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Abstract

Population dynamics and production of C. luctuosa were compared in two reaches of the Agiiera stream (northern
Spain). This species showed univoltine winter life history in both sites. However, the start of the recruitment period,
and the cohort production interval differed in 1 month between reaches. Secondary production of C. luctuosa
ranged from 76 mg m~2 year™! (upper site) to 93 mg m~2 year~! (lower site). Although annual production seemed
to be mainly influenced by the biomass found at each site, changes in life history may have also been important.
The need to have accurate information about life history of the analysed species at the study sites when assessing

secondary production is highlighted.

Introduction

Recently, the literature about life history and produc-
tion of freshwater invertebrates has grown consider-
ably. The development of the River Habitat Templet
(Townsend & Hildrew 1994) has promoted a new in-
terest on life history traits such as voltinism (e.g.,
Richards et al., 1997; Usseglio-Polatera et al., 2000) or
length (Statzner et al., 1997) and timing (e.g., Tachet
et al., 1994; Usseglio-Polatera & Tachet, 1994) of the
reproductive period. Most studies on these traits con-
sist of data collected in one site during 1 year (e.g.,
Majecki et al., 1997; Riafio et al., 1997). Nevertheless,
some authors report spatial changes in life histories of
freshwater invertebrates and try to relate these changes
to differences in the physical habitat (e.g., Sanchez &
Hendricks, 1997; Robinson & Minshall, 1998).
Knowledge of secondary production dynamics of
stream invertebrates also has shown remarkable pro-
gress. Production is a composite of population para-
meters such as biomass, individual growth rate, sur-
vivorship, and development time that provide a meas-
ure of population function in the community (for a

review, see Benke, 1993). Beyond quantification of
energy flow, secondary production can be used to link
population dynamics with other processes in the eco-
system. We find in the literature an array of papers that
try to relate secondary production of some populations
and communities with water chemistry (e.g., Eggert &
Burton, 1994; Griffith et al., 1994), temperature (e.g.,
Rodgers, 1982; Morin & Bourassa, 1992), habitat sta-
bility (e.g., Robinson et al., 1992; Dudgeon, 1999),
food resources (e.g., Behmer & Hawkins, 1986; Wal-
lace et al.,, 1997), position in the river continuum
(e.g., Wohl et al., 1995; Grubaugh et al., 1997), land
use (e.g., Grubaugh & Wallace, 1995; Sanchez &
Hendricks, 1997), or other human impacts (e.g., Rader
& Ward, 1989; Whiles & Wallace, 1995).

Our aims in this work are (1) to describe life his-
tory and secondary production of the mayfly Caenis
luctuosa (Burmeister, 1839) in two nearby sites along
a third-order stream, and (2) to assess the con-
sequences of changes in life history on the secondary
production of this species.
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Figure 1. The Agiiera stream basin. The study sites and the main
human settlements are indicated.

Study area

The Agiliera stream drains a small catchment
(144 km?) located between the Basque Country and
Cantabria, northern Spain (Fig. 1). The climate in the
zone is temperate oceanic, with mean monthly temper-
ature ranging between 8.6°C (February) and 20.2°C
(August) during 1993. The main land uses are pine
(Pinus radiata D. Don) and eucalyptus (Eucalyptus
globulus Labill.) plantations, meadows and heath-
lands. Autochthonous forests, dominated by Quercus
robur L., Q. ilex L. and Fagus sylvatica L., still cover
small areas in the basin. Human population is low
(about 3000 inhabitants), and the only factory in the
catchment is beside the stream estuary.

The two study sites are located in third order
reaches (Fig. 1) that are numbered here as in previous
papers (e.g., Elésegui & Pozo, 1998; Gonzélez et al.,
2000). At site 7 (43° 19’ 33” N; 3° 17 29" W), the
stream flows through an area covered by eucalyptus
plantations. Minor remnants of riparian vegetation
persist, mainly discontinuous narrow strips of Alnus
glutinosa (L.) Gaertner and Platanus hispanica Miller
ex Miinch. Due to self-purification in the reaches
downstream Trucios, water quality is good at this site

Table 1. Main characteristics of study sites. Those parameters with
annual ranges in parentheses were measured monthly during 1993

Site 7 Site 9
Elevation (m) 80 15
Drainage area (ha) 6906 11535
Channel width (m) 10 14
Channel slope (%) 0.8 0.4
Temperature (°C) 13.2 (7.7-20.3) 13.1 (6.3-19.5)
pH 8.2(7.49.1) 7.4 (6.8-8)
Conductivity (uS cm_l) 226.8 (192-289) 193 (140-262)
Oxygen (mg/l) 11.5 (9.8-14) 10.4 (8.4-12.3)

Oxygen saturation (%)
Periphyton (g m~2)

