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Abstract The propagation of one-dimensional waves resulting from chemical reactions in a sandwich-type
two-layer setting is considered. One layer, termed the polymerization layer, contains the monomer and initiator
molecules needed for the initiation of a self-propagating polymer front. The other layer will be referred to as the
enhancement layer, and it contains the necessary reactants to support a highly exothermic self-propagating reaction
wave. Heat exchange occurs between the layers, and as a result, there is a net diffusion of heat away from the
region undergoing the more exothermic reaction. As frontal polymerization (FP) reactions are known not to be very
exothermic, an overall transfer of heat from the enhancement layer into the polymerization layer takes place. An
analysis of the basic state of the system is carried out to investigate the effect of heat transfer on the polymerization
reaction. An enhancement layer is shown to promote FP. This analysis is applicable to the manufacture of thin
polymer films by FP.

Keywords Enhancement layer · Frontal polymerization · Free-radical polymerization · Mathematical model ·
Traveling wave

1 Introduction

Frontal polymerization (FP) refers to a chemical process whereby monomer molecules are converted to polymer
chains in a spatially localized reaction zone. The self-propagating polymerization front travels through the reaction
vessel leaving the polymer in its wake. The first FP experiments were performed in 1972 by Chechilo et al. [1].
FP has been subjected to intense theoretical and experimental study within recent years (see e.g. [2, 3] and the
references therein).
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FP is a more energy-efficient process than traditional polymerization techniques presently used in industry. Upon
initiation of the polymer front, no additional heat source is required to propagate the front through the reaction vessel.
This self-propagating front is sustained via thermal diffusion and exothermic Arrhenius reaction kinetics.

FP has the potential for producing novel materials that cannot be obtained by traditional polymerization meth-
ods. Experimentalists have used FP to produce, for example, uniform composites, hydrogels, copolymers, highly
homogeneous polymer blends, and functional gradient materials [4].

The reaction mechanism in FP is similar to that of self-propagating high-temperature synthesis (SHS). In SHS, a
combustion wave is generated and subsequently travels through the reaction medium, converting powdered reactants
into ceramics or metallic alloys. Materials produced by SHS are highly uniform, and the procedure is simple, easy
to manage, and fast. However, FP waves are significantly less exothermic than the aforementioned SHS combustion
waves. As slowly propagating wave fronts are prone to instabilities (see e.g. [5]), it is therefore more challenging to
produce homogeneous products via FP. Further study of FP may lead to its use in manufacturing, yielding similar
advantages to those gained with SHS.

In recent years, experimentalists have achieved polymer film preparation via FP [6]. Crivello and coworkers
successfully utilized FP in thin reaction zones with certain oxirane and oxetane monomers by using photoactivated
initiators [7, 8]. While in previous studies of FP, the heat produced by the initial FP reaction was sufficient for the
generation of a polymer front and for its subsequent self-propagation through the reactant mixture, experimentalists
have witnessed that this is often not the case for thin reaction layers. This is because of additional energy losses that
are characteristic of wave propagation in this geometry. Loss of heat causes a decrease in frontal speed, quenching
the reaction. It is also known that fronts which travel at a reduced speed are subject to various instabilities. Indeed,
frontal instabilities are commonly associated with FP reactions. They lead to the formation of inhomogeneous
polymer products.

The purpose of this study is to suggest a method for the enhancement of weakly exothermic polymerization
fronts. We show that preheating the reactants causes more complete polymerization and more stable propagation
of the front. With this goal in mind, we introduce a secondary reaction into the system by adding an enhancement
layer to the mixture (see Fig. 1). This layer will contain the reactants necessary for initiating a highly exothermic
chemical reaction front, thus acting as a supplementary heat source. The frontal polymerization reaction will be
contained in a zone referred to as the polymerization layer. Our model will permit heat exchange between layers,
allowing heat to be transferred into and out of the FP reaction zone. Furthermore, when the enhancement front
precedes the polymerization front, heat will flow into the region directly ahead of the approaching polymer front.

We consider one-dimensional chemical wave propagation in a sandwich-type two-layer model. This particular
configuration is attained via separate energy-conservation equations in each layer that are coupled through volumet-
ric heat-transfer terms. The mathematical analysis of a similar model was outlined by Shkadinskii and Krishenik
[9] in the context of combustion studies. We have utilized a generalization of this model recently to consider the
effect that an inert material has on propagating polymerization fronts when heat transfer is allowed. For that case,
we demonstrated the existence of multiple propagating fronts in the system when one of the layers was unreactive.

