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Abstract. A classical result in the theory of uniform spaces is that any topological space with a
base of clopen sets admits a uniformity with a transitive base and the uniform topology of such
a space has a base of clopen sets. This paper presents a pointfree generalization of this, both to
uniform and quasi-uniform frames, together with various properties concerning total boundedness,
compactifications and completions.
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1. Introduction

The study of transitivity has been important in the development of the theory of
both uniform spaces and quasi-uniform spaces. Uniformities with a transitive base
necessarily have a base of equivalence relations. These are called non-archimedean
uniformities and have been investigated by B. Banaschewski [1], J. R. Isbell [14],
P. Nyikos and H. C. Reichel [18] and others. Any zero-dimensional topologi-
cal space, that is, with a base of open-closed (clopen) sets admits a uniformity
with a transitive base and the uniform topology of such a space has a base of
clopen sets. Transitivity has proved to be more fundamental in the study of quasi-
uniform spaces than in the study of uniform spaces. In fact the usual proof that
every topological space admits a quasi-uniformity is given by constructing a com-
patible quasi-uniformity with a base of transitive entourages [19]. Furthermore,
P. Fletcher’s construction of transitive quasi-uniformities has provided an important
technique in the theory of quasi-uniform spaces [6]. For further information on the
role of transitivity in quasi-uniform spaces the reader is referred to [10].

In this paper we investigate frame (quasi-)uniformities with transitive bases.
We begin by extending the notions of (quasi-)uniformities with transitive bases to
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frames. As we demonstrate the theory of frame uniformities parallels the theory in
the spatial case. If (L, &) is a uniform frame in which & has a base of transitive
entourages then L is zero-dimensional. Furthermore, each zero-dimensional frame
admits a uniformity with a transitive base.

For frame quasi-uniformities, in order to recognize the similarity of our re-
sults with the spatial case we need to consider biframes [4] and bitopological
spaces [17]. If (X, 7) is a T;-space then the transitive structures given by Pervin
[19] and Fletcher [6] each have the property that the conjugate structure is dis-
crete, and hence the underlying bitopological space is pairwise zero-dimensional
[23]. We prove that each zero-dimensional biframe (Lg, L, L,) admits a tran-
sitive frame quasi-uniformity on its total part Ly whose underlying biframe is
(Lo, Ly, Ly). Furthermore, if (L, &) is a quasi-uniform frame, and & has a base
of transitive entourages, then the underlying biframe is zero-dimensional.

Finally, we establish a number of additional properties concerning total bound-
edness, the universal zero-dimensional compactification and completions.

This paper uses the Weil entourages of Picado [20]. We note that, as in the
case of spaces, there are several different ways of describing frame uniformities.
Examples are the covering uniformities of Isbell [15], the entourage uniformities
of Fletcher and Hunsaker [7] and the Weil uniformities of Picado [20]. There are
also three equivalent approaches to quasi-uniform frames: Frith [11], Fletcher,
Hunsaker and Lindgren [8], and Picado [22]. The equivalence of the approaches
to uniform (resp. quasi-uniform) frames was proved by Picado [20] and Fletcher
and Hunsaker [7] (resp. Picado [22] and Fletcher, Hunsaker and Lindgren [9]).

2. Preliminaries and Notation

Recall that a frame L is a complete lattice satisfying the infinite distributive law
xAVS =\V{xAs|s e S}forevery x € L and every S € L, and a frame
homomorphism h : L — M is a mapping preserving arbitrary joins (including the
bottom element 0) and finite meets (including the top 1). The pseudocomplement of
anx € Lisx* =\/{a € L | anx = 0}.If x vx* = 1, then x is complemented. We
denote by B L the sublattice of L of all complemented elements of L (the Boolean
part of L). A frame L is zero-dimensional [2] provided that each element of L is a
join of complemented elements. L is compact provided that, for any cover S of L,
that is, for any S € L such that 1 = \/ S, there is a finite cover F C S. A standard
reference for frames is Johnstone [16].

A biframe [4] is a triple (Lo, L, L) where L and L, are subframes of the
frame L, and each element of L is the join of finite meets from L; U L,. In the
sequel, we use L;, L; to denote L; or L, always assuming thati, j =1,2,i # j.

A biframe homomorphism (Ly, Ly, L,) — (My, M|, M3) is a frame homomor-
phism from Lg to My which maps L; into M;. A biframe (L, L, L) is compact
provided that L is a compact frame. Schauerte [24] introduces the following useful
notation for a biframe (Lo, L, L»):
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Forany x € L;, x* = \/{y € L; | y A x = 0}. The biframe (Lo, L1, L») is
zero-dimensional [2] provided that each element of L; can be written as a join of
elements x € L; for which x v x* = 1.

