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Abstract 

 

 Technical Analysis (TA) has been subject of debate from some decades over. In the 

late 1920’s, the debacle of Financial Stock Markets in the US and to some extent all over 

Europe (in particular London) raised questions concerning the ability of Fundamental 

Analysis to explain price movements. In the 1970’s and 1980’s, with the development of 

new infrastructures and new informatics platforms, the markets became accessible to more 

retail investors looking for new methods of market analysis to support their trading practices. 

TA, for its simplicity and ease to use, since it is mostly based in price fluctuation and price-

based indicators, was chosen by several investors.  

After the beginning of the internet revolution in the mid 1990’s to the late 2010’s, 

the expansion of trading, either by direct trading accounts in a Brokerage firm or indirectly 

through a fund in an Investment house, has been exponential and rose it to levels never seen 

before, increasing subsequently the use of TA. But the main problem of TA persists. 

Although many academic studies have emerged, there is still no significant support to the 

notion that TA is an effective tool to improve trading results.  

 With this work we intend to draw some conclusions about the relevance of TA. For 

that purpose, TA-based systems were developed with the use of optimization evolutionary 

techniques, namely Genetic Algorithms and Multiobjective Evolutionary Algorithms. These 

methodologies were applied to the Forex Market and Worldwide Stock Markets to infer the 

value of TA indicators in reaching meaningful results.  

The outcome obtained in the three most relevant Forex crosses (EUR/USD, 

GBP/USD and USD/JPY) showed that the studied TA indicators presented limited value as 

a predicting tool for trading after including realistic trading costs. On the other hand, with 

respect to the Stock markets, a method of portfolio optimization was developed and results 

after trading costs vary from almost non-profitable markets (the most efficient, like the US) 

to interestingly profitable markets (such as Belgium, Portugal and Greece) when considering 

Bollinger Bands trading rules. The obtained results are also consistent and support to some 

extent the Adaptive Market Hypothesis theorized by Professor Andrew Lo. 
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Resumo 

 

A Análise Técnica (AT) tem sido alvo de debate desde há já algumas décadas. No 

final dos anos 1920, a derrocada dos Mercados Financeiros de Acções nos Estados Unidos 

e um pouco por toda a Europa (em particular em Londres) levantou questões sobre a 

capacidade da Análise Fundamental para explicar os movimentos de preços. Nos anos 1970 

e 1980, com o desenvolvimento de novas infraestruturas e novas plataformas informáticas, 

os mercados tornaram-se acessíveis a mais investidores individuais, à procura de novos 

métodos de análise do mercado para fundamentar as suas práticas de trading. A AT, pela 

sua simplicidade e facilidade de utilização, uma vez que se baseia essencialmente nas 

flutuações de preços e em indicadores baseados no preço, foi seleccionada por vários 

investidores. 

Após o início da revolução da internet desde meados dos anos 1990 até finais dos 

anos 2010, a expansão do trading, quer por transacção directa em contas junto de Correctoras 

quer indirectamente através de fundos de investimento geridos por Sociedades 

especializadas, tem sido exponencial e aumentou-o para níveis nunca antes vistos, 

aumentando subsequentemente a utilização da AT. Mas o problema principal da AT persiste. 

Apesar de muitos estudos académicos terem emergido, ainda não existe suporte significativo 

para a ideia da AT ser uma ferramenta efectiva para a melhoria dos resultados de trading. 

 Com este trabalho pretendem-se obter algumas conclusões sobre a relevância da AT. 

Para esse propósito, foram desenvolvidas metodologias baseadas em AT em combinação 

com o uso de técnicas de optimização evolucionárias, mais propriamente Algoritmos 

Genéticos e Algoritmos Evolucionários Multiobjectivo. Estas metodologias foram aplicadas 

no mercado Forex e nos Mercados de Acções Mundiais para averiguar a utilidade de 

indicadores de AT na obtenção de resultados significativos.  

Os resultados obtidos em três dos principais pares de divisas do Forex (EUR/USD, 

GBP/USD e USD/JPY) mostraram-nos que os indicadores de AT estudados apresentam um 

valor limitado como ferramenta previsional para o trading, após inclusão de custos de 

transacção realistas. Por outro lado, no que respeita aos mercados de Acções, foi 
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desenvolvido um método de optimização de portfólios e os resultados, após inclusão de 

custos de transacção, variam desde mercados próximos de não rentáveis (os mais eficientes, 

como dos EUA) até mercados com rentabilidades interessantes (como Bélgica, Portugal e 

Grécia) quando consideradas as regras de trading de Bollinger Bands. Os resultados obtidos 

são também consistentes e sustentam até certo ponto a Teoria dos Mercados Adaptativos do 

Professor Andrew Lo. 

 

Palavras-chave: Finanças; Análise Técnica; Trading; Optimização de Portfólios; Algoritmos Genéticos; 

Algoritmos Evolucionários Multiobjectivo. 
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1 Introduction 

 

The present work is intended to be an inquiry on the validity of technical analysis 

(TA) in the attainment of above normal profits. Most often, the banking industry and 

especially the trading industry have sometimes claimed that there are advantages in using 

TA-based indicators and rules to improve financial management and overall financial results 

of asset portfolios. There is in this area an institutionalized mind-set prone to take for granted 

the postulated benefits of TA, most times without a critical view on the factual existence of 

such benefits. This work delves into the thematic of TA and tries to elicit evidence either for 

or against it.  

TA indicators rely on a set of parameters that are used in combination with TA 

trading rules, inducing the execution of trading actions (buy, sell, stay or get out of the 

market) which TA practitioners have been claiming to produce above normal financial 

outcomes. An adequate way to optimize the mentioned parameters is through the use of 

Evolutionary Algorithms (EAs) and Multiobjective Evolutionary Algorithms (MOEAs), 

because of their flexibility, limited execution time and ability to rapidly search large solution 

spaces. 

The use of EAs and MOEAs is justified by several reasons: 1) the kind of 

optimization problems (either in a single or multiobjective case) is usually too complex to 

use an exact solving method; 2) the flexibility and adaptability of these evolutionary 

techniques; 3) the nature of EAs allows us to achieve great savings in computational 

resources and time, avoiding a thorough and exhaustive search along the feasible search 

space of solutions. Adding to these motives, EAs are some of the most used techniques to 

solve financial return-risk optimization problems. 

The thesis is devoted to the study of the most relevant, TA indicators and oscillators, 

integrated into distinctive trading models, and assess their predictive power. The specific 

objectives of this work are: 

1. To compare the performance of diverse markets, to know how efficient markets are; 
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2. To find out if TA is effectively useful for trading, both for portfolio management and 

direct account trading activities; 

3. To determine which of the studied TA indicators shows more potential to be used as 

a predicting tool; 

4. To assess if evolutionary techniques help in any way to improve financial 

performance (via parameters fine-tuning), with reference to traditional parameters 

used in TA; 

5. To compare performances of up-to-date MOEAs in portfolio optimization problems, 

which involve risk-return trade-offs and where a Pareto front can be obtained; 

6. To verify if existing costs affect significantly the attained results in all studied 

markets. 

After this brief introduction, a literature review follows in Chapter 2, presenting the 

major theoretical approaches to market analysis and asset valuation. In this chapter, we will 

draw an insight into the philosophical perspectives (mostly, Efficient Market Hypothesis, 

Behavioural Finance and the Adaptive Market Hypothesis), as well as the general 

methodologies of market analysis – Fundamental Analysis (FA) and Technical Analysis 

(TA). In this particular subject we will consider the most relevant indicators for each 

methodology. A more detailed analysis will be devoted to TA indicators, since they are core 

to this work and it is important to establish the reasoning underlying their conception and 

the rules applied to each indicator. In this chapter, we will also devote our attention to 

financial risk-return analysis, with eight major frameworks being selected: Mean-Variance 

(M-V), Mean-Semivariance (M-SV), Mean – Lower Partial Moments (M-LPM), Mean – 

Value-at-Risk (M-VaR), Mean – Expected Shortfall (M-ES or M-CVaR), Mean – Mean 

Absolute Deviation (M-MAD), Sharpe Ratio (SR) and Calmar Ratio (CR). 

Chapter 3 concerns with evolutionary techniques applied to finance. A survey on the 

most well-known single objective and multiobjective evolutionary optimization algorithms 

is conducted. In the single objective case, we will explore the categories of Genetic 

Algorithms (GA), Genetic Programming (GP), Evolutionary Strategies (EST) and 

Evolutionary Programming (EP). Regarding multiobjective optimization, particular 

attention will be devoted to Multi-Objective Evolutionary Algorithms (MOEAs). We will 

start with the presentation of the common concepts to all these population-based 

evolutionary algorithms, continue with a more detailed view of the four mentioned 
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evolutionary techniques and conclude the chapter with a characterization of the two MOEAs 

used in part of the empirical work, the Nondominated Sorting Genetic Algorithm II (NSGA-

II), (Deb et al., 2002), and the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), (Zitzler 

et al., 2001). Some other important MOEAs will also be mentioned in a final section. 

Chapter 4 is devoted to the presentation of the first part of our empirical work, which 

is the outcome of a Forex market study, namely in the three most important crosses, the 

EUR/USD, GBP/USD and USD/JPY. The trading model, including all the considered 

assumptions, the mechanics of trading and the explanation of the used GA will be presented 

in Section 4.1. The model tries to replicate the trading environment in the Forex market, with 

a direct trading approach through a limited amount escrow account, with the possibility of 

short selling and a 1:100 leverage level, and considering typical TA indicators and trading 

strategies commonly used by the industry. The purpose is to obtain and compare optimized 

solutions in three different TA categories (momentum, trend and breakout). An original GA 

was developed for this purpose. In the subsequent section a presentation of the empirical 

results and a discussion will follow. 

Chapter 5 presents the stock portfolio optimization process within a Mean-

Semivariance approach, where we will assess the performance of four different kinds of 

markets that try to depict four different stages of development, from underdeveloped market 

Tier 1 (Argentina, Brazil and South Africa), market Tier 2 – peripheral developed countries 

(Greece, Portugal and Belgium), to market Tier 3 – fully developed countries (UK, Australia 

and The Netherlands), and finally, the US market. In this chapter we will use the NSGA-II 

and the SPEA-2 to make a comparative analysis of portfolio optimization and discuss the 

results.   

Chapter 6 presents the most relevant conclusions of this work and suggests the most 

sensible future directions taking into consideration all gathered information and the present 

context in this field of knowledge.  
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2 Theoretical Approaches to Market Analysis and 

Asset Valuation 

 

In this chapter, a review of the most relevant approaches to financial markets analysis 

and perspectives of valuation will be drawn. The market behaviour theories try to capture 

how the market works. In the following sections, we will address the major perspectives on 

market functioning, starting by the classic Efficient Market Hypothesis (EMH), moving to 

the other extreme framework of market interpretation, the Behaviourist School of Finance 

(BF), and ending in a conciliatory tone, with Andrew Lo’s Adaptive Market Hypothesis 

(AMH).  

The methodologies of market analysis centre their scope on what kind of data should 

be used and how to use it in order to predict future market price moves: while Fundamental 

Analysis (FA) makes use of the economic theoretical fundaments represented in a varied 

array of information to predict future prices, Technical Analysis (TA) assumes all 

information is translated in a single variable, price, and therefore future prices can be 

predicted through the study of past market data. These methodologies are supported by the 

Behaviourist School of Finance and the Adaptive Market Hypothesis frameworks, but not 

by the Efficient Market Hypothesis perspective (at least in its purest form – the strong form). 

In subsection 2.2.1 (FA), attention will be focused on several financial ratios, commonly 

used all over the financial industry to predict market direction and future prices. Regarding 

TA, we will study the major indicators used in the financial markets and make a review of 

the most well-known TA theories available today. 

Financial analysis possesses two major vectors of study, translating the greatest 

concerns of investors and traders: one is financial return; the other is risk. All financial 

analysts centre their activity on these two important objectives and their interconnection, for 

the simple assessment of one without taking into consideration the other may induce biased 

results. Also a return-risk analysis will be presented in this chapter, both in a portfolio 

modelling and single asset contexts. 

 



[6] 

 

2.1 Market Behaviour Theories 
 

2.1.1 The Efficient Market Hypothesis 

 

 It is not certain when the first signs of the Efficient Market Hypothesis (EMH) arose 

in Academia. We cannot state a specific date or work as the beginning landmark, since this 

theory emerged within a cauldron of enabling ideas. One of the most important of them was 

the concept of randomness in price movement, which was first noticed in a survey by the 

acknowledged statisticians Maurice Kendall and Bradford Hill– (Kendall and Hill, 1953). In 

this research paper evidence of the random nature of stock price movements was presented, 

something no less than anathema at the time, since prices were considered, under the 

theoretical and intuitive economic view, to move in cycles and counter-cycles and 

fundamentally driven (according to economic laws). This notion of market price randomness 

was later theorized by (Samuelson, 1965). 

 Another landmark article which contributed to this theory was (Muth, 1961), a work 

that applied the tenets of rational expectations into economic analysis translated into market 

behaviour. The impact of the subjects approached in this article were very relevant to the 

development of the EMH, in particular the role of information as a key factor to define 

market efficiency: all available market information is used and embedded in the economic 

agents’ formation of expectations. 

 In this context, it was no surprise how the succession of ideas projected stock market 

analysis to a new theoretical perspective, information-based, pro-efficiency, where stock 

prices ought to move in a random-like fashion, i.e., the EMH. As we may see, this is no 

longer a scattered set of free ideas, but instead a set of postulates in a stable theory, something 

that offered consistency and logic to the explanation of market behaviour. Eugene Fama took 

care of the full embodiment of this emerging theory when he published (Fama, 1965a) and 

(Fama, 1965b), presenting the Random Walk Model  and independence of stock price 

movements, later revised by (Fama et al., 1969) where he discusses how market efficiency 

holds under the stock splitting and dividend payment scenario, and (Fama, 1970) where he 

acknowledges  the existence of different market efficiency forms: weak, semi-strong and 

strong, adding more credibility to the EMH. 
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Nevertheless, the emergence of the EMH was not peaceful. Different academics 

contested the core ideas of the theory. Among them, (Lucas, 1978), one of the most 

significant, examined the stochastic behaviour of prices and arrived at the conclusion that 

randomness in price formation is not an ubiquitous trait in all markets and does not reflect 

market efficiency per se. Therefore, equilibrium prices are more a function of rational 

expectations interactions than of luck. (Grossman and Stiglitz, 1980), on the other hand, 

centre the analysis on the arbitrage feature in markets’ price formation, presenting a 

demonstration on the impossibility of informationally efficient markets, and enhancing the 

importance of the costs of acquiring information, which distort efficiency to some extent. 

Another step followed in this discussion on the feasibility of the EMH: Malkiel pointed 

how flaws and insufficiencies in the very nature of the rationality-based economic models 

limits – in particular applied to portfolio analysis – and deteriorates the cause-effect rationale 

employed by academics. Both in (Malkiel, 1996) and (Malkiel, 2003), the author exposes 

doubts on the significance of the fundamentally driven economic models relevant role in 

explaining market behaviour. For Malkiel the fundamentals of economic theory are not 

always good explaining variables of price movement in Stock markets. Malkiel concludes 

for the validation of the Random Walk Theory (RWT) and the EMH, considering previous 

economic models as over-appreciated. Regarding this claim by Malkiel, (Lo and MacKinlay, 

1999) distinguish these two fields (EMH and RWT) for, according to their research, they 

only coincide under very special circumstances (for example, in the case of risk-neutrality).  