CPOM (g m~2)

107.8 (100-124)
23.4(2.4-90.1)
13.1 (8.7-37.5)

96.4 (82-112)
15.5(5.5-36.9)
19.5 (9.8-55)

(El6segui et al., 1995). Site 9 (43° 20’ 20" N; 3° 20/
20”7 W) is located 8.5 km downstream of site 7. It
drains a zone where croplands and meadows predom-
inate. However, the channel is surrounded by a well-
developed riparian forest composed, among others,
by Q. robur L., P. hispanica, A. glutinosa, Fraxinus
excelsior L. and Laurus nobilis L. Untreated sewage
from Guriezo, the foremost village in the catchment,
results in phosphate, nitrate and nitrite concentrations
4, 6 and 3 times higher than those found in reach 7
(Elésegui & Pozo, 1994). In 1990, epilithic biomass
and chlorophyll-a concentration were higher at site 7
than at site 9 (Elésegui & Pozo, 1998). Such spatial
differences were observed again in 1993 (Table 1) but,
because of the high temporal variability of these para-
meters, they were not significant (P>0.05, two-way
analysis of variance). More information on the study
sites is shown in Table 1.

Materials and methods

Quantitative benthic samples were collected monthly
from January to December 1993. At each site, five
random replicates were taken using a Surber net (area
0.09 m2, mesh size 250 um), and preserved in the field
in 5% formaldehyde. As depositional habitats were
only a minor fraction of the river bed, no attempts were
done to sample them. In the laboratory, invertebrates
were sorted, identified and counted under a binocu-
lar microscope. Head width of each specimen was
measured to the nearest 50 um using a micrometer.
Individual dry weights of C. luctuosa were es-
timated from a head width—weight regression model



constructed using nymphs from the study sites. Live,
non-damaged specimens were brought to the laborat-
ory, measured to the nearest 50 pm, and transferred to
preweighed aluminium foils. Then, they were dried at
60°C for 48 h, cooled during 1 h in a dessicator, and
weighed to the nearest 0.01 mg.

Secondary production was determined by the size-
frequency method (Hynes & Coleman, 1968) with the
modifications by Hamilton (1969) and Benke (1979).
The cohort production interval (CPI) was estimated
as the time from the first hatchings to the first emer-
gences.

Before performing statistical analyses, data on
density, head width, individual weight, and biomass
were log-transformed to eliminate heteroscedasticity
(Zar, 1996). Spatial and temporal comparisons were
made using two-way (time X site) analysis of vari-
ance (ANOVA) procedures; Tukey test was used for
post-hoc comparisons among times (Zar, 1996).

Results

The best correlation between size and weight was
achieved using exponential equations that did not dif-
fer between sites (P>0.05, ¢-test). Thus, all morpho-
metric data were pooled and one equation was calcu-
lated for both reaches:

DW = 0.00539 ¢0-005HW
n=>58, r2=0.842 P <0.0005,

where DW is dry weight (mg) and HW is head width
(m).

Density of C. luctuosa did not show spatial dif-
ferences (P>0.05 for the site factor in ANOVA).
Nevertheless, its temporal patterns differed between
sites (Fig. 2). Maximum density at site 7 was recor-
ded in August, and it was higher than those densities
recorded in January, February, June and July. At site
9, maximum density was found in October; it only
differed from those found in January, May and June.

C. luctuosa exhibited univoltine winter life histor-
ies (sensu Clifford 1982) in both sites (Fig. 3). At site
7, the first small nymphs were found in August, one
month later than at site 9. High ranges of individual
sizes were recorded during most of the year, indicating
asynchronous life histories. At reach 7, recruitment
period lasted from August to December (Fig. 3). At
reach 9, it started in July and seemed to end in Feb-
ruary, when the last small nymphs were found and a
small peak in population density was recorded.
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Figure 2. Density of C. luctuosa (mean +SE) at site 7 (white) and
9 (black) during the study period. The results of the temporal com-
parisons performed are showed in the bottom. Values increase from
right to left; those linked by the same line do not show significant
differences.
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Figure 3. Size-frequency distribution of C. luctuosa at sites 7
(white) and 9 (black). The number of nymphs recorded in each
sampling date appears in the horizontal axis.

Although nymphs started to grow immediately
in both reaches, their greatest size remained around
750 pwm during winter. Growth resumed in March, and
maximum head widths were achieved in May (Fig. 3).
At both sites, the first mature nymphs (individuals
with black wing pads that are ready to emerge) were
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Figure 4. Individual weight of C. luctuosa (mean +SE) at site 7
(white) and 9 (black) during the study period. The results of the
temporal comparisons performed are showed in the bottom. Values
increase from right to left; those linked by the same line do not show
significant differences.

found in April. Thus, the CPI of C. luctuosa was 9
months at site 7 (August—April), and 10 months at site
9 (July—April). At the start of the emergence period,
mean size and mean weight of nymphs did not show
spatial differences (in both cases, P>0.05, ¢-test). In
reach 7, emergence finished in July, when the last high
sized nymphs were recorded. In reach 9, the main
flight period concluded in June; nevertheless, some big
specimens were recorded in August.

