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Abstract. A classical result in the theory of uniform spaces is that any topological space with a
base of clopen sets admits a uniformity with a transitive base and the uniform topology of such
a space has a base of clopen sets. This paper presents a pointfree generalization of this, both to
uniform and quasi-uniform frames, together with various properties concerning total boundedness,
compactifications and completions.

Mathematics Subject Classifications (2000): 54E05, 54E15, 54E55, 06B99.

Key words: zero-dimensional frames resp. biframes, (quasi-)uniform frames, transitive (quasi-)uni-
form frames, totally bounded coreflection, completion, universal zero-dimensional compactification.

1. Introduction

The study of transitivity has been important in the development of the theory of
both uniform spaces and quasi-uniform spaces. Uniformities with a transitive base
necessarily have a base of equivalence relations. These are called non-archimedean
uniformities and have been investigated by B. Banaschewski [1], J. R. Isbell [14],
P. Nyikos and H. C. Reichel [18] and others. Any zero-dimensional topologi-
cal space, that is, with a base of open-closed (clopen) sets admits a uniformity
with a transitive base and the uniform topology of such a space has a base of
clopen sets. Transitivity has proved to be more fundamental in the study of quasi-
uniform spaces than in the study of uniform spaces. In fact the usual proof that
every topological space admits a quasi-uniformity is given by constructing a com-
patible quasi-uniformity with a base of transitive entourages [19]. Furthermore,
P. Fletcher’s construction of transitive quasi-uniformities has provided an important
technique in the theory of quasi-uniform spaces [6]. For further information on the
role of transitivity in quasi-uniform spaces the reader is referred to [10].

In this paper we investigate frame (quasi-)uniformities with transitive bases.
We begin by extending the notions of (quasi-)uniformities with transitive bases to
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frames. As we demonstrate the theory of frame uniformities parallels the theory in
the spatial case. If (L,E) is a uniform frame in which E has a base of transitive
entourages then L is zero-dimensional. Furthermore, each zero-dimensional frame
admits a uniformity with a transitive base.

For frame quasi-uniformities, in order to recognize the similarity of our re-
sults with the spatial case we need to consider biframes [4] and bitopological
spaces [17]. If (X,T ) is a T1-space then the transitive structures given by Pervin
[19] and Fletcher [6] each have the property that the conjugate structure is dis-
crete, and hence the underlying bitopological space is pairwise zero-dimensional
[23]. We prove that each zero-dimensional biframe (L0, L1, L2) admits a tran-
sitive frame quasi-uniformity on its total part L0 whose underlying biframe is
(L0, L1, L2). Furthermore, if (L,E) is a quasi-uniform frame, and E has a base
of transitive entourages, then the underlying biframe is zero-dimensional.

Finally, we establish a number of additional properties concerning total bound-
edness, the universal zero-dimensional compactification and completions.

This paper uses the Weil entourages of Picado [20]. We note that, as in the
case of spaces, there are several different ways of describing frame uniformities.
Examples are the covering uniformities of Isbell [15], the entourage uniformities
of Fletcher and Hunsaker [7] and the Weil uniformities of Picado [20]. There are
also three equivalent approaches to quasi-uniform frames: Frith [11], Fletcher,
Hunsaker and Lindgren [8], and Picado [22]. The equivalence of the approaches
to uniform (resp. quasi-uniform) frames was proved by Picado [20] and Fletcher
and Hunsaker [7] (resp. Picado [22] and Fletcher, Hunsaker and Lindgren [9]).

2. Preliminaries and Notation

Recall that a frame L is a complete lattice satisfying the infinite distributive law
x ∧ ∨

S = ∨{x ∧ s | s ∈ S} for every x ∈ L and every S ⊆ L, and a frame
homomorphism h : L→ M is a mapping preserving arbitrary joins (including the
bottom element 0) and finite meets (including the top 1). The pseudocomplement of
an x ∈ L is x∗ =∨{a ∈ L | a∧x = 0}. If x∨x∗ = 1, then x is complemented. We
denote by BL the sublattice of L of all complemented elements of L (the Boolean
part of L). A frame L is zero-dimensional [2] provided that each element of L is a
join of complemented elements. L is compact provided that, for any cover S of L,
that is, for any S ⊆ L such that 1 =∨

S, there is a finite cover F ⊆ S. A standard
reference for frames is Johnstone [16].

A biframe [4] is a triple (L0, L1, L2) where L1 and L2 are subframes of the
frame L0, and each element of L0 is the join of finite meets from L1 ∪ L2. In the
sequel, we use Li, Lj to denote L1 or L2 always assuming that i, j = 1, 2, i 
= j .

A biframe homomorphism (L0, L1, L2)→ (M0,M1,M2) is a frame homomor-
phism from L0 to M0 which maps Li into Mi . A biframe (L0, L1, L2) is compact
provided that L0 is a compact frame. Schauerte [24] introduces the following useful
notation for a biframe (L0, L1, L2):
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For any x ∈ Li , x• = ∨{y ∈ Lj | y ∧ x = 0}. The biframe (L0, L1, L2) is
zero-dimensional [2] provided that each element of Li can be written as a join of
elements x ∈ Li for which x ∨ x• = 1.

Additional information concerning biframes may be found in [4].
For a subset A of a poset (X,≤), let ↓A = {x ∈ X | ∃ a ∈ A : x ≤ a}. The set A

is said to be a decreasing subset of X if ↓A = A. For a frame L consider the frame
D(L× L) of all non-void decreasing subsets of L× L, ordered by inclusion. The
coproduct L⊕L will be represented, as usual (cf. [16]), as the subset of D(L×L)

consisting of all the saturated sets, that is, of those sets A which satisfy

{x} × S ⊆ A⇒
(
x,

∨
S
)
∈ A

and

S × {y} ⊆ A⇒
( ∨

S, y
)
∈ A.