(Timmermann and Granger, 2004) explore the meaning of market efficiency and its 

implications in trading activities. Their classic general idea (purest notion) of market 

efficiency states markets are indeed efficient if, and only if, it is not possible to take profits 

from information on that market. The consequences of this postulate are considerable: price 

prediction or any other kind of forecasting effort for superior profit seeking activities is not 

compatible with the notion of market efficiency (any strategy in that line of thought will be, 

according to the authors, short lived and suppressed). In this paper, the authors point out a 

curious paradox: in a market with no profit opportunities there is no incentive whatsoever to 

intervene and promote its efficiency – the arbitrageur’s role; so the very existence of 

arbitrageurs contradicts the core premise of the EMH. Therefore, at its most basic notion, 
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the EMH negates the possibility of market arbitrage opportunities. But without arbitrageurs, 

any market will seldom be considered efficient.  

A brief history on the emergence and evolution of the EMH is excellently portrayed 

by (Lo, 2007), drawing a remarkable review of the complete journey of the EMH since its 

inception, and including reactions and criticisms. 

 

2.1.2 Behavioural Finance 

 

Behavioural Finance (BF) is «the study of how psychology affects finance» - 

(Shefrin, 2002). In the behaviourists’ perspective, a market is an aggregation of individual 

investors and traders beliefs that interact with each other in the process of price formation. 

They represent the confrontation between bulls and bears and incorporate their beliefs, 

anxieties, opinions, concerns. Markets embed all the individual investors’ emotions – greed 

and fear, translated into prices. Therefore, price formation is subject to all delusions inherent 

to human perception, the biases that characterize every human being: representativeness 

(similarity to stereotypes), availability (ease of how we remember things), adjustment and 

anchoring (errors of perception based on relative positioning in reference to a predetermined 

assumption or starting point) – (Tversky and Kahneman, 1974); the regression to the mean, 

the gamblers’ fallacy (the ostensive prediction of a market turn), overconfidence and expert 

judgement, aversion to ambiguity – (Shefrin, 2002). The very risk awareness may change 

attitude towards capital gains and losses. People react differently before the menace of 

incurring losses, according to the level and kind of risk involved in each situation, or in other 

words, according to their individual preferences – (Kahneman and Tversky, 1979), (Tversky 

and Kahneman, 1981). 

For behaviourists, trading the Markets is not a simple mechanical task. It is not linear, 

it is much more complex, and it requires different approaches than an inflexible econometric 

translation of market behaviour. (Bondt and Thaler, 1985), for instance, discuss the role of 

overreaction to unexpected dramatic events in trading activity. With collected stock data 

from the NYSE, the authors obtained evidence consistent with the overreaction hypothesis: 

previously winner portfolios tend to present lower returns, in about 5 percentage points 
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(p.p.), in relation to the market average; on the other hand, prior losers show some resilience, 

outperforming the market by 19.6 p.p. and prior winners by 25 p.p., on a 3 year time span. 

The overreaction hypothesis states that, as investors focus on stocks with more extreme price 

performances, the subsequent price reversals will be also pronounced. The collected and 

treated data confirms the hypothesis. Furthermore, the authors notice how the reversal is also 

biased (the price reversal is not of the same magnitude whether we are talking about previous 

portfolio winners or losers). 

This perspective represents a radical and dramatic change in relation to the EMH. In 

this view, efficiency is a mirage and may only be achieved momentarily by chance. 

Fundamentalists of the EMH were not indifferent to these last publications and Fama, on the 

turn of the century, reacts with an article – (Fama, 1998) – pointing out the existence of 

under-reactions just as often as over-reactions over the short-term, something consistent 

with the concept of randomness and the  EMH. Over the long run, although these anomalies 

might not be as significant, evidence suggests differences in results are due to methodologies 

or statistical approaches, and consequently may be attributed to chance. 

 

2.1.3 The Adaptive Market Hypothesis 

 

The Adaptive Market Hypothesis (AMH) has been developed by Professor Andrew 

Lo, from the MIT Sloan School of Management, as a conciliatory view on market behaviour. 

In Lo’s notion (Lo, 2004), both the perspective of the EMH and those of the Behaviourists 

have merits and do not necessarily need to be in conflict. In his attempt to discern financial 

markets’ movements, Lo explored the validity of previous behaviourist studies adding more 

depth and preventing bias by introducing objective measurement into their analyses. 

In the context of a historical review of both the EMH and BF, (Lo, 2004) presents 

his arguments in favour of each of the perspectives and the rationale that allows a consensual 

interpretation of financial markets. For instance, it is acknowledgeable that some particular 

markets present a greater level of efficiency than others, and some may in fact present 

themselves as efficient markets in the strong or semi-strong forms depicted by Fama. 

Different circumstances affect the development of a particular market. Liquidity is among 
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the most important. Another aspect may be the kind of investor operating in that market. 

Traits such as socioeconomic background, literacy, access to sophisticated trading tools, 

intelligence, play an important role in the characterization of a market. It is also undeniable 

how the human nature always present in the markets (trading decisions are human-based or 

programmed by humans) can introduce biases and inefficiencies to the trading systems. 

Studies – (Lo and Repin, 2002) and (Lo et al., 2005) – suggest there is a statistically 

significant difference in physiological characteristics of relevant market events (high price 

volatility) compared to normal volatility periods along a trading session. Physiological 

responses also change with the trader’s level of experience. As a result, these studies 

reinforce the notion that market action is not all about rationality, mechanical (re)action, 

efficiency, but instead, may be understood as a process involving cognitive emotions. 

 Later, in (Lo, 2004), (Lo, 2005) and (Lo et al., 2005), Andrew Lo explains his 

perspective on market functioning, depicting the implicit rationale of market movement and 

its various possible stages. Lo named his theory the Adaptive Market Hypothesis (AMH). 

Highly influenced by important advances in “evolutionary psychology”, this approach 

applies evolutionary principles (competition, reproduction, natural selection) to the study of 

market action. In his view, markets are in constant change, or in better words, are always 

evolving, according to the confrontation of market forces (“species” of investors) in an 

everlasting iteration of profitability and loss cycles. This theory also invokes the general idea 

of survival (i.e., attaining a good fitting solution, neglecting the optimum) to admit some 

human decision-making processes are indeed biased, establishing a compromise between 

rationality and emotion, efficiency and bias. In some sense, as Lo himself considered, the 

AMH may be seen as the «new EMH» with an added evolutionary flavour.  

Empirical evidence supports this new theory of the AMH. (Neely et al., 2009) tested 

the validity of these claims for the FOREX market, by studying the existence of abnormal 

excess returns to technical trading rules for the time span of 1970-1980, and found out that 

the obtained results are consistent with the AMH but not the EMH. 
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2.2 Methodologies of Market Analysis 
 

2.2.1 Fundamental Analysis 

 

Fundamental Analysis (FA) is based on economic theory to predict market price 

motion. It assumes there are established economic relations between explanatory variables 

(independent variables, also considered the foundation or the fundamentals of economic 

behaviour) and the dependent or explained variables (i.e., the security prices or returns). FA 

admits the possibility of forecasting market prices and, therefore, considers that the 

dependent variable (price) is not fully random. To FA, a fair assessment of a price can be 

accomplished by resorting to the relevant variables that measure economic performance. 

There are several ways to put FA into practice. 

 

2.2.1.1 Discounted Cash Flows 

 

Discounted Cash Flows of a given asset is a method of valuation where future 

expected inflows and outflows are discounted to a present value according to pre-established 

assumptions. Expected values of future cash flows are estimated and the interest rate applied 

in the model may be determined by common sense within reasonable bounds, which is prone 

to subjectiveness that may lead to inaccuracies, or by more objective methods, such as the 

Capital Asset Pricing Model (CAPM), granting more sustenance to the obtained figures.  

So regarding exchange traded assets valuation, there may arise divergences between 

two different investors, according to their expectations and assumed premises. In the case of 

a corporation, its shareholder net present value may be determined by discounting the future 

dividends’ estimates (Dividend Theory). The shareholders’ net present value divided by the 

number of shares gives us an estimation of the stock price.  

In spite of its shortcomings, this methodology remains as an important way to 

compute corporate valuation and, therefore, it is no surprise to see all major bibliography in 

financial analysis making a detailed explanation of it. (Damodaran, 2002) or (Brealey et al., 

2011) provide good examples. 
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2.2.1.2 Financial Ratios 

 

Financial Ratios (FR) may be used isolated or as variables in a more complex model. 

These ratios are almost exclusively applied to corporation financial health assessment. There 

are numerous kinds of ratios, depending on the specific subject in study. For instance, 

(Brealey et al., 2001), (Brigham and Daves, 2007) and (Brealey et al., 2011) classify FR into 

leverage (or debt), liquidity, efficiency (operational), profitability and market value ratios. 

Alternatively, (Brigham and Gapenski, 1996) and (Ehrhardt and Brigham, 2011) identify 

liquidity, asset management (operational), debt management, profitability, and market value 

ratios.  

The use of ratios in the analysis of the financial strength of corporations dates back 

to the early beginnings of the stock markets. This form of value assessment became the target 

of rigorous scrutiny long after the great depression of 1929/30, since the great crash in stocks 

exposed the fragility in share-evaluation methods – everyone was asking if stocks had not 

been overrated. It was in this context that one of the best books in financial analysis emerged 

(Graham, 1934) under a fundamental perspective (Security Analysis, which became a 

reference for corporate stock, bond and warrant analysis). It is important to say that FRs for 

themselves might not suffice for the explanation of the financial situation of a corporation 

under analysis; it is recommended a thorough comparative analysis of the ratios within the 

context of the industry in which the corporation competes, in order to get a more accurate 

perspective of the studied figures. Following the nomenclature portrayed in the 

aforementioned books, we will discuss the most preeminent ratios in each category. 

 

2.2.1.2.1 Leverage Ratios 

 

Leverage Ratios represent the relevance of debt in a corporation. They try to grasp 

how leveraged is the company in terms of external capital. These ratios are of paramount 

importance, particularly when in recession times, perilous periods in which all debt-related 

costs may bring a corporation into serious financial problems if it is highly leveraged. So the 

importance of these indicators resides not only in their absolute and comparative figures 
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within the industry, but also in the economic scenario the corporation / industry is facing at 

the moment. 

The first leverage ratio presented intends to translate the corporation’s long term debt 

structure. It is designated as Long-Term Debt Ratio (LTDR) and may be stated as: 

𝐿𝑇𝐷𝑅 =
𝐿𝑜𝑛𝑔 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡

𝐿𝑜𝑛𝑔 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡 +  𝐸𝑞𝑢𝑖𝑡𝑦
  

 

The LTDR represents the proportion of structural debt within the context of all raised capital 

(internal and external) at the corporation’s disposal. This figure may be adjusted as follows 

into another similar ratio, the long term Debt to Equity Ratio:  

𝐷 𝐸⁄ =
𝐿𝑜𝑛𝑔 𝑇𝑒𝑟𝑚 𝐷𝑒𝑏𝑡

𝐸𝑞𝑢𝑖𝑡𝑦
=

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 −  𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

=
𝐿𝑇𝐷𝑅

1 − 𝐿𝑇𝐷𝑅
 

 

 

which is another way of presenting similar information, but now, instead of giving the 

proportion of long term debt in the context of overall capital, this new indicator shows the 

relation between long term debt and the corporation’s equity, i.e., the comparison between 

raised capital from outside the corporation and internal capital.  

Another leverage measure is Times Interest Earned Ratio (TIE), which represents 

how the corporation earnings can support interest costs, the cost of assuming debt. It shows 

in perspective how many times earnings can cover interest costs, and therefore it may also 

be designated as Interest Cover Ratio. On the other hand, it may also be interpreted as an 

equivalence measure: the earnings measured in total interest turns, and is important to know 

how balanced a firm is financially. The formula may be stated as: 

𝑇𝐼𝐸 =
𝐸𝐵𝐼𝑇

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠
  

 

where EBIT = Earnings before interest and taxes = Sales revenues − Operating costs. 
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However, earnings do not mean net cash flows, and so if we want to assess financial 

health in a broader sense, we must acknowledge the existence of other terms that do not 

represent a cash outflow of the corporation, namely Depreciation and Amortization. With 

this new perspective in mind we can devise a new leverage ratio, the Cash Coverage Ratio 

(CCR), which may be formulated as: 

𝐶𝐶𝑅 =
𝐸𝐵𝐼𝑇 +  𝐷𝑒𝑝𝑟𝑒𝑐𝑖𝑎𝑡𝑖𝑜𝑛 & 𝐴𝑚𝑜𝑟𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠
=

𝐸𝐵𝐼𝑇𝐷𝐴

𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠
  

 

In this way we may assess the effective proportion of cash available to serve the amount of 

debt-related financial liabilities (interests) in a more realistic way.  

It is important to notice that all these leverage ratios use book-value data and not 

market-value. This situation may generate biases and inaccuracies in the determination of a 

corporation’s financial status, since not always the value presented in the accounting system 

represents a true assessment of the respective real value. This is particularly important when 

valuating assets.  

 

2.2.1.2.2 Liquidity Ratios 

 

Liquidity Ratios focus on the firm’s ability to release cash for incoming financial 

commitments. They measure how easily a corporation can release financial liquidity to pay 

immediate emerging liabilities. The Net Working Capital to Total Assets Ratio (NWC/TA) 

refers to the proportion of assets that are allocated to the net working capital, which equals 

the difference between current assets and current liabilities1. The formula of the ratio may 

be stated as: 

𝑁𝑊𝐶

𝑇𝐴
=

𝑁𝑒𝑡 𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
=

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
  

                                                   

 

1 Current assets and current liabilities are those available and due within a time span of a year, respectively. 
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This measure presents the net short term financial position of the firm and gives a good idea 

of its ability of endure an unexpected situation of financial stress. Another way to present 

this information would be in the form of the Current Ratio, which shows the quotient 

between current assets and current liabilities: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
  

 

The ratio shows the balance between assets and liabilities over the short term. 

Another important liquidity ratio is the Quick (or Acid-Test) Ratio, that translates into 

measure the relation amongst Cash and Equivalents to Cash (including Securities and short 

term Receivables) on one hand and Current Liabilities on the other:  

𝐴𝑐𝑖𝑑 𝑇𝑒𝑠𝑡 =
𝐶𝑎𝑠ℎ +  𝑀𝑎𝑟𝑘𝑒𝑡𝑎𝑏𝑙𝑒 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑒𝑠 +  𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑒𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
 

 

 

If the analyst wants to be more rigorous in his appreciation of the firm’s short term 

solvability, he will study the Cash Ratio, where only most liquid type of assets (Cash and 

Securities) are considered in the numerator. In this way, the analyst may assess the ability of 

the corporation to meet the financial immediate responsibilities almost overnight, in case of 

urgency. The formula may be depicted as: 

𝐶𝑎𝑠ℎ 𝑅𝑎𝑡𝑖𝑜 =
𝐶𝑎𝑠ℎ +  𝑀𝑎𝑟𝑘𝑒𝑡𝑎𝑏𝑙𝑒 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑒𝑠

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
  

 

2.2.1.2.3 Efficiency Ratios 

 

Efficiency Ratios or Asset Management Ratios measure how efficiently employed 

assets are being managed. One of the most well-known is the Inventory Turnover Ratio 

(ITOR), which measures the velocity at which Inventories turn within the company. For 

instance, if an ITOR assumes value 5, this means, during the period at question, stocks were 
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replaced (or turned over) 5 times on average. For this assessment, it looks more sensible to 

use the Cost of Goods Sold in the numerator, but other variants are also common, for 

instance, the use of Sales instead. There are also variants for the numerator of the ITOR. For 

example we may use the Inventory figures at the beginning of the period, at the end of the 

period, a daily average, and so on. The formula may be stated as: 

𝐼𝑇𝑂𝑅 =
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐺𝑜𝑜𝑑𝑠 𝑆𝑜𝑙𝑑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
  

 

If we want to extend the analysis to all assets and have a good grasp of the number 

of times the value of all assets is replaced within a certain period of time, we may use the 

Asset Turnover Ratio (ATOR): 

𝐴𝑇𝑂𝑅 =
𝑆𝑎𝑙𝑒𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
  

 

This ratio also may be interpreted as the amount of euros a firm generates in sales with one 

euro of assets. There are also variations to this ratio. We may consider Fixed Assets Turnover 

instead of Total Assets, or use different forms of compute the Average Total Assets. 

