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a  b  s  t  r  a  c  t

When  multiple  acquisition  systems  are  used  to simultaneously  acquire  signals,  synchronization  issues
may  arise  potentially  causing  errors  in the  determination  of  acquisition  starting  points  and  continuous
clock  offsets  and  shifts  on each  device.  This  paper  introduces  a processing  method  to efficiently  synchro-
nize  these  signals  in  the  presence  of white  noise  sources  without  the  requirement  of  clock  sharing  or  any
other  digital  line  exchange.  The  use  of  a  signal  source,  such as white  noise  with  a  very  wide  frequency
band, is  of  great  interest  for synchronization  purposes,  due  to its aperiodic  nature.  This  high  bandwidth
signal  is simultaneously  acquired  by all the acquisition  channels,  on  distinct  systems,  and,  synchronized
afterwards  using  cross-correlation  methods.  Two  different  correlation  methods  were  tested;  a  global
method,  used  when  clock  system  frequencies  are  exactly  known,  and  a local  method,  used  when  inde-
pendent  clocks  evidence  shifts  over  time  that  cumulatively  account  for long  term  acquisition  errors  in  the
synchronization  process.  In a computational  simulation  with known  clock  frequencies  the results  show  a

synchronization  error of  ≈1/10 of  the  time  resolution,  for both  methods.  For  unknown  clock  frequencies,
the  global  method  achieved  an  error of 24/10 the  time  resolution,  indicating  a much  poorer  performance.
In  the  experimental  set-up,  only  the local  method  was  tested.  The  best  result  shows  a synchronization
error  of 4/10  of the  time  resolution.  All  the  signal  conditioning  and  acquisition  parameters  were  chosen
taking  into  account  potential  biomedical  applications.

© 2015  Elsevier  Ltd.  All  rights  reserved.
. Introduction

The human body is a highly complex system which is composed
y many subsystems with specific functions. The assessment of
uman health condition is made by visual observation or biomedi-
al signals acquisition. These signals can be composed by multiple
ariables (different physical quantities) which are measured at dif-
erent body locations [1]. Some examples of biomedical signals are:
ody temperature; bio-electric potentials; arterial blood pressure
ABP); or respiratory rate [2].

The assessment of multiple biomedical signals is a common
edical situation that produces valuable information to improve

linical diagnosis. Usually, biomedical signals are acquired by
ifferent devices, each one with its own acquisition set-up. Differ-
nt equipments have different sampling frequencies, resolutions,

anges, signal-to-noise-ratios (SNR) and temporal references [3].

The absence of a common temporal reference between sig-
als occurs when multiple signals are acquired from the same
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E-mail addresses: pvaz@lei.fis.uc.pt (P. Vaz), jmrcardoso@uc.pt (J. Cardoso).
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patient. This situation makes the combined analysis of these signals
extremely difficult. A common situation in biomedical applications
is the use of different acquisition modules, from different manufac-
turers, each one with a specific internal clock source. The inclusion
of an external clock is often very difficult or impossible. Even if the
clocks are equal, an offset in the starting points of the acquisitions
appears.

To overtake these issues, it is mandatory to have a time refer-
ence, of some sort, in order to guarantee the synchronization of
independent data streams. This work proposes a scheme where
an electronic circuitry (white noise generator) is used to automati-
cally synchronize data signals acquired from different devices and
setups.

This technique is based on the acquisition of a random signal
(white noise) by all the data acquisition systems (DAS) during their
normal operation. The biomedical signal must be internally syn-
chronized with the random signal by each device. Thereafter, these
random signals are processed using cross-correlation methods to

determine the delay between each physiological signal and to build
a common temporal reference. Cross-correlation is a widely used
method for delay determination in random shifted signals [4–6],
including for biomedical purposes [7].

dx.doi.org/10.1016/j.bspc.2015.02.015
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
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Fig. 1. Block diagram for hardware connections.

. Methods

.1. General approach

The proposed methodology requires an external hardware
mplementation that generates the synchronization signal (white
oise generator). This signal is digitized by all the DAS (Fig. 1). At this
oint, one should say that this requirement is a drawback because
he majority of the biomedical devices, used in clinical practice, do
ot allow either hardware or firmware changes. Nevertheless, in
esearch areas that use laboratory-phase equipment, these changes
re easily applied.