Since the premise is trivially satisfied if S = ∅, each saturated set A contains
O := {(0, a), (a, 0) | a ∈ L}, and O is the zero of L ⊕ L. Obviously, each
x ⊕ y = ↓(x, y) ∪ O is a saturated set and for each saturated set A one has A =∨{x ⊕ y | x ⊕ y ≤ A} = ∨{x ⊕ y | (x, y) ∈ A}. The coproduct injections
uLi : L → L ⊕ L are defined by uL1 (x) = x ⊕ 1 and uL2 (x) = 1 ⊕ x so that
x ⊕ y = uL1 (x) ∧ uL2 (y). Consequently, the codiagonal ∇ : L ⊕ L → L is given
by ∇(A) =∨{x ∧ y | (x, y) ∈ A}.

For any frame homomorphism h : L→ M, the definition of coproduct ensures
us the existence (and uniqueness) of a frame homomorphism h ⊕ h : L ⊕ L →
M ⊕M such that (h⊕ h) · uLi = uMi · h (i = 1, 2).

For a frame L, a Weil entourage [20] is an E ∈ L⊕L for which the codiagonal
factorizes through (−) ∩E : L⊕ L→↓{E}:

L⊕ L

∇

(−)∩E ↓{E}
∃f

L

This is equivalent to saying that ∇(E) = 1, that is,
∨{x ∈ L | (x, x) ∈ E} = 1.

The collection W Ent(L) of all Weil entourages of L may be partially ordered
by inclusion. This is a partially ordered set with finitary meets (including a unit
1 = L⊕ L).

For any decreasing sets E,F of L⊕ L define

E ◦ F :=
∨
{x ⊕ y | ∃z ∈ L \ {0} : (x, z) ∈ E, (z, y) ∈ F }.

In particular, we are defining the composition for Weil entourages.
For the basic properties of the operation ◦ see [21].
The behavior of entourages in the frame setting is similar to their behavior in

spaces because of the following fundamental property, proved in [20]:
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LEMMA 2.1.( ∨
i∈I

(ai ⊕ bi)

)
◦

( ∨
j∈J

(cj ⊕ dj )

)
=

(⋃
i∈I

(ai ⊕ bi)

)
◦

( ⋃
j∈J

(cj ⊕ dj )

)
.

A Weil entourage E is symmetric if it coincides withE−1 := {(y, x) | (x, y) ∈ E}.
Further we have:

For any E ⊆ L⊕ L and x, y ∈ L, x
E
� y means that

E ◦ (x ⊕ x) ⊆ y ⊕ y for some E ∈ E . (2.1)

Of course, when E is symmetric (that is, E ∈ E implies E−1 ∈ E) this is also
equivalent to saying that

(x ⊕ x) ◦ E ⊆ y ⊕ y for some E ∈ E . (2.2)

The elements st (x,E) satisfy the following properties [21]:

x ≤ st (x,E) (2.3)

st(st (x,E), F ) ≤ st(x,E ◦ F) (2.4)

st(x,E) ≤ y ⇒ st(y∗, E) ≤ x∗. (2.5)

A set E ⊆ W Ent(L) is called admissible if, for every x ∈ L, x = ∨{y ∈ L |
y

E
� x}, where E := E ∪ {E−1 : E ∈ E}. A (Weil) uniformity on L is an admissible

filter E of (W Ent(L),⊆) satisfying:

(1) For each E ∈ E there exists F ∈ E such that F ◦ F ⊆ E.
(2) For each E ∈ E , E−1 ∈ E .

A (Weil) uniform frame is a pair (L,E) where L is a frame and E is a uniformity
on L. If (L,E) and (M,F ) are uniform frames, a uniform homomorphism h :
(L,E)→ (M,F ) is a frame homomorphism h :L→M such that (h⊕ h)(E) ∈ F
whenever E ∈ E . The resulting category WUFrm contains the category KRFrm of
compact regular frames as a full subcategory in virtue of the fact that, for any com-
pact regular frame L, W Ent(L) is its unique uniformity [13]. Further, each uniform
frame has a coreflection to KRFrm, called the Samuel compactification [5]. On the
other hand, there is a notion of completeness for uniform frames, determined as
follows:

A frame homomorphism h :L→M is said to be dense if h(x) = 0 implies
x = 0. A uniform homomorphism h : (L,E)→ (M,F ) is called a dense surjection
if it is onto, dense and F is generated by the image entourages (h⊕h)(E), E ∈ E .
A uniform frame (M,F ) is called complete if any dense surjection (L,E) →
(M,F ) is an isomorphism, and a completion of (L,E) is a complete (M,F )

together with a dense surjection (M,F ) → (L,E). Isbell [15] established that
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each uniform frame has an essentially unique completion which thus provides the
coreflection to complete uniform frames.

We point out that, for any uniformity E on L, x
E
� y if and only if there exists

E ∈ E such that

st(x,E) :=
∨
{z ∈ L | (z, z) ∈ E, z ∧ x 
= 0} ≤ y [20].

By just dropping the symmetry condition (2) in the definition of uniform frame
we get the category of quasi-uniform frames. With the lack of symmetry the equiv-
alence between conditions (2.1) and (2.2) is no longer valid; whence, in the place

of
E
� we have two partial orders

x
E

�1 y ≡ E ◦ (x ⊕ x) ⊆ y ⊕ y, for some E ∈ E,

x
E

�2 y ≡ (x ⊕ x) ◦E ⊆ y ⊕ y, for some E ∈ E,

which in turn, lead to two subframes of L,

L1 :=
{
x ∈ L | x =

∨
{y ∈ L | y E

�1 x}
}

and

L2 :=
{
x ∈ L | x =

∨
{y ∈ L | y E

�2 x}
}
.

