ah
(
(uh, ϕ̄h), (vh, ψh)

)
= lh(vh, ψh), ∀(vh, ψh) ∈ Vh

×9h,
(19)

where 

ah
(
(uh, ϕ̄h), (vh, ψh)

)
=

∫
�h

Ceh(uh) : eh(vh)dxh
+

∫
�h
εi j ∂

h
i ϕ̄

h ∂h
j ψ

h dxh

+

∫
�h

Pi jk
(
∂h

i ϕ̄
heh

jk(v
h)− ∂h

i ψ
heh

jk(u
h)
)

dxh

(20)

and  lh(vh, ψh) =

∫
�h

f h
· vh dxh

+

∫
0h

N

gh
· vh d0h

N

−

∫
�h
εi j ∂

h
i ϕ

h
0 ∂

h
j ψ

h dxh
−

∫
�h

Pi jk ∂
h
i ϕ

h
0 eh

jk(v
h)dxh.

(21)

To obtain (19) we first do the inner product of the first equation of (4) by vh
∈ Vh

and we multiply the first equation of (6) by ψh
∈ 9h; afterwards adding the two
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resulting equations, integrating in�h, applying the Green’s formula, and using all the
boundary conditions and the constitutive equations defined in (4)–(6) we get (19).

The definition of ah(., .) clearly implies that

 ah
(
(vh, ψh), (vh, ψh)

)
=

∫
�h

Ceh(vh) : eh(vh)dxh
+

∫
�h
εi j ∂

h
i ψ

h ∂h
j ψ

h dxh,
(22)

and therefore, by the positivity properties (12), the bilinear form ah(., .) is coercive.
Consequently, by the Lax–Milgram lemma, the variational problem (19) has a unique
solution.

3. Asymptotic Analysis

In this section we apply the asymptotic analysis procedure (as developed for elastic
plates by Ciarlet [2], and for elastic rods by Trabucho and Viaño [13]) to the
variational problem (19). We first transform the three-dimensional piezoelectric rod
problem (19), into an equivalent problem depending on h, but posed over the scaled
rod � = ω × (0, L) independent of h (we use appropriate scalings of the unknowns
uh, ϕh and convenient assumptions on the data). Then, we study the behavior of
the scaled displacements, electric potentials, stresses and electric vectors as h → 0+.
The Theorems 3.1 and 3.2 prove the existence of the weak limits. The Theorem 3.3
characterizes the limit model.

3.1. The Scaled Three-Dimensional Rod Model

We redefine here the three-dimensional variational problem (19) in the domain � =

ω × (0, L) independent of h. Each x = (x1, x2, x3) ∈ � is associated with the element
xh

= (hx1, hx2, x3) ∈ �h, and we also consider the subsets defined in (1)–(2) for the
choice h = 1, that is

� = ω × (0, L), 00 = ω × {0}, 0L = ω × {L},

0D = 00

⋃
0L, 0N = γ × (0, L), γ = ∂ω,

0eD = γe × (0, L), 0eN = ∂� \ 0eD. (23)

We denote by ν = (ν1, ν2) = (να) the unit outer normal vector along ∂ω, and by ∂i =

∂
∂xi

and ∂i j =
∂2

∂xi ∂x j
, the first and second partial derivatives with respect to xi and x j .

We suppose that the data satisfy the hypotheses

f h
α (x

h) = hfα(x), f h
3 (x

h) = f3(x), x ∈ �,

gh
α(x

h) = h2gα(x), gh
3 (x

h) = hg3(x), x ∈ 0N,

ϕh
0 (x

h) = hϕ0(x), x ∈ �̄, (24)



92 J Elasticity (2006) 85: 85–106

where fi ∈ L2(�), gi ∈ L2(0N) and ϕ0 ∈ H1(�). For the unknowns, uh
∈ Vh

and ϕh
∈ 9h, and for any admissible displacement or electric potential, respectively,

vh
∈ Vh and ψh

∈ 9h, the following scalings are assumed:

uh
α(x

h) = h−1uα(h)(x), uh
3(x

h) = u3(h)(x), x ∈ �,

vh
α(x

h) = h−1vα(h)(x), vh
3 (x

h) = v3(h)(x), x ∈ �,

ϕh(xh) = hϕ(h)(x), x ∈ �,

ψh(xh) = hψ(h)(x), x ∈ �. (25)

We remark that the assumptions and the scalings indicated in (24)–(25) for the
mechanical forces and the displacements correspond exactly to the contravariant
and the covariant transformations of the components of the mechanical forces
and the displacements, respectively, and which are associated with the coordinate
change (x1, x2, x3) ∈ � → xh

= (hx1, hx2, x3) ∈ �h (cf. [14], p. 439). Moreover these
assumptions and scalings are the same as in Trabucho and Viaño [13], pages 516–517
and Remark 2.1. The scaling orders of ϕh

0 and ϕh (as well as of ψh) are chosen so
that an asymptotic solution exists for the variational problem (32), which means that
these are selected in such a way that we are able to compute the limit of the scaled
three-dimensional rod model (32) as h → 0. We also note that a similar reasoning is
used for example in Rahmoune et al. [10] and Sene [12].

