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Abstract. The experiment CRESST-II aims at the detection of dark matter with scintillating
CaWO4 crystals operated as cryogenic detectors. Recent results on spin-independent WIMP-
nucleon scattering from the CRESST-II Phase 2 allowed to probe a new region of parameter
space for WIMP masses below 3 GeV/c2. This sensitivity was achieved after background lev-
els were reduced significantly. We present extensive background studies of a CaWO4 crystal,
called TUM40, grown at the Technische Universität München. The average beta/gamma
rate of 3.51/[kg keV day] (1-40 keV) and the total intrinsic alpha activity from natural decay
chains of 3.08 ± 0.04 mBq/kg are the lowest reported for CaWO4 detectors. Contributions
from cosmogenic activation, surface-alpha decays, external radiation and intrinsic alpha/beta
emitters are investigated in detail. A Monte-Carlo based background decomposition allows
to identify the origin of the majority of beta/gamma events in the energy region relevant for
dark matter search.
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1 Introduction

During the last two decades, the sensitivity of experiments aiming for the direct detection
of particle dark matter [1] in form of weakly interacting massive particles (WIMPs) [2] has
been constantly improved. For the spin-independent WIMP-nucleon cross section impres-
sive sensitivities were reached: currently the liquid-xenon based LUX [3] experiment reports
the best upper limit (7.6 · 10−10 pb at 33 GeV/c2). A variety of experiments with different
techniques [4] have been operated, however, the results are not consistent. A few experi-
ments [5–7], among which is CRESST-II (Cryogenic Rare Event Search with Superconducting
Thermometers) [8], reported a signal excess which is not compatible with limits by other dark
matter searches [9–12]. Data from a re-analysis of the commissioning run of CRESST-II [13]
showed slight tension with a WIMP interpretation of CRESST-II data and, recently, the first
data of CRESST-II Phase 2 [8] suggest a background origin of the excess.

The improvement in sensitivity of CRESST-II detectors has been achieved by a sig-
nificant reduction of backgrounds. In this paper, we present a comprehensive study of the
different backgrounds observed in CRESST-II Phase 2 (section 3). The knowledge of the
background origin is crucial for future dark matter searches based on the CRESST techno-
logy. The Monte-Carlo (MC) based decomposition of the spectrum into different background
sources which is presented in section 4 gives an important input for future R&D activities.

2 The detector module TUM40

CRESST-II detectors are based on a two-channel detector readout which is the key fea-
ture to discriminate irreducible radioactive backgrounds. CaWO4 crystals of 200-300 g each,
equipped with transition-edge-sensors [14], are operated as cryogenic detectors (called phonon
detectors) which allow to measure precisely the total deposited energy E of a particle inter-
action. An excellent energy threshold of O(500 eV) and a resolution on a hlevel (at 2.6 keV)
were achieved [8, 15]. In addition, the scintillation light output of these crystals is monitored
by a cryogenic silicon-on-sapphire detector (called light detector). Since the relative amount
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Figure 1. Schematic view of the novel detector module. The block-shaped target crystal TUM40
with a mass of m = 249 g is held by CaWO4 sticks. Together with the scintillating polymeric foil
the sticks establish a fully scintillating inner detector housing which provides an efficient active veto
against surface events. A separate silicon-on-sapphire light detector is installed. For details see [15].

of scintillation light, called light yield (LY ),1 strongly depends on the kind of particle interac-
tion (due to quenching [16]) this channel provides a discrimination of beta/gamma (LY ∼ 1),
alpha (LY ∼ 0.2) and nuclear-recoil events (LY . 0.1). To a certain extent even O, Ca and
W recoils can be distinguished [17]. CRESST uses a unique multi-element target for WIMP
search in a single experiment.

Due to a finite resolution of the light channel, the beta/gamma and nuclear-recoil bands
overlap in the region-of-interest (ROI) for dark matter search which is typically defined
between energy threshold and 40 keV. Several background sources related to surface-alpha
decays were identified in the previous run of CRESST-II [18]. In particular 206Pb nuclei from
210Po decays on surrounding surfaces limited the sensitivity. These events appear at low light
yields similar to W recoils [15] and are thus indistinguishable from potential WIMP scatters.

However, the decay of 210Po has a corresponding alpha particle with an energy in the
MeV-range which is used to reject this background source. Alphas hitting scintillating ma-
terials surrounding the CaWO4 crystals produce sufficient additional light to clearly identify
a simultaneously occurring recoil of a heavy nucleus.