Notice that the admissibility condition is equivalent to saying that the triple
(L,L1, L2) is a biframe [22].

As in the symmetric case,
E

�1 and
E

�2 may be characterized in the following
way:

• x
E

�1 y if and only if there exists E ∈ E such that

st1(x,E) :=
∨
{z ∈ L | (z,w) ∈ E,w ∧ x 
= 0} ≤ y;

• x
E

�2 y if and only if there exists E ∈ E such that

st2(x,E) :=
∨
{z ∈ L | (w, z) ∈ E,w ∧ x 
= 0} ≤ y.

Moreover we have [21]:

x ≤ sti(x, E), (2.6)

sti(sti (x, E), F ) ≤ sti(x, E ◦ F). (2.7)

A Weil entourage E is said to be finite [13] if there exists a finite cover x1, x2,

. . . , xn of L such that
∨n

i=1(xi ⊕ xi) ⊆ E. A (quasi-)uniformity is totally bounded
if it has a base of finite entourages.
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3. Transitive Entourages: Basic Results

In this section, we collect a number of preliminary results needed later on.
For a frame L, we say that E ∈ L⊕ L is transitive if E2 := E ◦ E = E.
We begin by checking that, for any transitive Weil entourage E, the elements

st (x,E) are complemented:

PROPOSITION 3.1. Let L be a frame and let E be a transitive Weil entourage of
L. For every x ∈ L, st (x,E) ∨ st (x,E)∗ = 1.

Proof. Let (y, y) ∈ E with y ∧ st (x,E) 
= 0. Then there exists (α, α) ∈ E such
that α ∧ x 
= 0 and α ∧ y 
= 0. Thus (α, y) and (y, α) belong to E2 = E and,
consequently, (α ∨ y, α ∨ y) ∈ E. Since (α ∨ y) ∧ x 
= 0, we may conclude that
st (x,E) ≥ α∨ y ≥ y. Hence st (x,E)∨ st (x,E)∗ ≥ (

∨{y ∈ L | (y, y) ∈ E, y ∧
st (x,E) 
= 0})∨(∨{y ∈ L | y∧st (x,E) = 0}) ≥ ∨{y ∈ L | (y, y) ∈ E} = 1. ✷

Similarly, for any transitive entourage E of the total part L0 of a biframe (L0, L1,

L2), the elements sti(x, E) are complemented. Moreover, if all elements sti (x, E)
belong to Li then they are complemented, with complement in Lj . For this we need
the following lemma:

LEMMA 3.2. Let L be a frame and let E be a transitive Weil entourage of L. For
every x ∈ L, if sti (x, E) ∧ y = 0 then sti (x, E) ∧ stj (y,E) = 0.

Proof. We prove only for i = 1 and j = 2 (the case i = 2 and j = 1 is
analogous):

Computing st1(x,E) ∧ st2(y,E) we get

st1(x,E) ∧ st2(y,E) =
∨
{α ∧ β | (α, z) ∈ E, (w, β) ∈ E,

z ∧ x 
= 0, w ∧ y 
= 0}.
This join is indeed 0 because, whenever (α, z) and (w, β) belong to E with α∧β 
=
0, we have (w, z) ∈ E2 = E and then, if z ∧ x 
= 0, we obtain, by hypothesis,
w ∧ y 
= 0. ✷
PROPOSITION 3.3. Let (L0, L1, L2) be a biframe and let E be a transitive en-
tourage of L0 such that, for any x ∈ L0, sti(x, E) ∈ Li . Then, for any x ∈ L0,
sti(x, E) ∨ sti (x, E)

• = 1.
Proof. Let us show that st1(x,E) ∨ st1(x,E)

• = 1 by proving that
∨
{y ∈ L0 | (y, z) ∈ E, z ∧ x 
= 0} ∨

∨
{y ∈ L2 | y ∧ st1(x,E) = 0}

≥
∨
{y ∈ L0 | (y, y) ∈ E} = 1.

Consider y ∈ L0 such that (y, y) ∈ E.
If y ∧ st1(x,E) = 0 then we have y ≤ st2(y,E) ∈ L2 and, by Lemma 3.2,

st1(x,E) ∧ st2(y,E) = 0.
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Otherwise, the existence of (α, β) ∈ E such that x ∧ β 
= 0 and y ∧ α 
= 0
implies that (y, β) ∈ E2 = E with x ∧ β 
= 0.

The proof for i = 2 is similar.

Respectively by (2.4) and (2.7) we immediately have:

PROPOSITION 3.4. Let L be a frame and let E ⊆ W Ent(L). For every x ∈ L

and every transitive E ∈ E, st (x,E)
E
� st (x,E).

PROPOSITION 3.5. Let (L0, L1, L2) be a biframe and let E ⊆ W Ent(L0). For

every x ∈ Li and every transitive E ∈ E, sti(x, E)
E
�i sti (x, E).

4. Transitive Uniformities

We say that a (quasi-)uniform frame (L,E) is transitive if E has a base of transitive
entourages. We now derive the results concerning transitive uniform frames.

PROPOSITION 4.1. Let (L,E) be a transitive uniform frame. Then L is zero-
dimensional.

Proof. Let x ∈ L. Then x = ∨{y ∈ L | y E
� x}. But y

E
� x if and only if there

exists a transitive E ∈ E such that st (y,E) ≤ x. Thus, since y ≤ st (y,E),

x ≤
∨
{st (y,E) | E ∈ E, transitive, y ∈ L and st (y,E) ≤ x} ≤ x.