The vector fields u(h) and v(h) are in the scaled admissible displacement space
V, and the electric potentials ϕ(h) and ψ(h) belong to the scaled admissible electric
potential space 9, where V and 9 are defined by

V =

{
v ∈ [H1(�)]3

: v|0D = 0
}
,

9 =

{
ψ ∈ H1(�) : ψ|0eD = 0

}
. (26)

The first space is equipped with the norm ‖v‖V = ‖e(v)‖(L2(�))9 and the second with
the norm ‖ψ‖9 = ‖∇ψ‖(L2(�))3 .

For any v ∈ V the second order symmetric tensor field κ(h)(v) = (κi j (h)(v)) is
defined by

καβ(h)(v) =
1

h2
eαβ(v) =

1

2h2
(∂βvα + ∂αvβ),

κα3(h)(v) =
1

h
eα3(v) =

1

2h
(∂3vα + ∂αv3),

κ33(h)(v) = e33(v) = ∂3v3. (27)

In particular, when v = u(h) we set κ(h) = κ(h)(u(h)). As a consequence of the
scalings (25) and (27) we have for any vh in Vh

eh
αβ(v

h) = h−2eαβ(v(h)) = καβ(h)(v(h)),

eh
α3(v

h) = h−1eα3(v(h)) = κα3(h)(v(h)),

eh
33(v

h) = e33(v(h)) = κ33(h)(v(h)), (28)

therefore

eh(uh) = κ(h)(u(h)) = κ(h) and eh(vh) = κ(h)(v(h)). (29)
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The scalings of the stress tensor σ h, the electric displacement vector Dh and the
electric vector Eh are induced by (25) and are defined by

σi j (h)(u(h), ϕ(h)) = σ h
i j (u

h, ϕh), Di (u(h), ϕ(h)) = Dh
i (u

h, ϕh),

Ei (ϕ(h)) = Eh
i (ϕ

h), (30)

where

σ h
i j (u

h, ϕh) = Ci jmlκml(h)− Pmi j Em(h)(ϕ(h)) = σi j (h)(u(h), ϕ(h)),

Dh
i (u

h, ϕh) = Pilm κlm(h)+ εi j Ej (h) = Di (h)(u(h), ϕ(h)),

Eα(h)(ϕ(h)) = −∂αϕ(h), E3(h)(ϕ(h)) = −h∂3ϕ(h) (31)

Using all these transformations and assumptions on the data, a straightforward
computation shows that (19) is equivalent to the following scaled three-dimensional
variational rod model{

Find (u(h), ϕ̄(h)) ∈ V ×9 such that:

a(h)
(
(u(h), ϕ̄(h)), (v, ψ)

)
= l(h)(v, ψ), ∀(v, ψ) ∈ V ×9,

(32)

where

a(h)
(
(u(h), ϕ̄(h)), (v, ψ)

)
=

∫
�

Cκ(h) : κ(h)(v)dx +

∫
�

εαβ ∂αϕ̄(h) ∂βψ dx

+

∫
�

Pαi j
[
∂αϕ̄(h) κi j (h)(v)− ∂αψ κi j (h)

]
dx

+h
∫
�

ε3α
[
∂αϕ̄(h) ∂3ψ + ∂3ϕ̄(h) ∂αψ

]
dx

+h
∫
�

P3i j
[
∂3ϕ̄(h) κi j (h)(v)− ∂3ψ κi j (h)

]
dx + h2

∫
�

ε33 ∂3ϕ̄(h) ∂3ψ dx,

(33)

and 

l(h)(v, ψ) =

∫
�

f · v dx +

∫
0N

g · v d0N −

∫
�

εαβ ∂αϕ0 ∂βψ dx

−h
∫
�

εα3
[
∂αϕ0 ∂3ψ + ∂3ϕ0 ∂αψ

]
dx − h2

∫
�

ε33 ∂3ϕ0 ∂3ψ dx

−h
∫
�

P3i j ∂3ϕ0 κi j (h)(v)dx −

∫
�

Pαi j ∂αϕ0 κi j (h)(v)dx.

(34)

3.2. Computation of a Weak Limit

Here we essentially compute and identify a weak limit of the scaled displacements
and electric potentials (u(h), ϕ(h)) when h → 0+.
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3.2.1. Functional Spaces

In order to compute the limits it is necessary to introduce the spaces VBN, 9l and 9l0.
Let

VBN = {v ∈ V : eαβ(v) = e3β(v) = 0},

9l = {ψ ∈ L2(�) : ∂αψ ∈ L2(�), α = 1, 2},

9l0 = {ψ ∈ 9l : ψ|0eD = 0}. (35)

The space VBN, which is called the Bernoulli–Navier mechanical displacement space,
is equivalently defined by

VBN =

{
v = (v1, v2, v3) ∈ V : vα(x1, x2, x3) = ηα(x3), ηα ∈ H 2

0 (]0, L[),

v3(x1, x2, x3) = η3(x3)− xα∂3ηα(x3), η3 ∈ H1
0(]0, L[)

