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Introduction

The proof of many duality theorems between concrete categories (A, U) and (B, V )

over Set can be done by the following steps:

1. Construct a dual adjunction between (A, U) and (B, V ). Hereby the contravari-
ant functors G : A → B and F : B → A of the adjunction are lifts of the
hom-functors hom(_, Ã) and hom(_, B̃) represented by objects Ã ∈ Ob A and
B̃ ∈ Ob B with the same carrier U(Ã) = V (B̃).

2. Prove “some” cogenerator property of Ã and B̃, depending on what lifts we
have chosen in the first step.

3. Prove a “Stone–Weierstrass-like” theorem.

It is clear and well studied what is meant by the first two steps. The aim of this paper
is to put the latter step in an abstract light. We define and study a condition (Defi-
nition 3.4) which exactly states that a “Stone–Weierstrass-like” theorem holds and
give several examples and applications. In particular we show how one can extend
dualities from the full subcategories of finite objects of given concrete categories
(A, U) and (B, V ) over Set to all objects of A and B. We apply our results to [3]
and prove a general “two-for-one” duality theorem: each strong duality in the sense
of [3] gives rise to a new duality by “structure interchange”.

In our notation we follow [1]. By a concrete category (A, U) over X is meant
a category A together with a faithful functor U : A → X. Since U is injective
on hom-sets, we may consider homA(A,B) as a subset of homX(U(A),U(B)).
It allows us to use the same notation for an A-morphism f : A → B and its
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underlying X-morphism f : U(A)→ U(B). Moreover, we say that a X-morphism
f : U(A)→ U(B) is an A-morphism if it underlies an A-morphism f : A→ B.

1. Preliminaries

We recall first some basic facts about concrete dualities, for a detailed discussion
see [13]. A dual adjunction

(A, U)
η⇒ G

F

ε⇐ (B, V )

between concrete categories (A, U) and (B, V ) over Set is given by contravariant
functors G : A → B and F : B → A together with natural transformations
η : IdA → FG and ε : IdB → GF satisfying the equations

G(ηA) ◦ εG(A) = idG(A) and F(εB) ◦ ηF(B) = idF(B)

for each A ∈ Ob A and each B ∈ Ob B. We have a dual equivalence – or shorter: a
duality – if the units η and ε are natural isomorphisms.

The dual adjunction is induced by (Ã, B̃) ∈ Ob A × Ob B if the equations
U(Ã) = V (B̃),G = hom(_, Ã) and F = hom(_, B̃) hold and the units η and
ε are given by

ηA : A→ FG(A), a 
→ evA,a and εB : B → GF(B), b 
→ evB,b

for each A ∈ Ob A and B ∈ Ob B. Hereby evA,a denotes the evaluation map
evA,a : hom(A, Ã)→ U(Ã) = V (B̃), h 
→ h(a) for each A ∈ Ob A and each a ∈
U(A) and, symmetrically, evB,b denotes the evaluation map evB,b : hom(B, B̃)→
U(Ã), h 
→ h(b) for each B ∈ Ob B and each b ∈ V (B). If the functors U : A →
Set and V : B → Set are representable and uniquely transportable, each dual
adjunction between (A, U) and (B, V ) essentially has this structure. The forgetful
functor to Set of many familiar categories has this property, hence it is no restriction
at all to assume that all concrete categories over Set in this article are of this kind.

Assume that a dual adjunction

(A, U)
η⇒ G

F

ε⇐ (B, V )

induced by (Ã, B̃) is given. For each A ∈ Ob A we can define a hom(Ã, Ã)-action

τA : hom(Ã, Ã)× hom(A, Ã)→ hom(A, Ã), (h, f ) 
→ h ◦ f
on hom(A, Ã). We consider now the question when B-morphisms preserve this
additional structure.

LEMMA 1.1. The following are equivalent.
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(1) ηÃ is an isomorphism.
(2) For each A ∈ Ob A, all A-morphisms h : Ã → Ã and f : A → Ã and each

B-morphism ϕ : G(A)→ B̃, the equation ϕ(h ◦ f ) = h(ϕ(f )) holds.

Proof. (1) ⇒ (2) We consider the B-morphism

G(Ã)
G(f )→ G(A)

ϕ→ B̃.

Since ηÃ is an isomorphism there exists an element a ∈ U(Ã) such that ϕ◦G(f ) =
evÃ,a. We have

a = evÃ,a(idÃ) = (ϕ ◦G(f ))(idÃ) = ϕ(f )

and therefore

ϕ(h ◦ f ) = (ϕ ◦G(f ))(h) = evÃ,a(h) = h(a) = h(ϕ(f )).

(2) ⇒ (1) Let ϕ : G(Ã) → B̃ be a B-morphism and a = ϕ(idÃ). For each
f ∈ hom(Ã, Ã) we have

ϕ(f ) = ϕ(f ◦ idÃ) = f (ϕ(idÃ)) = f (a),

hence ϕ = evÃ,a . ✷
COROLLARY 1.2. Assume that ηÃ is an isomorphism. For all A-objects A and
B, all A-morphisms h : Ã → Ã and f : A → Ã and each B-morphism ψ :
G(A)→ G(B), the equation ψ(h ◦ f ) = h ◦ ψ(f ) holds.

So far we have studied the structure of a given dual adjunction. But how can we
construct a dual adjunction between given concrete categories (A, U) and (B, V )

over Set? Certainly we have to find objects Ã ∈ Ob A and B̃ ∈ Ob B with the same
carrier U(Ã) = V (B̃) such that

(1) for each A ∈ Ob A, the V -structured source (evA,a : hom(A, Ã)→ V (B̃))a∈U(A)

admits a V -lifting (evA,a : G(A)→ B̃)a∈U(A) such that, for each f : A→ A′

in A, the map hom(f, Ã) underlies a B-morphism G(f ),
(2) for each B ∈ Ob B, the U -structured source (evB,b : hom(B, B̃)→ U(Ã))b∈V (B)

admits a U -lifting (evB,b : F(B)→ Ã)b∈V (B) such that, for each g : B → B ′

in B, the map hom(g, B̃) underlies an A-morphism F(g),
(3) for each A ∈ Ob A, the map

ηA : U(A)→ UFG(A) = hom(G(A), B̃), a 
→ evA,a

is actually an A-morphism ηA : A→ FG(A) and
(4) for each B ∈ Ob B, the map

εA : V (B)→ VGF(B) = hom(F (B), Ã), b 
→ evB,b

is actually a B-morphism εB : B → GF(B).
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If the sources (evA,a : hom(A, Ã) → V (B̃))a∈U(A) and (evB,b : hom(B, B̃) →
U(Ã))b∈V (B) admit a V -resp. U -initial lifting, all other conditions are automatically
fulfilled. Therefore we consider the following conditions.