Fig. 1 System under study
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We performed a linear stability analysis of the propagating fronts in the polymerization layer, and later specified
the conditions necessary for the onset of oscillatory propagation [10].

Unlike the case with an inert layer, heat is now generated by the supplementary layer. We perform an analysis
of the basic state of the system, and illustrate the enhancement effect for FP.

2 Mathematical model

We consider two adjacent thin layers. One layer consists of a reactive mixture, which initially contains a monomer
and initiator, and in which the polymerization process can occur. The other layer also contains a reactive mixture
which can undergo an exothermic chemical conversion. We assume that the exothermic reaction in the second layer
can be described by a simple one-step net reaction A → B. Next, there is thermal contact between the two layers,
and therefore there is heat exchange between the layers as illustrated by Fig. 1.

We assume that the layers are thin enough to prevent undesirable transverse variations in the polymerization front.
In such cases, a one-dimensional model is appropriate. It follows that heat is conducted between layers on a time
scale which is much shorter than that associated with the passage of reaction fronts within layers. We remark that
providing a numerical estimate of the film thickness for which this assumption is valid would require experimental
verification. While this is possible, it is beyond the scope of our current analysis.

As discussed previously, the second more exothermic reaction serves the purpose of enhancing propagation of
the insufficiently exothermic polymerization wave. We will refer to the second layer as the enhancement layer,
while the first layer is the polymerization layer. In order to formulate a mathematical model, we first discuss the
polymerization process occurring in the first layer.

The polymerization process is the free-radical polymerization which involves a standard sequence of chemical
reactions [11, Chapter 3]. The process begins when the initiator decomposes, forming two radicals. Each radical
can then combine with a monomer, initiating a polymer chain. A polymer chain grows by combining with another
monomer to form a longer chain, and terminates by combining with a radical, either another growing chain or an
initiator radical. Thus, the kinetic scheme involves the decomposition step, initiation step, propagation step and
the termination step. These kinetics equations can be simplified using the steady-state assumption. Use of this
assumption has been justified in the context of a FP problem in [12]. After applying this, we obtain the following
mass balance equations.

∂I
∂t

+ kdI = 0,

∂M
∂t

+ ke
√

IM = 0.

These equations account for the change in the initiator and monomer concentrations due to the chemical reactions.
Here I and M are the concentrations of the initiator and the monomer, respectively, t is the time, and kd and ke

are the decomposition and the polymerization reaction-rate parameters which depend on the temperature T1 of the
polymerization layer. This dependence is given by the Arrhenius law

kd = k0
d exp{−Ed/(RT1)}, ke = k0

e exp{−Ee/(RT1)},
where R is the gas constant, k0

d, k0
e and Ed, Ee are the frequency factors and activation energies of the two reactions.

Next, we need to formulate the energy balance in the polymerization layer. Since the main heat-producing step
is the propagation step [13], the heat equation has the form

φc1ρ1
∂T1

∂t
= φλ1

∂2T1

∂ x̃2 + φQ1ρ1ke
√

IM − α(T1 − T2). (1)

Here λ1 is the thermal conductivity, c1 is the specific heat and ρ1 is the mixture density. The rise in temperature
induced per unit concentration of reacted monomer is

q1 = Q1/c1. (2)
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Next, T2 is the temperature of the enhancement layer, and φ is the ratio of the thickness of the polymerization layer
to the total thickness of the two layers. The last term of the heat-balance equation describes heat exchange between
the two layers.

The reaction process in the enhancement layer can be described by the system of two equations. The kinetic
equation that represents the mass balance is written for the concentration A as

∂A
∂t

+ kaA = 0,

where

ka = k0
a exp{−Ea/(RT2)},

with k0
a and Ea being the frequency factor and the activation energy of the reaction, respectively. The heat balance

in the enhancement layer has the form

(1 − φ)c2ρ2
∂T2

∂t
= (1 − φ)λ2

∂2T2

∂ x̃2 + (1 − φ)Q2ρ2kaA − α(T2 − T1). (3)

Here λ2 is the thermal conductivity, c2 is the specific heat and ρ2 is the mixture density. The rise in temperature
induced per unit concentration of reacted A is

q2 = Q2/c2. (4)

In a fixed coordinate frame x̃, −∞ < x̃ < ∞, the wave propagates along the x̃-axis in the direction of decreasing
x̃. We introduce a moving coordinate system x = x̃ − ϕ(t) where ϕ is the location of a characteristic point of the
wave at time t. Thus, ϕt ≡ dϕ(t)/dt < 0 is the velocity of the polymerization front.