Additional information concerning biframes may be found in [4].

For a subset A of aposet (X, <),let JA ={x e X |dae€ A:x <a}.Theset A
is said to be a decreasing subset of X if |A = A. For a frame L consider the frame
D(L x L) of all non-void decreasing subsets of L x L, ordered by inclusion. The
coproduct L & L will be represented, as usual (cf. [16]), as the subset of D (L x L)
consisting of all the saturated sets, that is, of those sets A which satisfy

{x}ngA:><x,\/S)eA
and
Sx{y}gA:><\/S,y)eA.

Since the premise is trivially satisfied if S = {J, each saturated set A contains
O = {(0,a),(a,0) | a € L}, and O is the zero of L & L. Obviously, each
x @y = J(x,y) UO is a saturated set and for each saturated set A one has A =
Vixedy | xdy < A} = \/{x®y | (x,y) € A}. The coproduct injections
ul : L — L @ L are defined by uX(x) = x @ 1 and u%(x) = 1 @ x so that
x @y = uk(x) Aul(y). Consequently, the codiagonal V : L & L — L is given
by V(A) = V{x Ay | (x,y) € A}

For any frame homomorphism 4 : L — M, the definition of coproduct ensures
us the existence (and uniqueness) of a frame homomorphism 2 & h : L & L —
M @& M suchthat (h @ h) -ul =uM -h (i = 1,2).

For a frame L, a Weil entourage [20] is an E € L @ L for which the codiagonal
factorizes through (=) NE : L& L — |{E}:

Lo L% |E)
v X
Y
L

This is equivalent to saying that V(E) = 1, thatis, \/{x € L | (x,x) € E} = 1.
The collection W Ent(L) of all Weil entourages of L may be partially ordered
by inclusion. This is a partially ordered set with finitary meets (including a unit
1=L®L).

For any decreasing sets E, F' of L @ L define

EoF:=\/{x®&y|3ze L\{0}: (x,2) €E,(z,y) € F}.

In particular, we are defining the composition for Weil entourages.

For the basic properties of the operation o see [21].

The behavior of entourages in the frame setting is similar to their behavior in
spaces because of the following fundamental property, proved in [20]:
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LEMMA 2.1.
(\/(al- ® bl-)) o (\/(cj eadj)) = (U(al- e b») o (U(cj @ dj)).
iel jelJ iel jeJ
A Weil entourage E is symmetric if it coincides with E “Li={(y,x)| (x,y) € E}.

Further we have:
13
Forany § C L @ L and x,y € L, x</y means that

Eo(x®x)Cydy forsomekFE €6. 2.1

Of course, when & is symmetric (that is, E € & implies E~' € &) this is also
equivalent to saying that

(x®x)oECydy forsomekFE €6§. 2.2)

The elements st (x, E) satisfy the following properties [21]:

x < st(x, E) (2.3)
st(st(x, E), F) <st(x,EoF) 2.4)
st(x, E) <y = st(y*, E) < x*. (2.5)

A set & € WEnt(L) is called admissible if, for every x € L, x = \/{y € L |

I3 _
y < x}, where & := § U{E~' : E € &}. A (Weil) uniformity on L is an admissible
filter & of (W Ent(L), C) satisfying:

(1) For each E € & there exists F € & suchthat F o F C E.
(2) Foreach E € &, E~! € &.

A (Weil) uniform frame is a pair (L, &) where L is a frame and & is a uniformity
on L. If (L, &) and (M, ¥) are uniform frames, a uniform homomorphism h :
(L, &)— (M, ¥)is aframe homomorphism 4 : L — M such that (h & h)(E) € F
whenever E € &. The resulting category WUFrm contains the category KRFrm of
compact regular frames as a full subcategory in virtue of the fact that, for any com-
pact regular frame L, W Ent(L) is its unique uniformity [13]. Further, each uniform
frame has a coreflection to KRFrm, called the Samuel compactification [5]. On the
other hand, there is a notion of completeness for uniform frames, determined as
follows:

A frame homomorphism 4 : L — M is said to be dense if h(x) = O implies
x = 0. A uniform homomorphism /4 : (L, &) — (M, ¥) is called a dense surjection
if it is onto, dense and ¥ is generated by the image entourages (h @ h)(E), E € &.
A uniform frame (M, ) is called complete if any dense surjection (L, &) —
(M, ¥) is an isomorphism, and a completion of (L, &) is a complete (M, F)
together with a dense surjection (M, ¥) — (L, &). Isbell [15] established that
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each uniform frame has an essentially unique completion which thus provides the
coreflection to complete uniform frames.