(Init A) For each A ∈ Ob A, the V -structured source (evA,a : hom(A, Ã) →
V (B̃))a∈U(A) admits a V -initial lifting (evA,a : G(A)→ B̃)a∈U(A).

(Init B) For each B ∈ Ob B, the U -structured source (evB,b : hom(B, B̃) →
U(Ã))b∈V (B) admits a U -initial lifting (evB,a : F(B)→ Ã)b∈V (B).

A dual adjunction induced by (Ã, B̃) is called a natural dual adjunction if the
sources (evA,a : G(A) → B̃)a∈U(A) and (evB,a : F(B) → Ã)b∈V (B) are initial
with respect to V and U respectively. For a natural dual adjunction induced by
(Ã, B̃) we have that, for each A ∈ Ob A, ηA is an embedding if and only if the
source hom(A, Ã) is point separating and U -initial. This suggests the following
definition.

DEFINITION 1.3. Let (A, U) be a concrete category over Set and let Ã ∈
Ob A. Ã is called initial cogenerator of (A, U) if, for each A ∈ Ob A, the source
hom(A, Ã) is point separating and U -initial.

Of course, if the forgetful functors U and V are mono-topological the conditions
(Init A) and (Init B) are fulfilled. But what about the algebraic case? Recall that a
signature is a pair � = (�op, δ) consisting of a class �op of operation symbols
and an arity function δ : �op → Card. � = (�op, δ) is called finitary if �op

is a set and, for each θ ∈ �op, δ(θ) ∈ N. A �-algebra is a pair B = (|B|, δB)
consisting of a set |B| and a map δB assigning to each θ ∈ �op an operation
δB(θ) = θB : |B|σ(θ) → |B| of arity σ (θ) on |B|. Let B1 = (|B1|, δB1) and
B2 = (|B2, δ

B2) be �-algebras. A map f : |B1| → |B2| is a �-homomorphism
f : B1 → B2 provided that θB2 ◦ f σ(θ) = f ◦ θB1 for each θ ∈ �op. Alg� denotes
the category of all �-algebras and all �-homomorphisms.

Let B = (|B|, δB) be a �-algebra and let X be a set. ClX(B) denotes the �-
algebra of all X-ary term functions on B. It is the smallest subalgebra of B(|B|X)

containing all projections πx : |B|X → |B|. The algebra ClX(B) is called the clone
algebra of X-ary term functions on B.

DEFINITION 1.4. Let (A, U) be a concrete category over Set and Ã ∈ Ob A.
(A, U) is called concretely Ã-complete if all powers of Ã exist in A and all equal-
izers of pairs of morphisms between powers of Ã exist in A and U preserve those
limits.

LEMMA 1.5. Let (A, U) be a concrete category over Set, let Ã be an A-object
with arbitrary concrete powers and let B = {B ∈ Ob Alg� | hom(B, B̃) is
a mono-source} be the quasi-variety cogenerated by a �-algebra B̃ for a given
signature �. Further V : B → Set denotes the canonical forgetful functor and we
assume that U(Ã) = V (B̃).



ON A GENERALIZATION OF THE STONE–WEIERSTRASS THEOREM 573

(1) The following are equivalent.

(a) (Init A) holds.
(b) For each set X,V (ClX(B̃)) ⊂ U(hom(ÃX, Ã)).

(2) Assume, in addition, that (A, U) is concretely Ã-complete. For each B ∈
Ob Alg�, the canonical inclusion hom(B, B̃) ⊂ U(Ã)V (B) is the equalizer of a
pair of A-morphisms between powers of Ã and therefore underlies an A-object. In
particular, (Init A) implies (Init B).

We now consider our motivating example.

2. Gelfand-Duality

Let A = Comp2 be the category of compact Hausdorff spaces and continuous
maps. U : A → Set denotes the usual forgetful functor. B = C∗-Alg is the cat-
egory with all commutative C∗-algebras with identity as objects and identity- and
_∗-preserving C-algebra homomorphisms as morphisms. V = © : B → Set de-
notes the unit-ball functor. Note that in both categories the class of all embeddings
coincides with the class of all monomorphisms. Let Ã = D be the unit disk and
B̃ = C the C∗-algebra of complex numbers. Obviously we have U(D) = ©(C).

The Gelfand-duality theorem states that (D,C) induces a dual equivalence be-
tween the categories Comp2 and C∗-Alg.

For each compact Hausdorff space A, the set C(A) of all complex valued con-
tinuous functions endowed with pointwise defined operations and the supremum
norm ‖f ‖0 = sup{|f (x)| | x ∈ U(A)} is a C∗-algebra, the source (evA,a : C(A)

→ C)a∈U(A) being a ©-initial lift of the source (evA,a : hom(A,D) → D =
©(C))a∈U(A). Hence the condition (Init A) is fulfilled.

For each C∗-algebra B, we can define the initial topology on hom(B,C) with
respect to the U -structured source (evB,b : hom(B,C) → U(D))b∈©(B). This
topology turns out to be compact and Hausdorff (see Lemma 1.5), (Init B) is also
fulfilled.

Therefore we get a natural dual adjunction

(Comp2, U)
η⇒ C

S

ε⇐ (C∗-Alg,©)

induced by (D,C).
From the Urysohn lemma we know that Ã = D is a cogenerator of A. The

corresponding result about the C∗-algebra C is a consequence of the following
well-known fact (see [5]).

PROPOSITION 2.1. For each C∗-algebra B and each element x ∈ B,

‖x‖ = sup{|ϕ(x)| | ϕ ∈ hom(B,C)}.
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Hence each B-morphism has norm not greater than 1 and B̃ = C is a cogenera-
tor of B. We conclude that the units η and ε are pointwise monomorphisms.

The Stone–Weierstrass theorem ([11, 12, 15]) implies that ε is actually a natural
isomorphism.

THEOREM 2.2 (Stone–Weierstrass). Let A be a compact Hausdorff space and let
M ⊂ C(A) be a C∗-subalgebra of C(A) such that the source (f : A→ D)f∈©(M)

separates the points of A. Then M = C(A).

For each C∗-algebra B, the requirements of this theorem are fulfilled with A =
S(B) and M the image of εB . Therefore εB is surjective and hence an isomorphism.
To prove that η is a natural isomorphism we can proceed in a similar way.

PROPOSITION 2.3. Let B be a C∗-algebra and let M ⊂ S(B) be a closed sub-
space of S(B) such that the source (f : B → C)f∈U(M) separates the points of B.
Then M = S(B).

Proof. From the Stone–Weierstrass theorem we know that, for each C∗-algebra
B, εB and hence ηF(B) is an isomorphism. It follows that ηD is an isomorphism and
we can apply Lemma 1.1.

Let B be a C∗-algebra. We define the Zariski-topology on hom(B,C) by

ψ ∈ clZ �⇔ TZ(ψ,�) for all ψ ∈ hom(B,C) and � ⊂ hom(B,C).