The crystal investigated in this paper, a block-shaped CaWO4 crystal of 249 g, is
mounted in a novel detector module. Instead of (non-scintillating) metal clamps, CaWO4

sticks are used to support the target crystal. The crystal is surrounded by a reflective and
scintillating polymeric foil which together with the CaWO4 sticks realizes a detector hous-
ing with fully-scintillating inner surfaces. A schematic view of the novel detector design is
shown in figure 1, for a detailed description see [15]. As will be presented in section 3.2,
this concept provides an efficient rejection of surface-alpha induced Pb-recoils and solves the
main background problem of earlier CRESST-II runs [18]. With this detector, a phonon
trigger threshold of ∼ 0.60 keV and a resolution of σ=(0.090±0.010) keV (at 2.60 keV) were
achieved [8, 15].

The detector module presented in this paper uses a CaWO4 crystal, called TUM40,
grown at the crystal laboratory of the Technische Universität München (TUM) [19]. At
this institute, a Czochralski crystal-production facility was set up, dedicated to the growth
of CaWO4. The furnace is exclusively used for the CRESST experiment which is crucial

1The light yield is defined as 1 for electron recoils of 122 keV, i.e. the light energy of such events is defined
as 122 keVee, the so-called electron-equivalent energy [15].
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for the requirements in terms of radiopurity. Since radioactive isotopes in CaWO4 crystals
can originate from the raw materials themselves [20], a careful selection of these materials is
necessary. In particular, in CaCO3 powders which are often extracted from geological settings
considerable contaminations were found (e.g. 226Ra with an activity of O(10 mBq/kg) [20]).
Beyond that, impurities can be introduced during processing and handling of raw materials,
during crystal growth and detector production. An important source of contamination is
Rn-implantation from air. The gaseous isotope 222Rn (half-life 3.6 d) which is produced in
the U-238 chain easily escapes from solid material, whereas its solid daughter nuclei stick
to surfaces. Therefore, in particular the surfaces of the detectors and of their surroundings
get contaminated and the exposure to air containing Rn has to be minimized. Further,
storing CaWO4, which is often delivered as a powder, requires adequate storage to minimize
Rn-related backgrounds.

3 Experimental results

The first data of TUM40 in CRESST-II Phase 2 with an exposure of 29 kg-days were used
for a low-mass WIMP analysis [8] and for the background studies presented in this paper.

3.1 Beta/gamma background

The dominant part of events observed with CRESST-II detector modules are gamma or beta
induced electron recoils which result in a highly populated beta/gamma band. At lowest
energies (E . 10 keV), due to the finite resolution of the light detector there is a strong
overlap with the ROI for dark matter search. Therefore, the beta/gamma background level
is crucial for the sensitivity of CRESST-II detectors.

The low-energy spectra (E ≤ 100 keV) of commercially available CaWO4 crystals are
usually dominated by two intrinsic beta/gamma background components [21]:

• Beta-decays of 210Pb which is part of the U-238 chain. It decays into 210Bi with a
half-life of 22.3 years [22]. In 84% to all cases, an excited energy state of 210Bi with an
energy of 46.5 keV is populated. If the contamination is intrinsic to the crystal, both,
the energy of the de-excitation gamma and that of the corresponding electron are
detected in the crystal. These energy depositions cannot be resolved as separate events
with cryogenic detectors and, hence, the two signals add. In many crystals, prominent
210Pb beta spectra are visible (decreasing in intensity from 46.5 keV towards the Q-
value of 63.5 keV) which are evidence of a strong internal contamination. If a 210Pb
decay takes place on surfaces of materials outside the detector modules, only the de-
excitation gamma is detected which results in a distinctive peak at 46.5 keV (external
contamination).

• Beta-decays of 227Ac which is part of the U-235 chain. It decays to 227Th with a half-life
of 21.8 years [22]. In 35% (10%) of the decays, an excited state of the daughter nucleus
at the energy level of 24.5 keV (9.1 keV) is populated which relaxes by gamma-emission
to the ground state. Therefore, 3 beta-spectra are visible, each of them extending up
to the Q-value of 44.8 keV with two characteristic edges at 24.5 keV and 9.1 keV [23].

In figure 2, the characteristic features of 210Pb and 227Ac are clearly visible in the spectrum
(black dashed line) of the crystal “VK31” which is operated in CRESST-II Phase 2. The
mean background rate in the ROI is about 30 counts/[kg keV day] which is a typical value
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for CaWO4 crystals of that supplier.2 The best such commercial crystal in terms of intrinsic
radiopurity, called “Daisy”, has an average rate of ∼ 6 counts/[kg keV day] (red dashed line
in figure 2).