We rewrite the equations in the moving coordinate system and further simplify the problem making use of the
fact that the activation energies of the decomposition and polymerization reactions are large, which results in narrow
reaction zones. In the limit of infinite activation energy the reaction zone shrinks to a moving surface, termed a
front. The same is true for the enhancement reaction. In this case the equations must be solved without the reaction
terms both ahead of and behind the reaction fronts and matched at the reaction fronts by satisfying certain matching
conditions. The reaction fronts in the two layers do not have to be situated at the same spatial location, i.e., at the
same x. By introducing the moving coordinate system and choosing the characteristic point of the polymerization
wave to be the location of the front, we fix the polymerization front at x = 0. The enhancement front is at x = a(t),
which is unknown and has to be found in the course of solution of the problem. Thus, we solve the reactionless
equations

∂I
∂t

− ϕt
∂I
∂x

= 0, (5)

∂M
∂t

− ϕt
∂M
∂x

= 0, (6)

∂T1

∂t
− ϕt

∂T1

∂x
= κ1

∂2T1

∂x2 − α1(T1 − T2), (7)

∂A
∂t

− ϕt
∂A
∂x

= 0, (8)

∂T2

∂t
− ϕt

∂T2

∂x
= κ2

∂2T2

∂x2 − α2(T2 − T1) (9)

between the fronts as well as in the regions ahead of both fronts and behind them. Here

κ1 = λ1

c1ρ1
, κ2 = λ2

c2ρ2
, α1 = α

c1ρ1φ
, α2 = α

c2ρ2(1 − φ)
. (10)
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Fig. 2 Schematic of the temperature distribution in the prob-
lem. Here the polymerization front is located at x = 0 and is
labeled by (1). The enhancement front is located at x = a < 0.
In this diagram, the enhancement front (2) is shown to be more
exothermic, and ahead of the polymerization front
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Fig. 3 Graph showing the dimensionless front temperature in the
polymerization layer (θ1) against the dimensionless heat release
ratio (q)

We remark that it is not known a priori which of the two fronts goes ahead of the other, i.e., whether a(t) is positive
or negative. Figure 2 is an illustration of the case where a(t) is negative. If a(t) > 0, we solve the above equations
for −∞ < x < 0, 0 < x < a(t) and a(t) < x < ∞, while in the case a(t) < 0 the regions are −∞ < x < a(t),
a(t) < x < 0, and 0 < x < ∞.

Boundary conditions far ahead of the wave describe the initial state of the layers:

x = −∞ : T1 = T2 = T0, M = M0, I = I0, A = A0

Here, T0 is the initial temperature, and I0, M0 are the amount of the initiator and monomer present in the initial
mixture. Far behind the wave the final state is described by

x = +∞ : T1 = T2 = Tf .

This last condition states that far behind the reaction front the polymerization temperature goes to a constant value
Tf , and that because of the heat exchange between the layers, the enhancement temperature attains the same value.
We remark that the final temperature Tf is unknown, and must be determined in the course of solution of the
problem.

The matching conditions [10] have the form

[T1]0 = 0, [T2]a = 0, κ1

[

∂T1

∂x

]

0
= q1(M0 − Mb)ϕt,

κ2

[

∂T2

∂x

]

a
= q2A0(ϕt + at),

ϕ2
t = F1 (Tb1) , Mb = M0 exp(−j0), (ϕt + at)

2 = F2 (Tb2) .
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The brackets denote a jump in a quantity across the front

[v]0 = v|x=0+ − v|x=0− , [v]a = v|x=a(t)+ − v|x=a(t)− .

Next, Tb1 and Mb are the temperature and monomer concentration at the polymerization front (i.e., at x = 0),
respectively, Tb2 is the temperature at the enhancement front (i.e., at x = a(t)). Finally, the functions F1 and F2 are
given by

F1(Tb1) = κ1k0
dRT2

b1

2q1M0Ed
exp

(

j0 − Ed

RTb1

)

(

∫ j0

0

eη − 1
η

dη

)−1

,

j0 ≡ 2
√

I0
k0

e

k0
d

exp
Ed − Ee

RTb1
,

F2(Tb2) = κ2k0
aRT2

b2

2q2A0Ea
exp

(

− Ea

RTb2

)

.