}
, (36)

and it is equipped with the norm ‖.‖VNB , where

‖v‖2
VNB

= ‖e33(v)‖
2
L2(�) =

∫
�

|∂3η3 − xα∂33ηα|
2 dx

= meas(ω) ‖∂3η3‖
2
L2(]0,L[) +

(∫
ω

x2
αdω

)
‖∂33ηα‖

2
L2(]0,L[). (37)

The space 9l is equipped with the norm ‖.‖9l defined by

‖ϕ‖9l =

(
‖ϕ‖

2
L2(�) +

2∑
α=1

‖∂αϕ‖
2
L2(�)

) 1
2

. (38)

We observe that, for any ψ ∈ 9l the trace ψ|0eD is well defined. In fact, for any
ψ ∈ 9l , and for any fixed x3 ∈ (0, L), we can define χ(x1, x2) = ψ(x1, x2, x3) and χ ∈

H1(ω); the trace of χ is an element of H
1
2 (γe), that satisfies ‖χ|γe ‖L2(γe) ≤ c‖χ‖H1(ω)

with c a constant, that does not depend on the fixed x3, therefore integrating the
previous inequality in x3, from 0 to L, we get ‖ψ|0eD‖

2
L2(0eD)

≤ ‖ψ‖
2
9l

. This latter
inequality proves that ψ|0eD is well defined and the trace operator acting from 9l

to L2(0eD) is continuous. Moreover, the function ‖.‖9l0 defined by

‖ψ‖9l0 =

(∑2

α=1
‖∂αψ‖

2
L2(�)

) 1
2

(39)

is a norm equivalent to the norm induced in 9l0 by the norm of 9l . In addition, the
following result can also be established.

PROPOSITION 3.1. The space D(�) is dense in 9l0 equipped with the norm ‖.‖9l .

Proof. Similar to Proposition 3.2 of Sene [12]. �

3.2.2. Weak Limits and Variational Limit Rod Model

The weak convergence is proved in the following theorem:
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THEOREM 3.1. There exist u ∈ [H1(�)]3, κ ∈ [L2(�)]9 and ϕ ∈ L2(�) and subse-
quences {u(h)}h>0, {κ(h)}h>0 and {(∂1ϕ(h), ∂2ϕ(h), h∂3ϕ(h))}h>0 (still indexed by h),
such that the following weak convergences are satisfied, when h → 0+,

u(h) ⇀ u in [H1(�)]3,

κ(h) ⇀ κ in [L2(�)]9,

ϕ(h) ⇀ ϕ in L2(�),

(∂1ϕ(h), ∂2ϕ(h), h∂3ϕ(h)) ⇀ (∂1ϕ, ∂2ϕ, 0) in [L2(�)]3. (40)

Moreover, the limits u, κ and ϕ belong to the spaces VBN, (L2(�))9 and9l , respectively,
ϕ = ϕ0 on 0eD, and there exists an implicit function θ = (θ1, θ2, θ3) of u, ϕ and κ

(defined in Equations (50) and (53)) and that satisfies θi (., ., x3) ∈ H1(ω) almost
everywhere in (0, L), for i = 1, 2, 3, such that

κ11 =

−det

C3311e33(u)+ Pα11∂αϕ − ∂2θ1 C1211 C2211

C3312e33(u)+ Pα12∂αϕ − ∂2θ2 C1212 C2212

C3322e33(u)+ Pα22∂αϕ + ∂1θ2 C1222 C2222


detM

, (41)

κ12 =

−det

C1111 C3311e33(u)+ Pα11∂αϕ − ∂2θ1 C2211

C1112 C3312e33(u)+ Pα12∂αϕ − ∂2θ2 C2212

C1122 C3322e33(u)+ Pα22∂αϕ + ∂1θ2 C2222


2detM

, (42)

κ22 =

−det

C1111 C1211 C3311e33(u)+ Pα11∂αϕ − ∂2θ1

C1112 C1212 C3312e33(u)+ Pα12∂αϕ − ∂2θ2

C1122 C1222 C3322e33(u)+ Pα22∂αϕ + ∂1θ2


detM

, (43)

κ13 =

det

[
−

1
2 Pα31∂αϕ +

1
2∂2θ3 C2331

−
1
2 Pα32∂αϕ −

1
2∂1θ3 C2332

]
detN

, (44)

κ32 =

det

[
C1331 −

1
2 Pα31∂αϕ +

1
2∂2θ3

C1332 −
1
2 Pα32∂αϕ −

1
2∂1θ3

]
detN

, (45)

κ33 = e33(u). (46)

Proof. Taking (v, ψ) = (u(h), ϕ̄(h)) in (32) we obtain
‖u(h)‖2

V +

∫
�

κ(h) : κ(h)dx

+‖∂1ϕ(h)‖2
L2(�)

+ ‖∂2ϕ(h)‖2
L2(�)

+ ‖h ∂3ϕ(h)‖2
L2(�)

< b,
(47)
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where b > 0 is a constant independent of h. Using the Poincaré–Friedrichs inequality,
for any x3 fixed in (0, L), we have


∫
ω

|ϕ̄(h)(x1, x2, x3)|
2dω ≤

≤ b
( ∫

ω

|∂1ϕ̄(h)(x1, x2, x3)|
2dω +

∫
ω

|∂2ϕ̄(h)(x1, x2, x3)|
2dω

)
,

(48)

where b is another constant which does not depend on x3. Thus, integrating the
previous inequality, in x3, from 0 to L, and using (47) we conclude that ϕ̄(h) is
bounded in L2(�). Therefore, arguing as in Sene [12] (proposition 3.1) we have
the weak convergence indicated in (40). We remark that the weak limit ϕ̄ of the
sequence ϕ̄(h) belongs to 9; hence the weak limit ϕ of the sequence ϕ(h) satisfies
ϕ|0eD = ϕ̄|0eD + ϕ0|0eD = ϕ0|0eD.