White noise is a random nature process with constant spectral
ensity (Eq. (1)), i.e.,  all the frequencies presented in the spectrum
ave the same power. Moreover, it presents a Gaussian probability
ensity function (PDF) given by Eq. (2) [8].

H(jw)|2 = constant (1)

(x) = e−((x−�)2/2�2)

�
√

2�
(2)

where p(x) is the PDF, � is the mean of the distribution and � is
he standard deviation. In the frequency domain, the white noise is
haracterized by a constant distribution, yielding a theoretical infi-
ite bandwidth (Eq. (1)), which means that two adjacent samples
re completely independent. The randomness of white noise makes
t aperiodic, in other words, a signal with infinite period.

The autocorrelation of a periodic function (P ∈ R) (Eq. (3)) is
tself periodic with the same period.

P  ∈ R  : f (x + P) = f (x) (3)

A correlation is performed between two synchronization sig-
als acquired by different DAS and delayed by a certain number of
amples. The autocorrelation becomes a cross-correlation but the
onsiderations about periodic and aperiodic signals are still valid
9,10].

To our application, the correlation can be written as Eq. (4)
here the correlated signals are the same (x[n]) but with one of

hem delayed by a random number of samples (ı).

1
N−1∑
xx[k] =
N

n=0

x[n]x[n + ı + k] (4)

where x is the synchronization signal and N represents the
umber of samples of the largest signal. The result from the cross-
orrelation is a measure of the similarity of both signals as function
f the delay k.
g and Control 18 (2015) 394–400 395

2.2. Computational simulation

A simulation was  conducted to prove the concept of white noise
synchronization using cross-correlation. This simulation started
with the generation of a random signal with a Gaussian PDF (Snoise),
with a large sampling frequency (f 0

s = 1 MHz) and 20 s length. Fig. 2
(left) shows the histogram of the Snoise, which is similar to a Gauss-
ian function with a zero mean and a standard deviation equals
to one. The spectrum is presented in Fig. 2 (right). Although with
some fluctuations, the spectrum is constant for all the frequencies.
These fluctuations occur due to the existence of a finite number of
samples.

To prevent the cross-correlation to be periodic, a signal with
infinite bandwidth is the perfect solution. However, the complete
independence of two consecutive samples in Snoise cause problems
after the digitalization. Fig. 3 shows two signals (S1 and S2), that
result from the downsampling of the Snoise, with the same frequency
and delayed by only one sample. Signals are completely different
from each other.

Moreover, by the Nyquist theorem, when the signal is digitized
at a specific sampling frequency (fs), the resulting bandwidth is
restricted in the range [0, fs/2]. Aliasing occurs when the original
data has frequencies above this limit distorting the digitized data.
These limitations can be bypassed with the use of a low-pass filter.

A low-pass filter limits the bandwidth of the synchronization
signal and causes samples to be dependent on past values. The cut-
off frequency selection is the key point in the design of the method.
To choose a correct frequency it is necessary to take into account the
sampling frequencies used by all the DAS. A high cut-off frequency
will lead to aliasing but a low cut-off frequency can compromise
the correlation and cause a periodic output where it is difficult to
compute the real delay between signals.

The selection of the digitalization sampling rate depends on the
acquired physiological signals. For example, ECG sampling rate vary
from 125 Hz to 1 kHz [11,12], pulse oximetry from 125 Hz to 1 kHz
[13–15] and pulse waveform from 1 kHz to 20 kHz [16,17]. Only in
special cases higher frequency rates are utilized [18].

According to that information, a minimum sampling rate of
2000 samples/s was considered, leading to an anti-aliasing sec-
ond order (Butterworth) low-pass filter with a cut-off frequency
of 1 kHz. This frequency ensures enough precision for biomedical
applications and prevent the occurrence of a periodic signal. The
filter transfer function is defined as:

|H(jω)| = 1√
1 + (ω/ωc)4

(5)

where ωc is the cut-off angular frequency in rad/s.
Fig. 4 shows the frequency response of the applied filter (red).