We remark that the form of these functions is the same as those often used in mathematical models for FP. For the
details of the derivation of the functions F1 and F2, the reader is referred to [5] and [10].

3 Steady-state analysis

In this section we determine stationary solutions of the above problem, which correspond to uniformly propagating
one-dimensional traveling waves in the original problem. Our primary objective is to determine the effect that the
enhancement layer has on the propagating polymerization front.

We solve the following reactionless equations ahead of the fronts, behind the fronts and between the fronts

d̂I
dx

= 0, (11)

d̂M
dx

= 0, (12)

κ1
d2

̂T1

dx2 − û
d̂T1

dx
− α1(̂T1 − ̂T2) = 0, (13)

d̂A
dx

= 0, (14)

κ2
d2

̂T2

dx2 − û
d̂T2

dx
− α2(̂T2 − ̂T1) = 0, (15)

subject to the boundary conditions

x = −∞ : ̂T1 = ̂T2 = T0, ̂M = M0, ̂I = I0, ̂A = A0, (16)

x = +∞ : ̂T2 = ̂T2 = ̂Tf (17)

and the matching conditions

[

̂T1
]

0 = [

̂T2
]

â = 0, κ1

[

d̂T1

dx

]

0

= −q1û(M0 − ̂Mb), (18)

κ2

[

d̂T2

dx

]

â

= −q2ûA0, (19)
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[

̂T1
]

â = 0,
[

̂T2
]

0 = 0, κ1

[

d̂T1

dx

]

â

= 0, κ2

[

d̂T2

dx

]

0

= 0, (20)

û2 = F1(̂Tb1), ̂Mb = M0 exp(−̂j0), ̂j0 ≡ 2
√

I0
k0

e

k0
d

exp
Ed − Ee

R̂Tb1
, (21)

û2 = F2(̂Tb2). (22)

Note that we supplemented the matching conditions from the previous section by (20) which manifest the continuity
of the polymerization temperature and its derivative at the front of the enhancement reaction, and visa versa. Here
the quantities with the hats denote the stationary solution, and û is the speed of the uniformly propagating wave.
The solution of the problem depends on whether â is greater than or less than zero. Consider first the case â > 0.
The solution that satisfies (11)–(17) can be written in the form

̂M(x) =
⎧

⎨

⎩

M0, x < 0
̂Mb, 0 < x < â
̂Mb, x ≥ â

, ̂I(x) =
⎧

⎨

⎩

I0, x < 0
0, 0 < x < â
0, x ≥ â

,

̂A(x) =
⎧

⎨

⎩

A0, x < 0
A0, 0 < x < â
0, x ≥ â

, (23)

̂T1(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T0 + C2 exp(λ2x) + C3 exp(λ3x), x < 0
B0 + B1 exp(λ1x) + B2 exp(λ2x)

+B3 exp(λ3x),
0 < x < â

̂Tf + C1 exp(λ1x), x ≥ â

, (24)

̂T2(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T0 + k2C2 exp(λ2x) + k3C3 exp(λ3x), x < 0
B0 + k1B1 exp(λ1x) + k2B2 exp(λ2x)

+k3B3 exp(λ3x),
0 < x < â

̂Tf + k1C1 exp(λ1x), x ≥ â

, (25)

Here λ1, λ2, and λ3 are the roots of the characteristic equation

κ1κ2λ
3 − û(κ1 + κ2)λ

2 + (̂u2 − α1κ2 − α2κ1)λ + û(α1 + α2) = 0. (26)

It can be shown that this equation has three real roots for all α1 > 0, α2 > 0, κ1 > 0, κ2 > 0, û > 0. Moreover,
one of these roots is always negative (we denote it by λ1), while the other two roots are always positive (we denote
them by λ2 and λ3). It is convenient to write this equation in the nondimensional form as

κ0ν3 − (1 + κ0)ν2 + (1 − α0
i /κ0 − α0

r κ0)ν + α0
r + α0

i /κ0 = 0. (27)

Here

κ0 = κ2

κ1
, α0

1 = κ1

û2 α1, α0
2 = κ2

û2 α2, (28)