For the first time, a detailed beta/gamma-background study of a TUM-grown crystal
(TUM40) was performed in this paper. The bulk contamination and the average background
rate could significantly be reduced to 3.51/[kg keV day] in the ROI which is a reduction by a
factor of 2-10 compared to commercial CaWO4 crystals. The histogram in figure 2 shows the
low-energy spectrum of TUM40 from the first 29 kg-days exposure of CRESST-II Phase 2.
Distinct gamma peaks appear above a rather flat background which was not observed with
commercial crystals. The dominant ones could be identified to originate from cosmogenic
activation of W isotopes:

• Proton capture on 182W (and a successive decay) can result in 179Ta which decays via
EC to 179Hf with a half-life of 665 d. The EC signature in our detectors is exactly
the binding energy of the shell electrons of 179Hf. In addition to a peak at 65.35 keV
(K-shell) which was reported earlier [21] also distinct peaks at 11.27 keV (L1-shell),
10.74 keV (L2-shell) and 2.60 keV (M1-shell) could be identified here. The energies of
all identified lines agree within errors with literature values and are listed in table 1
with their corresponding activities. For the latter, the detection efficiency of TUM40
is considered (see [8]). The K-shell EC line of 179Ta has the highest rate: AK =
(277.2± 15.7)µBq/kg.

• Proton capture on 183W can result in 181W which decays via electron capture (EC) to
181Ta with a half-life of 121 d. We confirm the presence of a line at 74.02 keV (K-shell
+ 6.2 keV gamma) [21] with an activity of AK = (58.1 ± 14.5)µBq/kg. To observe
higher-order shell EC processes, present statistics is not yet sufficient.3

In addition, gamma lines from external radiation can be identified: lines at 46.54 keV from
210Pb and, at higher energies, from 234Th, 226Ra, 212Pb, 208Tl, 214Bi, 228Ac and 40K. A
peak from copper X-ray fluorescence at 8.05 keV (Kα) is observed since most of the material
surrounding the detector is copper. The corresponding activities are listed in table 1. The
contribution of these lines to the background in the ROI is investigated in section 4.

There are no obvious features of beta spectra visible in the data of TUM40. However, the
background contribution of beta/gamma decays from natural decay chains could be derived
by a detailed analysis of the alpha spectra (see section 3.3) in combination with a dedicated
MC simulation (see section 4).

3.2 Surface-alpha background

A very detailed description of the crucial backgrounds related to surface alpha-events is given
in [15]. Here, the basic results of that analysis are presented.

The data of CRESST-II detectors is often displayed in the light yield vs. energy plane,
as shown in figure 3 for TUM40: at light yields of ∼ 1 the dominant beta/gamma band
arises, almost horizontal at energies & 50 keV and slightly decreasing (in light yield) towards
smaller energies due to the scintillation properties of CaWO4 [23]. The parametrisation of

2The crystals were supplied by the General Physics Institute of the Russian Academy of Sciences (Moscow,
Russia).

3Since CRESST-II Phase 2 is planned to run for ∼ 2 years a further confirmation of these peaks is in reach
by comparing the evolution of the event rate over time with the expected half-lifes.
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Figure 2. Histogram of the low-energy events (black bars) recorded during CRESST-II Phase 2
with TUM40 which was produced at the Technische Universität München. The most prominent
peaks are labelled (in red). In comparison, the background levels of commercial CaWO4 crystals
operated as detectors in CRESST II Phase 2 are shown. The dashed red line indicates the rate of the
crystal “Daisy” which has the lowest background rate among all commercial crystals (∼ 6 counts/[kg
keV day]). The dashed black line shows the background of a typical commercial crystal, called
“VK31” (∼ 30 counts/[kg keV day]). In that, the characteristic beta spectra of 227Ac and 210Pb
clearly dominate.

the event bands is given in [15]. The ROI for dark matter search, including all 3 nuclear
recoil bands from threshold to 40 keV,4 is shown as a grey area in figure 3. The reference
region for 206Pb recoils induced by 210Po alpha decays is also indicated in the plot (area
enclosed by the green line) at light yields of ∼ 0.01 between 40 keV and 107 keV. In earlier
runs of CRESST-II this region was populated: at the full kinetic energy of the Pb nucleus
(decay on surfaces of surrounding material and of the crystal) a peak arose at ∼ 103 keV
with a exponential tail towards lower energies. The latter comes from 210Po decays which
are implanted in surrounding material. It was identified to originate from a contamination
in the metal clamps holding the crystals (e.g. by Rn-implantation from air). The resulting
spectrum of Pb-recoils was reproduced by a SRIM simulation [18].