Since u(h) converges weakly to u in [H1(�)]3 and u(h) ∈ V, then also u ∈ V. In
addition, this weak convergence implies that ei j (u(h)) converges weakly to ei j (u)
in [L2(�)]. On the other hand, the inequality (47) assures that κi j (h) is bounded
in L2(�). Consequently, the sequences eα3(u(h)) = hκα3(h)(u(h)) and eαβ(u(h)) =

h2καβ(h)(u(h)) converge strongly to zero in L2(�), hence eαβ(u) = 0 = eα3(u). There-
fore u ∈ VBN.

To obtain (41)–(43) we multiply (32) by h2, consider ψ = 0 and take the limit,
when h → 0+ and we have∫

�

(Ci jβρκi j + Pαβρ∂α(ϕ̄ + ϕ0))eβρ(v)dx = 0, ∀v ∈ V. (49)

Applying theorem 3.1 of [6] to this latter variational equation we have in �

Ci j11κi j + Pα11∂α(ϕ̄ + ϕ0) = +∂2θ1,

Ci j21κi j + Pα21∂α(ϕ̄ + ϕ0) = −∂1θ1,

Ci j12κi j + Pα12∂α(ϕ̄ + ϕ0) = +∂2θ2,

Ci j22κi j + Pα22∂α(ϕ̄ + ϕ0) = −∂1θ2,

with − ∂1θ1 = ∂2θ2, (50)

where θα(., ., x3) ∈ H1(ω) almost everywhere in (0, L); the last equation is due to the
symmetry of Ci jkl , Pi jk and κi j .

Remarking that ϕ = ϕ̄ + ϕ0 and using the symmetry properties of Ci jkl indicated
in (11), we easily check that the components κ11, κ12 and κ22 are the solution of the
following system, which is equivalent to (50):

M

 k11

2k12

k22

 =

−C3311e33(u)− Pα11∂αϕ + ∂2θ1

−C3312e33(u)− Pα12∂αϕ + ∂2θ2

−C3322e33(u)− Pα22∂αϕ − ∂1θ2

 . (51)

Consequently, we have (41)–(43).
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To justify the formulas for the components κ13 and κ23 we can follow an analogous
procedure. If we multiply (32) by h, take ψ = 0 and vα = 0, for α = 1, 2, and compute
the limit when h → 0+, we obtain∫

�

(Ci j3βκi j + Pα3β∂α(ϕ̄ + ϕ0))∂βv3dx = 0, ∀v3 ∈ H1(�), v3|0D = 0. (52)

Applying again Theorem 3.1 of [6], we have in �

Ci j31κi j + Pα31∂α(ϕ̄ + ϕ0) = +∂2θ3,

Ci j32κi j + Pα32∂α(ϕ̄ + ϕ0) = −∂1θ3, (53)

where θ3(., ., x3) ∈ H1(ω) almost everywhere in (0, L). Using once more the proper-
ties (11), we conclude that (53) is equivalent to

N
[

k13

k23

]
=

−
1

2
Pα31∂αϕ +

1

2
∂2θ3

−
1

2
Pα32∂αϕ −

1

2
∂1θ3

 , (54)

which gives (44)–(45). Finally, the formula (46) results from the weak convergence
ei j (u(h)) ⇀ ei j (u) and the fact that κ33(u(h)) = e33(u(h)). �

The weak convergence results (40) imply the following theorem, which expresses
the limit stress tensor σ and the limit electric displacement vector D as functions of
the limit mechanical displacement u and of the limit electric potential ϕ.

THEOREM 3.2. There exist σ ∈[L2(�)]9, D∈[L2(�)]3 and subsequences {σi j (h)(u(h),
ϕ(h))}h>0 and {Di (h)(u(h), ϕ(h))}h>0 (still indexed by h), such that the following weak
convergences are satisfied, when h → 0+,