Nevertheless, the reasoning remains and the interpretation is similar. 

The Receivables Turnover Ratio (RTOR) stands for the number of times sales of a 

determined period represent in terms of normal or average Receivables stock within the same 

period. It is calculated as the quotient between Sales and Average Receivables: 

𝑅𝑇𝑂𝑅 =
𝑆𝑎𝑙𝑒𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒𝑠
  

 

It depends both on the Sales amount and the kind of credit policy maintained by the 

corporation. If the corporation gives credit for many days, this will reflect negatively in the 

RTOR. However, these situations are not always under control of the company, and, for 

instance, a firm may be forced to extend credit for more days in order to capture clients from 

the competition. It is therefore more reasonable to view this measure comparatively within 

the industry in which the corporation operates. 
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Another efficiency related ratio is the Average Collection Period (ACP), or Days 

Sales Outstanding (DSO), which measures the average number of days the corporation takes 

to collect its receivables and is calculated by the following formula: 

𝐴𝐶𝑃 = 𝐷𝑆𝑂 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑒𝑖𝑣𝑎𝑏𝑙𝑒𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑆𝑎𝑙𝑒𝑠
  

 

2.2.1.2.4 Profitability Ratios 

 

Profitability Ratios are meant to assess the earning power of a firm. Net Profit Margin 

(NPM) is one of the most important and of common use by fundamental analysts. It measures 

the proportion of Net Income comparatively to overall Sales:  

𝑁𝑃𝑀 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑆𝑎𝑙𝑒𝑠
  

 

The purpose of the corporation’s financial manager is to improve this ratio by increasing its 

positive value. However, this must be done in a sustainable way over the long run. For 

instance, if the firm is basing its profit margin on high prices, this policy may hurt sales in 

the near future, and, although the NPM might be high, the corporation could be better off 

with lower prices and higher absolute Net Income (even though with a lower NPM). 

Therefore, for the fundamental analyst, the ratio must not be interpreted in isolation and must 

be contextualised within a set of the firm’s financial and operating information.  

Another important ratio and also a reference for corporate financial analysis is Return 

on Assets (ROA). It gives us a notion of the proportion of the Net Income relatively to Total 

Assets (average for the period in analysis). It shows how Assets are being financially 

productive in terms of Net Income: 

𝑅𝑂𝐴 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠
  

 

The comparison might also be established with relation to Common Equity instead 

of Assets, thus generating another important ratio, the Return on Equity (ROE), which is the 

quotient between Net Income and Equity. This shows how the capital invested in the 
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corporation is being financially productive, what is the financial gain the Capital owners are 

attaining by placing their capital in the corporation. The formula is: 

𝑅𝑂𝐸 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑞𝑢𝑖𝑡𝑦
  

 

But corporate earnings might be of little interest by Capital owners if they cannot 

translate that into individual financial gains, i.e., if the earnings are not distributed. 

Particularly for institutional investors, the Payout Ratio is of great importance, a ratio that 

translates the proportion of earnings given to capital owners at the end of the year in the form 

of dividends. 

𝑃𝑎𝑦𝑜𝑢𝑡 =
𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠
  

 

2.2.1.2.5 Market-Value Ratios 

 

Market-Value Ratios use information related to the corporation’s stock price (a 

variable dependent on the market and therefore on the opinion of outside investors and 

analysts on the true value of the firm, independently from what the accounting systems might 

show) and the respective number of shares available for trade. 

One of the most typical ratios used is the Price/Earnings Ratio (P/E), which 

compares the price of a single share with the earnings per share that corporation obtained in 

the recent past. Assuming annual earnings, at any given moment and considering the current 

market stock price, the P/E shows the number of years necessary for the corporation to 

generate earnings that cover the value of its shares. This measure gives in an instant idea of 

the financial effort versus financial gain, and the analyst may ponder with more accuracy if 

indeed the share is worth of buying. The formula is: 

𝑃/𝐸 =
𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
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One other important market-value ratio establishes the comparison of a share price 

with the average Cash-Flow per share, the Price/Cash-Flow Ratio (P/CF). It presents the 

relation between the cash needed to buy one share and the cash the same share releases with 

its operating activity, and is represented as: 

𝑃/𝐶𝐹 =
𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐶𝑎𝑠ℎ-𝐹𝑙𝑜𝑤 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
  

 

The Market/Book-Value Ratio (M/BV), by its token, compares the Market Price per 

share, i.e., what the external investor/analyst considers the fair value per share, with the 

Book-Value of a single share, that is, the value per share in accounting terms. This represents 

a confrontation of perceptions: the external perceived value versus the corporate’s internal 

declared value per share. The formula is stated below: 

𝑀/𝐵𝑉 =
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐵𝑜𝑜𝑘 𝑉𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
  

 

2.2.2 Technical Analysis 

 

The crisis of 1929/30 had an impact on the way analysts used FA: a large number of 

investors, losing confidence in fundamental methodologies, which had performed poorly, 

was eager to try other ways of asset valuation or market price direction forecasting – a great 

deal of traders turned into Technical Analysis, the study of price movement. 

Technical Analysis (TA) typically deals with price. In the TA spectrum, all effects 

are mostly aggregated into this single variable, which is considered to embed all the 

information required to understand market action. Naturally, one might argue TA also 

includes the use of open interest and/or volume, and that may be true but only to some extent, 

for the indispensable variable remains price and the others possess a complementary nature. 

Hence, TA attempts to predict market price moves fundamentally on the basis of price 

history. TA assumes three generic tenets – (Murphy, 1999): 

1) market action discounts everything,  

2) prices move in trends, and  
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3) History repeats itself through time. 

It is interesting to notice the paradox of TA versus the EMH about the assumption 

that price discounts every bit of information: while the first considers it to be a condition to 

use price as the single studied variable and part of the reason why price can be predicted (it 

encloses in itself all the market information needed to perform an estimation of its future 

value, or at least the direction of the anticipated movement), the second takes this premise 

as a condition to invoke the existence of market efficiency as well as the random character 

of price and therefore a reason why prices cannot be predicted. The same assumption leads 

to two contradictory conclusions. 

 (Menkhoff and Taylor, 2007), in a literature review article, analyse the predictive 

capabilities of TA and the major possible reasons for its wide utilization in the forex market, 

verifying four distinct explaining hypotheses or arguments: 1) TA as reflecting irrational 

behaviour (traders may not reflect in their activity a full rational reasoning, generating 

market inefficiencies, allowing for that matter the effectiveness of TA, at least for the short 

term); 2) TA as exploiting the impact of central bank interventions (distortions/inefficiencies 

introduced in the markets by central banks); 3) TA as a method of information processing 

(in the sense that economic policies take time to be completely reflected in forex currency 

quotes); and 4) TA as providing information about non-fundamental exchange rate 

determinants (the influence of other reasons beyond economic nature, such as psychological, 

self-fulfilling beliefs or other). They conclude that it is unlikely that the reasons mentioned 

in 1 or 2 may have an important role in the use of TA, emphasising reasons 3 and 4.  

In TA there are two major branches of analysis – Chart Analysis (sometimes called 

“Subjective TA”) and Indicator Analysis, or, according to (Aronson, 2007), “Evidence-

based TA”. In the next few subsections, we will explore in detail these branches of TA, in 

particular the indicators used in this kind of analysis. 

 

2.2.2.1 Chart and Pattern Analysis 

 

Chart analysis centres in the study of market price patterns depicted in graphs and the 

prediction of price movement upon their detection. This implies price patterns are recurrent 
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in time and that it is possible to recognize those patterns with relative ease before the whole 

pattern unfolds, and subsequently exploit any possibility of price prediction and profit 

taking. 

There are different kinds of charts, such as line, candlestick and bar charts. Point-and-

figure charts are somewhat different in nature from the others, and their conceptual nuances 

prevent the generalized pattern formation recognition. This branch of TA is often criticized 

for the inherent subjectiveness of its procedures. 

 

2.2.2.1.1 General Pattern Formations 

 

The branch of “Chart Analysis” in TA has already a long list of theoretical pattern 

formations. Among the most common and popular are double tops, double bottoms, head-

and-shoulders, wedges, triangles, flags, gaps, pennants, rounding tops, rounding bottoms. 

(Savin et al., 2006) explore the predictive power of the head-and-shoulders price formation, 

finding strong evidence that such specific pattern may successfully be used in short sales (as 

a complement of information, not a stand-alone strategy). 

(Bulkowski, 2005) recognizes over sixty different chart formations, presenting a series 

of pattern-related statistics: general statistics (number of formations, average rise/decline, 

number of rises/declines over a reference percentage, 45%, benchmark performance - 

comparative to S&P500 performance); failure rates; breakout and post-breakout statistics; 

size statistics; volume statistics; a list of trading tips for better performance; and others. For 

the production of these statistics, Bulkowski used data from 500 stocks of the S&P (5 years 

each, from 1991 to 1996) and of various stocks from NYSE, AMEX or NASDAQ (time span 

from 1996 to 2002). 

Although acknowledged as genuine by trading industry practitioners, chart analysis 

has been clearly the most refuted field of knowledge in financial markets analysis, wavering 

between uneasy acceptance and pure contempt by academics (the latter being a symptom of 

the academic bias against the so called charting folklore, consequence of the poor 

objectiveness of such analyses). 
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2.2.2.1.2 Dow Theory 

 

The Dow Theory (DT) is a methodology of market interpretation introduced by Charles 

H. Dow, a prominent journalist in the New York financial business district of the 19th 

century. He founded the Dow, Jones & Co. and The Wall Street Journal. He also developed 

indexes to assess economic progress (today’s well known DJIA-Dow Jones Industrial 

Average and the sectorial Dow-Jones Rail Average).  

Dow studied the price movement of stocks, bonds and commodities, and found out 

similarities in their behaviour. With time and empirical observation, three simple principles 

(or assumptions) that today constitute the core assumptions of the DT, were identified by 

Dow and later developed by (Hamilton, 1922):  

1) Manipulation – price manipulation is possible on a daily basis, but the major trend 

cannot ever be manipulated; 

2) The Averages discount everything – all relevant information is incorporated in the 

indexes; 

3) The theory is not infallible. 

This last one leaves room to failure admission, and in spite of the saying «The Exception 

makes the Rule», it undermines the possibility of considering DT as a real scientifically 

sustained theory. In addition to these three principles some other hypotheses were added to 

the theory by William Peter Hamilton, and later resumed and systematized by (Rhea, 1932): 

 There are 3 kinds of movements in the Averages – primary movements, secondary 

reactions, and daily fluctuations; 

 To determine a trend, both Averages (Industrial and Rail) must confirm it; 

 Volume behaviour must confirm changes of trend; 

 An individual stock may not accompany Averages’ trend due to specific conditions. 

Nowadays, the DT still gathers a significant amount of followers in the trading 

industry, remaining as one of the major TA techniques available. 
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2.2.2.1.3 The Wave Principle 

 

The Elliott Wave Theory (EWT), or “The Wave Principle” as called by its author, 

Ralph Nelson Elliott, is a methodology considered an extension both in content and in depth 

of the Dow Theory. Although with common aspects with The Wave Principle, the DT differs 

in nature from the former: while the EWT is based on mass psychology and its inherent 

behavioural reactions, DT is economic-based oriented. When some critics declare the Wave 

Principle as being nothing more than a refined Dow Theory, they miss completely the point 

here – the two theories have different approaches at their core. The similarities between them 

are formal aspects of pattern recognition and interpretation of technical indicators of wave 

progression. In fact, despite being at the dawn of technical analysis, DT remains in its 

essence very fundamentally driven, as if every market price movement could or should be 

explained by economic reasons. This is expressed in the assumption that the stock market 

discounts all relevant news. For the EWT, news are not so new, therefore they are irrelevant 

as predictors, and usually reveal the social and psychological mood of the market arena. 

Elliott observed first in (Elliott, 1938), later in (Elliott, 1946) that human actions follow 

predetermined patterns confined to an established law, since humans are part of Nature, and 

Nature (or the Universe) works under deterministic laws. Once the character of the natural 

law is discovered, it can be understood, may be mastered (therefore, predicted) and used 

towards the trader’s benefit. According to his findings, movements in stock prices depict a 

5 wave impulse (motive waves numbered 1-2-3-4-5) followed by a 3 wave correction 

(corrective waves lettered A-B-C). This forms a complete 8 wave cycle of price movement. 

Elliott noted a consistent behaviour in these waves, in three particular circumstances: 1) 

Wave 2 never regresses wave 1, or put in other terms, prices of wave 2 never fall below the 

beginning of wave 1; 2) Wave 3 is never the shortest wave; in fact it usually is the biggest 

in length and price expansion; 3) Wave 4 never falls back into the price territory of wave 1. 

These three conditions are the core assumptions of the wave theory. If any of these rules is 

broken in a chart wave count, then there must be something wrong with the count under the 

Elliott Wave perspective. 

After being forgotten for a period of two decades, (Frost and Prechter, 2005) recovered 

the theory and resumed the research in this field. Prechter conquered a renowned position in 
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the trading industry, following the successful application of the theory in the mid 80’s. 

(Poser, 2003) also tries to show how we may apply the theory profitably. In the last few 

years, Prechter along with Parker, have been working on what they call “Socionomics”, 

exploring the existing strong correlation between economic environment 

(expansion/recession) and psychological mood (enthusiasm/depression). The common 

social sciences, such as Sociology and Economics, take for granted a causal relation in which 

the environment affects social mood; Socionomics, however, propose the inverse: 

psychological mood changes the way people behave and ultimately induces expansion and 

contraction moves in the economy – (Prechter, 2003), (Parker and Prechter, 2005), (Prechter 

and Parker, 2007). 

 

2.2.2.2 Indicators  

 

Indicators comprise the quantitative area of TA. They represent an attempt to introduce 

the scientific method into this branch of analysis, in the sense that they try to capture 

relations, tendencies and predictive power in price data. Several authors have devoted their 

lives to the expansion of knowledge in this field – some invested in trend indicators’ analysis 

and their use for building trading systems, for instance in (Kaufman, 2013), (Katz and 

McCormick, 2000) and (Schwager, 1996). Other authors dedicated more time to and centred 

their attention in the study of oscillators – e.g., (Pring, 1993) or (Brown, 1999). There are 

even authors who made relevant contributions to TA in all categories of indicators and 

oscillators as they disclosed to the trading industry landmark indicators, such as the RSI, the 

ADX, Parabolic SAR, ATR – (Wilder, 1978); the MACD – (Appel, 1999). This kind of TA, 

due to its (more) objective nature, may well be considered evidence-based statistical science 

– (Aronson, 2007).  

This kind of TA uses data (mainly price data) to compute values for different 

indicators, each with a different interpretation, according to the way they are conceived. 