νj = κ1

û
λj, ( j = 1, 2, 3) (29)

and kj in (25) are given by

kj = 1 − ν2
j − νj

α0
1

. (30)

Applying the matching conditions (19), (20) to the above solution for the temperatures, we determine the final
temperature, ̂Tf and the constants C1, C2, C3 and B0, B1, B2, B3. These solutions are listed in the Appendix.
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Next, we determine the propagation velocity û, the temperatures ̂Tb1 and ̂Tb2 at the reaction fronts as well as
the distance â between the fronts. The equations that relate these four quantities are

û2 = F1(̂Tb1), û2 = F2(̂Tb2) (31)

and

̂Tb1 = T0 + C2 + C3, ̂Tb2 = ̂Tf + k1C1 exp(λ1â), (32)

which follows from the definition of ̂Tb1 and ̂Tb2 as the temperatures at the fronts and solution (24), (25).
Nondimensionalizing Eqs. 31, 32 and using

̂Mb = exp(−̂j0), (33)

we obtain

û2 = u2
a1(1 + σ1θ1)

2 exp

(

Zeθ1

1 + σ1θ1

)

(

̂j0e−̂j0
∫

̂j0

0

exp(η) − 1
η

dη

)−1

, (34)

û2 = u2
a2(1 + σ2θ2)

2 exp

(

Zaθ2

1 + σ2θ2

)

(35)

θ1 + 1 = − α0
1

qκ0

e2ν2(ν1 − ν2) − e3ν3(ν1 − ν3)

ν2ν3e2e3(ν1 − ν2)(ν1 − ν3)(ν2 − ν3)
+ 1 − e−̂j0

ν2ν3(ν1 − ν2)(ν1 − ν3)

×{(1 + α0
1)(ν1 − ν2 − ν3) − ν2

1 + ν2
2 + ν2

3 + ν2ν3 − ν1ν2ν3 + ν1ν2(ν1 − ν2) + ν1ν3(ν1 − ν3)}, (36)

θ2 + 1 = −α0
1(ν1 − ν2 − ν3) + ν1ν2ν3 − ν2ν3

κ0ν2ν3(ν1 − ν2)(ν1 − ν3)
+ q(1 − e−̂j0)

×
(

α0
2

α0
2 + α0

1κ0
+ e1

(ν2
1 − ν1 − α0

1)(1 + α0
1 − ν2 − ν3 + ν2ν3)

ν1α
0
1(ν1 − ν2)(ν1 − ν3)

)

. (37)

Here θ1 and θ2 are the nondimensional temperatures at the fronts,

θ1 =
̂Tb1 − Ta1

q1M0
, θ2 =

̂Tb2 − Ta2

q2A0
, (38)

where Ta1 = T0 + q1M0 and Ta2 = T0 + q2A0 are the adiabatic temperatures (i.e., the final temperatures in the
case that no heat exchange between the layers is allowed and conversion in the polymerization process is complete).
Note that the right-hand sides of (36), (37) implicitly depend on û through the constants α0

1 and α0
2 as well as the

nondimensional characteristic roots ν. Next, the function̂j0 in (34), (36), which is given by (22), and which can be
understood as a measure of incompleteness of the chemical conversion (see (33)), can be written in the form

̂j0 = j∗ exp

(

− Zdeθ1

1 + σ1θ1

)

, j∗ = 2
√

I0
k0

e

k0
d

exp

(

Ed − Ee

RTa1

)

.

Note that̂j0 > j∗ and thêj0-dependent factor in (34) goes to one aŝj0 → ∞, while θ1 → 0 in this limit. As a result,
û goes to the adiabatic propagation velocity ua1 that occurs in case of complete conversion and is given by

u2
a1 = κ1RT2

a1

q1M0Ed

√

I0k0
e exp

(

− Ee

RTa1

)

. (39)

Similarly,

u2
a2 = κ2RT2

a2

q2A0Ea
k0

a exp

(

− Ea

RTa2

)

. (40)
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Finally,

σ1 = qM0

Ta1
, σ2 = qA0

Ta2
, ej = eλjâ (j = 1, 2, 3), q = q1M0

q2A0
, (41)