Hereby the formula TZ(ψ,�) is defined as follows:

TZ(ψ,�) ≡ ∀x ∈ ©(B)((∀ϕ ∈ �ϕ(x) = 0)→ ψ(x) = 0).

Obviously, in this topology the point separating subsets are precisely the dense
subsets. We are going to show that this topology coincides with the initial topo-
logy with respect to the source of all evaluation maps. To do this, we consider the
formula

TI(ψ,�) ≡ ∀x ∈ ©(B)ψ(x) ∈ {ϕ(x) | ϕ ∈ �}.
Hereby Ā denotes the closure of a subset A ⊂ D in D. We claim that, for each
ψ ∈ hom(B,C) and each � ⊂ hom(B,C), TZ(ψ,�) holds if and only if TI(ψ,�)

holds.
Let ψ ∈ hom(B,C) and � ⊂ hom(B,C). If � = ∅, both formulas are false.

Hence we can assume that � �= ∅. Moreover, without loss of generality we may
assume that B = C(A) for a compact Hausdorff space A.

Assume first that TI(ψ,�) holds and let x ∈ ©(B) such that ϕ(x) = 0 for all
ϕ ∈ �. We have ψ(x) ∈ {0} = {0}.

Assume now that TI(ψ,�) is false. There exists an element x : A → D ∈
©(B) such that ψ(x) /∈ {ϕ(x) | ϕ ∈ �} holds. Since D is totally regular, there
exists a continuous map h : D → D such that h(ψ(x)) �= 0 and h[{ϕ(x) | ϕ ∈ �}]
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= {h(ϕ(x)) | ϕ ∈ �} = {0}. By Lemma 1.1 we have ψ(h◦x) �= 0 and ϕ(h◦x) = 0
for all ϕ ∈ �. Hence TZ(ψ,�) is false as well. ✷

3. The Stone–Weierstrass Condition

In the latter section we have proved the Gelfand-duality theorem by two “Stone–
Weierstrass theorems” . It turns out that the proof of many duality theorems can be
done in the same way (see Examples 3.5). We take this as a motivation to formulate
and study in this section precisely what is meant by a “Stone–Weierstrass-like”
theorem.

Let us first collect some facts about factorization systems. For more details see
[1]. Let C be a complete category and let M be a class of C-morphisms satisfying
the following conditions:

1. Section(C) ⊂ M ⊂ Mono(C),
2. M is closed under composition, stable under pullbacks and (∗)
3. for each family (mi : Ai → A)i∈I of M-morphisms, there exist an intersection

d : D → A and d ∈ M.

In most cases we will choose M as the class of all embeddings of a concretely
complete concrete category (C,W) over Set. But also M = RegMono(C) can be
a reasonable choice.

Any such class M of C-morphisms satisfying (∗) is part of a factorization struc-
ture (M-ExtrEpiSink,M) for sinks and of a factorization structure (M-ExtrEpi,M)

for morphisms in C. Moreover, we define the following class of small sources of C:

M = {(fi : C → Ci)i∈I | I is a set and 〈fi〉i∈I ∈ M}.
Obviously, M is closed under composition, each limit source belongs to M and a
small source belongs to M if and only if it contains a M-source.

DEFINITION 3.1. Let C̃ be a C-object. C̃ is called an M-cogenerator of C if, for
each C ∈ Ob C, the source hom(C, C̃) belongs to M.

In the sequel we will often make use of the following fact. Assume that C̃ is
a regular cogenerator of C. It follows that, for each C ∈ Ob C, there exists an
equalizer diagram

C
e

C̃X
f

g
C̃Y

with sets X and Y and C-morphisms f and g. Hence any right adjoint, full and
faithful functor F : B → C is an equivalence provided that C̃ is, up to isomor-
phism, contained in the image of F .
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ASSUMPTION 3.2. Let (A, U) and (B, V ) be concretely complete concrete cat-
egories over Set and let Ã ∈ Ob A and B̃ ∈ Ob B be objects with the same
underlying set U(Ã) = V (B̃). Furthermore there are given classes MA and MB

of A-resp. B-morphisms satisfying (∗). We assume that (Ã, B̃) induces a dual
adjunction

(A, U)
η⇒ G

F

ε⇐ (B, V )

such that, for each A ∈ Ob A and each B ∈ Ob B, the sources (evA,a : G(A) →
B̃)a∈U(A) and (evB,b : F(B) → Ã)b∈V (B) belong to MA resp. MB. Ã is a MA-
cogenerator of A and B̃ is a MB-cogenerator of B.

The situation described above is our basic situation. Throughout this paper we
will always assume that it is given. We have the following obvious facts.

PROPOSITION 3.3. (1) The following are equivalent.

(a) G(MA) ⊂ MB-ExtrEpiSink.
(b) F(MB) ⊂ MA-ExtrEpiSink.

(2) The following are equivalent.

(a) G(MA-ExtrEpiSink) ⊂MB.
(b) F(MB-ExtrEpiSink) ⊂MA.

We come now to the central definition of this paper. We will formulate it only
with respect to G, by symmetry, there is a corresponding formulation with respect
to F .

DEFINITION 3.4. G satisfies the Stone–Weierstrass Condition provided that the
following holds:

(SW) For each A-object A, every MB-morphism m : M → G(A) is an isomor-
phism provided that (m(f ))f∈V (M) ∈ MA.

EXAMPLES 3.5. All categories in the sequel are equipped with a canonical for-
getful functor to Set. To simplify our notation we will not denote these functors. In
all examples we will choose MA and MB as the class of all embeddings. Lemma 1.5
implies in all examples that the conditions (Init A) and (Init B) are fulfilled.

(1) (Stone-duality, [10]) Let A = Stone be the category of zero-dimensional
compact Hausdorff spaces and let B = Bool be the category of Boolean algebras.
Ã denotes the discrete two-element spaces ({0, 1},P ({0, 1})) and B the 2-chain.
Note that in both categories the class of all embeddings coincides with the class
of all monomorphisms. It is clear by definition that Ã is a cogenerator of Stone.
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The Prime Ideal Theorem implies that B̃ is a cogenerator of Bool. (Ã, B̃) induces
a natural dual adjunction between Stone and Bool. We are going to show that the
contravariant functor G : Stone → Bool satisfies (SW).

Let A ∈ Ob A be an A-object and let M ↪→ G(A) be a subalgebra of G(A)

such that the source (h : A → Ã)h∈M separates the points of A. Let f : A → Ã

be any continuous map. We have to show that f ∈ M. Since M contains the
constant maps, we may assume that the sets A0 = f −1[{0}] and A1 = f −1[{1}]
are non-empty. For each x ∈ A0 and each y ∈ A1, there exists hx,y ∈ M such that
hx,y(x) = 0 and hx,y(y) = 1. Hereby we use the fact that M is point separating and
that with each k ∈ M also the complement k̄ is contained in M. Since A is compact,
for each y ∈ A1, there exist finitely many elements x1(y), . . . , xny (y) ∈ A0 with
the property that, for each z ∈ A0, there is an index i ∈ {1, . . . , ny} such that
hxi(y),y(z) = 0. We put

hy =
ny∧

i=1

hxi(y),y ∈ M.