So, every x in L is the join of some st (y,E) with transitive E ∈ E , which are, by
Proposition 3.1, complemented elements. ✷

Conversely, every zero-dimensional frame admits a transitive uniformity. As a
step in this direction, we need to introduce the following:

For any a ∈ L let Ea denote the element (a ⊕ a) ∨ (a∗ ⊕ a∗) of L⊕ L.
The proof of the following proposition uses Lemma 2.1:

PROPOSITION 4.2. For every a ∈ L, E2
a = Ea .

Proof. Consider (α, β), (β, γ ) ∈ (a⊕ a)∪ (a∗ ⊕ a∗) with α, β, γ 
= 0. Clearly,
the cases (α, β), (β, γ ) ∈ a ⊕ a or (α, β), (β, γ ) ∈ a∗ ⊕ a∗ are the only possible
ones. In each one, (α, γ ) ∈ (a ⊕ a) ∪ (a∗ ⊕ a∗). ✷

For any complemented a, Ea is obviously a Weil entourage. Moreover, we have
(for a proof see Remark IV.6.3 of [21]):

PROPOSITION 4.3. Ea is a Weil entourage if and only if a is complemented.

THEOREM 4.4. Let L be a zero-dimensional frame. The family S = {Ea | a ∈
BL} is a subbase for a transitive, totally bounded, uniformity on L.
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Proof. Let E be the filter of (W Ent(L),⊆) generated by S, that is,

E =
{
E ∈ W Ent(L) | ∃a1, . . . , an ∈ BL :

n⋂
i=1

Eai ⊆ E

}
.

This is indeed a transitive, totally bounded, uniformity on L. We first check the
admissibility condition:

By the zero-dimensionality, every x ∈ L is a join of complemented elements;
but, for any c ∈ BL, Ec ◦ (c⊕ c) ⊆ c⊕ c; indeed, if (α, β) ∈ (c⊕ c)∪ (c∗ ⊕ c∗)
and (β, γ ) ∈ c ⊕ c with β 
= 0, then (α, β) ∈ c ⊕ c and thus (α, γ ) ∈ c ⊕ c.

Therefore c
E
� c and, consequently, we may conclude that x =∨{y ∈ L | y E

� x}.
The total boundedness is obvious because each

⋂n
i=1 Eai is a finite Weil en-

tourage. The proof of the other conditions is straightforward. ✷
In the sequel, given a zero-dimensional frame, we denote by EP the transitive

uniformity on L constructed in the proof of Theorem 4.4.

LEMMA 4.5. Let h : L→ M be a frame homomorphism between zero-dimensio-
nal frames. Then h : (M,EM

P )→ (L,EL
P ) is uniform.

Proof. Since (h⊕ h)(Ea) = (h⊕ h)((a ⊕ a) ∨ (a∗ ⊕ a∗)) = (h(a)⊕ h(a)) ∨
(h(a∗) ⊕ h(a∗)) we have (h ⊕ h)(Ea) = Eh(a) whenever a is complemented.
Consequently, (h⊕ h)(E) ∈ EL

P for every E ∈ EM
P . ✷

THEOREM 4.6. Let L be a zero-dimensional frame and let (CL,CEP ) be the
uniform completion of (L,EP ). Then (CL,CEP ) is the universal zero-dimensional
compactification of L.

Proof. By [5, Proposition 3], (CL,CEP ) is compact and coincides with the
Samuel compactification R(L,EP ) of (L,EP ).

Now for any frame homomorphism h : M → L with M compact and zero-
dimensional, h is uniform by Lemma 4.5. Then, in the diagram

R(M,EP )
Rh

ρM

R(L,EP )

ρL

M
h

L

ρM is an isomorphism and we have h = ρLRhρ−1
M , which shows that R(L,EP )

is the compact zero-dimensional coreflection of L with coreflection map ρL :
R(L,EP )→ L. ✷

It is easy to verify that if h : M → L is a zero-dimensional compactifica-
tion of a frame L, then the image by h of the unique uniform structure on M is
a totally bounded transitive uniformity. From this and the comments of B. Ba-
naschewski [3, p. 115] it follows that there is a one to one correspondence between
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zero-dimensional compactifications of a frame L and transitive totally bounded
uniformities on L. Therefore, symmetric transitive structures give us a method for
representing all zero-dimensional compactifications.

THEOREM 4.7. The totally bounded coreflection (L,E∗) of any transitive uni-
form frame (L,E) is transitive.

Proof. Consider

F =
{
E ∈ W Ent(L) | ∃c1, c2, . . . , cn ∈ L : ci E

� ci and
n⋂

i=1

Eci ⊆ E

}
.

We first prove that F is a uniformity on L. Clearly, F is a filter of W Ent(L)
and each intersection

⋂n
i=1 Eci is symmetric. In order to show the admissibility, it

suffices to prove that x
E
� y implies x

F
� y. Let x

E
� y, that is, st (x,E) ≤ y for

some symmetric and transitive E ∈ E . By Proposition 3.4, Est(x,E) ∈ F . Further,
Est(x,E) ◦ (x ⊕ x) ⊆ y ⊕ y:

Indeed, for any

(α, β) ∈ ↓(st (x,E), st (x,E)) ∪ ↓(st (x,E)∗, st (x,E)∗)
and (β, γ ) ≤ (x, x), we have (α, β) ≤ (st (x,E), st (x,E)) whenever β 
= 0,
because x ≤ st (x,E). Since st (x,E) ≤ y we have (α, γ ) ≤ (y, y). Consequently

x
F
� y. Therefore F is a uniformity on L. Notice that, if c

E
� c, then c is equal

to st (c, E) for some transitive E ∈ E and, therefore, c is complemented and Ec ∈
W Ent(L). These Weil entourages form a subbase for F . From

n⋂
i=1

Eci ◦
n⋂
i=1

Eci ⊆
n⋂

i=1

(Eci ◦Eci ) =
n⋂
i=1

Eci ,

it follows that F is transitive.