Ze = Eeq1M0

RT2
a1

, Zde = (Ed − Ee)q1M0

RT2
a1

, Za = Eaq2A0

RT2
a2

, (42)

with Ze, Zde, Za being analogous to the Zeldovich number that is used in the combustion theory.
To determine the nondimensional front temperatures θ1 and θ2, as well as the propagation velocity û and the

distance â between the fronts, we need to solve the system of Eqs. 34–37. The characteristic roots ν are solutions
of (27) and depend on the parameters of the problem as well as û. The system can be reduced to a single equation
for θ1 which we solve numerically. This is done in the following manner. First, û2 is already defined in terms of θ1
in (34). We can use this to determine θ2 from (35) in terms of θ1. The roots νi can be found in terms of û2 from the
characteristic Eq. (27). From (37) we can find an expression for e1 in terms of θ1. Finally, using

e2 = exp (λ2a0) = (exp (λ1a0))

(

λ2
λ1

)

= e

(

λ2
λ1

)

1 ≡ e

(

ν2
ν1

)

1 , (43)

e3 = exp (λ3a0) = (exp (λ1a0))

(

λ3
λ1

)

= e

(

λ3
λ1

)

1 ≡ e

(

ν3
ν1

)

1 , (44)

we see that (36) reduces to the aforementioned single equation for θ1. We are then able to determine the other
unknown quantities while ensuring that â > 0; this being an assumption that led to our solution.

In the case â < 0 the solution procedure is similar to the one presented above. We again derive a system of four
equations for θ1, θ2, û and â. The first two equations are the same as (34), (35), while (36), (37) are replaced by

θ1 + 1 = α0
1

qκ0e1ν1 (ν1 − ν3) (ν1 − ν2)
− α0

1

κ0qν1ν2ν3

+ (1 − exp (−j0))

(

(ν1 − ν2 − ν3)
(

1 + α0
1

) − ν2
1 + ν2

2 + ν2
3

ν2ν3 (ν1 − ν2) (ν1 − ν3)

)

×
(−ν1ν2ν3 + ν2ν3 + ν2

1ν2 − ν2
2ν1 + ν2

1ν3 − ν1ν
2
3

ν2ν3 (ν1 − ν2) (ν1 − ν3)

)

, (45)

θ2 + 1 = − 1
κ0

α0
1 (ν1 − ν2 − ν3) + ν1ν2ν3 − ν2ν3

ν2ν3 (ν1 − ν2) (ν1 − ν3)

+e2

(
(

ν2
2 − ν2 − a1

)

(1 + a1 + ν1ν3 − ν1 − ν3)

a1ν2 (ν1 − ν2) (ν2 − ν3)

)

(1 − exp (−j0))

−e3

(
(

ν2
3 − ν3 − a1

)

(1 + a1 + ν1ν2 − ν1 − ν2)

a1ν3 (ν1 − ν3) (ν2 − ν3)

)

(1 − exp (−j0)) . (46)

We use the same solution method to reduce these to a single equation for θ1, which we solve numerically for the
case â < 0.

4 Results and discussion

Our objective is to investigate the effect the enhancement layer has on the polymerization reaction front. We will
show that the polymerization front is supported by heat exchange with a more exothermic reaction.

We set the parameters for all the numerical calculations as follows

j∗ = 1, Ze = 8, Zde = 6, Z1 = 8, σ1 = 0·4, σ2 = 0·4, ua1 = ua2 = 1.
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It is not feasible to solve the system analytically because of the large number of parameters in the model. However,
by using specific values which are typical of these types of reactions, our results are indicative of a more general
result. For simplicity, we make the heat diffusivities equal in both regions (i.e., κ0 = 1).

To start, we define

a1 ≡ α1
κ1

u2
a1

, a2 ≡ α2
κ2

u2
a2

.

As we set the adiabatic velocities ua1 = ua2 = 1, and κ1 = κ2, it follows whenever a1 = a2, the heat exchange
coefficients are equal in both the polymerization and enhancement layers (i.e., α1 = α2). Upon increasing the value
of a1 = a2, we augment the values of the heat exchange coefficients α1 = α2. This implies an increase in inter-layer
heat transfer.

The parameter θ1 will also play a key role in the discussion. From the definition of θ1 given in (38), it follows
that less negative values indicate polymerization reaction temperatures (̂Tb1) that are closer to the theoretical adi-
abatic reaction temperature (Ta1). This corresponds to more complete polymerization reactions, indicating that
polymerization is enhanced as desired.