€
We point out that, for any uniformity & on L, x<1y if and only if there exists
E € & such that

stx,E):=\/{z€L|(z.2) € E.zAx #0} <y [20].

By just dropping the symmetry condition (2) in the definition of uniform frame
we get the category of quasi-uniform frames. With the lack of symmetry the equiv-
alence between conditions (2.1) and (2.2) is no longer valid; whence, in the place

3
of < we have two partial orders
&
x<jy=Eo(x®x)Cydy, forsomekFE €&,
€
x<hby=x®dx)oECydy, forsomekF €&,

which in turn, lead to two subframes of L,
€
L' := {xele:\/{yeL|y<11x}} and

LZ::{xele:\/{yeLlyélggx}}.

Notice that the admissibility condition is equivalent to saying that the triple
(L, L', L?) is a biframe [22].

& €
As in the symmetric case, <I; and <l may be characterized in the following
way:

€
e x < y if and only if there exists £ € & such that

sti(x, E) = \/{z € L | (z,w) € E,w A x 0} <y;

€
e X <, y if and only if there exists £ € & such that

sh(x,E):=\/{zeL|(w.2) e E,wAx#0} <.

Moreover we have [21]:

x < sti(x, E), (2.6)
sti(st;(x, E), F) <st;(x,EoF). 2.7)
A Weil entourage E is said to be finite [13] if there exists a finite cover xj, x,,

..., X, of L such that \/7_, (x; ® x;) C E. A (quasi-)uniformity is rotally bounded
if it has a base of finite entourages.
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3. Transitive Entourages: Basic Results

In this section, we collect a number of preliminary results needed later on.

For a frame L, we say that E € L & L is transitive if E> .= Eo E = E.

We begin by checking that, for any transitive Weil entourage E, the elements
st(x, E) are complemented:

PROPOSITION 3.1. Let L be a frame and let E be a transitive Weil entourage of
L. Foreveryx € L, st(x, E) Vst(x, E)* = 1.

Proof. Let (v, y) € E with y Ast(x, E) # 0. Then there exists («, o) € E such
thato Ax # Oand @ A y # 0. Thus (a, y) and (y, a) belong to E?> = E and,
consequently, (o vV y,a vV y) € E. Since (o V y) A x # 0, we may conclude that
st(x,E) >aVy>y. Hencest(x, EyVst(x,E)*>(\/{yeL |,y €eE,yn
st(x, E) #0DV(V{y e L | yAst(x,E) =0 > \{yeL|(y,y) € E}=1.0

Similarly, for any transitive entourage E of the total part L of a biframe (L, L1,
L,), the elements st; (x, E) are complemented. Moreover, if all elements s7; (x, E)
belong to L; then they are complemented, with complement in L ;. For this we need
the following lemma:

LEMMA 3.2. Let L be a frame and let E be a transitive Weil entourage of L. For
every x € L, if st;y(x, E) Ay = O then st;(x, E) A st;j(y, E) = 0.

Proof. We prove only fori = 1 and j = 2 (thecase i = 2 and j = 1 is
analogous):

Computing st1(x, E) A st,(y, E) we get

sti(x, E) Asty(y. E) = \[le AB | (x.2) €E, (w.B) € E,
zAx #0,w Ay #0}.

This join is indeed O because, whenever (¢, z) and (w, 8) belong to E witha A S #
0, we have (w,z) € E?> = E and then, if z A x # 0, we obtain, by hypothesis,
wAy#0. a

PROPOSITION 3.3. Let (Lo, L1, Ly) be a biframe and let E be a transitive en-
tourage of Ly such that, for any x € L, st;(x, E) € L;. Then, for any x € Ly,
sti(x, E) v st;(x, E)* = 1.

Proof. Let us show that st) (x, E) Vv st;(x, E)* = 1 by proving that

ViveLol () € E,zax #0)v \/{y € Loy | y Asti(x, E) = 0}
>\/lyeLol(y,y) € E}=1.
Consider y € Ly such that (y, y) € E.

If y Asti(x, E) = 0 then we have y < st;(y, E) € L, and, by Lemma 3.2,
sti(x, E) Ast,(y, E) = 0.
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Otherwise, the existence of (o, 8) € E suchthat x A £ 0and y Ao # 0
implies that (y, 8) € E? = E withx A B # 0.
The proof for i = 2 is similar.

Respectively by (2.4) and (2.7) we immediately have:

PROPOSITION 3.4. Let L be a frame and let & C W Ent(L). For every x € L
&
and every transitive E € &, st(x, E) < st(x, E).