For each y ∈ A1 we have hy(y) = 1 and hy(x) = 0 for each x ∈ A0. Since A is
compact there exist finitely many y1, . . . , yn such that, for each y ∈ A1, there is an
index i ∈ {1, . . . , n} such that hyi (y) = 1. We put

h =
n∨

i=1

hyi ∈ M.

Obviously we have h = f .
Hence the contravariant functor F : Bool → Stone is full and faithful. One can

now prove similarly to Proposition 2.3 that F satisfies (SW). Therefore we have
a dual equivalence between Stone and Bool. However, the following argument
is shorter. Let B0 ∈ Ob Bool be any object representing the canonical forgetful
functor from Bool to Set. Ã is isomorphic to F(B0) and, moreover, a regular
cogenerator of Stone. We conclude that F is an equivalence functor.

(2) Since the category BoolRng1 of Boolean rings with identity is concretely
isomorphic to Bool, we may consider B = BoolRng1 and B̃ = Z/2Z. (Ã, B̃) in-
duces a natural duality between Stone and BoolRng1 and the contravariant functor
G : Stone → BoolRng1 satisfies (SW).

(3) (Priestley-duality, [8, 9]) StonePos denotes the category of ordered Stone-
spaces and continuous, order preserving maps and Ã the 2-chain provided with
the discrete topology. From [14] we know that Ã is not an initial cogenerator of
StonePos. A = Priest denotes the full subcategory of StonePos initially cogener-
ated by Ã, which means that we have

Priest = {A ∈ Ob StonePos | hom(A, Ã) is point separating and initial}.
The objects of Priest are called Priestley spaces. Further we put B = DLat0,1,
the category of bounded distributive lattices and homomorphisms and B̃ is the
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2-chain. It is well-known (again the Prime Ideal Theorem) that B̃ is a cogenerator
of DLat0,1. (Ã, B̃) induces a natural dual adjunction between Priest and DLat0,1.
We will show that G : Priest → DLat0,1 satisfies (SW). The proof is similar to
the first example, in particular it becomes clear how the additional order-structure
on one side compensates the lack of the negation operator on the other side.

Let A be a Priestley space and let M ↪→ G(A) be a sublattice of G(A) such
that the source (h)h∈M is point separating and initial. Note that a source (fi : A→
Ai)i∈I is initial in Priest if and only if

x � y ⇔ ∀i ∈ Ifi(x) � fi(y)

for all x, y ∈ A. Let f : A → Ã be a non-constant Priest-morphism, we define
A0 = f −1[{0}] �= ∅ and A1 = f −1[{1}] �= ∅. For each (x, y) ∈ A0 × A1 holds
x � y, hence there exists hx,y ∈ M such that hx,y(x) = 0 and hx,y(y) = 1. As in
the first example one can now prove that f ∈ M.

We will see later on (Example 4.10) that Ã is a regular cogenerator of Priest,
hence we can conclude that Priest is dually equivalent to DLat0,1.

(4) We now put A = pStone, B = BoolRng, Ã = ({0, 1}, 0) and B̃ = Z/2Z.
Hereby pStone denotes the category of pointed Stone-spaces and point-preserving
continuous maps and BoolRng the category of Boolean rings (not necessary with
identity) and homomorphisms. The category BoolRng1 is a reflective subcategory
of BoolRng, the reflection map being given by

B ↪→ B ∪ {1+ x | x ∈ B}.
From that we conclude that B̃ is an injective cogenerator of BoolRng. Ã is ob-
viously a cogenerator of pStone. Note that in both categories the class of all
monomorphisms coincides with the class of all embeddings. (Ã, B̃) induces a
natural dual adjunction between pStone and BoolRng. We will show that the
contravariant functor G : pStone → BoolRng satisfies (SW).

Let A be a pointed Stone-space and let M ↪→ G(A) be a subring of G(A) such
that the source (h)h∈M is point separating. We denote the chosen element of A by
a0. 〈M〉 denotes the unital subring, generated by M, of the unital Boolean ring of
all continuous maps from A to Ã. We have

〈M〉 = M ∪ {1+ h | h ∈ M}.
Let f : A → Ã be a pStone-morphism. From Example 2 we know that 〈M〉
contains all continuous functions, hence there exists a function g ∈ M such that

f = g or f = 1+ g.

But f = 1+ g is impossible since we have 0 = f (a0) �= 1+ q(a0) = 1.
Since Ã is a regular cogenerator of pStone, (Ã, B̃) induces a dual equivalence

between pStone and BoolRng.
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PROPOSITION 3.6. Assume that the given dual adjunction is a dual equivalence
and G(MA) ⊂ MB-ExtrEpi. Then G satisfies (SW).

Proof. Let A be an A-object and let m : M → G(A) be a MB-morphism such
that the source (m(f ))f∈V (M) belongs to MA. Without loss of generality we may
assume that M = G(B) for an A-object B and m = G(e) for a A-morphism
e : A→ B. Hence we have

(m(f ))f∈V (M) = (f ◦ e)f∈hom(B,Ã) ∈MA

and therefore e ∈ MA. By our assumption we have m = G(e) ∈ MB-ExtrEpi and
m is an isomorphism. ✷
PROPOSITION 3.7. If G satisfies (SW) then G(MA) ⊂ MB-ExtrEpiSink.

Proof. Let (fi : A→ Ai)i∈I be an MA-source. We can factorize the (small) sink
(G(fi) : G(Ai) → G(A))i∈I by an MB-extremal epi-sink (gi :G(Ai) → M)i∈I
followed by an MB-morphism m : M → G(A). Hence we have

{m(h) | h ∈ V (M)} ⊃ {k ◦ fi | i ∈ I, k ∈ hom(Ai, Ã)},
the source (m(h))h∈V (M) belongs to MA. Since G satisfies (SW), m is an isomor-
phism. ✷

In particular we know now that, if we have a dual equivalence, G satisfies (SW)
if and only if F satisfies (SW).

EXAMPLE 3.8. By the above proposition, the contravariant functor G : Priest →
DLat0,1 of Example 3.5(3) sends cofiltered limits to collectively surjective sinks.
Moreover, since the underlying Stone-space of Ã is, as a finite space, finitely
co-presentable in Stone, Ã is finitely copresentable in Priest.

For each finite E ∈ Ob Priest, there obviously exists an equalizer diagram

E
e

Ãn
h

k
Ãm

with n,m ∈ N. Hence E is finitely copresentable as well.
In the sequel we will use the following weakening of the Stone–Weierstrass

Condition.