Consider also the dimensionless parameter q given in (41). We observe that for q < 1 the enhancement layer
contains the more exothermic reaction, and for q > 1, the polymerization reaction is the more exothermic one.
With this in mind, we can refer to q as the heat-release ratio. As previously stated, we expect the best results when
the more exothermic reaction is contained in the enhancement layer (i.e., q < 1).

To begin our investigation, we take a1 = a2 = 0·5, and we observe the effect that a change in the heat release
ratio q has on the front temperature of the polymerization layer θ1. In order to see the effect that a greater inter-layer
heat-exchange would have on the system, we increase the values a1 = a2 = 1·0 and further still to a1 = a2 = 2·0,
and repeat our calculations. Figure 3 illustrates that, in general, larger heat-exchange coefficients result in more
negative values of θ1, meaning that greater inter-layer heat exchange results in less complete polymerization reac-
tions. We therefore focus on the lower values for the heat exchange parameters ai, where i = 1, 2. We take the
value of q1 to be a fixed constant, and vary the value of q2 to alter the heat exchange ratio q. We see from Fig. 3
that the optimal range for the heat release ratio q (i.e., the range that results in the least negative values for θ1) is
approximately 0·9 < q < 1 for the parameters under investigation.

As such, we focus on the range 0·9 < q < 1 in Fig. 4. The reaction conditions for polymerization are better
in this q interval because the fronts remain fairly close together. The more exothermic the reaction, the faster the
corresponding velocity of the reaction front. As a result, when the enhancement reaction is much more exothermic
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than the polymerization reaction or vice versa (i.e., q � 1 or q � 1), the fronts are too far apart for an enhancement
effect to be felt in the polymerization layer. As such, we achieve best results when the enhancement reaction is
more exothermic one (q < 1), but not too exothermic to precede the polymerization front by too large a distance.
We remark that if the supplementary reaction was too exothermic, and heat exchange was allowed far away from
the polymerization front, the bulk polymerization reactions could occur far away from the frontal reaction zone.
However, our goal is to suggest a way to promote polymerization in the frontal mode.

We proceed to set the heat release ratio to q = 0·9. We then determine the polymerization front temperature θ1
for a spectrum of values of a1 = a2. In this way we are able to observe the effect that capacity of inter-layer heat
exchange has on the completeness of the polymerization reaction. Next, we repeat our calculations for heat release
ratios of q = 0·95 and q = 1·0. The results are shown in Fig. 5. Once more we note that optimal conversion in
the polymerization layer (i.e., less negative values for θ1) are achieved when the enhancement reaction is the more
exothermic one (q < 1), and when inter-layer heat exchange is relatively small (0·05 < ai < 0·4). The smallest of
the three heat release ratios (q = 0·9) is shown to give the best conversion rates for polymerization, but we note
that at ai = 0·4 and beyond, the smallest heat release ratio (q = 0·9) begins to lose its advantage, as the values
achieved for θ1 approach the curve for the fixed heat release ratio of q = 0·95.

To illustrate this further for the same set of parameters, we also find the corresponding values of dimensionless
position of the enhancement front â. We recall the the polymerization front is located at the origin x = 0, and that
both fronts propagate along the x̃-axis in the direction of decreasing x̃. A negative value of â indicates that the
polymerization front is behind the enhancement front whereas when â > 0, the polymerization front is ahead. As
heat exchange is allowed, â < 0 indicates that the enhancement reaction front will be a heat source for pre-heating
the reactants in the polymerization layer before the arrival of the front, which is the effect we wish to achieve. Our
results are illustrated in Fig. 6. We note that when ai is slightly less than 0·4 for q = 0·9, â is small in magnitude
and negative, indicating that the enhancement front is slightly ahead of the polymerization front. For ai greater than
0·4, the polymerization front takes the lead as the curve begins to show that â > 0. When the fronts are very close
together, there is less chance that the polymerization reactants will be pre-heated prior to the arrival of the front.
This is a likely reason for the loss of efficiency noted for the heat release ratio of q = 0·9 close to and beyond
ai = 0·4 in Fig. 5.

We summarize our findings by plotting values of the polymerization layer temperature θ1 against the enhance-
ment front position â in Fig. 7. It is clear that the most complete polymerization reactions (i.e., least negative θ1
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values) are obtained when the heat release ratio q is smallest (meaning that the enhancement layer contains the
more exothermic reaction).