PROPOSITION 3.5. Let (Lg, Ly, Ly) be a biframe and let & W Ent(L). For
&
every x € L; and every transitive E € §, st;(x, E) <; st;(x, E).

4. Transitive Uniformities

We say that a (quasi-)uniform frame (L, &) is transitive if & has a base of transitive
entourages. We now derive the results concerning transitive uniform frames.

PROPOSITION 4.1. Let (L, &) be a transitive uniform frame. Then L is zero-
dimensional.

3 3
Proof. Letx € L. Then x = \/{y € L | y < x}. But y < x if and only if there
exists a transitive £ € & such that sz(y, E) < x. Thus, since y < st(y, E),

x < \/Ist(y.E) | E € €, wansitive, y € L and st(y, E) < x} < x.

So, every x in L is the join of some st (y, E) with transitive £ € &, which are, by
Proposition 3.1, complemented elements. O

Conversely, every zero-dimensional frame admits a transitive uniformity. As a
step in this direction, we need to introduce the following:

For any a € L let E, denote the element (a @ a) V (a* ®a*) of LB L.

The proof of the following proposition uses Lemma 2.1:

PROPOSITION 4.2. Foreverya € L, E? = E,.

Proof. Consider («, ), (B,y) € (a®a)U (a* ®a*) witha, B, y # 0. Clearly,
the cases («, 8), (B,v) € a®aor (a, B), (B,y) € a* & a* are the only possible
ones. In each one, (a, y) € (a ® a) U (a* & a*). O

For any complemented a, E, is obviously a Weil entourage. Moreover, we have
(for a proof see Remark IV.6.3 of [21]):

PROPOSITION 4.3. E, is a Weil entourage if and only if a is complemented.

THEOREM 4.4. Let L be a zero-dimensional frame. The family 8§ = {E, | a €
BL} is a subbase for a transitive, totally bounded, uniformity on L.
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Proof. Let & be the filter of (W Ent(L), €) generated by 4, that is,

€= {EeWEnt(L)|Ela1,...,ane:BL:ﬂEa,. gE}.

i=1

This is indeed a transitive, totally bounded, uniformity on L. We first check the
admissibility condition:

By the zero-dimensionality, every x € L is a join of complemented elements;
but, forany ¢ € BL, E.o(c®c) C ¢ D c; indeed, if (¢, B) € (c B c) U (c* & c*)
and (B,y) € ¢ @ ¢ with 8 # 0, then (a, B) € ¢ & c and thus (¢, y) € ¢ P c.

e €

Therefore ¢ <I ¢ and, consequently, we may conclude that x = \/{y € L | y < x}.
The total boundedness is obvious because each ()/_, E,, is a finite Weil en-

tourage. The proof of the other conditions is straightforward. ]

In the sequel, given a zero-dimensional frame, we denote by &p the transitive
uniformity on L constructed in the proof of Theorem 4.4.

LEMMA 4.5. Leth : L — M be a frame homomorphism between zero-dimensio-
nal frames. Then h : (M, M) — (L, €5) is uniform.

Proof. Since (h @ h)(E,) = (h @ h)((a ® a) V (a* & a*)) = (h(a) ® h(a)) vV
(h(a*) ® h(a*)) we have (h @ h)(E,) = Ej) whenever a is complemented.
Consequently, (h @ h)(E) € &5 forevery E € &}. O

THEOREM 4.6. Let L be a zero-dimensional frame and let (CL, CE&p) be the
uniform completion of (L, Ep). Then (CL, C&p) is the universal zero-dimensional
compactification of L.

Proof. By [5, Proposition 3], (CL, C&p) is compact and coincides with the
Samuel compactification R(L, Ep) of (L, Ep).

Now for any frame homomorphism # : M — L with M compact and zero-
dimensional, /4 is uniform by Lemma 4.5. Then, in the diagram

RM, &p) L~ R(L, &p)

pMi im

M L

oy 1s an isomorphism and we have h = pLJQh,oI_Ml, which shows that R(L, &p)
is the compact zero-dimensional coreflection of L with coreflection map p; :
R(L,Ep) — L. O

It is easy to verify that if h : M — L is a zero-dimensional compactifica-
tion of a frame L, then the image by % of the unique uniform structure on M is
a totally bounded transitive uniformity. From this and the comments of B. Ba-
naschewski [3, p. 115] it follows that there is a one to one correspondence between
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zero-dimensional compactifications of a frame L and transitive totally bounded
uniformities on L. Therefore, symmetric transitive structures give us a method for
representing all zero-dimensional compactifications.