In the first data of TUM40 acquired in CRESST-II Phase 2 no events are observed in
the reference region for 206Pb recoils, while with the background level of Phase 1 [18] 6.9±2.6
events would be expected. Since in the novel detector module (see section 2) the crystal is
completely surrounded by scintillating materials, the corresponding alpha with an energy of
∼ 5.3 MeV produces sufficient additional light to shift 206Pb recoils out of the nuclear recoil
region. A population of such vetoed events is visible in figure 3 at light yields of 0.2-0.5 (red
dots). This first data show the high efficiency of the surface-alpha event rejection realized

4In [8], the 50% acceptance bound for O recoils is defined as the upper light yield bound for the ROI. This
convention is also used in this paper.
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source Elit [keV] [22] A [µBq/kg]
179Ta (M1) 2.6009 70.3±15.8

Cu X-ray (ext.) 8.048 27.1 ±14.3
179Ta (L2) 10.74 24.8±14.5
179Ta (L1) 11.271 202.2±16.0
210Pb (ext.) 46.54 78.6±14.8
179Ta (K) 65.35 277.2±15.7
181W (K) 74.02 58.1±14.5
234Th (ext.) 92.4 123.5±11.7
226Ra (ext.) 186.2 109.0±11.2
212Pb (ext.) 238.6 185.6±12.9
208Tl (ext.) 583.2 93.4±8.4
214Bi (ext.) 609.2 69.3±24.6
228Ac (ext.) 911.2 54.8±6.8
228Ac (ext.) 969.0 36.3±6.1
40K (ext.) 1432.7 41.4±6.2
208Tl (ext.) 2614.0 28.5±3.9

Table 1. Activities A of the identified gamma-lines measured with the crystal TUM40 in 29 kg-
days of exposure during CRESST-II Phase 2. External gamma lines (ext.) as well as peaks from
cosmogenically-induced EC decays are listed (the shell of the captured electron is shown in brackets).

with the new detector concept. No such backgrounds are expected within the sensitivity
goals of CRESST-II Phase 2 with the final exposure [15].

Furthermore, an additional background source most probably originating from contam-
inations on surfaces of materials outside the detector housing was identified in this paper.
Electrons (e.g. from beta-emitters from natural decay chains) pass through the polymeric
foil (thickness 50µm), lose some of there energy therein and produce additional light before
getting absorbed by the CaWO4 crystal. Dedicated measurements show that electrons, in-
dependent of there energy, produce a roughly fixed amount of scintillation light in the foil
with an energy of O(1 keV). This explains the additional population of events above the
beta/gamma band (labelled by “external betas” in figure 3). Since an approximately fixed
amount of addition scintillation light adds to the light produced by the beta in the crystal,
the excess in light yield gets bigger towards lower energies. The analysis performed in sec-
tion 4 finds a significant contribution of this event population to the overall background in
the ROI.

3.3 Alpha background

Due to the phonon-light technique of CRESST-II detectors, alpha events can be perfectly
discriminated from other backgrounds, particularly, from the dominant beta/gamma popula-
tions. In case of an internal contamination, the full energy (Q-value) of a decay is measured.
Therefore, the most obvious approach to investigate intrinsic radioactivity of CaWO4 crys-
tals is the analysis of discrete alpha lines which arise at energies & 2 MeV far off the ROI.

– 6 –
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Figure 3. Light yield vs. energy plot of the events (dots) recorded with TUM40 in CRESST-II
Phase 2. At light yields of ∼ 1 the dominant band of beta/gamma events shows up. Due to light
quenching [16] nuclear recoils have a reduced light yield. The ROI for dark matter search is shown in
grey. Surface-alpha related 206Pb recoil background would be expected in the region enclosed by the
green line. Due to the scintillation veto of the novel detector module, this area is free of events. All
206Pb recoils observed are shifted to higher light yields (red dots). External betas passing through
the scintillating foil show up at higher light yields compared that of events in the beta/gamma band.

Distinct alpha peaks from intrinsic contamination of the natural decay chains as well as of
radioactive rare-earth metals (e.g. 147Sm) and the isotope 180W are observed.

With TUM40 decays from the three natural decay chains U-238, U-235 and Th-232 are
observed. All individual decays are listed with their respective half-life and Q-values (Elit)
in table 2. The detailed study of the intrinsic alpha contaminations performed in this work,
enables to derive all relevant beta-decay rates. This provides a quantification of the intrinsic
contamination at low-energies for the first time.

The large dynamic range and the discrimination capability of CRESST-II detectors
for alpha events is illustrated in figure 4. The energy measured in the phonon detector is
plotted versus the (electron-equivalent) energy measured in the light detector with the module
TUM40 in 29 kg-days of exposure. Due to light quenching the alpha band is well-separated
from the beta/gamma band. Besides lines from 147Sm and 180W, all peaks can be attributed
to alpha decays from natural decay chains clustering at energies between 4 and 7 MeV. The
total alpha activity from intrinsic contamination is Atot = (3.08±0.04) mBq/kg to which
238U ((1.01±0.02) mBq/kg) and 234U ((1.08±0.03) mBq/kg) from the U-238 chain are the
dominant contribution. The histogram in figure 5 shows the identified alpha peaks of lower
intensities ((∼ 10− 100)µBq/kg) between 4 and 7 MeV. At even higher energies beta-alpha
coincident events are visible in figure 4 (214Bi/214Po and 212Bi/212Po at ∼ 7.8 − 12 MeV).
These subsequent decays are too fast to be disentangled as separate events by CRESST-II
detectors, hence both signals sum up and characteristic continuous bands arise (see [20] for
details). Similarly, the alpha-alpha coincidence 219Rn/215Po shows up at the combined energy
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chain parent mode br [%] half-life Elit [keV] Eobs [keV] A [µBq/kg]
238U 238U α 100 4.47 · 109 y 4270 4271 (1.01±0.02)·103

