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ABSTRACT: Positron Emission Tomography (PET) is a nuclear medicine imaging technique that
permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas
where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better
sensitivity and specificity than other techniques such as CT.

On the other hand, accurate segmentation, an important procedure for Computer Aided Diag-
nostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution
and the high noise that are intrinsic characteristics of PET images.

This work presents an algorithm for the segmentation of lungs in PET images, to be used
in CAD and group analysis in a large patient database. The lung boundaries are automatically
extracted from a PET volume through the application of a marker-driven watershed segmentation
procedure which is robust to the noise. In order to test the effectiveness of the proposed method,
we compared the segmentation results in several slices using our approach with the results obtained
from manual delineation. The manual delineation was performed by nuclear medicine physicians
that used a software routine that we developed specifically for this task. To quantify the similarity
between the contours obtained from the two methods, we used figures of merit based on region and
also on contour definitions. Results show that the performance of the algorithm was similar to the
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performance of human physicians. Additionally, we found that the algorithm-physician agreement
is similar (statistically significant) to the inter-physician agreement.

KEYWORDS: Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Medical-
image reconstruction methods and algorithms, computer-aided so
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1 Introduction

The possibility of analyzing, quantitatively, the evolution of lung cancer with PET can be made
much more powerful if CAD and other automatic tools are used, easing the physician’s task of
detecting and measuring features in a large number of tomographic images. Therefore, it is of
paramount importance to develop algorithms requiring minimal or no human interaction to speed
up the process of mining the information from the PET images.

The initial step required for this process is to define the limits of the organ of interest, i.e., to
perform the segmentation. The possibility of automatically defining the lung region as a first step
for measuring and classifying with greater detail this organ and its lesions is a useful tool in the
understanding of the disease and its therapies.

Furthermore, if combined with CT-based lung segmentation, PET lung segmentation can be
also useful in the interpretation of possible artefacts due to movement and/or attenuation, and in
the assessment of these data corrections.

The automatic segmentation can help the physician to observe the contours of the lungs super-
imposed on the original slice, allowing a visual assessment of the lung contours in adjacent slices.
It also allows the comparison of equivalent slices in exams acquired in different instances of time
(such as exams acquired 3 months apart for therapy assessment). Our method permits to calculate
the lung area and volume, and therefore allows, in case of tumors being present, to evaluate the
evolution of peripheral lung tumors (if their area/volume has increased or decreased).

– 1 –



2
0
1
3
 
J
I
N
S
T
 
8
 
C
0
3
0
1
8

1.1 State of the art

Several approaches have been proposed by many authors for the segmentation of PET images,
namely concerning the segmentation of tumors in oncology using the 18F-fluorodeoxyglucose
(FDG) PET tracer.

Jentzen et al. [1] and Kanakatte et al. [2] applied, respectively, iterative and fixed-value thresh-
old techniques which allow to compute the volume of the tumors. Tridimensional region growing
methods have also been used by Ballangan et al. [3] for the definition of lung tumor boundaries.
Other approaches include the use of deformable models for the segmentation of the liver [4], in hu-
man patients and for the myocardium [5] in small animals. Semi-automatic [6] and automatic [7]
graph-based approaches were also employed for segmentation of anatomical structures using func-
tional information from PET scans. We improved the results of the watershed segmentation by
providing markers which “guide” the growth of areas of interest during the segmentation proce-
dure. Although the watershed segmentation has already been used in other imaging modalities, our
goal was to segment the lungs in PET imaging which is a more challenging task compared to other
modalities due to the low signal to noise ratio. The use of segmentation markers turned out to be
essential in order to deal with this strong noise component.

Most recent segmentation methods based in deformable models, as parametric models or geo-
metric models are used to identify not only the lungs [8–14] but also heart regions [15–17] vascular
or neural structures [18] and to assist the classification of pathologies [19, 20].

2 Methods

The concept of watershed segmentation is based on the visualization of a gray-level image as a
topographic surface. The 3D space is composed by the two spatial coordinates in addition to the
intensity of the image, which determines the height of the landscape. The algorithm mimics the
behavior of a flood where the water, starting from the surface base from below (regional minima)
gradually climbs the peaks. When the water rising from two distinct catchment basins is about to
merge, a virtual dam is built to prevent the merging. The algorithm stops when only the top of the
dams are “visible” and thus, the “lines” formed by them correspond to the connected boundaries
extracted by the algorithm. To avoid oversegmentation, a common issue in the watershed segmen-
tation, markers should be used. The markers are connected components which help to identify both
the foreground and the background structures.