σi j (h)(u(h), ϕ(h)) ⇀ σi j = Ci jlmκlm + Pαi j∂αϕ in [L2(�)]9,

Di (h)(u(h), ϕ(h)) ⇀ Di = Pilmκlm − εiα∂αϕ in [L2(�)]3, (55)

with

σαβ = (−1)α
∗

∂α∗θβ ,

σα3 = (−1)α
∗

∂α∗θ3,

σ33 = c e33(u)+ pα3 ∂αϕ + r(θ1, θ2), (56)

where α∗
= 2, if α = 1 and α∗

= 1, if α = 2, and

Di = pi3 e33(u)− (pε)iβ ∂βϕ + si (θ). (57)
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The coefficients, c, pi3 and (pε)iα , are related, respectively, to the elasticity matrix
C, to the piezoelectric coefficients Pi jk, and to both the piezoelectric and dielectric
coefficients Pi jk and εi j by the following formulas:

c =
detC

detM detN
, c = c(x1, x2, x3),

pi3 = Pi33 −
1

detM
det


C3311 C3312 C3322 0

Pi11

M Pi12

Pi22

 ,
(58)

(pε)iα = εiα −
1

detM
det


Pα11

M Pα12

Pα22

Pi11 Pi12 Pi22 0

 ,

−
1

detN
det


Pα13

N
Pα23

Pi13 Pi23 0

 .

The coefficients r(θ1, θ2) and si (θ) are defined by

r(θ1, θ2) = −
1

detM
det


C3311 C3312 C3322 0

−∂2θ1

M −∂2θ2

+∂1θ2

 ,

(59)



si (θ) =
1

detM
det


−∂2θ1

M −∂2θ2

+∂1θ2

Pi11 Pi12 Pi22 0

 ,

+
1

detN
det


−∂2θ3

N
+∂1θ3

Pi13 Pi23 0

 .

Proof. From (31) and the weak convergence (40) we deduce easily the formulas
indicated in (55) for σi j and Di . From (50) and (53) it follows (56). Introducing in
(55) the definition of κ given by (41)–(46), we obtain the expressions indicated for σ33

and Di . �

The next result describes the structure of the variational formulation of the limit
rod model.
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THEOREM 3.3. The triple (u, ϕ, θ), where (u, ϕ) is a weak limit of the sequence
(u(h), ϕ(h)) and θ = (θ1, θ2, θ3) is the function of u, ϕ and κ found in Theorem 3.1,
is the solution of the following variational problem:


Find (u, ϕ) ∈ VBN ×9l and θ(., ., x3) ∈ H1(ω), such that:

a
(
(u, ϕ, θ), (v, ψ)

)
= l(v, ψ), ∀(v, ψ) ∈ VBN ×9l0,

ϕ = ϕ0, on 0eD,

(60)

where
a
(
(u, ϕ, θ), (v, ψ)

)
≡

∫
�

c e33(u) e33(v)dx +

∫
�

(pε)αβ ∂αϕ ∂βψ dx

+

∫
�

pα3
[
e33(v) ∂αϕ − e33(u) ∂αψ

]
dx +

∫
�

r(θ1, θ2) e33(v)dx −

∫
�

sα(θ) ∂αψ dx

=

∫
�

σ33 e33(v)dx −

∫
�

Dα ∂αψ dx,

Ci jαβκi j + Pραβ∂ρϕ = (−1)α
∗

∂α∗θβ ,

Ci j3ακi j + Pρ3α∂ρϕ = (−1)α
∗

∂α∗θ3,
in �,

(61)

with α∗
= 2 if α = 1 and α∗

= 1 if α = 2, and κi j are the components of the weak limit
κ defined in (41)–(46), and

l(v, ψ) ≡

∫
�

f · v dx +

∫
0N

g · v d0N. (62)

Proof. Considering (v, ψ) ∈ VBN ×9 in (32), so in particular eαβ(v) = e3β(v) = 0,
and taking the limit when h → 0+ we directly obtain



∫
�

Ci j33 κi j e33(v)dx +

∫
�

εαβ ∂αϕ ∂βψ dx +

∫
�

Pα33∂αϕ e33(v)dx −

∫
�

Pαi j∂αψ κi j dx =

∫
�

f · v dx +

∫
0N

g · v d0N.

(63)

Using the definitions of σ33 and Dα given in (55), we get the variational formulation
(60) for all (v, ψ) ∈ VBN ×9. But, as D(�) is dense in 9l0 (cf. Proposition 3.3), and
D(�) ⊂ 9, we conclude that 9 is also dense in 9l0. So, by a density argument we get
(60) for all (v, ψ) ∈ VBN ×9l0. �

4. The Generalized Piezoelectric Bernoulli–Navier Rod Model

This section describes the differential formulation of the limit rod model (60). With
this objective it is necessary to first introduce additional notation and new functions.
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The limit rod mechanical displacement u belongs to the space VBN defined in (36);
therefore it satisfies

u(x) = (u1(x),u2(x),u3(x)), x = (x1, x2, x3) ∈ �,

uα(x) = ξα(x3), ξα ∈ H2
0 (]0, L[), α = 1, 2,

u3(x) = ξ3(x3)− xα∂3ξα(x3), ξ3 ∈ H1
0 (]0, L[),

e33(u)(x) = ∂3ξ3(x3)− xα∂33ξα(x3), (64)

where ξα and ξ3 are, respectively, the bending and the stretching components of u.
We also introduce the axial stress component

q = q(u, ϕ) =

∫
ω

σ33 dω =

∫
ω

[
c e33(u)+ pα3 ∂αϕ + r(θ1, θ2)