THEOREM 4.7. The totally bounded coreflection (L, &,) of any transitive uni-
form frame (L, &) is transitive.
Proof. Consider

€ n
37:{EeWEnt(L)|Elcl,cz,...,cneL:c,~<1c,-and () Ee gE}.

i=1

We first prove that ¥ is a uniformity on L. Clearly, ¥ is a filter of W Ent(L)
and each intersection ();_, E,, is symmetric. In order to show the admissibility, it

€ ¥F €
suffices to prove that x < y implies x < y. Let x < y, that is, st(x, E) < y for
some symmetric and transitive £ € &. By Proposition 3.4, E;(, gy € ¥ . Further,
Est(x,E) o (X 7] X) Cydy:

Indeed, for any

(a, B) € L(st(x, E), st(x, E)) U l(st(x, E)*, st(x, E)¥)

and (8,y) < (x,x), we have (a, 8) < (st(x, E), st(x, E)) whenever 8 # 0,
because x < st(x, E). Since st (x, E) < y we have («, y) < (y, ¥). Consequently

F &
x < y. Therefore ¥ is a uniformity on L. Notice that, if ¢ < ¢, then ¢ is equal
to st(c, E) for some transitive £ € & and, therefore, c¢ is complemented and E. €
W Ent(L). These Weil entourages form a subbase for ¥. From

ﬁ Ec,- © ﬁ Eci - ﬁ(Ec,- © Eq) = ﬁ Ec,-a
i=1 i=1 i=1 i=1

it follows that £ is transitive.
3 g
F is also totally bounded. Indeed, whenever ¢ <1 c and d < d,

E.NE; = (cAd®DcAd)V(eAd" DecAd)VEEANdD T ANd)
V(c* ANd* D c* AdY)

and, since {c Ad,c Ad*,c* Ad, c* ANd*}isacoverof L, E. N Ey, is finite.
We conclude the proof that &, is transitive by showing that &, = ¥ . By the well-
known isomorphism between the categories of totally bounded uniform frames and

e

&
proximal frames it suffices to show that the corresponding proximities <1 and <1 do
coincide. . .
First we prove that ¥ C §&. Consider E. with ¢ < c¢. By (2.5), ¢* < c*.
Therefore there exist E, E, € & for which Ejo(c®c¢) C chcand E,o(c*Bc*) C
c* @ c*. Thus E\ N E;, C (Ey N Ey) o E. C E., which implies that E. € &.
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F &
Now, the totally boundedness of # implies that # C &,, hence <1 C <.
C

AN

The opposite inclusion follows from the fact, already proved, that il. O

It is well-known that a frame is uniformizable iff it is completely regular. As in
the spatial situation, it is natural to consider under what conditions the collection
of all entourages of a given completely regular frame form a uniformity, and if not,
to characterize the “finest” uniformity on the given frame.

Let L be a completely regular frame, and consider the union 4 of all uniformities
on L. This is a subbase for a uniformity. Indeed, the collection B of all finite
intersections of elements of 4 form a base for a uniformity:

eletE=FENE,N---NE,with Ey, E,,...,E, € 8. Foreachi € {1,2,...,n}
there exists F; € 4 such that Fl.2 C E;. Then (FFNF,N---NF,)? C E and
FlﬂFzﬁ---ﬂFne:B.

eletE = E,NE,N---NE, € Bwith E{,E»,...,E, € 8§ Foreachi €
{1,2,...,n} E7' € 8. Then E;'N---NE;' € and (E;'N---NE; )™ = E.

€ 8
e Since for each uniformity € on L, x = \/{yeL |y <x}< \/{yeL |y <x},
8
we have x = \/{y € L | y < x} forevery x € L.

This uniformity is called the fine uniformity on L.

We say that a sequence of entourages Ey, E», ..., E,, ... is anormal sequence
if E2_, € E,. An entourage E is a normal entourage if E = E; in some normal
sequence.

LEMMA 4.8. The fine uniformity on L coincides with the collection of all normal
entourages of L.

Proof. By the square root property for uniformities, each entourage in the fine
uniformity is a normal entourage.

On the other hand, take any normal entourage E of L, say with E = E in some
normal sequence {E,}, and let & be any uniformity on L. Then it is easy to see that
& U{E,} U{E, '} is a subbase for some uniformity on L. Hence E belongs to the
fine uniformity on L. ]

Recall that a frame is Lindelof if each cover has a countable subcover.

THEOREM 4.9. If L is a zero-dimensional Lindeldf frame then the fine uniformity
of L is transitive.

Proof. Trivially any zero-dimensional frame is completely regular. By Lem-
ma 4.8, it suffices to show that any normal entourage E; contains a transitive
entourage.