This response is characteristic of a second order low-pass filter
with a roll-off of 40 dB/decade. The spectrum signal (blue) shows
the filtered white noise signal spectrum. This new signal would be
denominated Srand. The amplitude of the spectrum decreases above
1 kHz but high frequencies are not completely extinguished.

Low order filters (first and second) are suitable for this applica-
tion since the existence of some high frequencies is not a critical
issue and the selection of a cut-off frequency of 1 kHz ensure suffi-
cient precision for biomedical applications.

2.2.1. Global method
The Snoise was  intentionally created with a large number of sam-

ples, to allowing for a simulation of the acquisition process. This

simulation requires a downsampling of the signal with a fixed
sampling rate and delay. Two  different DAS have been simulated
with sampling frequencies of 20 kHz and 2000 Hz and with a ran-
dom delay between the starting points. No external noise (e.g.
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Fig. 2. Analysis of the white noise signal (Snoise): histogram (left); frequency spectrum (right).
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Fig. 4. Frequency response of the applied filter (red) and spectrum of the filtered
ig. 3. Two samplings of white noise signal with fs = 500 kHz and with 1 sample delay.

rtificial thermal noise, shot noise or ADC quantization noise) was
dded to simulate a situation without interferences.

Cross-correlation methods are only applicable for signals with
he same sampling frequency but, in our study, signals present dif-
erent sampling rates. To solve this issue there are two options: (1)
sing interpolation methods to increase the number of samples in
he signal with lower time resolution; (2) perform a downsampling
n the signal with the highest time resolution. In this work, the (2)
ption was used because the random signal has an unpredictable
ehaviour and using interpolation methods can lead to errors in the
econstruction of the signal.

Fig. 5 shows two examples of cross-correlations between sig-
als with different sampling frequencies. In the first case Fig.
5-Left), one signal is “acquired” at f 1

s = 20 kHz and the other one is
2
acquired” at fs = 2000.0 Hz. The signals were delayed by 25,432

amples in the original data (it is equivalent to 25.432 ms  @ f 0
s =

 MHz). The maximum correlation is founded at a delay equal to 51
amples (25.5 ms  @ f 2

s = 2 kHz) and it is a unique peak protruding
signal (Srand) (blue). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)

from the noise area (value equal to 2.0 × 10−3)). The exact error in
the delay determination is 0.068 ms  which is less than the tempo-
ral resolution of the signal with the lower sampling rate (0.5 ms
@ f 2

s = 2000.0 Hz). The cross-correlation was computed using the
function xcorr of MATLAB®.

This method shows good results in the simulation case because
the sampling rates of the two signals are high enough to obtain a
good temporal resolution in the cross-correlation. Delay identifica-
tion problems may  appear with lower sampling rates.

When the acquisition systems does not have a temporal refer-
ence for the acquired data, it is necessary to estimate the temporal
separation of consecutive samples based on the device samp-
ling rate. In some devices, it is possible that the sampling rate is
slightly different than the expected one. This fact causes a mis-
match between the estimated time and the real acquisition time.

Since the error is cumulative, i.e., the error in the last sample is
the sum of the errors in each sample (N × error). This effect is criti-
cal in long term acquisitions because some problems occur both in
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ig. 5. Cross-correlation between two similar signals delayed by 25.432 ms,  one
2
s = 2000.0 Hz; Right – f 2

s = 2000.5 Hz.

he identification of the initial delay and in the synchronization of
urther samples.

The cross-correlation in Fig. 5 – right shows a simulation for the
bove situation. In this case, the cross-correlation was  computed
ith one signal sampled with f 1

s = 20 kHz and the second sampled
ignal with f 2

s = 2000.5 Hz. This small variation in the sampling fre-
uency corresponds to only 0.025% of the initial value (2000 Hz).
he delay in the original data was maintained (25.432 ms). The
ecline in the correlation is clear. Both the peak enlargement and
he lower value of the correlation (2.2 × 10−4) are the proof of the
orse result. Furthermore, the delay is identified at 47 samples,
hich correspond to 23.5 ms  if the 2 kHz sampling rate is consid-

red.
Fig. 5 – right situation happens because the correlation method

inimize the error between signals in a global way. Although the
nitial samples contain only small errors, larger errors are detected
n the final samples of the signal. These errors contribute to push the

aximum of the correlation coefficient to a wrong value. With this
elay, if we superimpose the two data, large errors are encountered

n the initial and final part of the signal. The trigger method also
oes not solve this problem. Even if the trigger can synchronize
orrectly the initial point of the acquisition, samples far away from
he trigger accumulate large errors.