234Th β− 100 24.1 d 273 0-273 (a)
234Pa∗ β− 100 1.17 min 2197 0-2197 (a)
234U α 100 2.45 · 105 y 4858 4853 (1.08±0.03)·103

230Th α 100 75.4 y 4770 4771 55.8±5.4
226Ra α 100 1.60 y 4871 4853 (b) 43.0±9.9
222Rn α 100 3.82 d 5590 5592 38.1±4.9
218Po α 99.98 3.10 min 6115 6139 43.1±9.9
214Pb β− 100 26.8 min 1023 0-1023 (a)
214Bi β− 99.98 19.9 min 3272

7800-11000 47.4±4.9214Po α 100 0.164 ms (c) 7883
210Pb β− 100 22.3 y 63.5 0-63.5 7+36

−7
210Bi β− 100 5.01 d 1163 0-1163 (a)
210Po α 100 138 d 5407 5403 17.8±4.0

235U 235U α 100 7.04 · 108 y 4678 4671 39.5±4.4
231Th β− 100 25.52 h 389.5 0-389.5 (a)
231Pa α 100 3.27 · 104 y 5150 5139 23.2±4.4
227Ac β− 98.62 21.8 y 44.8 0-44.8 98±20
227Th α 100 18.7 d 6147 6139 105±19
223Ra α 100 11.4 d 5979 5968 104±7
219Rn α 100 3.96 s 6946

14900 107±7215Po α 100 1.78 ms (c) 7527
211Pb β− 100 36.1 min 1373 0-1373 (a)
211Bi α 100 0.51 s 6751 6771 105±7
207Tl β− 100 4.77 min 1423 0-1423 (a)

232Th 232Th α 100 1.40 · 1010 y 4083 4084 9.2±2.3
228Ra β− 100 5.75 y 45.9 6.7-45.9 (a)
228Ac β− 100 6.15 h 2127 58-2127 (a)
228Th α 100 1.91 y 5520 5518 15.2±4.1
224Ra α 100 3.63 d 5789 5788 19.8±8.1
220Rn α 100 55.6 s 6404 6414 8.4±3.4
216Po α 100 0.145 s 6906 - 0
212Pb β− 100 10.64 h 573.7 0-573.7 (a)

212Bi
α 35.94

60.6 min
6208 6216 7.7+8.9

−7.7

β− 64.06 2252
8900-11200 15.8±2.8212Po α 100 299 ns (c) 8955

208Tl β− 100 3.01 min 5001 3197-5001 (a)

Table 2. Radioactive decays (alpha and beta) of the natural decay chains (U-238, U-235 and Th-232)
from intrinsic contamination observed with the crystal TUM40. The first 29 kg-days of exposure of
CRESST-II Phase 2 were used for the analysis. The Q-values (Elit) from literature [22] of the indi-
vidual reactions are compared with the energies (Eobs) observed in the detector. The corresponding
activities A are given with 1σ errors. The branching ratios (br) of the individual reactions are listed.
The symbol (a) indicates beta decays which cannot be identified individually but are in equilibrium
with short-lived alpha decays. Alpha-lines marked with (b) have a significant overlap with stronger
alpha sources. The symbol (c) indicates fast decays which cannot (or only partly) be distinguished
from the proceeding decay within detector resolution. The total activity of the identified intrinsic
alpha sources is Atot,α = 3.08±0.04 mBq/kg.
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Figure 4. Energy measured in the phonon detector plotted against the energy detected in the light
detector in units of electron-equivalent energy (keVee). The alpha lines are well separated from the
beta/gamma band due to light quenching (QFα ∼ 0.22). Most of the discrete alpha lines of the
natural decay chains have energies between 4 and 7 MeV (see figure 5) except the α−α (219Rn/215Po)
and α−β (214Bi/214Po, 212Bi/212Po) coincidences at higher energies. Lines from intrinsic 180W and
a contamination of 147Sm are also visible.

of ∼ 14.9 MeV. The measured 180W activity of (36 ± 9)µBq/kg agrees well with the rate
of (31± 8)µBq/kg obtained by a previous measurement [24] which cross-checks the analysis
performed.

All alpha particles from natural decay chains are observed in this data and the corre-
sponding activities are listed in table 2. All alpha decays, short-lived with respect to the
measuring time (∼ 0.5 y) agree in rate as expected. The equilibrium of the U-238 chain
is broken at the long-lived isotopes 234U5 and that of the U-235 chain at 231Pa. This can
originate, e.g., from chemical separation processes during the production steps. All measured
intensities are consistent with the individual decay chains (a reduced detection efficiency for
the decays 220Rn and 216Po due to pile-up effects has to be considered, for details see [20]).