There are three main categories of TA indicators: 

 Trend Indicators – try to capture the market tendency; 
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 Momentum Indicators, or Oscillators – to identify the market pace, the rhythm at 

which price flows; 

 Volatility or Breakout Indicators – to detect sudden market volatility variations. 

Trend Indicators are based on Moving Averages (MA) that smoothen or flatten price 

movement. In a certain way, they avoid erratic behaviour, which could, with false signalling, 

trigger unprofitable decisions when engaging in trading activities (whipsaws; continuous 

sideway moves). Usually two or three MAs of different time lags are used in a crossover 

system. The system identifies turning points in price trend motion, the moment of 

intersection between the short term and the medium/long term MAs. A long position signal 

is settled when the short MA climbs above the medium/long term MA. A short position 

signal occurs when the opposite happens: when the short term, more sensitive, MA falls 

below the medium/long term MA. 

Momentum concerns the velocity and intensity of price change and has the implicit 

idea that rapid and significant changes in one direction are not sustainable over a long period 

of time; the stronger the move, the more the price will be closer to an extreme market 

situation (overbought or oversold), and the more likely price will be prone for a reversal.  

Momentum should not be mistaken with sentiment. Sentiment is all about perception of 

market intervenients (in a direct or indirect fashion – even if not active in trading, still with 

power to influence the market, such as opinion makers, news stations, survey editors and 

others) and usually transmits how bullish or bearish they are. Momentum is price on the 

move (or price variation). The difference might seem subtle or irrelevant, but is not – it is 

almost like thinking and acting upon it; market is acting.  

Breakout Indicators use some price-trend or price-band indicator as a reference. 

When the price shows a determinant movement either up or down passing through the 

reference line (either price trend or applicable extreme of the band), a signal to buy or to sell 

is triggered, depending on the pre-established rules of trading.  

In a study from the beginning of the century, (Lo et al., 2000) evaluated the efficacy 

or effectiveness of TA, based on a new approach – new smoothing techniques. They state 

that TA provides, for certain patterns and with reference to a vast majority of stocks 
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(especially from the NASDAQ), incremental information for decision making purposes. 

They also claim that TA may be improved by the use of automated algorithms.  

 (Brown and Jennings, 1989) demonstrated theoretically how, in a model with two 

periods of time, the usage of past price information presents value to the investor: «Investors 

use the historical price in determining time 2 demands because the current price does not 

reveal all publicly available information provided by price histories, that is, investors use 

technical analysis to their benefit.» 

 (LeBaron, 2002) acknowledged the existence of sustenance for predictive value of 

simple technical trading rules, specifically simple moving averages, even though 

exaggerated by the trading industry. After studying the application of these rules to the forex 

markets in the 90’s, he also found out performances vary throughout the decade, 

deteriorating along the time span. LeBaron speculates on the origins of these discrepancies, 

as far as technical trading rules’ outcomes are concerned, advancing with some hypotheses: 

changing markets, the dissemination of the trading rules, forex governmental intervention, 

the advancement of the internet, reducing trading costs, or, most likely and more importantly, 

the data snooping bias (data mining or data dredging problem). One main conclusion is that 

simple technical trading rules present statistical evidence of being useful for profitable price 

movements’ prediction, particularly in longer term time horizons. However, there is strong 

evidence that forex markets move in an evolving process (we may see a change of regime in 

successive time-series), and consequently these trading techniques, according to the author, 

should be used carefully.   

 (Schulmeister, 2008) assessed the profitability of technical trading models (applied 

to forex markets – Deutsch Mark, Euro after year 2000, against the US Dollar) for the time 

span varying from 1973 to 2004. In this work two kinds of models were used:  

 a simple unweighted moving average crossover system, in which long signals occur 

when the fast moving average (1 to 15 trading days’ moving window) crosses from 

below the slow moving average (5 to 40 days), and short position signalling happens 

in the opposite case (Fast MA crosses the Slow MA from above). The combination 

of all the different MA windows allows 474 model variations. 

 A simple momentum system, represented by the arithmetical difference between 

currency price at the present moment 𝑡 and some moment 𝑡 − 𝑖 in the past (𝑀𝑖 =
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𝑃𝑡−𝑃𝑡−𝑖); 𝑖 varies between 3 and 40 trading days (permitting 38 model variations). 

In this straightforward trading system, a long position is taken when 𝑀𝑖 turns from 

negative into positive; the reverse (short position) when the opposite ensues. 

Schulmeister considered the mentioned variations with and without one trading day 

lag of execution following the trading signal, summing up to 1024 variants of these two 

trading model types. The author also considered trading costs of 0.02% per trade, implying 

a 4 basis points bid-ask spread cost to complete a round turn trade. All of the model variations 

showed overall positive returns with small p-values for the in-sample period of 1973 to 1999, 

the majority of which statistically significant with a 95% confidence level. For the out of 

sample period of 2000 to 2004, over 91% of the models remain profitable. These positive 

returns are exclusively due to the systematic exploitation of price trends in the considered 

forex market, since profitable positions last substantially longer periods of time than 

unprofitable trades. The presented models seem to be quite robust: most of them remain 

profitable (at similar levels of effectiveness and statistical confidence) for most subsets of 

sample data. However, it is also clear that the profitability under these models’ technical 

rules declines from late 1980’s. 

A year later, the same author - (Schulmeister, 2009) – presented a study where trend 

following and contrarian indicators were tested with S&P 500 spot and index futures trading 

data. These included moving average / raw momentum indicators transformed into relative 

measures, and the relative strength index, combined in six models with different sets of 

trading rules. In his work, Schulmeister uses two different kinds of indicators, that basically 

are the differential of price (either raw or smoothed, as in a moving average) in two distinct 

moments of time, and he calls them oscillators (for fluctuating around zero, through the 

abscissa axis). There is no limit for these indicators’ fluctuations, and their magnitude 

depends on the absolute variation of price itself. This is not the concept of momentum 

indicators or oscillators adopted in this thesis – here, oscillators refer to the measure of the 

pace at which prices move, translated into the relative strength of bulls / bears, within a 

limited ordinate axis scale. It is assumed the more rapidly prices move towards one specific 

direction and hit extreme levels (overbought/oversold), the more prone they are for a reversal 

in directional movement. 



[28] 

 

Two of the models assumed constant active participation in the market, i.e., once a 

position is taken the trader is always in the market, holding or reversing his position; the 

other four admit the possibility of being out of the market within two consecutive trades. 

With these premises, a total of 2580 trading systems (model variations) were conceived, 

which were tested in daily as well as in 30-minute time lag data. Sub-periods of 3 to 4 years 

were also taken into consideration for partial performance assessment. 

Schulmeister came to these major conclusions: 

 As far as daily data is concerned, technical trading models have been presenting a 

gradually smaller profitability, declining over time; when used with 30-minute 

frequency data, the models showed more consistency, with higher profitability - an 

average return of 7.2% per year throughout the complete sample period of 1983 to 

2007; 

 A residual 2.6% of all 2580 trading systems would have produced negative outcomes 

over the entire sample; 

 The top performance 25 trading systems for the period of 1986 to 2007 attained an 

average gross return of 14.5%, way above the overall gross rate of return over that 

same time span (7.5%); 

 The shift of profitability patterns provided by the gathered statistical evidence fits 

and sustains the Adaptive Market Hypothesis by Lo. 

(Olson, 2004) reaches similar conclusions about the performance evolution of 

technical trading systems. Olson tested the profitability of simple moving averages for the 

forex market (18 different currency crosses against the US dollar, from 1971 to 1995) and 

found out the 1970’s statistically significant positive risk-adjusted returns had vanished in 

the 1990’s, supporting the idea of declining profits over time. The author suggests, for the 

forex, the progression from circumstantial (temporarily) inefficient markets to a mature 

efficient market status.  

From this brief literature review we may see different assessments on the usefulness 

of TA indicators as a tool for trading. While in some circumstances it seems to produce 

relatively good results, indicator-based TA lacks the consistency over time that might allow 

it to be considered an important trading aiding tool. Our empirical analysis will try to unfold 
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and scrutinize the real contribution of TA indicators to the achievement of above normal 

profits in the trading industry. In the following subsection we will present the used TA 

indicators and the associated trading rules, as well as their parameters subject to 

optimization. 

 

2.2.2.2.1 Simple Moving Averages 

 

There are various types of MA’s, depending on the weight given to the observations 

used for the MA computation. A Simple Moving Average (SMA) uses identical weights for 

all observations. The value of the SMA reporting to moment 𝑡 with lag of 𝑛𝑆𝑀𝐴 observations 

will be: 

𝑆𝑀𝐴𝑡
𝑛𝑆𝑀𝐴 =

∑ 𝑃𝑡−𝑖+1
𝑛𝑆𝑀𝐴
𝑖=1

𝑛𝑆𝑀𝐴
  

The shorter the 𝑛𝑆𝑀𝐴 value, the quicker the moving average will adjust itself to new 

price data. Usually SMAs with different numbers of lags are used: an SMA with a smaller 

number of lags is termed faster, and an SMA with a larger number of lags is termed slower. 

The crossing of the resulting curves (fast vs. slow) is seen as a signal of a new trend and is 

commonly taken as a good entry point in a market for short term trading. In this work, we 

consider two different simple moving averages crossover indicators: a two SMA crossover 

(with a maximum moving window of 30 observations) indicator and a three SMA crossover 

(with moving window length up to 90 observations).  

The implicit trading rules vary in these two strategies: while in the first case a simple 

crossover of the fast MA generates a position signal and, therefore, the trader is always in 

the market long or short, in the second situation, the fast MA needs to cross both the 

intermediate and the long term MAs in order to make the trader/system assume a long or 

short position (provided that it does not happen, we hold out of the market). 

For these two different types of trend strategies, the parameters to be object of 

optimization are: 

𝑛𝑆𝑀𝐴1;  𝑛𝑆𝑀𝐴2 = moving window length for the first and second SMA’s,  
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{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} (2 SMA Crossover)  

and  

𝑛𝑇𝑆𝑀𝐴1;  𝑛𝑇𝑆𝑀𝐴2;  𝑛𝑇𝑆𝑀𝐴3; = moving window length for the first, second and third SMA’s, 

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 90} (Triple SMA Crossover). 

 

2.2.2.2.2 Exponential Moving Averages 

 

A possible variation of the simple moving average technique might be the weighted 

moving average. A Weighted Moving Average (WMA) will assume different weights, and 

may be stated as follows: 

𝑊𝑀𝐴𝑡
𝑚 =

∑ 𝑤𝑖 ∙ 𝑃𝑡−𝑖+1
𝑚
𝑖=1

∑ 𝑤𝑖
𝑚
𝑖=1

  

where 𝑤𝑖 stands for the weight of observation 𝑖 in the WMA and 𝑚 represents the moving 

window size. 

A special case of the WMA is the Exponential Moving Average (EMA), where the 

following relation of weights (𝑤𝑡; 𝑤𝑡−1) holds: 

𝑤𝑡−1 = 𝛼 ∙ 𝑤𝑡 ⟺ 𝛼 =
𝑤𝑡−1

𝑤𝑡
   , 0 < 𝛼 < 1 (1) 

and 𝛼 is the relation of weights 𝑤𝑡−1 and 𝑤𝑡. 

The tendency of traders and analysts in the industry is to give more weight to recent 

data, bringing more emphasis to new price formations at every moment of time. Usually, 

weights in this sort of modelling may have a linear rate of decrease or even an exponential 

rate of decrease. In this context, we may define a 𝑛th moment moving average when this 

smoothing process is applied 𝑛 times to price data (raw and subsequently transformed data).  

 There are other ways to compute an exponential moving average. For instance, 

Matlab calculates a specific EMA where the relation between the weights of the moving 
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window depends on the moving window length itself. In this case, the constant 𝑘 will be 

used to calculate the EMA is determined by the following expression: 

𝑘 =
2

(1 + 𝑛𝐸𝑀𝐴)
 , 0 < 𝑘 < 1  

where 𝑛𝐸𝑀𝐴 is the EMA’s moving window size, 

𝐸𝑀𝐴𝑡
𝑛𝐸𝑀𝐴 = [𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐸𝑀𝐴𝑡−1

𝑛𝐸𝑀𝐴] ∙ 𝑘 + 𝐸𝑀𝐴𝑡−1
𝑛𝐸𝑀𝐴  

𝐶𝑙𝑜𝑠𝑒𝑡 is the closing price at moment 𝑡, 

and the first possible computable EMA will be equal to the correspondent SMA of the same 

window size. In this type of indicator (applied to a 2-EMA-Crossover), we have two different 

kinds of parameters for optimization: 

𝛼𝐸𝑀𝐴1;  𝛼𝐸𝑀𝐴2 = weight ratios for the first and second EMAs; 

{𝛼𝑖 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐸𝑀𝐴1;  𝑛𝐸𝑀𝐴2 = moving window length for the first and second EMA’s,  

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

The strategy will work just as in any two simple moving averages crossover: start a 

long position when the fast MA surpasses the slow MA; hold an inverse position when the 

opposite happens. 

 

2.2.2.2.3 Average True Range (ATR) 

 

The True Range (TR), developed by (Wilder, 1978), represents the widest price 

variation within a complete single moment, i.e., the maximum price variation since the close 

of the previous day, which is the same as: 



[32] 

 

𝑇𝑅𝑡  = 𝑀𝑎𝑥 {

𝐻𝑖𝑔ℎ𝑡 − 𝐿𝑜𝑤𝑡

𝐻𝑖𝑔ℎ𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡−1

𝐶𝑙𝑜𝑠𝑒𝑡−1 − 𝐿𝑜𝑤𝑡

 (2) 

where 𝐻𝑖𝑔ℎ𝑡 , 𝐿𝑜𝑤𝑡  and 𝐶𝑙𝑜𝑠𝑒𝑡  represent the highest, the lowest and the closing prices 

negotiated at period 𝑡. 

The Average True Range is an exponential moving average of 𝑛 TR observations: 

𝐴𝑇𝑅𝑡,𝑛𝐴𝑇𝑅
 = ∑

𝑤𝑡−𝑖+1

∑ 𝑤𝑡−𝑗+1
𝑛𝐴𝑇𝑅 
𝑗=1

𝑛𝐴𝑇𝑅 

𝑖=𝑡

. [𝑚𝑎𝑥(𝐻𝑖𝑔ℎ𝑖;  𝐶𝑙𝑜𝑠𝑒𝑖−1)

− 𝑚𝑖𝑛(𝐿𝑜𝑤𝑖;  𝐶𝑙𝑜𝑠𝑒𝑖−1)] 

 

where again the weights between two consecutive moments relate with each other according 

to equation (1) – this means that the averages computed within the moving window are 

EMAs. The ATR can be used in a breakout trading system, where a long position signal is 

generated in 𝑡 when price in moment 𝑡 moves above the close price EMA in moment 𝑡 

accrued by the ATR value or a multiple thereof. By the same token, a short position signal 

is ignited when price of moment 𝑡 decreases below the close price EMA in moment 𝑡 minus 

(a multiple of) the ATR value. In the conception of this trading system, the following 

parameters are subject to consideration: 

𝛼𝐶𝑃𝑒𝑚𝑎;  𝛼𝐴𝑇𝑅= weight ratios for the computation of the EMA and ATR values, respectively. 

{𝛼𝑖 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐶𝑃𝑒𝑚𝑎; 𝑛𝐴𝑇𝑅 = moving window length for the determination of the EMA and ATR values. 