DEFINITION 3.9. G satisfies the clone-condition provided that the following
holds:

(Cl) For each set X, every MB-morphism m : M → G(ÃX) is an isomorphism
provided that the source (m(f ))f∈V (M) contains all projections.

Note that this condition is independent of the choice of MA. If we choose
B = {B ∈ Ob Alg� | hom(B, B̃) is a mono-source} for a given signature � and
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�-algebra B̃ and MB = Mono(B), then G satisfies the Clone-condition if and only
if

V (ClX(B̃)) = U(hom(ÃX, Ã))

for each set X. This justifies our choice of the name “clone-condition”.

LEMMA 3.10. If the given dual adjunction is a dual equivalence, then G satisfies
(Cl).

Proof. Let X be a set and let m : M → G(ÃX) be an MB-morphism such that
(m(f ))f∈V (M) contains all projections. Without loss of generality we may assume
that M = G(A) for an A-object A and m = G(e) for an A-epimorphism e : ÃX →
A. Hence we have

(m(f ))f∈V (M) = (f ◦ e)f∈hom(B,Ã).

e is an extremal monomorphism as well, since (m(f ))f∈V (M) contains all projec-
tions. ✷
PROPOSITION 3.11. If G satisfies (Cl) and G(MA) ⊂ MB-ExtrEpi, then G

satisfies (SW).
Proof. Let A be an A-object and let m : M → G(A) be an MA-morphism such

that the source (m(f ))f∈V (M) belongs to MA. Hence we have an MA-morphism
e : A→ ÃV (M) making the diagram

A
e

m(f )

ÃV (M)

πf

Ã

commutative for each f ∈ V (M). We can form the pullback

M̄
h

m̄

M

m

G(ÃV (M))
G(e)

G(A)

of G(e):G(ÃV (M)) → G(A) and m : M → G(A) in B. MB is stable under
pullbacks, hence we have m̄ ∈ MB. Fullbacks are concrete in (B, V ), therefore

{m̄(g) | g ∈ V (M)} = {k : ÃV (M) → Ã | k ◦ e ∈ m[V (M)]}.
The equation above tells us that the set {m̄(g) | g ∈ V (M̄)} contains all projections,
therefore m̄ is an isomorphism. By our assumption we have G(e) ∈ MB-ExtrEpi,
hence also m ∈ MB-ExtrEpi. ✷
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4. Applications

PROPOSITION 4.1. Let (C,W) be a concrete category over Set and let C̃ ∈ Ob C
such that (C,W) is concretely C̃-complete and C̃ is a regular injective regular
cogenerator of C. Then (C,W) is concretely complete and the class of regular
monomorphisms of C is closed under composition.

Proof. Since C̃ is a regular cogenerator of C, we can present each C-object C
as an equalizer

C
e

C̃X
f

g
C̃Y

of a morphism pair (f, g) between powers of C̃. This enables us to construct
products and equalizers in C through powers of C̃ and equalizers of morphism
pairs between powers of C̃ (see [4], Satz 1.12). Moreover, products and equalizers
are concrete in (C,W) since

• powers of C̃ and equalizers of morphism pairs between powers of C̃ are
concrete in (C,W) and

• the underlying limit in Set can be constructed in exactly the same way.

Finally, (Cop, hom(_, C̃)) is a quasi-variety and therefore the class of regular epi-
morphisms of Cop is closed under composition. ✷

Putting together what we have we get the following theorem.

THEOREM 4.2. Let (A, U) be a concrete category over Set and let Ã ∈ Ob A.
Let � be a signature, let B̃ be a �-algebra with underlying set U(Ã) and let

B = {B ∈ Ob Alg� | hom(B, B̃) is a mono-source}.
V : B → Set denotes the usual forgetful functor. The following are equivalent.

(1) (Ã, B̃) induces a natural duality

(A, U)
η⇒ G

F

ε⇐ (B, V ).

(2) The following three conditions are fulfilled.

(a) (A, U) is concretely Ã-complete.
(b) Ã is a regular injective regular cogenerator of A.
(c) For each set X,V (ClX(B̃)) = U(hom(ÃX, Ã)).

We now consider the case that we already have a duality on the finite level and
we wish to extend it to all objects. More precisely, we assume that G and F satisfy
the Stone–Weierstrass Condition for all finite objects and we give conditions which
imply that G and F satisfy (SW).
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DEFINITION 4.3. G satisfies the Stone–Weierstrass Condition for finite objects
provided that the following holds:

(SW)fin For each A-object A with finite underlying set U(A), every MB-morphism
m : M → G(A) is an isomorphism provided that (m(f ))f∈V (M) ∈MA.

DEFINITION 4.4. G satisfies the finite clone-condition provided that the follow-
ing holds:

(Cl)fin For each finite set X, every MB-morphism m : M → G(ÃX) is an isomor-
phism provided that the source (m(f ))f∈V (M) contains all projections.

Ã is called abstractly cofinite if, for each set X and each A-morphism f : ÃX →
Ã, there exists a finite subset S ⊂ X and an A-morphism f # : ÃS → Ã such that
f = f # ◦ πS . We have the following fact.

LEMMA 4.5. G satisfies (Cl) provided that it satisfies (Cl)fin and Ã is abstractly
cofinite.

In addition to our basic situation (Assumption 3.2) we now assume that U(Ã) =
V (B̃) is finite, MA = Embed(A) and (A, U) has (Surj, Embed)-factorizations.
Furthermore, the functor U : A → Stone factorizes over the canonical forgetful
functor |_| : Stone → Set, i.e., there exists a functor U ∗ : A → Stone such that
U = |_| ◦ U ∗.

Note that, under the given conditions, Ã is abstractly cofinite. The following
characterization of cofiltered limits in Comp2 (see [2]) will be useful in the sequel.

PROPOSITION 4.6. Let D : I → Comp2 be a cofiltered diagram and let L =
(pi : L→ D(i))i∈I be a compatible cone for D. The following are equivalent.

(1) L is a limit of D.
(2) The following two conditions are fulfilled.

(a) L is a mono-source.
(b) For each i ∈ I , the image of pi is equal to the intersection of the images

of all D(k) for all I -morphisms k : j → i with codomain i, i.e.,

Impi =
⋂

j
k→i

ImD(k).

Note that this description is dual to the description of filtered colimits in Set. To
see this, recall that a compatible cocone (ci : D(i)→ C)i∈I for a filtered diagram
D : I → Set is a colimit of D if and only if the following holds:

(1) (ci : D(i)→ C)i∈I is an epi-sink.
(2) For each i ∈ I and all x, y ∈ D(i)

ci(x) = ci(y)⇔ ∃(i k→ j) ∈ ID(k)(x) = D(k)(y).
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But the second condition just means that the coimage of ci is equal to the coint-
ersection of the coimages of all D(k) for all I -morphisms k : i → j with domain i.