F is also totally bounded. Indeed, whenever c
E
� c and d

E
� d,

Ec ∩ Ed = (c ∧ d ⊕ c ∧ d) ∨ (c ∧ d∗ ⊕ c ∧ d∗) ∨ (c∗ ∧ d ⊕ c∗ ∧ d)

∨(c∗ ∧ d∗ ⊕ c∗ ∧ d∗)

and, since {c ∧ d, c ∧ d∗, c∗ ∧ d, c∗ ∧ d∗} is a cover of L, Ec ∩ Ed is finite.
We conclude the proof that E∗ is transitive by showing that E∗ = F . By the well-

known isomorphism between the categories of totally bounded uniform frames and

proximal frames it suffices to show that the corresponding proximities
E∗� and

F
� do

coincide.

First we prove that F ⊆ E . Consider Ec with c
E
� c. By (2.5), c∗

E
� c∗.

Therefore there exist E1, E2 ∈ E for which E1◦(c⊕c) ⊆ c⊕c and E2◦(c∗⊕c∗) ⊆
c∗ ⊕ c∗. Thus E1 ∩ E2 ⊆ (E1 ∩ E2) ◦Ec ⊆ Ec, which implies that Ec ∈ E .
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Now, the totally boundedness of F implies that F ⊆ E∗, hence
F
�⊆ E∗�.

The opposite inclusion follows from the fact, already proved, that
E
�⊆ F

�. ✷
It is well-known that a frame is uniformizable iff it is completely regular. As in

the spatial situation, it is natural to consider under what conditions the collection
of all entourages of a given completely regular frame form a uniformity, and if not,
to characterize the “finest” uniformity on the given frame.

LetL be a completely regular frame, and consider the union S of all uniformities
on L. This is a subbase for a uniformity. Indeed, the collection B of all finite
intersections of elements of S form a base for a uniformity:

• Let E = E1∩E2∩· · ·∩En with E1, E2, . . . , En ∈ S. For each i ∈ {1, 2, . . . , n}
there exists Fi ∈ S such that F 2

i ⊆ Ei . Then (F1 ∩ F2 ∩ · · · ∩ Fn)
2 ⊆ E and

F1 ∩ F2 ∩ · · · ∩ Fn ∈ B.
• Let E = E1 ∩ E2 ∩ · · · ∩ En ∈ B with E1, E2, . . . , En ∈ S. For each i ∈
{1, 2, . . . , n}E−1

i ∈ S. Then E−1
1 ∩· · ·∩E−1

n ∈ S and (E−1
1 ∩· · ·∩E−1

n )−1 = E.

• Since for each uniformity E on L, x= ∨{y ∈L | y E
� x} ≤ ∨{y ∈L | y B

� x},
we have x =∨{y ∈ L | y B

� x} for every x ∈ L.

This uniformity is called the fine uniformity on L.
We say that a sequence of entourages E1, E2, . . . , En, . . . is a normal sequence

if E2
n+1 ⊆ En. An entourage E is a normal entourage if E = E1 in some normal

sequence.

LEMMA 4.8. The fine uniformity on L coincides with the collection of all normal
entourages of L.

Proof. By the square root property for uniformities, each entourage in the fine
uniformity is a normal entourage.

On the other hand, take any normal entourage E of L, say with E = E1 in some
normal sequence {En}, and let E be any uniformity on L. Then it is easy to see that
E ∪ {En} ∪ {E−1

n } is a subbase for some uniformity on L. Hence E belongs to the
fine uniformity on L. ✷

Recall that a frame is Lindelöf if each cover has a countable subcover.

THEOREM 4.9. If L is a zero-dimensional Lindelöf frame then the fine uniformity
of L is transitive.

Proof. Trivially any zero-dimensional frame is completely regular. By Lem-
ma 4.8, it suffices to show that any normal entourage E1 contains a transitive
entourage.

Let (x, x) ∈ E1. Then x = ∨
xα where each xα is complemented. Let E be the

join of all xα⊕xα where xα is complemented and appears in a join which generates
some x with (x, x) ∈ E1. Clearly E is a Weil entourage contained in E1.
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By the Lindelöf property there exists a countable cover {xi | i ∈ N} of L
such that (xi, xi) ∈ E for every i ∈ N. Put y1 = x1, y2 = x2 ∧ x∗1 , y3 =
x3 ∧ x∗1 ∧ x∗2 , . . . , yn = xn ∧ (

∧n−1
i=1 x

∗
i ) and let F = ∨

i∈N
(yi ⊕ yi) ⊆ E. Notice

that, for every n ∈ N,
∨n

i=1 yi =
∨n

i=1 xi . Therefore
∨

i∈N
yi = ∨

i∈N
xi = 1,

which means that F is a Weil entourage. Also, for m > n,

yn ∧ ym =
(
xn ∧

n−1∧
i=1

x∗i

)
∧

(
xm ∧

m−1∧
i=1

x∗i

)
≤ xn ∧ x∗n = 0.