2.1 Segmentation algorithm

Our approach is based in the concept of Marker-driven Watershed Segmentation [21] for the com-
putation of the boundaries of the lungs in PET. This section discusses the details of our method.

2.1.1 Overview

The same acquisition protocol was used for all patients, with an injected dose proportional to the
bodyweight of the patient (5 MBq/kg). An elapsed time of 40 minutes between the dose admin-
istration and the scanning allows for an adequate biodistribution. The average scan time is 25-30
minutes (2 min/frame).

– 2 –
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Figure 1. Examples of PET slices of the pulmonary region, going from the apex of the lung (left) to its base
(right).
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Figure 2. Overview of the segmentation algorithm.

Several examples of FDG-PET transaxial slices (144×144 pixels) of the pulmonary region,
from the apex to the base of the lung, are given in figure 1. For a better visualization of the low
uptake structures (such as the lungs), all PET images in this section are cropped and shown with
a Standardized Uptake Value (SUV), which is the most commonly used measure to differentiate
malignant from benign tumors and assess the efficacy of therapy [22], display ranging from a SUV
of 0 to 1.

The first step of our algorithm is a filtering operation (see figure 2). We used a Wiener adaptive
filter using a neighborhood of size 5×5 (empirically determined) to suppress high frequency noise.
All the necessary markers are computed using the filtered slice (”Denoised” PET slice in figure 2),
which are then imposed as the only regional minima into the smoothed gradient of the filtered slice
(Smoothed Grad. Slice in figure 2), which is a new image, derived from the filtered one, where
the borders are enhanced. We then compute the watershed lines of the Modified Marker Image
(figure 2). Several post-processing steps are then applied in order to improve the segmentation
results, yielding the Final Lung Borders (figure 2).

2.1.2 Determination of the markers

We defined two types of markers: internal markers (figure 3 b)), associated with the regions of
interest, and external markers (figure 3 c)), associated with the background.

– 3 –
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a) Original PET Slice b) Filtered PET Slice

c) Internal Markers d) Internal and External Markers

Figure 3. Example PET slice for the determination of the markers.

Initially, the internal markers are defined taking into account the low intensity (low uptake)
of the lungs, using a threshold operation with the cut value Tlu. Then, the distance, d (number of
pixels), between the border of the patients’ body and the largest low uptake structures is computed
and the border is dilated d times in order to reject non-lung regions which are also characterized
by a low uptake and are close to the skin surface. The computation of the internal markers ends
with a series of morphological operations, such as erosions and dilations, for a more accurate
representation of the foreground structures.

The external markers prevent an excessive growth during the watershed transformation stage.
The first type is derived from the boundary of the body which is computed during the definition of
the internal markers by performing 1

4×d dilations and using only the set of pixels corresponding to
the inner border of the dilated object. The second type of external marker is computed as resulting
watershed line from the distance transform of the internal markers.

2.1.3 Additional steps

Having computed all the necessary markers, the next step is their imposition into the smoothed
gradient of the filtered slice. The watershed lines of the modified gradient image are then computed.

In order to improve the segmentation results, two additional steps were implemented. Some-
times, an excessive growth may include several high-intensity pixels near the border of the heart.
These pixels are identified by applying a threshold procedure whose cut value is given by 2×Tlu

(see subsection 2.1.2). This step is illustrated in figure 4.
The last stage is the removal of outlier pixels. For a specific PET slice, the segmentation

results of the two adjacent slices (in each direction) are considered. The binary areas enclosed by
segmentation results in the adjacent slices are summed and the 1-valued pixels in the result of this
operation (i.e. the pixels that only are present in 1 out of the 5 slices) are considered outliers, which

– 4 –
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Figure 4. Improvement of the lung border near the heart. This image corresponds to a zoomed version of a
slice where this improvement is mandatory with the result of the operation being clearly visible.

Figure 5. Lung borders: before (dashed) and after
(solid) the removal of outlier pixels.

Figure 6. Final lung borders corresponding to the ex-
ample slice.

are then removed. The lung areas are then smoothed using morphological operations. The results
of this step are illustrated in figure 5.

The final lung borders (figure 2) corresponding to the slice represented in figure 3 a) are given
in figure 6.

2.2 Performance assessment

An assessment of the performance of our method was conducted using 2 randomly selected patients
(from a group of 10). From the selected patients, 30 randomly selected pulmonary slices (60 lung
contours) were evaluated. The lung borders, which are the output of our algorithm were compared
to the corresponding manual delineations performed by two nuclear medicine physicians. The
lung contours were compared using one distance-based (Pratt figure of Merit, FPratt [23]) and one
region-based (Dice Similarity Coefficient, DSC [24]) similarity metrics. The FPratt and the DSC
are given, respectively by eq. (2.1) and eq. (2.2).