4 Monte Carlo based decomposition of the background

By the detailed alpha analysis presented in section 3.3 the intensities of all beta decays from
the natural decay chains U-238, U-235 and Th-232 can be derived since they are in equi-
librium with at least one alpha decay (see table 2). These measured activities were used
as input for a dedicated GEANT4 MC simulation (version 10.1) [25, 26] which allows to
derive the beta/gamma spectra in the ROI for dark matter search. To model the production,
propagation, and absorption of beta/gamma particles in the detector down to 250eV, the
Livermore low-energy electromagnetic models were used. The electromagnetic model im-

5A broken equilibrium at 210Pb and 210Po (U-238 chain) is possible, however, can not be proven here due
to limited statistics.
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Figure 5. Discrete alpha lines from the natural decay chains observed with the crystal TUM40
in an exposure of 29 kg-days between 4 and 7 MeV. The lines identified in the U-238, U-235 and
Th-232 chains are listed. In addition, an external 210Po line is visible where only the alpha energy
(5.30 MeV) and not the recoil of 206Pb (103 keV) is detected. The individual activities are listed in
table 2. The peaks of 238U and 234U completely dominate the spectrum (upper cut in histogram at
70 counts/[10 keV]).

plements photo-electric effect, Compton scattering, Rayleigh scattering, conversion in e+e−

pairs, ionisation, and bremsstrahlung production.

The results of this data-based simulation is shown in figure 6 (inset): the blue curve
shows the sum of all beta/gamma events from natural decay chains. The 1-σ error band (light
blue) is a combination of the statistical error of the simulation and the uncertainty of the
experimentally determined activities of the beta emitters. This contribution has an activity
of A1−40 = 494.2± 48.4µBq/kg in the ROI which corresponds to a mean rate of 3.51± 0.09
counts/[kg keV day]. For the first time, the contribution of the intrinsic beta/gamma emitter
could be disentangled and accounts for (30.4± 2.9)% of the total events observed. The main
contributions originate from 234Th (346µBq/kg), 227Ac (93µBq/kg), 234Pa (35µBq/kg) and
228Ra decays (9µBq/kg). The characteristic edges at ∼ 9 keV and ∼ 24 keV originate from
the contribution of the 227Ac spectrum (see section 3.1). The values of all relevant beta
emitters are listed in table 3.

Furthermore, the response of the detector to external gamma radiation is studied with
a dedicated MC simulation. The intensity of the individual components is scaled such to
match the observed external gamma peaks (see section 3.1). All identified external gamma
lines which are listed in table 1 are included in the study. The result is shown as in figure 6
(inset) as a green line with the corresponding 1-σ error band (light green). The only peak in
the ROI identified as to originate from external radiation is the Cu X-ray peak at 8.0 keV.
The continuous Compton background from external sources (peaks at higher energies) is
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negligible in the ROI (. 0.03 events/[kg keV day]), however, W-escape peaks originating
from the 234Th line at around 92.4 keV contribute significantly ((62.2±7.8)µBq/kg). X-rays
from W (Kα1: 59.3 keV, Kα2: 58.0 keV, Kβ1: 67.2 keV and Kβ2: 69.1 keV [22]) can escape the
CaWO4 crystal giving rise to 4 distinct escape peaks between 23 and 35 keV. The statistics
of the recorded data is not yet sufficient to resolve these peaks, but as shown below, the total
observed spectrum is compatible with this prediction.

In addition to that, a background component from external betas has been identified
within this work. As explained in section 3.2, electron passing through the polymeric foil
produce additional scintillation light before hitting the CaWO4 crystal which shifts these
events to higher light yields (see figure 3). A phenomenological model to account for this
event population was developed in [27]. Measurements show that these events can be nicely
described by an exponential distribution decreasing towards higher energies and higher light
yields. To obtain the observed event distribution, the spectrum has to be convolved with the
resolution of the light measurement. A detailed description of the likelihood fit performed
can be found in the literature [15, 27]. The result of the likelihood fit to the data of TUM40 is
shown in figure 6 (inset): the grey curve accounts for the rate of external betas most probably
originating from beta emitters on surfaces surrounding the detectors. The corresponding 1-σ
error bounds are depicted in light grey. An activity of (274±137.6)µBq/kg which corresponds
to (16.9± 8.4)% of the total rate is attributed to external betas.

The EC-peaks (at 2.60 keV, 10.74 keV and 11.27 keV) originating from cosmogenic ac-
tivation of W isotopes (see section 3.1) account for (290.7 ± 17.0)µBq/kg ((17.9 ± 1.0)% of
the total rate).