The mean weight of nymphs was greater at site 9
than at site 7 (P<0.0005 for the site factor in ANOVA,
Fig. 4). However, this difference resulted from the spa-
tial change in the phenology of C. luctuosa. When the
mean weights of similar aged nymphs were compared
(July at reach 7 with August at reach 9, August at
reach 7 with September at reach 9, and so on) the
differences were not significant (P>0.05 for the site
factor in ANOVA). The greatest mean weights were
found during the emergence period (Fig. 2). At both
sites, weights did not increase between December and
March (Fig. 4).

Biomass of C. luctuosa was greater at site 9 than
at site 7 (P<0.05 for the site factor in ANOVA,
Fig. 5), even when similar aged specimens were com-
pared (P<0.05 for the site factor in ANOVA). This
difference resulted from the high biomass recorded
in August at reach 9. If we exclude this date from
the comparisons no spatial differences were found
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Figure 5. Biomass of C. luctuosa (mean +SE) at site 7 (white) and
9 (black) during the study period. The results of the temporal com-
parisons performed are showed in the bottom. Values increase from
right to left; those linked by the same line do not show significant
differences.

(P>0.05 for the site factor in ANOVA). At site 7, max-
imum biomass was observed in May and differed from
values recorded during the rest of the year excepting
April and December (Fig. 5). At site 9, temporal dif-
ferences in biomass were smaller. Its maximum value
(August) only differed from those found in January
and March. Mean annual biomass (B) was 9.5 mg m >
in reach 7 and 13.1 mg m~2 in reach 9.

Secondary production of C. luctuosa (P) was also
great at site 9 (92.8 mg m~2 year~!) than at site 7
(75.6 mg m~2 year~!). However, the P/B ratio found
at reach 7 (7.9 year‘l) was greater than that found at
reach 9 (7.1 year_l). No spatial differences in cohort
P/B ratios were observed (5.9 year‘1 at both reaches).

Discussion

C. luctuosa exhibited univoltine winter life histories in
the two reaches of the Agiiera stream. Clifford (1982)
states that this is the most common type of life cycle
among Caenis species. Nevertheless, the same author
indicates that almost 31% of the studied populations
are bivoltine and reports that the life cycle of many
Caenis species can be quite flexible. This is true for
Caenis luctuosa, as it can show univoltine winter (e.g.,
Brittain, 1974; Alba-Tercedor, 1981), bivoltine (e.g.,
Landa, 1968; Mol, 1983) and non-seasonal multivolt-
ine life histories (Perdn et al., 1999) depending on
location.



Table 2. Comparisons of production (P, mg m~2 yearfl) and biomass turnover rate (P/B, yearfl) of Caenis
species. Multivoltine populations are indicated with asterisks

Species P P/B Habitat (site) Reference

C. rivulorum 30 - Experimental stream (Dorset, UK) Welton et al. (1982)

C. luctuosa 76 7.9  Reach 7 (Northern Spain) This study

Caenis spp. 82 59.1  Coastal plain stream (Georgia, USA) Benke & Jacobi (1994)
Caenis spp. 86 58.8  Coastal plain stream (Georgia, USA) Benke & Jacobi (1994)

C. luctuosa 93 7.1  Reach 9 (Northern Spain) This study

Caenis sp. * 206 10.1  Experimental stream (Alabama, USA) Rodgers (1982)

Caenis sp. * 271 11.5  Experimental stream (Alabama, USA) Rodgers (1982)

Caenis sp. * 273 11.6  Experimental stream (Alabama, USA) Rodgers (1982)

C. amica * 400 13.0  Experimental pond (Virginia, USA) Christman & Voshell (1992)
C. horaria * 539 102  Woodland pond (Geneva, Switzerland)  Oertli (1993)

C. simulans 560 4.4  Plains stream (Minnesota, USA) MacFarlane & Waters (1982)
Caenis sp. * 676 127  Experimental stream (Alabama, USA) Rodgers (1982)