COROLLARY 4.7. For each A ∈ Ob A, the canonical diagram of A with respect
to the (essentially small) full subcategory of all finite objects of (A, U) is cofiltered
and A is its canonical limit.

LEMMA 4.8. If each embedding of (A, U) with finite domain and codomain is
a regular monomorphism, then each embedding of (A, U) is a regular monomor-
phism.

Proof. Let m : A′ → A be an embedding of (A, U). There exists a cofiltered
diagram D : I → A and a limit cone (pi : A → D(i))i∈I with domain A such
that, for each i ∈ I, UD(i) is finite. Let, for each i ∈ I ,

A′
p̄i→ Mi

mi→ D(i)

be a (Surj, Embed)-factorization of pi ◦m. It defines a new diagram

D∗ : I → A, (i
k→ j) 
→ (Mi

dk→ Mj)

and a natural transformation (mi)i∈I : D∗ → D, whereby dk is defined by the
(Surj, Embed)-diagonalization property. The cone (p̄i : A′ → D∗(i))i∈I is by
construction compatible for D∗, point separating and U -initial and, for each i ∈
I, p̄i is surjective. Therefore it is a limit of D∗. For each i ∈ I,mi is a regular
monomorphism and therefore m = limI mi is a regular monomorphism. ✷
LEMMA 4.9. Let M ∈ Ob A such that hom(_,M) sends cofiltered limits with
surjective projections to epi-sinks in Set. If M is injective with respect to all embed-
dings of (A, U) with finite domain and codomain, then M is injective with respect
to all embeddings of (A, U).

Proof. The proof is analogous to the proof of Theorem 2.2.7 of [3]. ✷
EXAMPLE 4.10. The two lemmas above allow us to transport some well-known
results about Pos to Priest, since both categories (almost) coincide on the finite
level. Especially we have in mind:

(1) Each embedding of Priest is a regular monomorphism.
(2) A finite object A ∈ Ob Priest is injective w.r.t. embeddings if and only if A is

a (complete) lattice.
(3) A finite object A ∈ Ob Priest is a regular injective regular cogenerator of

Priest if and only if A contains at least two elements and it is a lattice.

PROPOSITION 4.11. Assume that hom(_, Ã) sends cofiltered limits with surjec-
tive projections to epi-sinks in Set. G satisfies (SW) if and only if G satisfies
(SW)fin.
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Proof. G satisfies (SW)fin, hence it satisfies (Cl)fin and sends embeddings with
finite domain and codomain to MB-extremal epimorphisms. From Lemma 4.5 we
know that G satisfies (Cl). According to Proposition 3.11 we have to show that G
sends all embeddings to MB-extremal epimorphisms.

Let m : M → L be an embedding in (A, U). There exists a cofiltered diagram
D : I → A and a limit cone (pi : L→ D(i))i∈I with domain L such that, for each
i ∈ I, UD(i) is finite. Let, for each i ∈ I ,

M
p̄i→ Mi

mi→ D(i)

be a (Surj, Embed)-factorization of pi ◦m. It defines a new diagram

D∗ : I → A, (i
k→ j) 
→ (Mi

dk→ Mj)

with limit cone (p̄i :M→D∗(i))i∈I and a natural transformation (mi)i∈I :D∗→D.
We apply G to this situation. For each i ∈ I we get the following commutative
diagram.

G(L)
G(m)

G(M)

GD(i)
G(mi)

G(pi)

GD∗(i)

G(p̄i)

Since the sink (G(p̄i) : GD∗(i) → G(L))i∈I is collectively surjective and G(mi)

is an MB-extremal epimorphism for each i ∈ I , we conclude that G(m) is an
MB-extremal epimorphism. ✷
PROPOSITION 4.12. Assume that each B ∈ Ob B is a filtered colimit of finite
objects. F satisfies (SW) if and only if F satisfies (SW)fin.

Proof. Let B be a B-object. There exist a filtered diagram D : I → B and a
colimit cocone (ci : D(i)→ B)i∈I such that, for each i ∈ I , VD(i) is finite. Since
B has the (M-ExtrEpi, M)-factorization structure we may assume that ci ∈ MB

for each i ∈ I .
Let m : M → F(B) be an embedding in (A, U) such that the source

(m(f ))f∈U(M)

belongs to MB. F sends colimits of B to limits of A, in particular the cone (F (ci):
F(B)→ FD(i))i∈I is a limit of FD in A. Let, for each i ∈ I ,

M
pi→ Mi

mi→ FD(i)

be a (Surj, Embed)-factorization of F(ci) ◦m. As above it defines a new diagram

D∗ : I → A, (i
k→ j) 
→ (Mi

dk→ Mj)
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with limit cone (pi : M → D∗(i))i∈I and a natural transformation (mi)i∈I : D∗ →
FD. For each i ∈ I we have the following commutative diagram.

M
m

pi

F (B)

F(ci)

D∗(i)
mi

FD(i)

For each i ∈ I,mi is an embedding and the source (mi(f ))f∈V (Mi) belongs to MB

since we have

{mi(f ) | f ∈ V (Mi)} = {m(h) ◦ ci | h ∈ V (M)}.
But F satisfies (SW)fin so each mi (i ∈ I ) is an isomorphism. We conclude that
m = limImi is an isomorphism. ✷

The following results help to establish the cogenerator property of Ã resp. B̃.

LEMMA 4.13. Let (C,W) be a concretely complete category over Set such that
each C ∈ Ob C is a filtered colimit of finite objects and W sends filtered colimits
to epi-sinks. MC denotes a class of C-morphisms satisfying (∗) (see beginning of
Section 3). Let M be a C-object with finite underlying set W(M). If M is injective
with respect to all MC-morphisms with finite domain and codomain, then M is
injective with respect to all MC-morphisms.

Proof. The proof is analogous to the proof of Lemma 2.2.9 of [3]. ✷
PROPOSITION 4.14. Let (C,W) be a concretely complete category over Set and
let MC be a class of C-morphisms satisfying (∗). Let C̃ be a C-object with finite
underlying set W(C̃). Assume that the following four conditions are fulfilled.

(1) W : C → Set sends filtered colimits to epi-sinks.
(2) Each C ∈ Ob C is a filtered colimit of finite objects.
(3) C̃ is injective with respect to all MC-morphisms with finite domain and co-

domain.
(4) Let D : I → C be a directed diagram consisting of MC-morphisms and let

(ci : D(i) → C)i∈I be a colimit cocone such that ci ∈ MC for each i ∈ I .
For any compatible cocone (fi : D(i) → C ′)i∈I such that fi ∈ MC for each
i ∈ I , the induced morphism [fi]i∈I : C → C ′ belongs to MC.

Then the source hom(C, C̃) belongs to MC for each C ∈ Ob C provided that the
source hom(C0, C̃) belongs to MC for each finite C0 ∈ Ob C.