To overtake this issue a new approach was necessary. A local
ethod, based on the same cross-correlation, was  implemented.

his methodology uses small segment of one signal to perform the
ross-correlation with the other one (complete signal). The main
rawback of this methods lies in the need of a reliable temporal
ase for one of the signals, i.e., knowing the correct sampling rate.

The simulation that follows tries to define the final algorithm
hat will be applied in real data.

.2.2. Local method
The local method was  applied to two signals, described earlier,

ith f 1
s = 20 kHz, f 2

s = 2000.5 Hz and the same delay (25.432 ms)
n the acquisition starting point. The first step of the local method

onsists in the selection of a short segment (0.5 s) of the second sig-
al (f 2

s ). After that, a cross-correlation between the short segment
nd the complete first signal was performed. The maximum of the
ross-correlation is identified and its position (d1) is saved, together
red at f 1
s = 20 kHz and downsampled to 2 kHz and the other acquired at: Left –

with the initial short segment point (s1). Moreover, the full width
at half maximum (FWHM), for the correlation peak, is computed as
a measure of the quality of the correlation.

By selecting a new segment, displaced by 0.5 s, and performing
the same procedure, a new pair (s2, d2) is recorded. This procedure
is performed successively up to the last segment (sN, dN), allowing
the construction of the matrix represented in (6). A linear regres-
sion is applied to this data in order to define a mapping function
where the points of the signal without temporal reference (s) cor-
respond to points in the reliable signal (d). The slope of the linear
regression measures the inaccuracy of the sampling rate estima-
tion. If the sampling rate is equal to the estimated one, the slope of
the line will be equal to 1.

Vs,d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 d1

...
...

si di

...
...

sN dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Fig. 6 shows a scatter plot of the pairs (si, di). The points are
marked with their respective FWHM (error bars). The error bars
are not visible because of their small size when compared to the
plot scale. The black line corresponds to the linear regression of
the data. The very good fitting is confirmed by the value of the
determination coefficient (R2 = 1.0000).

The linear regression (mapping function) corresponds to
s(d) = 0.99975 × d + 49.6438 where d is the sample in the segmented
signal that corresponds to the sample (d = 1) in the time vector.
For example, the first sample of the delayed signal (d = 1) corre-
sponds to the sample number 51 of the time vector signal (s = 51).
This delay corresponds to the correct result achieved in the sim-
ple cross-correlation method (25.5 ms). Since decimal values have
no meaning, because we  are dealing with discrete points, all the

results need to be rounded.

The performed simulation intends to prove the ability of a white
noise signal to synchronize different DAS in a biomedical context,
even when the sampling frequencies are not accurate. The next
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Fig. 6. Scatter plot of the pairs (si , di) jointly with theirs errorbars (blue, see detail).
The  errorbars are small compared with the y-axis scale. The black line corresponds to
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Fig. 7. Correspondence between the NI time samples and ArduinoTMtime samples.
Each line represents one different data set (DS).

Table 1
Computed and real delays for the initial point of 3 distinct data-sets.

Delay (s) Data-set 1 Data-set 2 Data-set 3
he linear regression with the equation expressed in the bottom right hand corner.
For interpretation of the references to colour in this figure legend, the reader is
eferred to the web  version of the article.)

ection shows a simple experimental assembly to record synchro-
ization signals in real conditions.

. Experimental results

The experimental set-up was based on the architecture shown
n Fig. 1. A simple experiment was conducted by using two  DAS
nd a white noise generator. A two pole active low-pass filter was
mplemented with a cut-off frequency of ≈1 kHz [19].

Moreover, an instrumentation amplifier was added to control
he gain and the DC level of the synchronization signal.