The red curve in figure 6 (main frame and inset) shows the combined spectrum of all
identified backgrounds. The inset shows the corresponding 1-σ error bounds (light red). A
total activity of (1121.8 ± 146.6)µBq/kg is found which explains (69.0 ± 9.0)% of the data.
While at energies above ∼ 20 keV the sum of identified sources almost completely reproduces
the data, at lower energies a significant part of the spectrum remains unexplained. There
are slight hints for additional gamma peaks (e.g at ∼ 18 keV), for the identification of which,
however, more statistics is necessary.

To investigate the relevance of the individual background components for dark matter
search, their leakage into the nuclear-recoil bands is calculated based on the background
studies developed in this work. The number of events leaking into the ROI (to below the
50% acceptance bound for O-recoils [8]) is calculated for the beta/gamma spectrum from
natural decay chains, external gammas, the cosmogenic activation lines and the contribution
of external betas. In table 3 the cumulative leakage of the individual components into the
ROI is listed for an analysis threshold of 1 keV (L1) and 12 keV (L12). The cumulative
leakage is graphically illustrated in figure 7 as a function of the analysis threshold. For an
analysis threshold of 1 keV a leakage of O(102) events per detector and year is expected.
Here the contaminations due to cosmogenic activation give the highest contribution. Above
∼12 keV, the leakage drops by ∼ 2 orders of magnitude and is then dominated by intrinsic
beta/gamma events. The calculation shows that an experiment would be background-free
up to an exposure of ∼3 ton-years.
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Figure 6. Histogram of the events in the ROI (black line) recorded with TUM40 in CRESST-II
Phase 2. The red line indicates the sum of all identified background sources with the dominant peaks
from cosmogenic activation (2.6 keV, 10.7 keV, 11.3 keV) and the Cu X-ray line (8.0 keV). Inset:
decomposition of the background based on MC simulation (see text). The contributions of external
gamma radiation (green), external betas (grey) and intrinsic beta/gamma radiation from natural
decay chains (blue) are shown. The sum of these components (plus gamma peaks) are shown in red.
The individual 1-σ error bands are depicted in the corresponding colour. The identified backgrounds
explain ∼70% of the observed events.

5 Conclusions and outlook

TUM40 operated in the new detector housing has reached unprecedented background levels.
Using CaWO4 sticks to hold the target crystal, a fully-scintillating inner detector housing
is realized and backgrounds from surface-alpha decays are rejected with high efficiency. A
phonon trigger threshold of ∼ 0.60 keV and a resolution of σ=(0.090±0.010) keV (at 2.60 keV)
are reached with TUM40. By using a CaWO4 crystal produced at the TUM, the intrinsic
background rate was reduced to the lowest level reported for CRESST CaWO4 detectors:
on average 3.51± 0.09 beta/gamma events per kg keV day in the ROI (1-40 keV) and a total
alpha activity from natural decay chains of Atot,α = 3.08±0.04 mBq/kg. In this paper, a
detailed alpha analysis was performed which allowed to derive the activities of all decaying
isotopes of the natural decay chains. Based on these results, a GEANT4 MC simulation was
set up to investigate the contribution of intrinsic beta/gamma backgrounds in the ROI for
dark matter search (1-40 keV). An activity of ∼ 494µBq/kg was found which corresponds
to ∼ 30% of the total event rate. The MC simulation also shows the contribution of events
originating from external gamma radiation. An activity of 62.2µBq/kg (∼ 4% of total) is
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source A1−40 [µBq/kg] L1/[det.-y] L12/[det.-y]
234Th 346.2± 12.3 18.1 2.0 · 10−5

234Pa∗ 35.0± 5.7 1.6 2 · 10−6

214Pb (8.3± 0.4) · 10−1 3.7 · 10−2 < 10−6

210Pb 1.0± 0.1 8.6 · 10−2 < 10−6

210Bi (3.6± 0.4) · 10−1 1.6 · 10−2 < 10−6

231Th 1.1 · 10−2 2.5 · 10−4 < 10−6

227Ac 92.9± 1.8 5.6 9.0 · 10−6

211Pb 4.2± 0.1 1.9 · 10−1 < 10−6

207Tl 3.9± 0.6 1.7 · 10−1 < 10−6

228Ra 8.9± 0.2 8.3 · 10−4 1 · 10−6

212Pb (2.4± 0.4) · 10−1 1.1 · 10−2 < 10−6

Cu X-ray (ext.) 27.1± 5.1 4.4 · 10−4 -

Σ internal β/γ 494.2± 48.4 25.7 3.2 · 10−5

Σ cosmogenics 290.7± 17.0 40.8 < 10−6

Σ external γ 62.2± 7.8 3.9 · 10−1 1 · 10−6

Σ external β 274.7± 137.6 7.8 1.6 · 10−5

Σ all identified 1121.8± 146.6 74.7 4.9 · 10−5

total observed 1625.1± 40.3 108.3 (a) 7.1 · 10−5 (a)