Proof. Let C be a C-object. There exists a directed diagram D : I → C and a
colimit cocone (ci : D(i)→ C)i∈I with codomain C such that WD(i) is finite for
each i ∈ I . We will first show that hom(C, C̃) is point separating. Let x, y ∈ W(C)

such that x �= y. There exist an element i0 ∈ I and elements x0, y0 ∈ WD(i0) such
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that ci0(x0) = x and ci0(y0) = y. We may, without loss of generality, assume that
i0 is the smallest element of I . For each i ∈ I, ki : i0 → i denotes the unique
morphism from i0 to i. We have D(ki)(x0) �= D(ki)(y0). The set

D∗(i) = {f ∈ hom(D(i), C̃) | f ◦D(ki)(x0) �= f ◦D(ki)(y0)}
is non-empty and finite for each i ∈ I . For each k : i → j in I and each f ∈ D∗(j)
holds

(f ◦D(k)) ◦D(ki)(x0) = f ◦D(kj )(x0) �= f ◦D(kj )(y0)

= (f ◦D(k)) ◦D(ki)(y0),

hence we have f ◦D(k) ∈ D∗(i). Let us define the functor

D∗: I op → Set, (i → j) 
→ (D∗(j) _◦D(k)−→ D∗(i)).

The codirected limit of non-empty and finite sets is non-empty, hence there exists
a compatible cone (αi : {0} → D∗(i))i∈I op . It is easy to see that the cocone (fi =
αi(0) : D(i) → C̃)i∈I is compatible for D. Let f = [fi]i∈I : C → C̃ be the
induced morphism. We have

f (x) = f ◦ ci0(x0) = fi0(x0) �= fi0(y0) = f ◦ ci0(y0) = f (y).

We can now assume that ci ∈ MC for each i ∈ I . We have the following commu-
tative diagram.

C
αC

C̃hom(c,C̃)

D(i)
αD(i)

ci

C̃hom(D(i),C̃)

C̃hom(ci ,C̃)

Hereby αC ′ : C ′ → C̃hom(C ′,C̃) is induced by the source hom(C ′, C̃) for each
C ′ ∈ Ob C. By the previous lemma, C̃ is MC-injective and therefore hom(ci, C̃) is
surjective, hence we have C̃hom(ci ,C̃) ∈ MC. Since αD(i) ∈ MC, by assumption, for
each i ∈ I , we conclude that αC ∈ MC. ✷
PROPOSITION 4.15. Let � = (�op, σ ) be a finitary signature and let G be a set
of �-equations such that �op is finite and σ (δ) � 2 for each δ ∈ �op. We put

U = {δ ∈ �op | σ (δ) = 1} and B = {δ ∈ �op | σ (δ) = 2}.
Assume that the following conditions are satisfied.

(1) For each β ∈ B, the associative law

β(x, β(y, z)) = β(β(x, y), z)

is satisfied.
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(2) There exists a total order β1 < β2 < · · · < βn (n ∈ N) on B such that, for all
1 � i < j � n, the distributive laws

βj (x, βi(y, z)) = βi(βj (x, y), βj (x, z))

and

βj (βi(x, y), z) = βi(βj (x, z), βj (y, z))

are satisfied.
(3) U contains the identity and is closed under composition.
(4) The “de Morgan laws” are satisfied, i.e., for each α ∈ U and each β ∈ B,

there exist operation symbols β ′ ∈ B and α′, α′′ ∈ U such that

α(β(x, y)) = β ′(α′(x), α′′(y))

or

α(β(x, y)) = β ′(α′(y), α′′(x)).

Then each A ∈ Ob StoneAlg(�,G) is a cofiltered limit of finite algebras.
Proof. See Theorem VI 2.9 of [7]. ✷
As an application of these results we will now show that each strong duality of

[3] gives rise to a new duality by “structure interchange”. Let us first recall very
briefly some basic facts of [3].

Let G,H and R be disjoint sets of respectively finitary operation symbols, of
finitary partial operation symbols and of finitary relation symbols and let α : G ∪
H ∪ R → N be a function which assigns to each symbol an arity. A structured
Stone-space of type (G,H,R) is a structure

A = (|A|,GA,HA,RA, τA)

consisting of a Stone-space (|A|, τA) and

(1) a family GA = (gA)g∈G of continuous operations gA : |A|α(g) → |A|,
(2) a family HA = (hA)h∈H of continuous partial operations hA : dom(hA)→ |A|

on |A| with closed domain dom(hA) ⊂ |A|α(h) and
(3) a family RA = (rA)r∈R of closed relations rA ⊂ |A|α(r).

Let A = (|A|,GA,HA,RA, τA) and A′ = (|A′|,GA′,HA′, RA′, τA′) be structured
Stone-spaces of the same type (G,H,R). A map f : |A| → |A′| is a morphism
f : A→ A′ if f is continuous and preserves all operations, partial operations and
relations. For a given type (G,H,R) we can form the category StoneStr(G,H,R)

with objects all Stone-spaces of type (G,H,R) and morphisms all morphisms
between these structures M0 denotes the class of all injective morphisms

f : (|A|,GA,HA,RA, τA)→ (|A′|,GA′,HA′, RA′, τA′)
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such that the structure of A is exactly the restriction of the structure of A′. Obvi-
ously, M0 satisfies the conditions (∗). Assume that a type (G,H,R) is given and
let M̃ = (M,GM̃,H M̃, RM̃, τ M̃) be a structured Stone-space of type (G,H,R).
X denotes the full subcategory of StoneStr(G,H,R) with objects all structured
Stone-spaces A of type (G,H,R) such that hom(A, M̃) ∈ M0, i.e., all
M0-subobjects of some power of M̃. The aim is now to find, for a given finitary
signature � and a given finite �-algebra M̄ = (M, δM̄), a type (G,H,R) and
a structured Stone-space M̃ = (M,GM̃,HM̃, RM̃, τ M̃) with carrier M such that
(M̃, M̄) induces a duality

X
ε⇒ E

D

e⇐ A.

Hereby A denotes the full subcategory of Alg� cogenerated by M̄ , i.e.,

A = {B ∈ Ob Alg� | hom(B, M̄) is a mono-source}.
This duality is called strong if M̃ is in addition injective with respect to M0. Note
that such a duality is strong if and only if E and D satisfy (SW) with respect to
MX = M0 ∩Mor X and MA = Mono(A).

Assume now that a finitary signature �, a type (G,H,R), a �-algebra M̄ =
(M, δM̄) and a structured Stone-space M̃ = (M,GM̃,HM̃, RM̃, τ M̃) with a finite
set M are given such that (M̃, M̄) induces a strong duality

X
ε⇒ E

D

e⇐ A.