]
dω

=

∫
ω

[
c (∂3ξ3 − xα ∂33ξα)+ pα3 ∂αϕ + r(θ1, θ2)

]
dω, (65)

the bending moment components

mβ = mβ(u, ϕ) =

∫
ω

xβ σ33 dω

=

∫
ω

[
c (xβ ∂3ξ3 − xβ xα ∂33ξα)+ xβ pα3 ∂αϕ + xβ r(θ1, θ2)

]
dω, (66)

the functions Fi and Mβ , associated to the applied mechanical loadings,

Fi = Fi (x3) =

∫
ω

fi (x1, x2, x3)dω +

∫
γ

gi (x1, x2, x3)dγ,

Mβ = Mβ(x3) =

∫
ω

xβ f3(x1, x2, x3)dω +

∫
γ

xβ g3(x1, x2, x3)dγ, (67)

and finally the functions I0, Iα and Hαβ ,

I0 = I0(x3) =

∫
ω

c dω, Iα = Iα(x3) =

∫
ω

xα c dω,

Hαβ = Hαβ(x3) =

∫
ω

xα xβ c dω. (68)

4.1. The Limit Model Defined in the Scaled Rod

The next theorem formulates the variational limit problem (60) as a system of two
coupled boundary value problems formulated in the scaled rod � = ω × (0, L).
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THEOREM 4.1. The solution (u, ϕ) of (60) satisfies

− ∂3

(
I0 ∂3ξ3 − Iα ∂33ξα

)
= F3 + ∂3

( ∫
ω

(
pα3 ∂αϕ + r(θ1, θ2)

)
dω
)

in (0, L), (69)


∂33

(
− Iβ ∂3ξ3 + Hαβ ∂33ξα

)
=

Fβ + ∂3 Mβ + ∂33

( ∫
ω

(
xβ pα3 ∂αϕ + xβ r(θ1, θ2)

)
dω
)

in (0, L), for β = 1, 2,

(70)

ξ3(0) = ξ3(L) = 0, (71)

ξα(0) = ∂3ξα(0) = 0, ξα(L) = ∂3ξα(L) = 0, (72)

∂α
(
−(pε)αβ∂βϕ + pα3e33(u)+ sα(θ)︸ ︷︷ ︸

Dα

)
= 0 in �, (73)

Dανα = 0 on 0eN, (74)

ϕ = ϕ0 on 0eD, (75)

[
Ci jαβκi j + Pραβ∂ρϕ = (−1)α

∗

∂α∗θβ ,

Ci j3ακi j + Pρ3α∂ρϕ = (−1)α
∗

∂α∗θ3,
in �, (76)

with α∗
= 2 if α = 1 and α∗

= 1 if α = 2, and κi j are the components of the weak limit
κ found in Theorem 3.1.

Proof. We first notice that (71)–(72) and (74)–(75) are the boundary conditions
for u and ϕ, respectively.

Considering v = 0 in (60) we obtain∫
�

(
−(pε)αβ∂βϕ + pα3e33(u)+ sα(θ)︸ ︷︷ ︸

Dα

)
∂αψ dx = 0, (77)

and, applying Green’s formula, this equation leads to

−

∫
�

∂αDα ψ dx +

∫
0eN

Dα να ψ d0eN = 0, (78)

which immediately gives formulas (73)–(74).
Choosing now ψ = 0 in (60), we get∫
�

(
c e33(u)+ pα3 ∂αϕ + r(θ1, θ2)︸ ︷︷ ︸

σ33(u,ϕ)

)
e33(v)dx =

∫
�

f · v dx +

∫
0N

g · v d0N. (79)
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Considering in (79) v = (0, 0, η3) ∈ VBN (η3 ∈ H1
0 (]0, L[)), the formula (79) becomes∫ L

0

[(∫
ω

c dω︸ ︷︷ ︸
I0

)
∂3ξ3 −

(∫
ω

c xα dω︸ ︷︷ ︸
Iα

)
∂33ξα +

∫
ω

(
pα3∂αϕ + r(θ1, θ2)

)
dω
]
∂3η3 dx3

=

∫ L

0
F3 η3 dx3, (80)

which clearly gives (69), after the application of Green’s formula with respect to
the variable x3. Then, choosing v ∈ VBN in (79), with the stretching component
η3 = 0, and such that v = (η1, 0,−x1∂3η1) or v = (0, η2,−x2∂3η2) (ηα ∈ H2

0 (]0, L[)),
the formula (79) changes to∫ L

0

[(∫
ω

c xβ dω︸ ︷︷ ︸
Iβ

)
∂3ξ3−

(∫
ω

c xα xβ dω︸ ︷︷ ︸
Hαβ

)
∂33ξα+

∫
ω

(
xβ pα3∂αϕ + xβ r(θ1, θ2)

)
dω
]

×(−∂33ηβ)dx3

=

∫ L

0

(
− Mβ ∂3ηβ + Fβ ηβ

)
dx3 (with no sum on β), (81)

which gives (70), for β = 1, 2, after the application of Green’s formula with respect
to the variable x3. �

Using the definitions of the axial stress component q and the bending moments
components mβ , the system (69)–(76) can be rewritten in the following form