Table 3. Activities (A1−40) of the identified background sources in the e−/γ-band between 1 and
40 keV and the expected leakage L1 (L12) per detector (m= 245 g) and year into the region-of-interest
(ROI) assuming an analysis threshold of 1 keV (12 keV). The activities of the relevant β−-decaying
isotopes from natural decay chains are derived by a MC-based analysis (see text). The sum of all
intrinsic beta decays (Σ internal β/γ), of the cosmogenic activation lines (Σ cosmogenics), of the
external γ radiation (Σ external γ ) and of the external β radiation (Σ external β) are listed. The
sum of all identified sources is compared to the activity observed with in the data of CRESST-II
Phase 2. For L1 and L12 the total errors are of O(10%). (a) indicates an extrapolation to the
assumed exposure of 1 detector-year.

found in the ROI. Furthermore, the study shows that 17% of the background most probably
is due to electrons originating from surfaces surrounding the detector and passing through
the scintillating housing. Distinct gamma lines are observed in the low-energy spectrum at
energies < 80 keV, originating from cosmogenic activation of W isotopes. The isotopes 182W
and 183W, and subsequent EC-reactions of 179Ta and 181W are identified as sources. The
resulting activity in the ROI is 290.7µBq/kg (∼ 18% of the total event rate).

For the first time, the background in the ROI of a CRESST-II detector module could be
decomposed in a comprehensive way. The analysis performed suggests that the background
of TUM40 is - unlike previously assumed - not exclusively limited by intrinsic contaminations
from natural decay chains, but cosmogenic activation and external sources play an important
role. The knowledge of the background origin is crucial for the future R&D activities of
CRESST concerning background reduction.

The sensitivity of CRESST-II detectors for dark matter search was investigated by cal-
culating the leakage of beta/gamma events into the ROI. For analysis thresholds > 12 keV

– 13 –



J
C
A
P
0
6
(
2
0
1
5
)
0
3
0

1 2 3 4 5 6 7 8 9 10 11 12 13

10ï4

10ï2

100

102

analysis threshold [keV]

le
ak

ag
e 

/ [
de

t. 
y]

total 

internal beta/gamma 

external beta 

cosmogenics 

external gamma 

Figure 7. Expected cumulative leakage from the beta/gamma band into the ROI (1 to 40keV) plotted
against the analysis threshold. The calculation is based on the background level of the detector TUM40
in CRESST-II Phase 2. The decomposition of the background into individual components is explained
in detail in section 4.

the present background level results in a total expected leakage of < 10−4 events per de-
tector and year. This suggests that even for a ton-scale experiment and typical measuring
times of O(1 year) such detectors would not be limited by beta/gamma leakage and, if no
additional background sources contribute, would be background-free for high WIMP-mass
searches (& 5 GeV/c2). The goals of the future EURECA experiment [28], namely to reach
the level of 10−10 pb for the spin-independent WIMP-nucleon scattering cross-section (for
WIMP masses of ∼ 50 GeV/c2), can be achieved by TUM40-type detectors using state-of-
the-art CRESST technology.

Due to the low thresholds achieved, CRESST detector are most suited for the detec-
tion of low-mass WIMPs (. 5 GeV/c2). The potential has been recently demonstrated by
the first data of TUM40 in CRESST-II Phase 2 which sets stringent limits on the WIMP-
nucleon scattering cross-section and explores new parameter space below WIMP masses of
3 GeV/c2 [8]. The study performed in this paper shows that for an analysis threshold of
1 keV a total leakage of ∼ 102 events is expected per detector and year. This agrees nicely
with the number of events observed in the ROI during the first 29 kg-days of data acquired
with TUM40 and suggests that no other background sources contribute (as e.g. neutrons).
To achieve the future sensitivity goals for low-mass WIMP search [29], background levels
must be further reduced. External radiation can be diminished by cleaning of material which
are in the vicinity of the detectors (e.g. re-etching of copper surfaces) and additional shield-
ing. To reduce the crystal-intrinsic backgrounds, the crystal production at TUM is key. We
plan to significantly reduce the cosmogenic activation of W isotopes by using only screened
and assayed materials, and to shorten the exposition to cosmic rays during transport and
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storage. It was found, that the growth procedure itself segregates certain radioactive iso-
topes significantly. Comparing the contamination of 226Ra in TUM40 ((43.0±9.9)µBq/kg,
see table 2) with that in the raw materials (O(10 mBq/kg) [20]), a purification by almost 3
orders of magnitude is achieved. Therefore, a multiple re-crystallization of CaWO4 crystals
is a promising technique to decrease both, cosmogenic activation and contaminations from
natural decay chains.
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