We now define the category Str(G,H,R) of (G,H,R)-structured sets in the same
way as StoneStr(G,H,R), just without topology. Str(G,H,R) is locally finitely
presentable and hence complete and cocomplete. It has a canonical forgetful func-
tor to Set which has a left adjoint and preserves filtered colimits. M1 is the class of
all Str(G,H,R)-morphisms

f : A = (|A|,GA,HA,RA)→ A′ = (|A′|,GA′,HA′, RA′)

such that f is injective and the structure of A is exactly the restriction of the
structure of A′.

LEMMA 4.16. Let D : I → Str(G,H,R) be a directed diagram such that
D(k) ∈ M1 for each k : i → j from I . Let (ci : D(i) → B)i∈I be a colimit
of D. Then we have ci ∈ M1 for each i ∈ I . Let (fi : D(i) → B ′)i∈I be a
compatible cocone for D consisting of M1-morphisms. Then [fi]i∈I ∈ M1.

We put Ã = (M, δM̄ ,P (M)) ∈ Ob StoneAlg(�), B̃ = (M,GM̃,H M̃, RM̃) ∈
Ob Str(G,H,R) and define the categories

A = {A ∈ Ob StoneAlg(�) | hom(A, Ã) is a mono-source},
B = {B ∈ Ob Str(G,H,R) | hom(B, B̃) ∈M1}.
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U : A → Set and V : B → Set denote the canonical forgetful functors. We put
MA = Embed(A) = Mono(A) and MB = Mor(B) ∩M1. By construction, Ã is
an initial cogenerator of (A, U) and B̃ is an MB-cogenerator of (B, V ). Obviously,
each B ∈ Ob B is the directed colimit of all its finite MB-subobjects. Each sur-
jection in (A, U) is final and the underlying Stone-space of Ã is copresentable in
Stone, hence the contravariant hom-functor hom(_, Ã) sends cofiltered limits with
surjective projections to epi-sinks.

THEOREM 4.17. (Ã, B̃) induces a natural dual adjunction

(A, U)
η⇒ G

F

ε⇐ (B, V ).

Moreover, for each A ∈ Ob A, the source (evA,a : G(A) → B̃)a∈U(A) belongs to
MB and the functors G and F satisfy (SW).

Proof. For all finite objects A ∈ Ob A and B ∈ Ob B, the V -structured source
(evA,a : hom(A, Ã) → V (B̃))a∈U(A) admits an M1-lifting and the U -structured
source (evB,b : hom(B, B̃) → U(Ã))b∈V (B) admits a U -initial lifting. Moreover,
each A-object A is a codirected limit of finite objects in (A, U) such that all limit
projections are surjective, each B-object B is a concrete directed colimit of finite
objects in (B, V ). From that we can prove that the conditions (Init A) and (Init B)

are fulfilled as we are now going to show.
For each A ∈ Ob A, UA : hom(A, Ã) → U(Ã)U(A) = V (B̃)U(A) denotes the

restriction of U and VB : hom(B, B̃) → V (B̃)V (B) = U(Ã)V (B) denotes, for each
B ∈ Ob B, the restriction of V .

Let A be an A-object, let D : I → A be a codirected diagram and let (pi : A→
D(i))i∈I be a limit of D with domain A such that, for each i ∈ I, pi is surjective.
Hence the cocone

hom(pi, Ã) : hom(D(i)Ã)→ hom(A, Ã)

is a colimit of hom(D(_), Ã) : I op → Set. For each i ∈ I we have the following
commutative diagram.

hom(A, Ã)
UA

V (B̃)U(A)

hom(D(i), Ã)

hom(pi,Ã)

UD(i)
V (B̃)UD(i)

V (B̃)U(pi )

We put G(A) = colimI opGD, whereby the colimit is taken in Str(G,H,R). We
have VG(A) = hom(A, Ã). For each i ∈ I, UD(i) is an MB-morphism UD(i):
GD(i) → B̃UD(i) and V (B̃)U(pi) underlies the MB-morphism B̃U(pi) : B̃UD(i) →
B̃U(A). Hence UA : G(A) → B̃U(A) is an MB-morphism as well, in particular
G(A) ∈ Ob B.
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The same idea is essentially the key to prove that (Init B) is fulfilled. Let B be
a B-object, let D : I → B be a directed diagram and let (ci : D(i) → B)i∈I be
a concrete colimit of D with codomain B. For each i ∈ I , the following diagram
commutes.

hom(B, B̃)
VB

hom(ci ,B̃)

U(Ã)V (B)

U(Ã)V (ci )

hom(D(i), B̃)
VD(i)

U(Ã)VD(i)

The left-hand and the right-hand side are limit cones since (ci : D(i) → B)i∈I
as well as (ci : VD(i) → V (B))i∈I are colimit cones and hom(_, B̃) and B̃-send
colimits to limits. We put F(B) = limI opFD(i). For each i ∈ I, VD(i) is an A-
monomorphism VD(i) : FD(i) → ÃVD(i). We conclude that VB : F(B) → ÃV (B)

is an A-monomorphism as well.
According to Propositions 4.11 and 4.12, G and F satisfy (SW). ✷

EXAMPLE 4.18. Let us consider Example 4.3.15 of [3].
A de Morgan algebra B = (|B|,∨,∧,¬, 0, 1) is a bounded distributive lattice

with a negation operator “¬” satisfying

¬¬y = y,¬0 = 1,¬(y′ ∨ y) = ¬y′ ∧ ¬y,¬(y′ ∧ y) = ¬y′ ∨ ¬y
for each y, y′ ∈ |B|. deMorgan denotes the variety of de Morgan algebras. Let
M̄ = ({0, a, b, 1},∨,∧,¬, 0, 1), where the lattice structure is shown in the dia-
gram

1

a b

0

and “¬” interchanges 0 and 1 and fixes a and b. M̄ is a cogenerator of deMorgan.
The objects of X are precisely the tuples (X,�, f, τ) consisting of a Priestley

space (X,�, τ ) and an order-reversing homeomorphism f : X→ X with f ◦f =
idX. Let M̃ = ({0, a, b, 1},�, f0, τ ), whereby the order relation is shown in the
diagram

a

0 1

b
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and f0 fixes 0 and 1 and interchanges a and b. (M̃, M̄) induces a strong duality
([3], Theorem 4.3.16)

X
ε⇒ E

D

e⇐ A.

From Proposition 4.15 we know that

Ã = ({0, a, b, 1},∨,∧,¬, 0, 1,P ({0, a, b, 1}))
is a cogenerator of StonedeMorgan, hence we have A = StonedeMorgan. On the
other side we put B̃ = ({0, a, b, 1},�, f0),B is the category of tuples (Y,�, f )

consisting of a set Y , an order relation “�” on Y and an order-reversing bijection
f : Y → Y with f ◦ f = idY (Proposition 4.14). By the previous theorem, (Ã, B̃)

induces a natural dual adjunction

(A, U)
η⇒ G

F

ε⇐ (B, V )

and G and F satisfy (SW). We have proved that StonedeMorgan is dually equiv-
alent to B.
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