− ∂3q = F3 in (0, L), (82)

− ∂33mβ = Fβ + ∂3 Mβ in (0, L), for β = 1, 2, (83)

ξ3(0) = ξ3(L) = 0, (84)

ξα(0) = ∂3ξα(0) = 0, ξα(L) = ∂3ξα(L) = 0, (85)

∂αDα = 0 in �, (86)

Dανα = 0 on 0eN, (87)

ϕ = ϕ0 on 0eD. (88)[
Ci jαβκi j + Pραβ∂ρϕ = (−1)α

∗

∂α∗θβ ,

Ci j3ακi j + Pρ3α∂ρϕ = (−1)α
∗

∂α∗θ3,
in �, (89)

with α∗
= 2 if α = 1 and α∗

= 1 if α = 2, and κi j are the components of the weak limit
κ found in Theorem 3.1.

Moreover it is interesting to remark that the system (69)–(72) constitutes a
generalization of the Bernoulli–Navier equations for the anisotropic nonhomoge-
neous case (cf. Trabucho and Viaño [13], page 678 formula (23.60)) and (73)–(75)
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correspond to reduced Maxwell-Gauss equations. Moreover in the following corol-
lary, we particularize (69)–(76) for a homogeneous isotropic material with constant
piezoelectric and dielectric coefficients.

COROLLARY 4.1. If the piezoelectric and dielectric coefficients are constants, and
for homogeneous and isotropic elastic coefficients (cf. (16)), the coefficients καβ in
(41)–(46) and c, pα3, (pε)αβ defined in (58) change to


καβ =

[
−

1

2µ
Pραβ +

λ

4µ(λ+ µ)
Pρττ δαβ

]
∂ρϕ −

λ

2(λ+ µ)
e33(u)δαβ+

1
2µ (−1)α

∗

∂α∗θβ −
λ

4µ(λ+µ)

(∑2
ρ=1(−1)ρ∗

∂ρ∗ θρ

)
δαβ

,

κ3β = −
1

2µ
Pρ3β∂ρϕ +

1

2µ
(−1)β

∗

∂β∗θ3,

κ33 = e33(u), (90)

with α∗, β∗, ρ∗
= 2 if α, β, ρ = 1 and α∗, β∗, ρ∗

= 1 if α, β, ρ = 2, and

c =
µ(3λ+ 2µ)

λ+ µ
(Young’s modulus of the material),

pα3 = Pα33 −
λ

2(λ+ µ)
Pαρρ,

(pε)αβ = εαβ +
1

2µ
Pαρτ Pβρτ −

λ

4µ(λ+ µ)
PαρρPβττ +

1

µ
Pα3ρPβ3ρ . (91)

Moreover, r(θ1, θ2) and sα(θ) defined in (59) become

r(θ1, θ2) =
λ

2(λ+ µ)
∂2θ1 −

λ

2(λ+ µ)
∂1θ2,


sα(θ) =

(
−λ

4µ(λ+ µ)Pα22
+

λ+ 2µ

4µ(λ+ µ)
Pα11

)
∂2θ1 +

1

µ
Pα12∂2θ2

−

( λ+ 2µ

4µ(λ+ µ)
Pα22 −

λ

4µ(λ+ µ)
Pα11

)
∂1θ2 +

1

µ
Pα13∂2θ3 −

1

µ
Pα23∂1θ3,

(92)

and finally

I0 =
µ(3λ+ 2µ)

λ+ µ
meas(ω), Iβ = 0, Hαβ = 0, for α 6= β,

Hαα = I0

∫
ω

x2
α dω (no sum on α). (93)
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Consequently, for this particular case, the system (69)–(72) becomes

− ∂3(I0 ∂3ξ3) = F3 + ∂3

( ∫
ω

(
pα3 ∂αϕ + r(θ1, θ2)

)
dω
)

in (0, L), (94)


∂33
(
Hββ ∂33ξ3

)
= Fβ + ∂3 Mβ+

∂33

( ∫
ω

(
xβ pα3 ∂αϕ + xβ r(θ1, θ2)

)
dω
)

in (0, L), for β = 1, 2,
(95)

ξ3(0) = ξ3(L) = 0, (96)

ξα(0) = ∂3ξα(0) = 0, ξα(L) = ∂3ξα(L) = 0, (97)

− (pε)αβ ∂αβϕ − pα3∂33ξα + ∂αsα(θ) = 0 in �, (98)

(
−(pε)αβ∂βϕ + pα3(∂3ξ3 − xρ∂33(ξρ)+ sα(θ)︸ ︷︷ ︸

Dα

)
να = 0 on 0eN, (99)

ϕ = ϕ0 on 0eD. (100)

[
Ci jαβκi j + Pραβ∂ρϕ = (−1)α

∗

∂α∗θβ ,

Ci j3ακi j + Pρ3α∂ρϕ = (−1)α
∗

∂α∗θ3,
in �, (101)

with α∗
= 2 if α = 1 and α∗

= 1 if α = 2, and κi j are the components of the weak limit
κ found in Theorem 3.1.