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

 

2.2.2.2.4 Directional Movement Crossover (±DI Crossover) 

 

The Directional Movement Index (DMX or ±DI) is an indicator embedded in a 

trading system developed by an American engineer with a passion for the markets, J. Welles 

Wilder, Jr., in (Wilder, 1978). To compute this index, the following steps should be met: 
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1. Calculate the True Range (TR) for each day according to 

𝑇𝑅𝑡  = [𝑚𝑎𝑥(𝐻𝑖𝑔ℎ𝑡;  𝐶𝑙𝑜𝑠𝑒𝑡−1) − 𝑚𝑖𝑛(𝐿𝑜𝑤𝑡;  𝐶𝑙𝑜𝑠𝑒𝑡−1)]  

which is equivalent to (2);  

2. Calculate +DM and –DM, as: 

+𝐷𝑀𝑡  = 𝐻𝑖𝑔ℎ𝑡 − 𝐻𝑖𝑔ℎ𝑡−1  

−𝐷𝑀𝑡  = 𝐿𝑜𝑤𝑡−1 − 𝐿𝑜𝑤𝑡  

3. Determine +DI and –DI as exponential averages of +DM and –DM (smoothed 

indicators) divided by a TR exponential average of the same length: 

±𝐷𝐼 =
𝐸𝑀𝐴𝑡

𝑛𝐷𝑀𝐼(±𝐷𝑀)

𝐸𝑀𝐴𝑡
𝑛𝐷𝑀𝐼(𝑇𝑅)

  

With the ±DI data, a long position signal is triggered when +DI>-DI; a short position 

signal is generated when the reverse happens, i.e., the moment +DI<-DI. For this kind of 

indicator, we will proceed with the optimization of the following parameters: 

𝛼𝐷𝐼𝑎𝑡𝑟;  𝛼𝐸𝑀𝐴 +𝐷𝑀;  𝛼𝐸𝑀𝐴−𝐷𝑀 = weight ratios for the TR exponential average, +DM and -

DM, respectively;  

{𝛼𝑖 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐷𝑀𝐼 = moving window length for all three EMA’s,  

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

 

2.2.2.2.5 Moving Average Convergence/Divergence (MACD) 

 

The Moving Average Convergence/Divergence (MACD) is an indicator created and 

initially published by (Appel, 1999). This indicator is a combination of price exponential 

moving averages that, through a confrontation with a MACD EMA (the signalling function), 

generates buying and selling signals. In his original configuration, Appel used time periods 

of (𝑛𝐹𝐸𝑀𝐴;  𝑛𝑆𝐸𝑀𝐴;  𝑛𝑆𝑖𝑔𝑛𝑎𝑙) = (12; 26; 9), corresponding to the fast price, slow price and 

MACD signal line EMAs time lengths, respectively. 
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𝐹𝑎𝑠𝑡𝐸𝑀𝐴𝑡 = 𝐸𝑀𝐴𝑡
𝑛𝐹𝐸𝑀𝐴    , 𝑛𝐹𝐸𝑀𝐴 = 12   

𝑆𝑙𝑜𝑤𝐸𝑀𝐴𝑡 = 𝐸𝑀𝐴𝑡
𝑛𝑆𝐸𝑀𝐴    , 𝑛𝑆𝐸𝑀𝐴 = 26  

𝑀𝐴𝐶𝐷𝑡  = 𝐹𝑎𝑠𝑡𝐸𝑀𝐴𝑡  −  𝑆𝑙𝑜𝑤𝐸𝑀𝐴𝑡  

𝑆𝑖𝑔𝑛𝑎𝑙𝑡  =  𝐸𝑀𝐴𝑡

𝑛𝑆𝑖𝑔𝑛𝑎𝑙 (𝑀𝐴𝐶𝐷𝑡)   , 𝑛𝑆𝑖𝑔𝑛𝑎𝑙 = 9  

The common technical strategy associated to this indicator states we should buy (long 

position) when the MACD values rises above the Signal line and sell (short position) when 

the opposite situation occurs. The parameters to tweak in this indicator are: 

𝛼𝐹𝐸𝑀𝐴; 𝛼𝑆𝐸𝑀𝐴; 𝛼𝑆𝑖𝑔𝑛𝑎𝑙 = weight ratios for the fast, slow and signal EMAs;  

{𝛼𝑖 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐹𝐸𝑀𝐴;  𝑛𝑆𝐸𝑀𝐴;  𝑛𝑆𝑖𝑔𝑛𝑎𝑙 = moving window length for the fast, slow and signal EMAs,   

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

A note should be made about this indicator: it is not unanimous whether the MACD 

should be classified as a momentum oscillator or a trend following indicator. Some in the 

trading industry would assign this to the momentum category; we, conversely, consider a 

trend following indicator. The subjacent reasoning lies on this: a momentum oscillator deals 

with the confrontation between buying and selling market forces, and that is better translated 

in their ability, both in speed and intensity, to invade the opponent’s ground (how often and 

how far each of the powers – bulls and bears – can overcome the other market faction). This 

ability is measured in new price extremes (highs and lows). The MACD neglects highs and 

lows, and focuses only in closing price, through a series of constructed (exponential) moving 

averages, a clear characteristic of trend indicators. 
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2.2.2.2.6 Relative Strength Index (RSI) 

 

The Relative Strength Index is a momentum oscillator conceived to measure market 

conditions (overbought/oversold), i.e., the relative pressure of buyers / sellers in a market. 

(Wilder, 1978) depicts the structure and the rationale of the index: 

𝑅𝑆𝐼 = 1 −
1

1 + 𝑅𝑆
  

where 𝑅𝑆 is the quotient between the upward movements’ exponential average for an n-day 

period and the downward movements’ exponential average for that same period. At the 

present time, the commonly used version adopts simple moving averages, version 

popularized by Cutler: 

𝑅𝑆 = [
∑ 𝑈𝑡−𝑖+1

𝑛𝑅𝑆𝐼
𝑖=1

𝑛𝑅𝑆𝐼
] [

∑ 𝐷𝑡−𝑖+1
𝑛𝑅𝑆𝐼
𝑖=1

𝑛𝑅𝑆𝐼
]⁄   

being  

𝑈𝑡 = price variation of day t for when closing higher than the previous day  

and 

𝐷𝑡 = price variation of day t when closing lower than the previous one. 

This RS is, as we may see, equal to 

𝑅𝑆 =
∑ 𝑈𝑡−𝑖+1

𝑛𝑅𝑆𝐼
𝑖=1

∑ 𝐷𝑡−𝑖+1
𝑛𝑅𝑆𝐼

𝑖=1

  

and again, we may rewrite the RSI as 

𝑅𝑆𝐼 = 1 − 1 [1 +
∑ 𝑈𝑡−𝑖+1

𝑛𝑅𝑆𝐼
𝑖=1

∑ 𝐷𝑡−𝑖+1
𝑛𝑅𝑆𝐼

𝑖=1

]⁄   

Typically, this oscillator is built with reference to the past fourteen days (𝑛𝑅𝑆𝐼 = 14) 

and Wilder himself used this time frame (the last 14 daily closing prices), but the indicator 

may be also customized. On one extreme, if there is a rising streak in market prices and the 

sum of 𝐷𝑡 assumes zero value, RS will tend to infinity and RSI to 1 or 100%. This means 
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the market is completely overbought (exaggeratedly bought) and is prone for a reversal. On 

the other hand, with a continuous falling market, the sum of 𝑈𝑡 and RS will tend to zero, 

generating also a null RSI, i.e., RSI = 0%. In this situation the market is extremely oversold 

(exaggeratedly sold) and is likely to go up. 

Empirical evidence in several major markets over the years since the proposal of this 

index (RSI has become tremendously popular in the trading industry since its debut) suggests 

the existence of a general 30%-70% band where the indicator moves most of the time. These 

figures have been appointed and commonly accepted as oversold and overbought marks. 

This also depends on the number of days used for calculation. The lower this number, the 

more sensitive RSI will be to price fluctuations, igniting false overbought / oversold signals. 

The parameters to be fine-tuned in this indicator are: 

𝑢𝑏𝑅𝑆𝐼;  𝑙𝑏𝑅𝑆𝐼 = upper and lower bounds, respectively, for the RSI signal activation, 

{𝑢𝑏𝑖; 𝑙𝑏𝑖 ∈ ℝ: 0 ≤ 𝑢𝑏𝑖 ≤ 1 ∧ 0 ≤ 𝑙𝑏𝑖 ≤ 1 ∧ 𝑙𝑏𝑖 < 𝑢𝑏𝑖} 

𝑛𝑅𝑆𝐼 = moving window length for the two moving averages of 𝑈𝑡 and 𝐷𝑡, 

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

For the purpose of this work, we have used the typical rule and an alternative rule of 

signal generation. The typical rule implies that a short position will be taken if the RSI hits 

the ub in an ascending movement – the short position will stand until the RSI signal breaks 

the lb barrier on a falling movement; the converse (long position) is triggered when the RSI 

moves through the lb in a descending movement and only changes to a long position when 

the RSI signal hits the ub on the rise, and so forth. This rationale will be applied in Chapter 

4, dealing with the Forex market. In Chapter 5 we will use a different reasoning for trading 

Stock Markets in a portfolio optimization perspective: we assume a long position if the RSI 

is above the specific lb of 30% and hold that position while it remains on the rise; whenever 

this condition is not met, we stay out of the market. 

 

 



[37] 

 

2.2.2.2.7 Williams %R 

 

The percentage-R oscillator, introduced by Larry Williams, measures market 

saturation conditions. The proposed formula for the computation of this indicator is as 

follows:  

%𝑅𝑡 =
𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐻𝐻𝑡∶(𝑡−𝑛%𝑅+1)

𝐻𝐻𝑡∶(𝑡−𝑛%𝑅+1) − 𝐿𝐿𝑡∶(𝑡−𝑛%𝑅+1)
  

where 

𝐻𝐻𝑡∶(𝑡−𝑛%𝑅+1) refers to the highest high within the previous 𝑛%𝑅 days to moment t; 

𝐿𝐿𝑡∶(𝑡−𝑛%𝑅+1) refers to the lowest low within the previous 𝑛%𝑅 days to moment t 

%R varies from -100% (extreme oversold market conditions) to 0% (extreme 

overbought conditions). Although with an uncommon scale, its rationale of interpretation is 

similar to any other oscillator: if the indicator approaches the lower limit (-100%) the market 

is likely to reverse from a declining price trend; the opposite holds also – if the indicator 

moves towards the upper limit (0%), the market is prone to react from an advancing trend 

and move down.  

In his studies, Williams considered 𝑛%𝑅=10, and -80% and -20% as thresholds for 

oversold and overbought market conditions, respectively. As trading strategy, Williams 

adopted a sort of pullback effect: to buy only when -100% was reached and the oscillator 

subsequently moves to -95% and confirms at -85%; to sell if 0% level is attained and levels 

-5% and -15% (confirmation) follow. As a market saturation indicator, it may also be used 

with a simpler strategy – to buy when the index hits the oversold threshold (%R=-80%) or 

the reverse when overbought conditions are met (%R=-20%). For this indicator three 

parameters were identified: 

𝑢𝑏%𝑅;  𝑙𝑏%𝑅  = upper and lower bounds (thresholds), respectively, for the Williams %R 

signal generator, 

{𝑢𝑏𝑖; 𝑙𝑏𝑖 ∈ ℝ: 0 ≤ 𝑢𝑏𝑖 ≤ 1 ∧ 0 ≤ 𝑙𝑏𝑖 ≤ 1 ∧ 𝑙𝑏𝑖 < 𝑢𝑏𝑖}, and 
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𝑛%𝑅= moving window length for the determination of the 𝐻𝐻𝑡∶(𝑡−𝑛+1) and 𝐿𝐿𝑡∶(𝑡−𝑛+1), 

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

 The rules of trading applicable to this indicator are to adopt a long position when 

hitting the lower bound (oversold) in a fall; assume a short position in the market when the 

upper bound (overbought) is hit in a rising movement; hold the position otherwise. 

 

2.2.2.2.8 Stochastic Oscillator 

 

The stochastic oscillator is, in fact, a set of momentum indicators developed and 

proposed by (Lane, 1984). The concept of this oscillator-based trading system sustains its 

rationale on the applied smoothing process, by using a 3-day exponential moving average 

(in two different phases) on a raw indicator of relative saturation or price exhaustion, the fast 

stochastic %K: 

𝐹𝑎𝑠𝑡%𝐾𝑡 =
𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐿𝐿𝑡∶(𝑡−𝑛𝐹%𝐾+1)

𝐻𝐻𝑡∶(𝑡−𝑛𝐹%𝐾+1) − 𝐿𝐿𝑡∶(𝑡−𝑛𝐹%𝐾+1)
  

From this fast stochastic, we may derive one first signalling line, the Fast %D or Slow %K: 

𝐹𝑎𝑠𝑡%𝐷𝑡 = 𝑆𝑙𝑜𝑤%𝐾𝑡 = [𝐸𝑀𝐴𝑡
𝑛𝐹%𝐷(𝐹𝑎𝑠𝑡%𝐾𝑡)]  

The joint use of these two indicators in a crossover system is called “Fast 

Stochastics”. But, because of its acute sensitivity, this system is prone to too much false 

signalling. Lane saw this caveat / shortcoming and smoothed further the system indicators: 

𝑆𝑙𝑜𝑤%𝐷𝑡 = [𝐸𝑀𝐴𝑡
𝑛𝑆%𝐷(𝑆𝑙𝑜𝑤%𝐾𝑡)]  

where typically 𝑛𝐹%𝐾 , 𝑛𝐹%𝐷 , 𝑛𝑆%𝐷 assume value 3, 

and 𝑛𝐹%𝐷  and 𝑛𝑆%𝐷  stand for the faster and slower EMAs moving window lengths, 

respectively. 

The Trading Industry suggests this last smoothing process (and the correspondent 

use of slow stochastics) avoids the sensitivity trap and respective false signals. Long position 
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signals are triggered when %K moves above %D and short position signals when the 

opposite happens (either in fast or in slow stochastics crossover). 

There is a strict connection between fast stochastic %K and Williams %R: %K is 

equivalent to %R with 100 percentage points added to the scale. Considering the following 

equality: 

(𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐿𝐿𝑡∶(𝑡−𝑛+1)) − (𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐻𝐻𝑡∶(𝑡−𝑛+1))

= 𝐻𝐻𝑡∶(𝑡−𝑛+1) − 𝐿𝐿𝑡∶(𝑡−𝑛+1) 
 

and rearranging, we obtain 

(𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐿𝐿𝑡∶(𝑡−𝑛+1))

(𝐻𝐻𝑡∶(𝑡−𝑛+1) − 𝐿𝐿𝑡∶(𝑡−𝑛+1))
−

(𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐻𝐻𝑡∶(𝑡−𝑛+1))

(𝐻𝐻𝑡∶(𝑡−𝑛+1) − 𝐿𝐿𝑡∶(𝑡−𝑛+1))
= 1  

which is the same as 

%𝐾𝑡 − %𝑅𝑡 = 1  

or 

%𝐾𝑡 = %𝑅𝑡 + 100%  

The Stochastic oscillator has the following parameters subject to optimization: 

𝛼𝐹%𝐷;  𝛼𝑆%𝐷= weight ratios for the computation of Fast%D and Slow%D EMAs;  

{𝛼𝑖 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐹%𝐾;  𝑛𝐹%𝐷;  𝑛𝑆%𝐷= moving window length for the determination of Fast%K, Fast%D and 

Slow%D EMAs, {𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 

Also in this indicator we will use the trading rules as previously stated in this subsection, but 

now with reference to the smoothed indicators (Fast%D and Slow%D), i.e., assume a long 

position while Fast%D  > Slow%D and a short position if Fast%D  < Slow%D (out of the 

market in the remote possibility of Fast%D = Slow%D). 
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2.2.2.2.9 Bollinger Bands (BB) 

 

Another tool for market technical analysis are the Bollinger Bands. Bollinger Bands 

are formed by a simple moving average of 𝑛-day lag with a confidence interval of 𝑘 price 

standard deviations for that same period of 𝑛 days. Usually, the common adopted parameters 

are 𝑛𝑆𝑀𝐴𝐵𝐵 = 20 days and 𝑘𝐵𝐵 = 2. Once more, parameters 𝑛𝑆𝑀𝐴𝐵𝐵 and 𝑘𝐵𝐵 may be tuned 

using evolutionary algorithms. 