This implies that F is transitive. Indeed: if (α, β) ∈ yi ⊕ yi and (β, γ ) ∈ yj ⊕ yj
with α, β, γ 
= 0, then β ≤ yi ∧ yj which implies j = i and (α, γ ) ∈ yi ⊕ yi . This
shows that F ◦ F = F because

F ◦ F =
⋃
i∈N

(yi ⊕ yi) ◦
⋃
i∈N

(yi ⊕ yi). ✷

5. Transitive Quasi-Uniformities

We close with the results concerning transitive quasi-uniform frames.
Let (L,E) be a quasi-uniform frame and let (L,L1, L2) be its underlying bifra-

me. By Proposition III 4.3 of [21], for every transitive entourage E of L and every
x ∈ L,

sti (x, E) ∈ Li. (5.1)

So, in this case, the conditions of Proposition 3.3 are satisfied. Moreover: since
sti(x, E) ≤ y implies stj (y•, E) ∧ x = 0 for every y ∈ Li , (5.1) also implies that,
for any x, y ∈ Li and any transitive E,

sti (x, E) ≤ y ⇒ stj (y
•, E) ≤ x•. (5.2)

PROPOSITION 5.1. Let (L,E) be a transitive quasi-uniform frame. Then the
biframe (L,L1, L2) is zero-dimensional.

Proof. Let x ∈Li (i = 1, 2). For any y ∈L such that y
E
�i x take E ∈E ,

transitive, satisfying sti(y, E) ≤ x. From sti(sti (y, E),E) ≤ sti (y, E
2) =

sti(y, E) ≤ x it follows that y ≤ sti(y, E)
E
�i x. Thus

x =
∨
{y ∈ L | y E

�i x}
=

∨
{y ∈ Li | y E

�i x}
≤

∨
{sti(y, E) | E ∈ E, E2 = E, sti (y,E) ≤ x} ≤ x.

The conclusion now follows from Proposition 3.3. ✷
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In particular, this implies that the frame L is zero-dimensional.
Now, let L be a frame. For any a ∈ L, let us denote by Er

a and El
a , respectively,

the elements (1 ⊕ a) ∨ (a∗ ⊕ a∗) and (a ⊕ 1) ∨ (a∗ ⊕ a∗) of L ⊕ L. Clearly,
(El

a)
−1 = Er

a and El
a ∩ Er

a = Ea .
The following result is quite obvious:

PROPOSITION 5.2. For any a ∈ L, El
a and Er

a are transitive.

PROPOSITION 5.3. For any a ∈ L, El
a and Er

a are Weil entourages of L if and
only if a is complemented.

Proof. Clearly, if Er
a and El

a are Weil entourages, Er
a ∩ El

a = Ea is also a Weil
entourage. Thus, by Proposition 4.3, a is complemented.

Conversely, if a is complemented,
∨{x ∈ L | (x, x) ∈ Er

a} ≥ a ∨ a∗ = 1 and,
similarly, for El

a . ✷
The following auxiliary result will be useful in the sequel.

LEMMA 5.4. Let Ek = (ak1 ⊕ bk1) ∨ (ak2 ⊕ bk2) (k = 1, 2, . . . , n). Then

st1

(
x,

n⋂
k=1

Ek

)
=

∨
{a1

t1
∧ a2

t2
∧ · · · ∧ antn | tk ∈ {1, 2},

k ∈ {1, 2, . . . , n}, b1
t1
∧ b2

t2
∧ · · · ∧ bntn ∧ x 
= 0}

and

st2

(
x,

n⋂
k=1

Ek

)
=

∨
{b1

t1
∧ b2

t2
∧ · · · ∧ bntn | tk ∈ {1, 2},

k ∈ {1, 2, . . . , n}, a1
t1
∧ a2

t2
∧ · · · ∧ antn ∧ x 
= 0}.

Proof. Since

n⋂
k=1

Ek =
2∨

t1=1

2∨
t2=1

· · ·
2∨

tn=1

(
(a1

t1
⊕ b1

t1
) ∩ (a2

t2
⊕ b2

t2
) ∩ · · · ∩ (antn ⊕ bntn)

)

=
2∨

t1=1

2∨
t2=1

. . .

2∨
tn=1

(
(a1

t1
∧ a2

t2
∧ · · · ∧ antn)⊕ (b1

t1
∧ b2

t2
∧ · · · ∧ bntn)

)

we have that st1(x,
⋂n

k=1 Ek) is equal to

st1

(
x,

⋃2
t1=1

⋃2
t2=1 · · ·

⋃2
tn=1 ↓(a1

t1
∧ a2

t2
∧ · · · ∧ antn , b

1
t1
∧ b2

t2
∧ · · · ∧ bntn)

)

=∨{a1
t1
∧ a2

t2
∧ · · · ∧ antn | t1, t2, . . . , tn ∈ {1, 2},

a1
t1
∧ a2

t2
∧ · · · ∧ antn ∧ x 
= 0}.

The proof of the other assertion is similar. ✷
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THEOREM 5.5. Let (L0, L1, L2) be a zero-dimensional biframe. The family

S = {El
a | a ∈ L1 has complement in L2}

∪{Er
a | a ∈ L2 has complement in L1}

is a subbase for a transitive, totally bounded, quasi-uniformity EF on L0, for which
Li

0 = Li (i = 1, 2).
Proof. Let EF be the filter of (W Ent(L),⊆) generated by S.
We prove the admissibility condition by showing, equivalently, that (L0, L

1
0, L

2
0)

is a biframe. In order to do this it suffices to see that Li = Li
0 (i = 1, 2).