Let (x, x) € E;. Then x = \/ x, where each x, is complemented. Let E be the
join of all x, & x,, where x, is complemented and appears in a join which generates
some x with (x, x) € E;. Clearly E is a Weil entourage contained in E;.
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By the Lindel6f property there exists a countable cover {x; | i € N} of L
such that (x;,x;) € E foreveryi € N.Put y; = x1, y2» = xp Ax{, y3 =
X3AXAXS, o Y = Xy A (/\:7:_11 xF)andlet F = \/,.y(: ® yi) € E. Notice
that, for every n € N, \//_, yi = /i, xi. Therefore \/;,_.yyi = V,enXi = 1,
which means that F is a Weil entourage. Also, for m > n,

n—1 m—1
Vo A Vip = (xn /\/\xf) A (xm A /\xf‘) <x, Ax; =0.
i=1 i=1

This implies that F is transitive. Indeed: if (o, B) € y; @ y; and (B, y) € y; ® y;
witha, B,y # 0, then B < y; A'y; which implies j =i and («, y) € y; ® y;. This
shows that F o F' = F because

FoF = U(yi @yi)OU(yi D yi). O

ieN ieN

5. Transitive Quasi-Uniformities

We close with the results concerning transitive quasi-uniform frames.

Let (L, &) be a quasi-uniform frame and let (L, L', L?) be its underlying bifra-
me. By Proposition III 4.3 of [21], for every transitive entourage E of L and every
xelL,

st;(x,E) e L'. (5.1

So, in this case, the conditions of Proposition 3.3 are satisfied. Moreover: since
sti(x, E) < y implies st;(y®, E) Ax = O forevery y € L', (5.1) also implies that,
for any x, y € L' and any transitive E,

sti(x, E) <y = st;(y*, E) = x°. (5.2)

PROPOSITION 5.1. Let (L, &) be a transitive quasi-uniform frame. Then the
biframe (L, L', L?) is zero-dimensional.

. €
Proof. Let xeL' (i =1,2). For any ye L such that y <; x take E€§,
transitive, satisfying st;(y, E) < x. From st;(st;(y, E), E) < st;{(y, E?) =

€
st;(y, E) < x it follows that y < st;(y, E) <; x. Thus
&
x=\/lvelLly<ix)

, &
= \iyelL |y<ix
\/{sti(y.E) | E € €, E* = E, st;(y, E) < x} < x.

IA

The conclusion now follows from Proposition 3.3. O
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In particular, this implies that the frame L is zero-dimensional.

Now, let L be a frame. For any a € L, let us denote by E” and E!, respectively,
the elements (1 ® a) VvV (a* ® a*) and (a & 1) Vv (a* & a*) of L @ L. Clearly,
(Ely"'=E’and E'NE" = E,.

The following result is quite obvious:

PROPOSITION 5.2. Foranya € L, E. and E!, are transitive.

PROPOSITION 5.3. Forany a € L, E! and E" are Weil entourages of L if and
only if a is complemented.

Proof. Clearly, if E and E! are Weil entourages, E/ N E! = E, is also a Weil
entourage. Thus, by Proposition 4.3, a is complemented.

Conversely, if a is complemented, \/{x € L | (x,x) € E'} > a Vv a* =1 and,
similarly, for E'. O

The following auxiliary result will be useful in the sequel.

LEMMA 5.4. Let Ey = (af @ b¥) v (ak @ bY) (k =1,2,...,n). Then

st1<x,ﬂEk> =\l ral n---nal | 1oefl,2),
k=1

ke{l,2,....n},b, Ab. A+ A} Ax 0}

and

stz(x,ﬂEk> = \/{b), AbL A A 1€ {1,2),
k=1

ke{l,2,....n},a} Aaj A+ Aa Ax #0).

Proof. Since

n 2

V

=1

151
2
=

(Cltll @btll) N (Cltz2 @btzz) n---Na @b?n))

V

1

2 2
H=1 th=1
2 2
VoV (@ nran-nal) by by A AD})
5] [5) In n 15} In

H=1 th=1
we have that st; (x, [);_; Ex) is equal to
2 2 2 1 2 1 2
st (x, Urn=1 Unei - Ui Ve, Aag Ao Aag by Abp A+ A b?r,))
=\Via) naZ Ao nal 1,1 € {1,2),

1

Cltl

/\atzz/\---/\a;fl/\x;éO}.