5 Conclusion

We have considered the steady propagation of a polymerization front in a thin layer superimposed by another layer
undergoing an exothermic chemical reaction. We developed this one-dimensional two-layer sandwich model for
enhancing FP reactions in thin layers. As a result of the large number of parameters in the equations, we first
made the system dimensionless, and then performed an analysis of the basic state of the system. We captured
the completeness of the polymerization reactions in the FP layer to quantify the enhancement effect. Specifically,
we graphed trends in the dimensionless parameter θ1, which relates the polymerization front temperature to the
theoretical adiabatic temperature of polymerization.

The enhancement effect was most pronounced when the front in the superimposed supplementary layer was
ahead of the polymerization front in the lower FP layer. In this case, the overall heat is transferred from the hot
product region of the superimposed enhancement layer to the preheat zone of the lower FP layer. As a result, the
monomer and initiator mixture in the FP layer are heated prior to the arrival of the front, and the approaching poly-
merization front encounters a pre-heated reactant mixture. This ensures more complete conversion from monomer
to polymer product in the FP layer. For this effect to promote FP optimally, heat exchange between the layers
must be small, and the reaction in the enhancement region should be the more exothermic one. Furthermore, the
separation between the reaction fronts in the two layers should not be so great as to cause bulk polymerization
instead of frontal polymerization.
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Appendix

The coefficients Ci, Bi and Tf in the temperature Eqs. 24 and 25 are

C1 = {k2ν2 (k3 − 1) + k3ν3 (1 − k2) + A (ν2 (1 − k3) + ν3 (k2 − 1))/e1}
×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k2k1 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k2k3 − k3 + k1)}−1, (47)

C2 = {A (ν3 (k1 − 1) + ν1 (1 − k3))/e2 + k1ν1 (k3 − 1) + k3ν3 (1 − k1)}
×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k1k2 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k3k2 − k3 + k1)}−1, (48)

C3 = {A (ν1 (1 − k2) + ν2 (k1 − 1))/e3 + k2ν2 (1 − k1) + k1ν1 (k2 − 1)}
×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k1k2 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k3k2 − k3 + k1)}−1, (49)

B0 = {k1k2 (ν2 − ν1) (ν3t0 + 1) + k1k3 (ν1 − ν3) (ν2t0 + 1) + k3ν3t0 (ν2 − ν1)

+k2k3 (ν3 − ν2) (ν1t0 + 1) + k1ν1t0 (ν3 − ν2) + k2ν2t0 (ν1 − ν3)}
×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k1k2 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k3k2 − k3 + k1)}−1, (50)
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B1 = {k3ν3 (1 − k2) + k2ν2 (k3 − 1)}
×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k1k2 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k3k2 − k3 + k1)}−1, (51)

B2 = A
e2

(ν3 (1 − k1) + ν1 (k3 − 1))

×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k1k2 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k3k2 − k3 + k1)}−1, (52)

B3 = A
e3

(ν1 (k2 − 1) + ν2 (1 − k1))

×{ν1ν2 (k2 − k1 + k1k3 − k2k3) + ν2ν3 (k1k2 + k3 − k2 − k3k1)

+ν1ν3 (−k1k2 + k3k2 − k3 + k1)}−1. (53)

Tf = {k2k1ν2 + k1k2ν3ν2T0 − k1ν1k2 − k1k2ν3ν1T0 − k3k1ν3

+k1ν1k3 − k1ν2� − k1ν2ν1T0 − k1ν3ν2T0k3 − k1k3ν2ν1T0 + k1ν3�

+k1ν3ν1T0 + k3ν3k2 + k3ν3ν1T0k2 + k2ν2ν1T0 − k2ν3ν2T0

−k2ν2k3 + ν1k2� − k3k2ν2ν1T0 − k2ν3� + k3ν2� + ν3ν2T0k3

−k3ν3ν1T0 − �ν1k3} ∗ {k2ν3k1ν2 + k2ν2ν1 − k1ν2ν1

−k1ν1k2ν3 + k3ν3ν1k2 + k	1ν2ν1k3 − k3ν3ν1 + k3ν3ν2

−k2ν3ν2 − k3ν3k1ν2 + k1ν1ν3 − k2ν2ν1k3}−1, (54)

where we take

� = κ1

κ2
q2M20.
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