𝐵𝐵𝑡,𝑛,𝑘  = 𝑆𝑀𝐴𝑡
𝑛𝑆𝑀𝐴𝐵𝐵 ± 𝑘𝐵𝐵 ∙ 𝜎  

This kind of indicator, as widely interpreted by the Trading Industry, is often used in 

a breakout trading system, where price is compared, at any given moment, with the upper 

and lower bands; if it crosses the former in upward movement, a long position is signalled, 

the opposite (short position) occurs if price plunges below the latter. 

In order to generate Bollinger Bands, we will have to determine these parameters: 

𝑛𝑆𝑀𝐴𝐵𝐵 = moving window length for the determination of the Bollinger Bands Simple 

Moving Average and standard deviation 

{𝑛𝑆𝑀𝐴𝐵𝐵 ∈ ℕ: 2 ≤ 𝑛𝑖 ≤ 30} 

𝑘𝐵𝐵 = number of standard deviations used in the computation of the Bollinger Bands 

{𝑘𝐵𝐵 ∈ ℝ: 0 < 𝑘𝑖 ≤ 5} 

 

2.2.2.2.10 EMA ± k Bands 

 

Instead of using a Simple MA, we may generate a more elaborated indicator structure 

by adopting an Exponential MA of the closing price.  

𝐶𝑃𝐸𝑀𝐴𝑡,𝑛,𝑘  = 𝐸𝑀𝐴𝑡
𝑛 ± 𝑘𝜎  

This is the main difference regarding the trading system depicted in the previous 

subsection. The other difference relatively to the BB lays in the possible use of diverse k’s 
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for the determination of long and short market positions. The signal generation procedures 

and trading rules remain the same, i.e., a long position signal is activated when the current 

price moves above Close Price EMA plus 𝑘𝜎 and the converse whenever price stays below 

Close Price EMA minus 𝑘𝜎. For the computation of the indicator it is necessary to determine 

the following parameters: 

𝛼𝐶𝑃𝑒𝑚𝑎𝑆𝐷= weight ratio for the computation of the Close Price EMA 

{𝛼𝐶𝑃𝑒𝑚𝑎𝑆𝐷 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐶𝑃𝑒𝑚𝑎𝑆𝐷= moving window length for the determination of the Close Price EMA 

{𝑛𝑖 ∈ ℕ: 2 ≤ 𝑛𝑖 ≤ 30} 

𝑘𝐶𝑃𝑒𝑚𝑎𝑆𝐷
𝑙𝑜𝑛𝑔

 ; 𝑘𝐶𝑃𝑒𝑚𝑎𝑆𝐷
𝑠ℎ𝑜𝑟𝑡 = number of standard deviations used for the computation of Close 

Price EMA  k𝜎 

{𝑘𝑖 ∈ ℝ: 0 < 𝑘𝑖 ≤ 5} 

 

2.2.2.2.11 Double EMA Breakout 

 

In a Double EMA Breakout system, current price is compared with two distinct Close 

Price EMAs, where the trading rules are to take a long position as long as price stays above 

the two moving averages and a short position while the price remains below the same two 

averages; whenever the mentioned conditions are not met, the trading system signals to stay 

out of the market. In order to calculate those two EMAs, it is essential to assume two 

different figures for each moving average – the weight ratio between two consecutive 

average observations and the moving window length: 

𝛼𝐸𝑀𝐴1; 𝛼𝐸𝑀𝐴2= weight ratios for the computation of the two EMAs 

{𝛼𝑖 ∈ ℝ: 0 < 𝛼𝑖 ≤ 1} 

𝑛𝐸𝑀𝐴1;  𝑛𝐸𝑀𝐴2= moving window length for the determination ofthe two EMAs 

{𝑛𝑖 ∈ ℕ: 1 ≤ 𝑛𝑖 ≤ 30} 
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2.3 Financial Risk-Return Analysis 
 

2.3.1 Portfolio Modelling 
 

2.3.1.1 Mean - Variance 

 

The Mean-Variance (MV) analysis in financial context is perhaps the most well-

known and most common approach to portfolio building. That is mainly due to the Harry 

Markowitz’s work (Markowitz, 1952) in the projection of this subject in finance. Before 

Markowitz, portfolio analysis was inexistent both in academic terms. So much so that 

humorously, Milton Friedman argued he could not give Markowitz the doctoral degree in 

economics since portfolio theory was not economics. Nonetheless, (Markowitz, 1952) 

expanded Variance as a standard risk measure for financial portfolio optimization, and he 

still got his PhD diploma. 

 In this approach, the goal is to maximize the expected portfolio return and minimize 

its variance. For a given asset, the expected future return and variance are usually estimated 

resorting to the past returns. For the expect return, we define: 

𝐸(𝑅) =
1

𝑇
∑ 𝑅𝑡

𝑇

𝑡=1

  

A measure of variance 𝜎2 of a determined asset is defined as:    

𝜎2 =
1

𝑇
∑[𝑅𝑡 − 𝐸(𝑅)]2

𝑇

𝑡=1

  

where  

𝑅𝑡 is the asset’s rate of return in moment 𝑡; 

𝐸(𝑅) is the asset’s average return for the period from 𝑡 = 1 to 𝑡 = 𝑇; 

𝑇 is the total number of trading days, the length of time. 
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A measure of the expected return of a portfolio P with 𝑛 assets can be calculated as: 

𝐸(𝑅𝑃) =
1

𝑇
∑ 𝑅𝑃𝑡

𝑇

𝑡=1

=
1

𝑇
∑ ∑ 𝑤𝑖𝑅𝑖𝑡

𝑛

𝑖=1

𝑇

𝑡=1

  

and a measure of its variance 𝜎𝑃
2 is: 

𝜎𝑃
2 =

1

𝑇
∑[𝑅𝑃𝑡 − 𝐸(𝑅𝑃)]2

𝑇

𝑡=1

= ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= ∑ ∑ 𝑤𝑖𝑤𝑗𝜎𝑖

𝑛

𝑗=1

𝜎𝑗𝜌𝑖𝑗

𝑛

𝑖=1

  

where 

𝑅𝑃𝑡 is the portfolio rate of return in moment 𝑡; 

𝑅𝑖𝑡 is the rate of return of asset 𝑖 in moment 𝑡; 

𝐸(𝑅𝑃) is the expected portfolio rate of return with reference to period from 𝑡 = 1 to 𝑡 = 𝑇; 

𝑤𝑖 is the weight of asset 𝑖 in the portfolio; 

𝜎𝑖𝑗 is the covariance between asset 𝑖 and asset 𝑗 for the period from 1 to 𝑇; 

𝜎𝑖 is the standard deviation of asset 𝑖 for the period from 1 to 𝑇; 

𝜌𝑖𝑗 [=
𝜎𝑖𝑗 

𝜎𝑖 ∙ 𝜎𝑗
⁄ ] is the (Pearson) correlation coefficient between assets 𝑖  and 𝑗, for the 

period from 1 to 𝑇. 

Although Markowitz admitted that variance is not a perfect measure of risk, as it 

portraits the volatility of both unfavourable and advantageous return variations, variance 

assumed a preeminent strong role in financial risk assessment worldwide, mostly because it 

requires a calculation effort that is much smaller than a downside risk measure (this was 

particularly relevant in a time where personal computers and laptops were essentially non-

existent in business activities). Thus it became the reference of risk estimation from the mid 

1960’s to the 1990’s. With the advancement of computer technology, and the availability of 

more computational capabilities, the main reason to use variance as reference measure for 

risk assessment faded away, and we started to see pioneering works dealing with more 

realistic and useful risk measures. Nevertheless, even today it is virtually impossible to 
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dismiss Markowitz’s variance as an important measure of risk. In fact, it is so established in 

today’s risk analysis that (Kritzman, 2011), in an invited editorial for The Journal of 

Portfolio Management entitled “The Graceful Aging of Mean-Variance Optimization”, 

advocates the robustness of this method for risk-return analysis, dismissing several criticisms 

(some eventually unfair) and anticipating a still long life for the model. 

(Brito et al., 2015) call attention to the sometimes misinterpretation of the sufficient 

conditions in order to apply the MV model. It is consider sufficient the normality of the 

return distributions or the existence of quadratic utility functions, as Markowitz has already 

clarified (Markowitz, 2014). However, it is not uncommon to see these conditions 

considered as necessary to a valid application of the MV model of Markowitz.  

This model has also been criticized by not taking into consideration the use of 

leverage, so common in the trading industry. (Jacobs and Levy, 2013), for instance, 

developed the Mean-Variance-Leverage model (MVL) and compared with the original 

Markowitz model, in particular when observing market and trading conditions that may 

affect the trading activity itself, such as the risk and associated costs with margin calls, losses 

above capital invested, and bankruptcy. They conclude that the MVL model provides many 

practical insights and a simpler procedure of portfolio stock selection, allowing investors 

some volatility and leverage tolerance (mild, not excessive), and therefore giving a more 

realistic flavour to the model. 

 Another criticism to empirical MV-based academic works relies on the fact that the 

model seems to fall short in terms of performance when trading costs are taken into account. 

Several empirical studies point out how costs may influence the risk/reward panorama for a 

set of trading strategies and therefore its Pareto frontier, or Pareto front2. (Fu et al., 2015) is 

such an example that tries to demonstrate how relevant the role of trading costs might be. 

                                                   

 

2  The Pareto frontier, or Pareto front, represents the set of nondominated solutions in a bi-objective 

optimization problem. In a two-objective optimization problem, nondominated solutions are those which 

cannot be improved regarding one objective’s performance without degrading the other objective’s 

performance. 
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The attained results show transaction costs significantly affect the optimal investment 

decisions. 

 The MV framework is also pointed out as not being the most efficient way to produce 

optimal out-of-sample portfolios. (Karagiannidis and Vozlyublennaia, 2016) present such 

evidence for the mutual fund financial industry. Empirical results show that out-of-sample 

MV optimized portfolios perform worse than other portfolios defined by the industry, despite 

being optimal in-sample. These results suggest MV optimization is more adequate when 

means/variances/covariances are known than when they are unknown and must be estimated 

using historical data. In the case of the mutual fund industry, therefore, financial managers 

may not be using the basic MV framework as a reference. And proven management talent 

may outperform simple mathematical optimization when applied in a context of uncertainty. 

 (García et al., 2014) propose a multiobjective evolutionary algorithm-based 

methodology to solve the MV portfolio optimization problem by adding to the classic risk 

and return goals a third regarding robustness of the optimized solution. This new robustness 

measure, denoted by 𝑍𝑝, equals the sum of the Mahalanobis distances3 between the pair of 

combinations [𝐸(𝑅𝑝); 𝜎𝑝]  and 𝐺  feasible alternative portfolios ( {[𝐸(𝑅𝑖); 𝜎𝑖] , 𝑖 =

1, 2, … , 𝐺}), all divided by the number 𝐺 . This approach provides a three-dimensional 

efficient frontier giving relevant information about the reliability of the pair [risk; return] for 

every solution. Experimental work showed how the use of the third objective improved 

solution reliability, stability, consistency and pattern regularity (high stability frontiers out-

perform low stability frontiers). Solutions are considered more stable as they show resiliency 

and little change to significant parameters variation. 

 Some authors claim that the assumed positive relation between expected return and 

risk (i.e., the higher the risk, the higher the expected return) does not always hold, and it 

depends on the buy-sell imbalance. (Yang and Jia, 2016) conclude that when this imbalance 

is negative (when selling orders outstand buying orders) there is a significant negative 

                                                   

 

3 The Mahalanobis distance between two vectors 𝑥̅ and 𝑦̅ is equal to 𝑑𝑀(𝑥̅; 𝑦̅) = √(𝑥̅ − 𝑦̅)𝑇 ∙ Σ−1 ∙ (𝑥̅ − 𝑦̅) , 

where Σ represents the variance–covariance matrix. 
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relation in the MV relation; when the imbalance is positive, the MV relation is not 

significant. The results are robust regarding different variance models and market 

capitalization. The analysis makes sense – in a strict stock market, where profits can be made 

only with increasing prices, it is natural that a strong selling pressure will induce market 

losses and, because of the intensity of the pressure, high market volatility. Nevertheless, this 

remains as a caveat of the MV optimization framework. 

 Considering all the aforementioned limitations of the MV approach, other 

alternatives emerged both in academia and in the financial industry. For example, (Gülpinar 

and Rustem, 2007) adopt a min-max formulation for a set of multi-period risk-return 

scenarios and compare its performance with the normal Markowitz MV portfolio 

optimization. The results show advantages for the min-max approach, for it performs better 

and grants more conservative solutions in terms of risk in the optimization process itself, 

avoiding excessive losses. 

 Another classic alternative approach is the naïve 1/N (equal weight) portfolio, where 

N stands for the number of assets included in the portfolio. Usually, the MV portfolio 

optimization is benchmarked against a simple trading strategy such as this one, to see how 

the effort of optimization is rewarded with larger returns and/or smaller risk. Several authors 

have devoted attention to this comparison, with somewhat mixed results. While some, such 

as in (Georgiev, 2014) admit a superior performance of the MV optimization approach, more 

recent papers have been questioning this superiority. (Kourtis, 2015), (Yew Low et al., 2016) 

and (Yan and Zhang, 2017) reached similar conclusions: although in-sample results enforce 

the previous superiority idea of the classic MV approach, when considering transaction 

costs, the naïve strategy regularly outperforms out-of-sample MV optimization outcomes. 

 

2.3.1.2 Mean - Semivariance 

 

Markowitz was aware of the conceptual limitations of the variance measure and 

proposed an alternative measure of risk, the Semivariance (Markowitz, 1991), which 

considers only adverse deviations. In this approach, the goal is to maximize the expected 
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return (portfolio) and to minimize risk, translated into the semivariance measure. Portfolio 

semivariance is mathematically defined as: 

𝑆𝑃𝐶 = 𝐸(min(0, 𝑅𝑃 − 𝐶)2) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐶)]2

𝑇

𝑡=1

 

 

 

where 

𝐸(⋅) is the expected value; 

𝑅𝑃 is the portfolio return; 

𝑅𝑃𝑡 is the portfolio return at moment 𝑡; 

𝑇 is the time length; 

𝐶 is a benchmark. 

𝑆𝑃𝐶 stands for Semivariance of portfolio 𝑃 relative to benchmark 𝐶, 

 

 A common value for 𝐶 is 𝐸(𝑅𝑃), equally proposed by (Markowitz, 1991), so that the 

benchmark reference is the overall portfolio average return, and the values used for the 

semivariance calculation are those below this portfolio expected value. This constitutes a 

problem in terms of computation, since the endogenous nature of the portfolio 

semicovariance matrix prevents the use of a simple optimization method: the semivariance 

depends on the portfolio expected value and by its token the expected value is conditioned 

by the asset weights of the portfolio which we want to determine; but these weights also 

affect the semivariance value. 