FPratt =
1
N

N

∑
i=1

1
1+α×d2

i
(2.1) DSC =

2|A
⋂

B|
|A|+ |B|

(2.2)

Both metrics vary between 0 and 1, where 1 indicates the complete overlapping of both con-
tours. The term N and di are, respectively, the number of pairs of corresponding points and the
distance between them. The normalization parameter α was set to 1

9 so that FPratt=0.5 for di=3 pix-
els. The DSC helps to quantitatively evaluate the amount of intersection between the areas which
are enclosed by the contours obtained in two images.

After verifying the violation of the assumptions for statistical parametric testing, we evaluated
the comparisons between the algorithm and the two physicians by a Friedman test (α=0.05) fol-

– 5 –
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Figure 7. Boxplots of DSC and FPratt for the different segmentation procedures.

lowed by Wilcoxon paired sample tests. We also checked the association between segmentation
procedures with the Spearman correlation coefficient.

3 Results and discussion

The results of comparisons using the two referred figures of merit in both patients are given in
figure 7. The labelling convention is as follows:

• A-E1 and A-E2: Algorithm-Physician comparison;

• E1-E2: Inter-physician comparison;

Results of the comparisons for the two lungs (patients) are different. In patient A there are no
statistically significant differences (χ(2)=0.364; p=0.834 for DSC; χ(2)=1.727; p=0.422 for FPratt)
between the comparison groups. However, in patient B there are statistically significant differences
(χ(2)=32.813; p¡0.0001 for DSC; χ(2)=29.688; p¡0.0001 for FPratt).

In patient B, there are statistically significant differences (Z¡-2.5; p¡0.010) for DSC and FPratt

between all the groups except for FPratt between E1-E2 vs. A-E2 (Z=-1.477; p=0.140).
The correlation coefficient (CC) between measures is statistically significant in patient B (DSC

A-E1 vs. A-E2: CC=0.532; p=0.002; DSC A-E1 vs. E1-E2: CC=0.676; p¡0.0001; FPratt A-E1

– 6 –
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vs. A-E2: 0.503; p=0.003; FPratt A-E1 vs. E1-E2: 0.503; p¡0.0001), suggesting that either the
physicians and the algorithm perform better in some slices and worse in others, which can explain
the differences detected before. In patient A, there is no association between the variables (p¿0.05)
which shows that segmentation procedures are independent.

The worst cases (greatest dissimilarity between the algorithm results and manual delineations)
were verified to belong to apex slices. This was expected given the considerable influence of the
respiratory movements in this particular region. The poor image resolution, large noise compo-
nent, significant blurring and lack of anatomical information which characterize PET images also
made the segmentation of anatomical structures a very challenging task, even for the manual de-
lineations, as was confirmed by the large variability that was found between manual delineations.
Nevertheless, the examination of the segmentation results suggests that when both physicians agree
(to a certain extent) upon the location of the lung borders, the algorithm produces smaller errors in
the segmentation.

4 Conclusions

We propose a fully automatic algorithm for the segmentation of the lungs using solely data from
PET scans. The proposed method produces contours similar to the ones drawn by the physicians.
The performance of our method is identical to the performance of two physicians (when compared
with our method) and to the performance of the physicians among them. These results suggest that
our method can be applied in the clinical environment for a final evaluation.

References

[1] W. Jentzen, L. Freudenberg, E. G. Eising, M. Heinze, W. Brandau and A. Bockisch, Segmentation of
PET volumes by iterative image thresholding, J. Nucl. Med. 48 (2007) 108.

[2] A. Kanakatte, N. Mani, B. Srinivasan and J. Gubbi, Pulmonary tumor volume detection from Positron
Emission Tomography images, in proceedings of Int. Conf. Biomed. Eng. Inf. (BMEI), May, 27–30
(2008)

[3] C. Ballangan, X. Wang, S. Eberl, Y. Yin and D. Feng, Automated delineation of lung tumors in PET
images based on monotonicity and a tumor-customized criterion, IEEE Trans. Inf. Technol. Biomed.
15 (2011) 691.

[4] C.-Y. Hsu, C.-Y. Liu and C.-M. Chen, Automatic segmentation of liver PET images, Comput. Med.
Imag. Grap. 32 (2008) 601.

[5] R. Dedić, M. Allili and R. Lecomte, Unsupervised cardiac PET image segmentation, in proceedings
of 18th International conference on systems, signals and image processing (IWSSIP), June, 16–18,
2011, Dept. de Math., Univ. de Sherbrooke, Sherbrooke, QC, Canada.
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