The proof of the other assertion is similar. a
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THEOREM 5.5. Let (Lg, Ly, Ly) be a zero-dimensional biframe. The family

8 = {E{ll | a € Ly has complement in L}
U{E] | a € L, has complement in L}

is a subbase for a transitive, totally bounded, quasi-uniformity &g on Ly, for which
Li=L;(i=12).

Proof. Let & be the filter of (W Ent(L), €) generated by 4.

We prove the admissibility condition by showing, equivalently, that (Lo, L{, L3)
is a biframe. In order to do this it suffices to see that L; = Lf) (i=1,2).

Fori = 1 we have

&r
L(l) = {xeLolx:\/{yEL0|y<11x}}

D {c € L, | c has complement in L,}

since, for these ¢, E' o (c ®¢) C ¢ ®c, thatis, ¢ ilpl c.

The inclusion L; C L(l) now follows from the facts that L(l) is a subframe of L
and that (Lo, L, L) is zero-dimensional.

The proof for i = 2 can be done similarly because, for ¢ € L, with complement
inL, (c®c)oE. Cche.

Since, for each complemented a, Ei and E) are finite, transitive, Weil en-
tourages, & is a totally bounded transitive quasi-uniformity on L.

I3
Finally let us show that L(l) C L. Lety <1F1 x. It suffices to show the existence

3
of z € Ly suchthat y < z <1F1 x. Let E € &f be a transitive entourage such that

&
st (y, E) < x. As we have already seen, st,(y, E) <1F1 x. The following lemma
ensures the existence of that z:

LEMMA 5.6. For any x € Ly and E € &f there exists E' € &p such that
st;(x, E") <st;(x,E)and st;(x, E’) € L; (i =1, 2).

Proof. Any E € & contains an E’ € &p of the form E' = (ﬂ’}=1 Eij) N
(ﬂ'};l E}, ). Letus show that st; (x, E') € L;.

By Lemma 5.4, st;(x, E’) is equal to

1 1
VA Ao nad Ay, A Ayt Tt e, € {1,2),

BL A ABLASL A A8 AX #£ 0},

where, foreachi =1, ..., n,
. . .
a) =a, ay =a;,
i % i _
pi=a, py=1
and, foreachi =1, ..., m,

vi=b, wn=1,
5 =g 8 =4

i
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The only problem is when there is some i € {1, ..., n} such that
XABLABLA - ABIA- - ABEAS, Ao A0,
because then a’i = a} € L, appears in the join st;(x, E’). But
XABLABLA - ABLAABLAS, Ao A8 F0
implies that
XABLABLA - ABYA - ABEASL A NS F0
thus

1

Oltl

i—1 i i+1 n 1 m
N NN N N AN Y N AN Y

also appears in the join. Therefore, since the join of

1 i—1 * i+l n I m
oy ANy ANGEANGTIA A A Y A A Y
and
1 i—1 i+1 n 1 m
Oy NG ANGEANQT AN N A Y A A Y
is equal to
1 i—1 i+1 n 1 m
Ay ANay NG A Ay A Y A A Y

we get rid of a;'.

By repeating this process we can get rid of all the a; that appear in the join,
which shows that this join belongs to L.

This completes the proofs of Lemma 5.6 and Theorem 5.5. O

J. Frith [11, Proposition 4.2] constructs a quasi-uniform structure compatible
with the congruence lattice of a given frame. The construction of & given in The-
orem 5.5 generalizes Frith’s construction. For this reason we shall call & the Frith
structure of the total part L, of a given zero-dimensional biframe (Lg, L1, L).

THEOREM 5.7. The totally bounded coreflection (L, &,) of any transitive quasi-

uniform frame (L, &) is transitive.
Proof. As in the proof of Theorem 4.7, one can easily show that

I 1 £ r 2 £
{EllceL' c<icJU{E. |ceL? c <}

is a subbase for a transitive, totally bounded, quasi-uniformity # on L. It suffices
then to check that the corresponding quasi-proximities (strong inclusions in [24])

& & F F
(<1, <Iz) and (y, <) do coincide. Now this follows from (5.2) and Proposition
3.5 (in a very similar way to the proof of the analogous identity in Theorem 4.7). O

Recall that for any frame homomorphism 4 : L — M, there is its right adjoint
hy, : M — L such that h(x) < y if and only if x < h,(y), explicitly given by
he(y) = \/{x € L | h(x) < y}. It satisfies hh, < idy and h,h > id,. If h maps
onto M, then hh, = idy,. Clearly, A, is dense whenever £ is onto.
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LEMMA 5.8. Leth : L — M be a dense frame homomorphism. Then:

(a) For every x,y € M, (h @ h)*(x ® y) = h*(x) ® h*(y)

(b) Forevery E€ M @& M, (h® h).(E) =\, yep(hax) @ ha(1).