 (Estrada, 2008) proposed and alternative method, based not on the endogenous 

semicovariance matrix but in an exogenous approximation to this matrix. This new 

exogenous semicovariance matrix is symmetric and allows the same computational 

procedure applied in the classic MV optimization problem, granting a simple form to solve 

the problem. Estrada showed that the correlations of the solutions provided by his proxy 

matrix and those of the real semicovariance matrix are high. However, this still remains an 

approximation and not the exact solution. This very notion is attested by (Cumova and 

Nawrocki, 2011), which revealed how in some circumstances the Estrada’s methodology 

may not work. The authors provided also an alternative method for computing the 

semivariance avoiding the disadvantageously laborious iterative procedure initially 

proposed by Markowitz. 
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 Another feasible alternative is to use an iterative procedure, where at any given 

iteration it is possible to compute the expected value of the portfolio, therefore allowing to 

calculate the portfolio semivariance for that particular iteration with its specific weights. 

(Zhang et al., 2012) used a Monte Carlo simulation for that purpose, overcoming the 

difficulties previously mentioned and yielding in the process an efficient optimization 

method. 

 The use of semivariance has been claimed as an alternative to the variance, so it is 

not a surprise to see comparative analyses of both. (Pla-Santamaria and Bravo, 2013) applied 

both frameworks to the optimization of portfolios composed by Dow Jones stocks (daily 

prices data set from 2005 to 2009). For the same expected returns, the M-SV model presented 

lower risk figures than the M-V, showing how the latter model may be overestimating risk. 

Other articles used semivariance alongside with other measures of risk, for a more complete 

risk assessment. (Najafi and Mushakhian, 2015), for instance, used two different measures 

of risk, the semivariance and the Conditional Value-at-Risk (CVaR) or Expected Shortfall 

(ES), to test the effectiveness of a specific hybrid GA-PSO metaheuristic.  

 

2.3.1.3 Mean - Lower Partial Moments 

 

The Mean – Lower Partial Moments (M-LPM) model represents a generalisation of 

the M-SV approach, and is commonly used with the purpose of improving and expanding 

the risk-associated information about a portfolio. Therefore, it is not unusual to see Lower 

Partial Moments (LPMs) of different orders used in the same optimization problem, in order 

to better characterize the portfolio behaviour in terms of variability with reference to a 

benchmark (frequently the portfolio expected value). These different 𝐿𝑃𝑀(𝑛; 𝐵) (lower 

partial moments of the 𝑛th order with respect to a benchmark 𝐵) may include: 

 Semi-Variance[= 𝐿𝑃𝑀(2; 𝐵)], as defined and considered in subsection 2.3.1.2;  

 Semi-Skewness [= 𝐿𝑃𝑀(3; 𝐵)] , which includes those contributions below the 

benchmark B  to the skewness measure; skewness represents a deviation from B 

along the abscissa axis; this deviation is negative for values smaller than B, and 

positive for larger values; the semi-skewness relative to B represents only the 
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negative deviations from the value B and therefore gives an indication of the 

behaviour of the probability density function (pdf) of returns to the left of the 

benchmark, i.e., how the curve of the pdf extends to the left side of B;  

 Semi-Kurtosis[= 𝐿𝑃𝑀(4; 𝐵)], that represents the contributions of returns to a more 

flat pdf of returns relative to the normal distribution, which presents a kurtosis of 3; 

therefore, our semi-kurtosis considers the influence of returns below B towards the 

kurtosis value; 

and so forth.  

Usually the adopted benchmark is the 𝐸(𝑅𝑃). Mathematically, and considering the 

premise that 𝐵 = 𝐸(𝑅𝑃), we have: 

𝑆𝑉𝑃 = 𝐸(min(0, 𝑅𝑃 − 𝐸(𝑅𝑃))2) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐸(𝑅𝑃))]2

𝑇

𝑡=1

 

 

 

 

𝑆𝑆𝑃 = 𝐸(min(0, 𝑅𝑃 − 𝐸(𝑅𝑃))3) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐸(𝑅𝑃))]3

𝑇

𝑡=1

 

 

 

 

𝑆𝐾𝑃 = 𝐸(min(0, 𝑅𝑃 − 𝐸(𝑅𝑃))4) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐸(𝑅𝑃))]4

𝑇

𝑡=1

 

 

 

 

or generically 

𝐿𝑃𝑀(𝑛; 𝐵)𝑃 = 𝐸(min(0, 𝑅𝑃 − 𝐵))𝑛) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐵))]𝑛

𝑇

𝑡=1

 

 

 

 

where 

𝐸(𝑅𝑃) is the portfolio expected value; 

𝑅𝑃 is the portfolio return; 

𝑅𝑃𝑡 is the portfolio return at moment 𝑡; 

𝑇 is the time length; 

𝑆𝑉𝑃 is the portfolio semivariance; 

𝑆𝑆𝑃 is the portfolio semi-skewness; 

𝑆𝐾𝑃 is the portfolio semi-kurtosis; 
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𝐿𝑃𝑀(𝑛; 𝐵)𝑃 is the nth order portfolio lower partial moment; 

𝐵 is the benchmark. 

 

 The M-LPM framework may be used as an alternative or a complement to the 

traditional M-V in the risk-return analysis. It points out to different perspectives of risk 

measurement and improves the available information about returns’ behaviour. (Brogan and 

Stidham, 2008), for instance, uses the LPM as an alternative to variance for portfolio risk 

assessment. (Kuzmina, 2011), on the other hand, develops a risk analysis for the Baltic 

Insurance market, providing a different theoretical approach to asset allocation by recurring 

to the M-LMP framework, and deriving the advantages of using downside risk as a more 

reliable measure for the Insurance industry, particularly after the 2008 financial crisis. (Gao 

et al., 2014) presents a parallel risk analysis using two different frameworks for portfolio 

optimization: the M-LPM and the Mean – Conditional Value-at-Risk, which are considered 

by the authors as the most promising downside risk measures. In the next two subsections, 

we will explore this new downside probabilistic approach to risk assessment. 

 

2.3.1.4 Mean - Value-at-Risk 

 

Value-at-Risk (VaR) measures the maximum amount of expected financial loss at 

any given period of time considering a predetermined risk level (probability) of 𝛼  or 

confidence level equal to (1 − 𝛼), providing that all market conditions remain unchanged. 

The typical levels of risk used are 𝛼 = 0.05 = 5% or 𝛼 = 0.01 = 1%, but other figures 

may also be adopted. This risk measure assumed great importance after its recommended 

use in the Banking & Insurance industries by the Basel committee in 1995. 

The VaR formula applied to a portfolio (Kellner and Rösch, 2016), (Wang et al., 

2013), (Kawata and Kijima, 2007), (Lwin et al., 2017), might be stated as: 

𝑉𝑎𝑅1−𝛼(𝑅𝑃) = inf{𝑅𝑃 ∈ ℝ: 𝐹(𝑅𝑃) ≥ 𝛼} = 𝑅𝑃
∗   

where  

(1 − 𝛼) is the confidence level; 𝛼 is the risk level; both 𝛼 and (1 − 𝛼) between 0 and 1; 
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𝑅𝑃 stands for the variable portfolio return; 

𝐹(𝑅𝑃) is the cumulative probability distribution function of portfolio returns; 

inf{𝜃} represents the infimum of the set 𝜃; 

𝑅𝑃
∗  is the amount correspondent to the VaR with the specific level of confidence (1 − 𝛼) for 

the variable 𝑅𝑃. 

 As we may deduct from the formula, the VaR represents the loss that one might 

expect at a given risk (probability) of 𝛼 (or confidence level of 1 − 𝛼), if we were to trade a 

portfolio in the financial market at question. This risk measure was considered to be reliable 

until the last major financial crisis broke out in 2008, and that fact may be due to several 

VaR inherent characteristics, which were more intensely exposed during those troubled 

times, particularly when the most affected economic sectors were the Banking and the 

Insurance industries.  

 A first implicit characteristic of VaR relates to how it is usually calculated. The usual 

method for calculating the VaR measure assumes normal distribution of the variable 𝑅𝑃, and 

its mean and volatility are estimated recurring to historical data. This poses a caveat, since 

we cannot guarantee the normality of returns’ distribution and likewise we also cannot assure 

the past behaviour (mean; variance/volatility) of 𝑅𝑃 remains unaltered through time. The 

problem of returns’ varying behaviour is addressed by (Gargallo et al., 2010). It is proposed 

a new methodology for the VaR computation in the challenging context of 

heteroscedasticity. The authors attained better results with their new methodology compared 

to the classic procedures. (Gencer and Demiralay, 2016) estimate VaR with more relaxed 

assumptions: in this case, the authors used the Student-t distribution (symmetric and skewed) 

as a reference for the returns’ behaviour applied to eight emerging stock markets. The 

skewed version with heavy tails of the Student-t distribution allowed to obtain the VaR 

estimations with better predictive power. But the good results may be due to the more 

conservative return distribution implied by the used Student-t distribution (which is flatter 

than the normal distribution). The fat tails lead to some overestimation of the VaR in 

comparison with the usual estimation methods. This VaR overestimation might be the reason 

of better results when the VaR is applied to out-of-sample data to verify its predicting power. 
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A second characteristic is connected to what is computed with this measure of risk. 

The VaR calculates the value of the return representing the threshold of the 𝛼th percentile, 

which means values to the left of 𝑅𝑃
∗  have a cumulative probability of 𝛼 or less, and those to 

the right have a cumulative probability of at least (1 − 𝛼). Therefore 𝑅𝑃
∗  does not represent 

the worst possible feasible value according to past data, it represents the worst for that 

specific level of confidence. Now considering this second characteristic in conjunction with 

the first one mentioned above and we may have a serious problem of risk underestimation if 

the VaR is interpreted as the worst probable return with a risk level of 𝛼, not showing the 

amplitude of worse possible returns with probability of occurrence inferior to 𝛼%. 

A third characteristic is the following: the VaR measure is non-subadditive, i.e., the 

general condition 𝑓(𝑥 + 𝑦) ≤ 𝑓(𝑥) + 𝑓(𝑦) does not always hold, and therefore VaR is not 

a coherent measure of risk. This may generate additional problems for the portfolio 

optimization process in a mean-VaR framework, i.e., the VaR of a portfolio may be greater 

than the sum of their individual VaRs. 

 Some of these caveats were already known before the financial crisis, as (Kawata 

and Kijima, 2007) reported. According to these authors, many empirical researches 

suggested the VaR understated the effective 1% quantile, in particular when the 

methodology is applied to returns with fat tailed probability density functions. Kawata and 

Kijima propose a new simple regime switching model to estimate VaR that corrects the 

underestimation problem. (Bellini and Figà-talamanca, 2007) study the computation of VaR 

under different of distribution assumptions (in particular the tail behaviour). The authors 

propose a different methodology – the Markov Conditional Value at Risk (MCVaR) – to 

better deal with diverse return distributions. Their new approach seems to be more resilient 

and robust to variations in distribution of asset returns. They also note that classic methods 

such as the Extreme Valuation Theory (EVT), a specific branch of Statistics dealing with 

extreme deviations, seem to fall short in accuracy (due to underestimation) when it comes to 

VaR estimation. The analysis is applied to eight distinct stock market indexes (DJIA, SP500, 

MIB30, CAC40, FTSE, DAX, SMI and NASDAQ) and the suggested method consistently 

outperforms the EVT approach. 

 Other issues may emerge in a portfolio optimization problem in a M-VaR context.  

(Lwin et al., 2017) acknowledges the challenge of this model, since it may lead to a non-
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convex non-deterministic polynomial hard problem, which is very costly in terms of 

computational effort. A common practice to overcome this difficulty is the use of 

metaheuristics. In this article, a new multiobjective evolutionary algorithm (MODE-GL) was 

proposed, which eventually ended performing even better in this type of optimization 

problem than the NSGA-II (Deb et al., 2002) and the SPEA-2 (Zitzler et al., 2001) 

algorithms, both in solution quality (the shape of the Pareto front) and in execution time. 

 (Bernard et al., 2017), on the other hand, suggest the application of a “Rearrangement 

Algorithm” (RA) to prevent inaccuracies in the calculation of the VaR measure due to errors 

and omissions with the information used in the Banking industry and applied to credit 

portfolios. The article is very harsh in the criticism to the unconscious way sometimes the 

VaR is used without understanding the limitations and caveats implicit to its use. The authors 

mention the need to estimate a worst-case and a best-case VaR in order to determine a safety 

band/margin or gap. They also assess this gap is typically very high, and the use of their RA 

approximates the two VaR figures. VaR assessments of credit portfolios performed at high 

confidence levels remain subject to a great dose of uncertainty and are not robust. 

 Considering all the limitations associated with the VaR measure, some researchers 

have proposed its joint use with other risk alternative measures. One in particular has 

achieved notoriety within this context: the Conditional Value-at-Risk (CVaR) or Expected 

Shortfall (ES). (Dedu and Şerban, 2015) applied both measures to portfolio optimization in 

a two stage procedure, first using the VaR for a preliminary optimization and CVaR applied 

to the solutions obtained from the first stage. The next subsection will present the CVaR 

methodology. 

 

2.3.1.5 Mean - Expected Shortfall 

 

With the debacle of the VaR in 2008, the Basel Committee felt the need to 

recommend new risk measures that might overcome the shortfalls of the previous ones. One 

that meets those criteria, namely regarding the problems of fat tails in the probability density 

distribution and subadditivity, is the Expected Shortfall, suggested, for instance by 

(Rockafellar and Uryasev, 2000), which seems to achieve good results in investment risk 
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analysis. The Expected Shortfall (or Conditional Value-at-Risk or even Average Value-at-

Risk) at an 𝛼 risk level (or (1 − 𝛼) confidence level) represents the expected return of the 

𝛼% worst cases in the probability density function of the Return. The mathematical formula 

may be stated as: 

𝐸𝑆1−𝛼(𝑅𝑃) = 𝐶𝑉𝑎𝑅1−𝛼(𝑅𝑃) = ∫ 𝑓(𝑅𝑃)

𝑅𝑃
∗

−∞

𝑑𝑅𝑃 =
1

𝛼
∫ 𝑉𝑎𝑅𝜀(𝑅𝑃) 𝑑𝜀

𝛼

0

= 𝐸𝑆1−𝛼
∗  

 

where  

𝑓(𝑅𝑃) is the probability density function of portfolio returns; 

𝐸𝑆1−𝛼
∗  is the specific expected shortfall for the (1 − 𝛼)  confidence level; both 𝛼  and 

(1 − 𝛼) are between 0 and 1. 

 (Rockafellar and Uryasev, 2002) develop further the advantages of ES over VaR: the 

ES is able to quantify dangers that the VaR measure could not detect (for instance, the VaR 

determines the worst expected return at an (1 − 𝛼)  confidence level, but it does not 

anticipate the worst possible return, which will be worse if the left tail is more extended); 

and it is a coherent measure of risk, namely because the subadditivity condition holds under 

the ES measure. The use of this measure allows a more accurate estimation of the risk, unlike 

the use of VaR which usually has the tendency to underestimate the real levels of risk. The 

authors also propose a method to calculate the ES and perform an empirical study to support 

their claims. 

 The advantages of ES over VaR were already known since the turn of the century, 

but the recommendations of a prestigious and authoritative committee such as the Basel 

Committee launched VaR as a standard risk measure and prevented the emergence of official 

mainstream alternatives. Other measures were used, such as variance or semivariance, 

Sharpe Ratio analysis, CALMAR Ratio and others, but VaR remained as the most relevant 

risk measure, particularly for reporting purposes in the Banking and Insurance industries. 