C. simulans 940 4.2 Plains stream (Minnesota, USA) MacFarlane & Waters (1982)
C. luctuosa ™ 8158  23.7  Semiarid stream (Murcia, Spain) Peran (1997)
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The flexibility of the life cycles of this species be-
comes apparent in the Agiiera stream, where we found
that the start of egg hatching and the CPI differed by 1
month between reaches located only a few kilometres
apart. Changes between sites 7 and 9 in the phenology
and CPI of the mayfly Ephemerella ignita (Poda) also
have been reported (Gonzélez et al., 2000). Moreover,
other works that describe changes in the life history
of aquatic insects between reaches of a given river can
be found in the literature (e.g., Wise, 1980; Sanchez
& Hendricks, 1997). Usually, such spatial differences
are explained as consequence of differences in water
temperature (e.g., Payne & Miller, 1996; Robinson &
Minshall, 1998; see Sweeney, 1984, for a review). Un-
fortunately, we did not conduct continuous recording
of water temperature at the study sites. More diffi-
culties arise considering that C. luctuosa hatches later
and shows shorter CPI at site 7 than at site 9, while the
life history of E. ignita exhibited the opposite spatial
difference (Gonzalez et al., 2000). Thus, it was not
possible to establish the cause of the delay in the start
of hatchings of C. luctuosa at site 7.

In both reaches, the life history of C. luctuosa was
asynchronic with extended recruitment periods. Such
traits are also exhibited by E. ignita in these reaches
(Gonzilez et al., 2000), and may be related to the un-
predictable flow regimes that characterizes the Agiiera
stream. In such situations, asynchrony may increase
the probability that part of the population is in a non-

vulnerable stage during disturbances (e.g., Fisher &
Grimm, 1988; Corkum et al., 1997).

The mean weight of C. luctuosa nymphs also
showed spatial changes, with higher values at site 9
than at site 7. However, this seems to be the res-
ult of the observed shifts in the life history of this
species, as no differences were found between the
mean weights of similar aged specimens. Further-
more, mean nymphal weight was similar in both
reaches at the start of the emergence period. This
may have great importance considering that individual
weight is linked to fecundity in aquatic insects (e.g.,
Sweeney & Vannote, 1978; Smock & Macgregor,
1988). In such case, our results suggest that the ob-
served delay in recruitment of C. luctuosa at site 7 had
no consequences on its reproductive success.

The density of C. luctuosa did not show spatial
changes. Nevertheless, its biomass and secondary pro-
duction were greater in reach 9 than in reach 7. It is
difficult to link greater production in site 9 with the
observed earlier hatching of eggs, as population dens-
ity and mean individual weight were similar to those
measured in site 7. On the other hand, earlier hatch-
ing in reach 9 may result in the spatial differences
in P/B ratio (i.e., lower biomass turnover rate at site
9), as longer CPIs lead to smaller P/B values (Wa-
ters, 1979; Benke, 1984). However, this fact should
have decreased production of C. luctuosa at site 9.
In consequence, the spatial changes in secondary pro-
duction of C. luctuosa may be purely attributed to the
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observed differences in biomass. The same conclusion
was reached in a previous paper on production dynam-
ics of E. ignita in the Agiliera stream (Gonzélez et al.,
2000).

Although the observed changes in the life cycle of
C. luctuosa had no consequences on its annual pro-
duction, we do not believe that they had no influence
on the energetics of the community. Spatial changes in
the temporal dynamics of biomass of this species were
found (Fig. 5) and, thus, differences between sites in
the phenology of production would be expected.

The secondary production of C. luctuosa in the
Agiiera stream was low relative to values obtained
for Caenis species in previous reports (Table 2). Al-
though our estimates were similar or higher than those
reported for other univoltine populations (Welton et
al., 1982; Benke & Jacobi, 1994), they were much
lower than those recorded by MacFarlane & Waters
(1982) for C. simulans, which is also univoltine. All
other studied Caenis populations are multivoltine and
show higher production values than those found in the
Agiiera stream.

The P/B ratios recorded in this study were also
among the lowest values recorded in the literature,
which agrees with the observed cessation of growth
during winter. Nevertheless, such P/B values were
higher than those of the populations studied by Mac-
Farlane & Waters (1982), which attained high pro-
ductions due to high biomass. All the multivoltine
Caenis showed higher P/B values than those found
in the Agiiera. Finally, the cohort P/B ratios that we
reported at sites 7 and 9 were inside the usual range
in the literature (2-8, Benke, 1993). In fact, the low
production of C. luctuosa found in the Agiiera stream
seems to be a consequence of both low mean annual
biomass, and low biomass turnover rate.

In summary, we found spatial changes in the life
history of C. luctuosa when comparing its popula-
tion dynamics in two nearby reaches of one small
stream. Such changes cannot be easily related with
differences between sites in annual production. Nev-
ertheless, shifts in cohort production intervals and,
consequently, shifts in biomass turnover rates may
be linked with these differences in life history. Fur-
thermore, contrasting temporal patterns of secondary
production might be expected at both sites. Thus, con-
sidering the flexibility in the life histories of some
aquatic insects, assumptions about CPIs, and P/B
ratios must be discouraged in studies of secondary
production.
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