(c) Forevery E€e M ® M, (h® h).(E)> C V{h(x) @ ho(w) | (x,y), (z,w) €
E, y A z # 0}. Moreover, if h, is dense then the equality holds.

Proof. (a) Since (h @ h)(h.(x) & hy(y)) = hh,(x) ® hh.(y) € x &y, we have
h(x) ® h(y) S (h @ h)(x D y).

On the other hand, for any (¢, 8) € E, o # 0, B # 0, with (hédh)(E) C x Dy,
we have (h(a), h(B)) € x @ y. Since & is dense, h(a) % 0 and ~(B) # 0, thus
h(e) < x and h(B) < y. Hence (¢, B) € h.(x) & h.(y). We have proved that
H{E e LOL | (h®dh)(E) € x &y} C hi(x) ® h.(y) and the inclusion
(h @ h)«(x ®y) C hy(x) @ h.(y) follows.

(b) Let (o, B) € F with (h @ h)(F) C E. Then (h(x), h(B)) € E and, since
(a, B) < (hih(e), hh(B)), the inclusion (h & h).(E) S \/(, ycp(ha(x) ® hu(y))
holds.

The reverse inclusion is a consequence of the inclusion h,(x) @ h,.(y) C
(h® h)(x ®y)in(a).

Note that here the denseness of /4 is not needed.

(c) By Lemma 2.1

(h@&h(E)} = | IFEL®L| (h®h)(F) S E}o
JtFeLoL|hen(F) cE).

Consider (o, 8) € F, and (B, y) € F> with (h & h)(F,), (h & h)(F>) € E and
B # 0. Then (o, y) < (hih(a), hih(y)) with (h(e), h(B)), (h(B), h(y)) € E and,
by denseness, 4 () # 0, which proves the desired inclusion.

On the other hand, if (x, y), (z, w) € E with y A z # 0, then also h,(y) A
h.(z) # 0 since h, is dense, and (h.(x), h.(y)) and (h.(z), h.(w)) belong to
(h @ h).(E); it follows that (h,(x), h.(w)) € (h @ h).(E)>. a

PROPOSITION 5.9. Let h : L — M be a dense frame homomorphism. If E €
M @& M is transitive then (h @ h).(E) is transitive.
Proof. Let E € M & M be transitive. By Lemma 5.8(c),

(h & W) (E) € \/{ha(x) ® ho(w) | (x,¥), (z,w) € E, y Az # 0}

thus (h @ h).(E)? is contained in V{h«(x) & he(w) | (x,w) € E} which, by
Lemma 5.8(b), is equal to (h @ h).(E). O

Let us recall that a quasi-uniform frame (M, ) is complete if every dense
quasi-uniform surjection (L, §) — (M, ¥) is an isomorphism, and a comple-
tion of (L, &) is a complete (M, ) together with a dense surjection (M, ) —
(L, &). In [12, Theorem 3.4] the authors prove that each quasi-uniform frame
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has a unique completion. In the language of entourage quasi-uniformities [8], if
h: (CL,CV) — (L,V) is the completion of (L, V) then {v,, : v € V}isa
base for C'V. Let v € 'V and let F be the Weil entourage corresponding to v in the
equivalent Weil quasi-uniform structure on L. Then (& & h).(F) corresponds to
Up

e

COROLLARY 5.10. The completion (CL, CE8) of any transitive quasi-uniform
frame (L, &) is transitive.

Proof. By the remarks preceding this corollary it suffices to apply Proposi-
tion 5.9. a

B. Banaschewski [2, Proposition 3] gives the universal zero-dimensional com-
pactification of a zero-dimensional biframe. The following theorem gives an alter-
native proof of Banaschewski’s result.

THEOREM 5.11. The quasi-uniform completion of the Frith structure yields the
universal zero-dimensional compactification of a given zero-dimensional biframe.
Proof. Let L = (Lg, L1, L) be a zero-dimensional biframe and let &z be the
Frith structure on Ly. Let M = (M, M, M;) be any compact zero-dimensional
biframe, and let 7 : M — L be any biframe map.
The biframe M with the Frith structure is totally bounded and compact hence
complete. So, by Theorem 3.7 of [12], there exists h such that the diagram

(CLy, Cé&F)

A

M, Lo

commutes. It follows from [9, Proposition 3.7] that # is a biframe map. It re_mains
to prove uniqueness: suppose g : My — (CLo, C&F) such that ¢, g = ¢ph. The
map ¢, is dense hence monic for frames [5, Lemma 6]. Therefore g = h. O
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