Proof. It is enough to introduce the definition of Ci jkl , cf. (15)–(16), in formulas
(41)–(46) and (58) and to use the fact that Pi jkl and εi j are constants, thus independent
of x = (x1, x2, x3). �

We remark that the system (69)–(76) (or (94)–(101)) is a coupled problem, where
the two unknowns u and ϕ are interdependent. We were not able to determine
the exact expression of the limit rod electric potential, as a function of the limit
rod displacement vector, unlike the plate case (cf. Figueiredo and Leal [7], or Sene
[12]), since the equation (73) (or (98)) is more complex than in the plate case. This
equation involves the third unknown θ and the derivatives with respect to x1 and x2.
However, if the elastic, piezoelectric and dielectric coefficients satisfy the hypotheses
of Corollary 4.1, then formula (98) shows that the limit electric potential ϕ depends
explicitly on the bending components ξα of the limit displacement u and on θ , and is
independent of the stretching component.

4.2. The Limit Model Defined in the Original Rod

To interpret the limit problem, with respect to the original rod �h
= ωh

× (0, L), for
a fixed h small enough, it is convenient to formulate (69)–(75) in �h. To achieve this,
we define ξh

1 , ξh
2 , ξh

3 , zh
= (zh

1 , zh
2 , zh

3), φ
h, θh and κh related, respectively, to the limit
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mechanical displacement u, to the limit electric potential ϕ, to the function θ , and to
κ by the re-scalings

ξh
= (ξh

1 , ξ
h
2 , ξ

h
3 ), ξh

α = h−1ξα and ξh
3 = ξ3, in [0, L],

zh
α(x

h) = h−1uα(x) and zh
3(x

h) = u3(x),

φh(xh) = hϕ(x) and θh(xh) = (h θh
1 (x

h), h θh
2 (x

h), h θh
3 (x

h)) = h θ(x),

κh
αβ(x

h) = καβ(x), κh
α3(x

h) = κα3(x), and κh
33(x

h) = κ33(x), (102)

for all xh
= (xh

1 , xh
2 , x3), with xh

α = hxα and x = (x1, x2, x3) ∈ � = ω × (0, L). The
components ξh

α and ξh
3 are respectively the bending and stretching components of

the mechanical displacement of the rod �h
= ωh

× (0, L). The functions zh
i and φh

are, respectively, the limit mechanical displacement and limit electric potential of the
rod �h.

We can now state the following immediate consequence of Theorem 4.1.

THEOREM 4.2. The re-scaled limit displacement zh(xh) = (ξh
1 (x3), ξ

h
2 (x3), ξ

h
3 (x3)−

xh
α ∂3ξ

h
α (x3)) and the re-scaled limit electric potential φh(xh) are the solution of the

system

− ∂3

(
Ih
0 ∂3ξ

h
3 − Ih

α ∂33ξ
h
α

)
= Fh

3 + ∂3

( ∫
ωh

(
pα3 ∂αφ

h
+ r(θh

1 , θ
h
2 )
)

dωh
)

in (0, L),

(103)
∂33

(
− Ih

β ∂3ξ
h
3 + Hh

αβ ∂33ξ
h
α

)
= Fh

β + ∂3 Mh
β + ∂33

( ∫
ωh

(
xh
β pα3 ∂αφ

h
+ xh

β r(θh
1 , θ

h
2 )
)

dωh
)

in (0, L), for β = 1, 2,

(104)

ξh
3 (0) = ξh

3 (L) = 0, (105)

ξh
α (0) = ∂3ξ

h
α (0) = 0, ξh

α (L) = ∂3ξ
h
α (L) = 0, (106)

∂h
α

(
−(pε)αβ∂h

βφ
h
+ pα3e33(zh)+ sα(θh)︸ ︷︷ ︸

Dα

)
= 0 in �h, (107)

Dαν
h
α = 0 on 0h

eN, (108)

φh
= ϕh

0 on 0h
eD, (109)

[
Ci jαβκ

h
i j + Pραβ∂h

ρφ
h

= (−1)α
∗

∂h
α∗θh

β ,

Ci j3ακ
h
i j + Pρ3α∂

h
ρφ

h
= (−1)α

∗

∂h
α∗θh

3 ,
in �h, (110)
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(α∗
= 2, if α = 1 and α∗

= 1, if α = 2) where the functions Fh
i and Mh

β , which are
associated with the original applied mechanical loadings, are defined by

Fh
i = Fh

i (x3) =

∫
ωh

f h
i (x

h
1 , xh

2 , x3)dωh
+

∫
γ h

gh
i (x

h
1 , xh

2 , x3)dγ h,

Mh
β = Mh

β (x3) =

∫
ωh

xh
β f h

3 (x
h
1 , xh

2 , x3)dω +

∫
γ h

xh
β gh

3 (x
h
1 , xh

2 , x3)dγ h, (111)

and the functions Ih
0 , Ih

α and Hh
αβ are defined by

Ih
0 = Ih

0 (x3) =

∫
ωh

c dωh, Ih
α = Ih

α (x3) =

∫
ωh

xh
α c dωh,

Hh
αβ = Hh

αβ(x3) =

∫
ωh

xh
α xh

β c dωh. (112)
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