The synchronization signal was digitized by a National
nstrumentsTMDAQ (NI-USB-6210) (DAS 1) with a resolution of 16
its and an input range of ±10 V. An ArduinoTM Duemilanove (DAS
) with a resolution of 10 bits and an input range of 0–5 V was
sed as a second independent acquisition platform. The preferen-
ial approach would be to split the signal using two  channels and
o adjust the gain and the offset to fill the input range of the two
AS. However, this method adds a noise level to the synchroniza-

ion signal (from the analogue electronic components) leading to
ifferent noise levels for each one of the channels. To prevent this
ffect, an adjustment of the signal range to the shortest input range
as performed. In our experiment, the ArduinoTMhas the smaller

nput range, so the signal was conditioned to a range of 0–5 V.
The NI-DAQ has acquired the signal with a sampling rate of

0 kSamples/s and the ArduinoTMwith an approximate sampling
ate of 2 kSamples/s. One must stress that data acquired by NI-DAQ
as a reliable temporal vector when compared to the ArduinoTM.
hese features (reliable temporal vector and highest sampling
ate) makes the NI-DAQ as the reference DAS for the construc-
ion of ArduinoTMtemporal reference. Three data sets (DS) were
cquired on both DAS. The acquisition was started in the NI-DAQ
nd, a random time later, in the ArduinoTM. The starting time of
rduinoTMacquisition was recorded in the NI-DAQ by using an
xternal trigger.

Thereafter, the algorithm explained in Section 2.2.2 is applied to
he data. A segment with 0.5 s was selected with a displacement of
.5 s. The resultant data with (pairs (si, di)) was converted to time,

hich is a more intuitive physical quantity, and it is presented in

ig. 7.
In DS2 (green line) and DS3 (red line), 19 segments were corre-

ated. In DS1 (blue line) only 17 segments were correlated due to NI
Computed 11.249 ± 0.0015 10.395 ± 0.0015 10.116 ± 0.001
Real delay 11.2495 ± 0.00005 10.3955 ± 0.00005 10.1162 ± 0.00005

signal length constrains. By using this data, it is possible to conduct a
linear regression that associates the reliable NI time reference to the
ArduinoTMestimated time vector. The parameters estimated from
data are presented, for the three DS, in Eqs. (7)–(9), respectively.

tNI = 0.9984 × tArduino + 11.249 (7)

tNI = 0.9984 × tArduino + 10.395 (8)

tNI = 0.9984 × tArduino + 10.116 (9)

The ArduinoTMtime reference was constructed, for each acqui-
sition, by using these equations. The slope of the three lines is
identical which is expected since the acquisition systems are the
same. This means that the change between the real sampling rate
and the estimated one exists and it is equal for all the cases. If the
estimated sampling rate and the real sampling rate were the same,
the slope of the line would be exactly 1. In this case, their slope is
0.9984 which means that exists a small difference. For all the cases
the R2 was  1.0000.

The computed and real delays, for the first sample of
ArduinoTMacquisitions are presented in Table 1.

The resolution of the real delays is better than the computed
ones. The real time delays are determined by using a trigger signal
acquired from the NI-DAQ data. The identification of this trigger is
unambiguous which leads to a minimum identification error cor-
responding to the NI-DAQ time resolution, i.e., 0.05 ms.

On the other hand, the temporal resolution of the computed
delay is poorer due to the ArduinoTMtemporal resolution (0.5 ms).
This error is also combined with an estimated error calculated using
the correlation ± FWHM/2 for a major estimation. The results show
a minimum delay identification error of 0.2 ± 1 ms (DS 3) and a
maximum of 0.5 ± 1.5 ms  (DS 2). These values are close to a zero
since the correct samples were identified in all 3 data sets. The

minimal resolution of 0.5 ms  causes the uncertainty in error iden-
tification to be larger than its absolute value. A large uncertainty is
obtained because it was  enlarged by the consideration of an error
equals to the FWHM.  The highest obtained FWHM was 11 samples
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Fig. 8. Final synchronization. The blue line shows the NI-DAQ signal with its original
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ampling rate. The red line shows the Arduino signal with the new temporal vector.
For interpretation of the references to colour in this figure legend, the reader is
eferred to the web  version of the article.)

hich correspond to 5.5 ms  but it is clearly an outlier. All the other
ross-correlations the FWHMs  never surpass 5 samples.