For i = 1 we have

L1
0 =

{
x ∈ L0 | x =

∨
{y ∈ L0 | y EF�1 x}

}
⊇ {c ∈ L1 | c has complement in L2}

since, for these c, El
c ◦ (c ⊕ c) ⊆ c⊕ c, that is, c

EF�1 c.
The inclusion L1 ⊆ L1

0 now follows from the facts that L1
0 is a subframe of L0

and that (L0, L1, L2) is zero-dimensional.
The proof for i = 2 can be done similarly because, for c ∈ L2 with complement

in L1, (c⊕ c) ◦ Er
c ⊆ c⊕ c.

Since, for each complemented a, El
a and Er

a are finite, transitive, Weil en-
tourages, EF is a totally bounded transitive quasi-uniformity on L0.

Finally let us show that L1
0 ⊆ L1. Let y

EF�1 x. It suffices to show the existence

of z ∈ L1 such that y ≤ z
EF�1 x. Let E ∈ EF be a transitive entourage such that

st1(y,E) ≤ x. As we have already seen, st1(y,E)
EF�1 x. The following lemma

ensures the existence of that z:

LEMMA 5.6. For any x ∈ L0 and E ∈ EF there exists E′ ∈ EF such that
sti(x, E

′) ≤ sti(x, E) and sti(x, E
′) ∈ Li (i = 1, 2).

Proof. Any E ∈ EF contains an E′ ∈ EF of the form E′ = (
⋂n

j=1 E
l
aj
) ∩

(
⋂m

j=1 E
r
bj
). Let us show that st1(x,E′) ∈ L1.

By Lemma 5.4, st1(x,E′) is equal to∨{
α1
t1
∧ · · · ∧ αn

tn
∧ γ 1

u1
∧ · · · ∧ γ m

um
| t1, . . . , tn, u1, . . . , um ∈ {1, 2},

β1
t1
∧ · · · ∧ βn

tn
∧ δ1

u1
∧ · · · ∧ δmum ∧ x 
= 0

}
,

where, for each i = 1, . . . , n,

αi
1 = a∗i , αi

2 = ai,

βi
1 = a∗i , βi

2 = 1

and, for each i = 1, . . . , m,

γ i
1 = b∗i , γ i

2 = 1,

δi1 = β∗i , δi2 = βi.
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The only problem is when there is some i ∈ {1, . . . , n} such that

x ∧ β1
t1
∧ β2

t2
∧ · · · ∧ βi

1 ∧ · · · ∧ βn
tn
∧ δ1

u1
∧ · · · ∧ δmum 
= 0,

because then αi
1 = a∗i ∈ L2 appears in the join st1(x,E

′). But

x ∧ β1
t1
∧ β2

t2
∧ · · · ∧ βi

1 ∧ · · · ∧ βn
tn
∧ δ1

u1
∧ · · · ∧ δmum 
= 0

implies that

x ∧ β1
t1
∧ β2

t2
∧ · · · ∧ βi

2 ∧ · · · ∧ βn
tn
∧ δ1

u1
∧ · · · ∧ δmum 
= 0

thus

α1
t1
∧ αi−1

ti−1
∧ αi

2 ∧ αi+1
ti+1
∧ · · · ∧ αn

tn
∧ γ 1

u1
∧ · · · ∧ γ m

um

also appears in the join. Therefore, since the join of

α1
t1
∧ αi−1

ti−1
∧ a∗i ∧ αi+1

ti+1
∧ · · · ∧ αn

tn
∧ γ 1

u1
∧ · · · ∧ γ m

um

and

α1
t1
∧ αi−1

ti−1
∧ ai ∧ αi+1

ti+1
∧ · · · ∧ αn

tn
∧ γ 1

u1
∧ · · · ∧ γ m

um

is equal to

α1
t1
∧ αi−1

ti−1
∧ αi+1

ti+1
∧ · · · ∧ αn

tn
∧ γ 1

u1
∧ · · · ∧ γ m

um

we get rid of a∗i .
By repeating this process we can get rid of all the a∗i that appear in the join,

which shows that this join belongs to L1.
This completes the proofs of Lemma 5.6 and Theorem 5.5. ✷
J. Frith [11, Proposition 4.2] constructs a quasi-uniform structure compatible

with the congruence lattice of a given frame. The construction of EF given in The-
orem 5.5 generalizes Frith’s construction. For this reason we shall call EF the Frith
structure of the total part L0 of a given zero-dimensional biframe (L0, L1, L2).

THEOREM 5.7. The totally bounded coreflection (L,E∗) of any transitive quasi-
uniform frame (L,E) is transitive.

Proof. As in the proof of Theorem 4.7, one can easily show that
{
El
c | c ∈ L1, c

E
�1 c} ∪ {Er

c | c ∈ L2, c
E

�2 c
}

is a subbase for a transitive, totally bounded, quasi-uniformity F on L. It suffices
then to check that the corresponding quasi-proximities (strong inclusions in [24])

(
E∗�1,

E∗�2) and (
F
�1,

F
�2) do coincide. Now this follows from (5.2) and Proposition

3.5 (in a very similar way to the proof of the analogous identity in Theorem 4.7). ✷
Recall that for any frame homomorphism h : L→ M, there is its right adjoint

h∗ : M → L such that h(x) ≤ y if and only if x ≤ h∗(y), explicitly given by
h∗(y) = ∨{x ∈ L | h(x) ≤ y}. It satisfies hh∗ ≤ idM and h∗h ≥ idL. If h maps
onto M, then hh∗ = idM . Clearly, h∗ is dense whenever h is onto.