The final result is the creation of a temporal vector for each data
et. Fig. 8 shows the superposition of the synchronized signal from
he DS3. The blue signal shows the NI-DAQ data which starts at time
quals 0 s. On the other hand, the acquisition of the ArduinoTMonly
tarts at 10.116 s (red signal). By the observation of the figure it is
ossible to identify a slight delay in the ArduinoTMdata. This error

s comprised in the correlation FWHM.

. Applicability

The proposed system was implemented in a multi-channel
cquisition system developed by the Electronics and Instru-
entation Group (GEI) of the University of Coimbra [16]. This

ystem is composed by 5 acquisition modules: Multifunctional
AS – National Instruments (NI) 6210; Pulse wave velocity (PWV)

dentification; Electrocardiography (ECG); Photoplethysmography
PPG); and Pulse wave analysis (PWA).

The PWA  modules incorporates its own acquisition and control
ystem (dsPIC33 from Microchipˆ® ) while the other modules sig-
als (PPG, ECG and PWV) are digitized by the NI-DAQ. The PWA
odule introduces a delay of 112 ms  between the pulse waveform

ignal and the synchronization signal acquisitions. In addition, the
sPIC33 executes real-time signal processing tasks like signal inte-
ration and baseline removal. This firmware complex activity of
he dsPIC33 adding to the external clock ageing and temperature
ependences could lead to impairments on the acquisition times.

The local cross-correlation method was developed to account
or NI-DAQ and dsPIC clock offsets and mismatches when long term
cquisition are performed. In that specific case, we believe that the
ocal method is a better synchronization algorithm that would lead
o more reliable results.

NI-DAQ signals are internally synchronized. The white noise gen-
rator circuit was included in the EEG module due to size constrains
nd its signal transmitted, using a bus, to the NI-DAQ and PWA
odules.
. Conclusions

In this paper a synchronization method, based in cross-
orrelation, for biomedical signals which are acquired with
g and Control 18 (2015) 394–400 399

different devices is proposed. This method exploits the random
nature of white noise and its large frequency band. These features
guarantee that it is unlikely to find the same segment of signal in
a short time period making it a good candidate for time synchro-
nization applications.

A computation simulation was  performed in absence of quan-
tization noise and using an infinite frequency band white noise. In
these perfect conditions, an error of 0.068 ms  (13% of the time res-
olution) was achieved. This error is less than the time resolution of
the cross-correlation (0.5 ms)  which means that the correct sample
is identified for the delay calculi.

In the case of minimal variations in the sampling frequency
(0.025%) the simple cross-correlation achieved a minimal error
of 1.93 ms  (259% relative error). This result shows a poor per-
formance in the identification of a delay between two biological
signals. Moreover, the quality of the correlations decreases with the
increase in the sampling rate difference. To overpass this problem
a more complex approach was used.

The local approach uses a short segment of the synchronization
signal to perform the cross-correlation and identify, in the signal
with a reliable sampling rate, the correspondent points. By selecting
many segments it is possible to obtain a set of points on which
a linear regression is performed. With this linear regression it is
possible to create a new time vector for the data with unknown
sampling rate. This method identifies the initial delay with an error
of 0.068 ms,  in accordance with the previous result.

Section 3 shows the results achieved with a real experimental
set-up. A National InstrumentsTMNI-DAQ and an ArduinoTMwere
used as the DAS. The first system uses a sampling frequency of
20 kHz and the second one an undefined frequency of approx-
imately 2 kHz. Three different data sets were recorded and
processed using the algorithm presented in Section 2.2.2. The best
result was achieved with the DS3 with a acquisition starting point
identification error of 0.2 ms  (40% relative error).

Concluding, the presented methods are capable of synchronize
acquired biomedical signals with different devices with an accu-
racy of a millisecond and, most significantly, under the signal time
resolution. In the physiological processes, this scale is small enough
to be considered a good result.
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