FRAMES WITH TRANSITIVE STRUCTURES 77

LEMMA 5.8. Let h : L→ M be a dense frame homomorphism. Then:

(a) For every x, y ∈ M, (h⊕ h)∗(x ⊕ y) = h∗(x)⊕ h∗(y).
(b) For every E ∈ M ⊕M, (h⊕ h)∗(E) =∨

(x,y)∈E(h∗(x)⊕ h∗(y)).
(c) For every E ∈ M ⊕M, (h⊕ h)∗(E)2 ⊆ ∨{h∗(x)⊕ h∗(w) | (x, y), (z,w) ∈

E, y ∧ z 
= 0}. Moreover, if h∗ is dense then the equality holds.

Proof. (a) Since (h⊕ h)(h∗(x)⊕ h∗(y)) = hh∗(x)⊕ hh∗(y) ⊆ x ⊕ y, we have
h∗(x)⊕ h∗(y) ⊆ (h⊕ h)∗(x ⊕ y).

On the other hand, for any (α, β) ∈ E, α 
= 0, β 
= 0, with (h⊕h)(E) ⊆ x⊕y,
we have (h(α), h(β)) ∈ x ⊕ y. Since h is dense, h(α) 
= 0 and h(β) 
= 0, thus
h(α) ≤ x and h(β) ≤ y. Hence (α, β) ∈ h∗(x) ⊕ h∗(y). We have proved that⋃{E ∈ L ⊕ L | (h ⊕ h)(E) ⊆ x ⊕ y} ⊆ h∗(x) ⊕ h∗(y) and the inclusion
(h⊕ h)∗(x ⊕ y) ⊆ h∗(x)⊕ h∗(y) follows.

(b) Let (α, β) ∈ F with (h ⊕ h)(F ) ⊆ E. Then (h(α), h(β)) ∈ E and, since
(α, β) ≤ (h∗h(α), h∗h(β)), the inclusion (h⊕ h)∗(E) ⊆∨

(x,y)∈E(h∗(x)⊕ h∗(y))
holds.

The reverse inclusion is a consequence of the inclusion h∗(x) ⊕ h∗(y) ⊆
(h⊕ h)∗(x ⊕ y) in (a).

Note that here the denseness of h is not needed.
(c) By Lemma 2.1

(h⊕ h)∗(E)2 =
⋃
{F ∈ L⊕ L | (h⊕ h)(F ) ⊆ E} ◦⋃
{F ∈ L⊕ L | (h⊕ h)(F ) ⊆ E}.

Consider (α, β) ∈ F1 and (β, γ ) ∈ F2 with (h ⊕ h)(F1), (h ⊕ h)(F2) ⊆ E and
β 
= 0. Then (α, γ ) ≤ (h∗h(α), h∗h(γ )) with (h(α), h(β)), (h(β), h(γ )) ∈ E and,
by denseness, h(β) 
= 0, which proves the desired inclusion.

On the other hand, if (x, y), (z,w) ∈ E with y ∧ z 
= 0, then also h∗(y) ∧
h∗(z) 
= 0 since h∗ is dense, and (h∗(x), h∗(y)) and (h∗(z), h∗(w)) belong to
(h⊕ h)∗(E); it follows that (h∗(x), h∗(w)) ∈ (h⊕ h)∗(E)2. ✷
PROPOSITION 5.9. Let h : L → M be a dense frame homomorphism. If E ∈
M ⊕M is transitive then (h⊕ h)∗(E) is transitive.

Proof. Let E ∈ M ⊕M be transitive. By Lemma 5.8(c),

(h⊕ h)∗(E)2 ⊆
∨
{h∗(x)⊕ h∗(w) | (x, y), (z,w) ∈ E, y ∧ z 
= 0}

thus (h ⊕ h)∗(E)2 is contained in
∨{h∗(x) ⊕ h∗(w) | (x,w) ∈ E} which, by

Lemma 5.8(b), is equal to (h⊕ h)∗(E). ✷
Let us recall that a quasi-uniform frame (M,F ) is complete if every dense

quasi-uniform surjection (L,E) → (M,F ) is an isomorphism, and a comple-
tion of (L,E) is a complete (M,F ) together with a dense surjection (M,F ) →
(L,E). In [12, Theorem 3.4] the authors prove that each quasi-uniform frame
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has a unique completion. In the language of entourage quasi-uniformities [8], if
h : (CL,CV) → (L,V) is the completion of (L,V) then {vh∗ : v ∈ V} is a
base for CV. Let v ∈ V and let F be the Weil entourage corresponding to v in the
equivalent Weil quasi-uniform structure on L. Then (h ⊕ h)∗(F ) corresponds to
vh∗ .

COROLLARY 5.10. The completion (CL,CE) of any transitive quasi-uniform
frame (L,E) is transitive.

Proof. By the remarks preceding this corollary it suffices to apply Proposi-
tion 5.9. ✷

B. Banaschewski [2, Proposition 3] gives the universal zero-dimensional com-
pactification of a zero-dimensional biframe. The following theorem gives an alter-
native proof of Banaschewski’s result.

THEOREM 5.11. The quasi-uniform completion of the Frith structure yields the
universal zero-dimensional compactification of a given zero-dimensional biframe.

Proof. Let L = (L0, L1, L2) be a zero-dimensional biframe and let EF be the
Frith structure on L0. Let M = (M0,M1,M2) be any compact zero-dimensional
biframe, and let h : M → L be any biframe map.

The biframe M with the Frith structure is totally bounded and compact hence
complete. So, by Theorem 3.7 of [12], there exists h such that the diagram

(CL0, CEF )

φL

M0

h

h
L0

commutes. It follows from [9, Proposition 3.7] that h is a biframe map. It remains
to prove uniqueness: suppose g : M0 → (CL0, CEF ) such that φLg = φLh. The
map φL is dense hence monic for frames [5, Lemma 6]. Therefore g = h. ✷
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