Nevertheless, (Tasche, 2002) despite admitting VaR as «(…) the most popular risk measure 

(…)», presented the advantages of ES over the former. In his view, Tasche considered the 

VaR failed to promote or reward diversification and was not subadditive, a characteristic 

already mentioned.  
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 (Yamai and Yoshiba, 2005) reveals another perspective about the VaR. It is pointed 

that this measure focuses its attention exclusively in a predetermined risk level (the 𝛼 

percentile of the distribution). The VaR does not really assess the risk beyond that specific 

figure. This characteristic may cause serious problems of risk underestimation when dealing 

with distributions with extended left tails, a problem the authors designated by “tail risk”. In 

their view, ES solves this problem quite effectively, even though it requires a larger sample 

size than VaR to provide the same accuracy of risk assessment. Several other articles 

explored the advantages of ES over VaR, and how the implicit pressure of the Basel 

Committee recommendations to follow the latter as a standardized measure for risk 

assessment in financial management promoted VaR as the reference measure. (Elliott and 

Miao, 2009) while acknowledging the central role of VaR in the financial area (despite all 

the criticisms), shows how the ES, by being coherent and convex, presents itself as a better 

risk measure.  

New developments of the Basel Committee (Basel III – 2013 revised version), 

following the financial crisis that started in 2008, culminated in the acceptance and 

recommendation of the ES as the new reference risk measure for all the Banking and 

Insurance industries. In a recent article, (Kellner and Rösch, 2016) portrait this evolution – 

a replacement of VaR (α = 0.99) by ES (α = 0.975) – and explore their robustness, how the 

two risk measures react to different sources and behaviours of risk modelling (probability 

density functions). (Lim et al., 2011) point out the ES measure is not reliable in a mean-ES 

or global ES minimization problems because of ES estimation errors, and that these errors 

are amplified in the very optimization process. They conclude that the ES is fragile in 

portfolio optimization due to these estimation errors. (Koch-Medina and Munari, 2016) also 

cast some doubts about the merit of the ES, stating that the recommendation to use one of 

both the VaR and ES may be misleading in assessing the real risk agents are exposed to in 

the financial industry. It is also noted how the mere recommendation to use one of these 

measures might not be sufficient to provide enough assurance for the avoidance of excessive 

risk taking by the banks and insurance companies. In the authors’ view, ES should not be 

considered a magic solution to risk exposure but rather an important contribution to improve 

risk assessment. Other cautious policies regarding risk avoidance should also be considered 

to strengthen the financial industry against new eventual crises. 
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(Kellner and Rösch, 2016) go even farther in analysing the latest suggestions of the 

Basel Committee on Banking Supervision and the consequences of a complete dismissal of 

the VaR measure in favour of the ES. The outcome of the research shows that the ES with 

(1 − 𝛼) = 0.975  versus VaR with (1 − 𝛼) = 0.99 is more sensitive towards regulatory 

arbitrage and parameter misspecification, that is to say, the ES might induce a higher 

potential for regulatory arbitrage (search of regulatory loopholes to avoid unfavourable 

legislation) and favours a higher risk exposure due to parameter misspecification. The 

authors suggest this higher risk exposure might be consequence of « (…) a trade-off between 

a model's ability to better capture the heavy tailed behaviour of risks and a higher 

vulnerability to model risk».  

 Still, and despite the shortcomings of using ES as a risk measure, it represents a 

progress. A significant number of comparative analyses between VaR and ES have been 

conducted and the ES is consistently considered a better risk assessment measure. (Balbás 

et al., 2009), (Ho and Cadle, 2008) and (Chen et al., 2014) are a few examples that present 

this parallel following the sub-prime crisis that began late 2007 / early 2008. 

 Attempts to improve the accuracy and robustness of ES estimators or methods of 

estimation have been conducted in particular throughout the last decade with some success. 

This is the case of (Quaranta and Zaffaroni, 2008) which use techniques of robust 

optimization to deal with uncertainty applied to the Italian Stock Market. (Inui and Kijima, 

2005) propose an efficient extrapolation method to estimate the ES, while (Wong, 2008) and 

(Righi and Ceretta, 2015) base their risk avoidance techniques on Monte Carlo simulations 

with backtest. In another recent article, (Gerlach and Chen, 2017) combine Monte Carlo 

simulation with Markov chains to propose an asymmetric Gaussian density distribution for 

returns’ behaviour and subsequently apply this assumption on the estimation process. A 

similar process is presented by (Lönnbark, 2016), applied to an Auto-Regressive (AR) 

estimation model (GARCH – Generalized Auto-Regressive Conditional Heteroscedasticity) 

also with recourse to Monte Carlo simulations and assuming a skewed t-distribution for 

returns. (Degiannakis and Potamia, 2017) go a step further and develop a methodology to 

calculate ES (and VaR) with both intra-day high frequency and inter-day data, within AR(1)-

GARCH(1,1)-skT and AR(1)-HAR-RV-skT frameworks, for stock indices, commodities 

and exchange rates, where HAR-RV stands for Heterogeneous Auto-Regressive model of 
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Realized Volatility and skT for skewed t-distribution of returns. The authors found the 

GARCH specification based on the inter-day information set is the superior model for more 

accurately forecasting the multiple-days-ahead VaR and ES measurements, at a 95% 

confidence level. (So and Wong, 2012) present alternative statistical methods to estimate the 

ES under the assumption of GARCH models for returns’ behaviour and suggest an 

alternative risk measure: the Median Shortfall. 

 For a more comprehensive analysis of the ES (and VaR), it is recommended to read  

(Nadarajah et al., 2014), where a review of the major developments in this area which have 

occurred since the 1990’s and the most relevant estimation methods, and also (Nadarajah et 

al., 2016), where the authors tabulate a series of expressions for both these measures (over 

one hundred parametric distributions) with illustrations using empirical data. 

 

2.3.1.6 Mean - Mean Absolute Deviation 

 

 The Mean Absolute Deviation (MAD) emerged as an alternative to variance as a risk 

measure, one that is simpler to compute. (Michalowski and Ogryczak, 1998) emphasises the 

computational attractiveness of the MAD-based portfolio optimization model, due to its 

simplicity by resulting in a linear programming problem. Considering a portfolio 𝑃 with 

expected return 𝐸(𝑅𝑃) and return 𝑅𝑃𝑡 at moment 𝑡, the mathematical expression defining 

the MAD is: 

𝑀𝐴𝐷(𝑅𝑃) =
1

𝑇
∑|𝑅𝑃𝑡 − 𝐸(𝑅𝑃)|

𝑇

𝑡=1

  

where 

|∙|represents the modulus or absolute value. 

 Comparing the MAD with the variance, we may see the former possesses an 

advantage in its computation (and execution time) over the latter: while the first has a linear 

formulation, the second is a quadratic function. This may not constitute such a great 

advantage when dealing with a small number of assets, but it makes a significant difference 

when hundreds or even thousands of stocks are taken into account in the selection process. 
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This very situation is addressed by (Konno and Yamazaki, 1991) who solve a large scale 

portfolio optimization problem considering over 1.000 stocks, and by (Mansini et al., 2014), 

where the advantages of the linearity in the MAD method are presented and this method is 

compared with other important risk measures such as variance or CVaR in a realistic 

environment with a large number of assets. 

 The MAD gained considerable interest among academics and financial practitioners 

since (Sharpe, 1971). In this article, Sharpe draws attention to the advantages of using a risk 

measure such as the MAD, namely the aforementioned linear approach to the portfolio 

optimization problem rather than the traditional quadratic from Markowitz, and also the 

useful information produced in the process as by-product.  

 The MAD seems to be a robust measure of risk regarding different markets. (Zenios 

and Kang, 1993) shows how it suits well the assumptions of consumer behaviour for 

mortgage-backed securities and derivative markets (MAD is consistent with asymmetric 

distribution of returns of mortgage securities and derivative products, and stylized facts 

associated to these markets: the propensity of homeowners to anticipate their mortgages’ 

payments and the option adjusted premia associated with mortgage backed securities). The 

use of MAD generated better results than the traditional portfolio optimization in the 

mortgage related Insurance industry. Also in a risk minimization perspective, (Liu and 

Zhang, 2009) presents several advantages of the MAD-based model for hedging portfolios. 

Empirical experiments using data from NYBOT show that the hedging strategies based on 

the MAD model have better hedging effectiveness than traditional ones. But the MAD model 

shows robustness not only regarding the inner market characteristics: in (Li et al., 2016) the 

MAD is used with a slight variation that increases robustness in relation to market direction, 

whatever the market. Computational experiments show the method can discern high return 

assets within the pool of selection. 

 (Konno and Shirakawa, 1994) show how MAD possesses the same properties 

inherent to the standard deviation of returns under similar assumptions. This same assertion 

is deduced in (Konno, 2005), where all CAPM relations for the M-V model also hold for the 

MAD model. So MAD can be considered and may be eligible as a better risk proxy in the 

portfolio optimization context. (Silva et al., 2017), for example, combine the MAD with 

CVaR into a new risk assessing method, and although it does not produce the portfolios with 
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the best returns, it generates portfolios with lesser risk than other methods, a situation that 

might be of particular interest in highly volatile markets. 

  More recently, the MAD portfolio optimization model has been gaining ground 

(Konno, 2005) and establishing itself as mainstream, namely because of its adoption in 

international large portfolio optimization models, such as the ALM – long term asset liability 

management model and the mortgage backed security portfolio optimization model. 

 Another interesting evolution of the MAD model has been the tendency to use a mean 

absolute semi-deviation (or negative deviation), where only adverse return measurements 

(below the mean) are taken in consideration on the computation of the risk measure. This is 

a very similar procedure to the calculation of the semivariance compared to the variance. 

The results of works such (Michalowski and Ogryczak, 1998), (Kamil et al., 2010), (Moon 

and Yao, 2011) or (Liu and Qin, 2012) have shown semi-deviation as a feasible robust 

alternative to the MAD or any other risk measure.  

 

2.3.2 Performance Assessment 

 

There is a substantial number of financial performance assessment indicators. For the 

purpose of this thesis, and since the list of available indicators is so extensive, we will discuss 

only the two different indicators related to our empirical work, the Sharpe Ratio and the 

CALMAR ratio. 

 

2.3.2.1 Sharpe Ratio and Information Ratio 

 

The Sharpe Ratio (SR) was one of the first landmark return-to-risk assessment 

measures developed early in the 1960’s (Sharpe, 1966). It establishes the relation between 

the deviation of the expected asset’s return with reference to a predetermined benchmark, 

usually a risk-free asset, and the standard deviation of the returns: 

𝑆𝑅(𝑅𝐴) =
𝐸(𝑅𝐴 − 𝑅𝐹)

𝜎(𝑅𝐴)
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where  

𝑆𝑅(𝑅𝐴) stands for the Sharpe Ratio of Asset A; 

𝑅𝐴 represents the returns of Asset A; 

𝑅𝐹 represents the returns of a Risk-Free Asset, the benchmark. 

Later on, (Sharpe, 1994) acknowledged the inconsistency between the basis for the 

computation of the expected return and the basis for the computation of the standard 

deviation, adapting the formula in both numerator and denominator to the differential of 

returns (asset’s minus the benchmark’s). Mathematically, we may calculate the SR with the 

following expression, after Sharpe’s reformulation, also designated as Information Ratio 

(IR), which is considered a generalization of the original SR: 

𝑆𝑅∗(𝑅𝐴) =
𝐸(𝐷)

𝜎(𝐷)
= 𝐼𝑅(𝑅𝐴)  

where 

𝑆𝑅∗(𝑅𝐴) stands for the reformulated Sharpe Ratio of asset A, 

𝐼𝑅(𝑅𝐴) represents the Information Ratio of asset A, 

𝐷 = 𝑅𝐴 − 𝑅𝐵,  

and 𝑅𝐵 represents the benchmark’s returns. 

The SR is a commonly used tool to assess financial performance. In (Coates and 

Page, 2009), the authors use the SR to evaluate the performance of traders of Downtown 

London (also known as “The City”) and to infer how distant is the City market from the 

tenets proclaimed by the EMH, which basically says they should not outperform the market 

in a broader sense. The findings of this article go against the EMH, since experienced traders 

present higher SRs than the overall market. (Goldberg, 2015) uses the SR in a chronological 

perspective, assessing the consistency and preservation of specific SR values throughout 

time, considering the 1987 financial crash, the 2000’s internet bubble and the 2008 subprime 

crisis. This study concludes that SRs are time variant and very distinct according to the 

markets they are applied to.  
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 Some authors have theorized variations to the original SR devised by Sharpe. (Ardia 

and Boudt, 2015), for instance, suggests a modified SR to evaluate financial performance 

when in presence of non-normality conditions of returns. The authors use the modified SR 

definition as the quotient of the differential between the excess return of the asset and its 

modified VaR. Empirical data suggests there is a complementarity between the SR and 

modified SR for financial performance assessment. Another article, (Chow and Lai, 2015), 

suggests the use of conditional SRs, as a means to perceive downside risk. Empirical results 

show that these conditional SRs are able to detect and discriminate downside performance, 

something the original SR cannot afford to achieve. These variations therefore seem to add 

value to the conventional SR. 

 

2.3.2.2 CALMAR Ratio 

 

 The Calmar Ratio (CR) – “CALMAR” short CALifornia Managed Account Reports) 

– is a risk measure developed by Terry W. Young in 1991 that uses cumulative returns of an 

asset relatively to its maximum drawdown. The generic formula of the Calmar ratio may be 

presented as: 

𝐶𝑅(𝑅𝐴) =
𝐸(𝑅𝐴)

𝑀𝐷𝐷𝑇(𝑅𝐴)
=

1

𝑇
∙

∑ 𝑅𝐴𝑡
𝑇
𝑡=1

𝑀𝐷𝐷𝑇(𝑅𝐴)
  

where 

𝑅𝐴𝑡 is the daily rate of return of asset 𝐴; 

and 

𝑀𝐷𝐷𝑇(𝑅𝐴𝑡) = max
1≤𝐾≤𝑇

{ max
𝐾<𝐿≤𝑇

{∑ 𝑅𝐴𝑡

𝐾

𝑡=1

− ∑ 𝑅𝐴𝑡

𝐿

𝑡=1

; 0} ; 0}  

 

formula that is equivalent to: 

𝑀𝐷𝐷𝑇(𝑅𝐴𝑡) = max
1≤𝐾<𝐿≤𝑇

{∑ 𝑅𝐴𝑡

𝐾

𝑡=1

− ∑ 𝑅𝐴𝑡

𝐿

𝑡=1

; 0} (3) 
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where 

𝑀𝐷𝐷𝑇(𝑅𝐴𝑡) represents the Maximum DrawDown of asset 𝐴 throughout period 𝑇. 

The original formula depicted by (Young, 1991) considered a specific period of 3 

years (36 months), computed with monthly rates of return. The original formula may be 

depicted as: 

𝐶𝑅𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑅𝐴) =
1

36
∙

(∑ 𝑅𝐴𝑡
𝑚36

𝑡=1 )

𝑀𝐷𝐷36(𝑅𝐴
𝑚)

  

where 

𝑅𝐴𝑡
𝑚  is the monthly rate of return of Asset 𝐴; 

and 

𝑀𝐷𝐷36(𝑅𝐴𝑡
𝑚) = max

1≤𝐾<𝐿≤36
{∑ 𝑅𝐴𝑡

𝑚

𝐾

𝑡=1

− ∑ 𝑅𝐴𝑡
𝑚

𝐿

𝑡=1

; 0}  

 

𝑀𝐷𝐷36(𝑅𝐴𝑡
𝑚) represents the Maximum DrawDown of asset 𝐴 throughout the 36 months, 

with monthly rates of return. The MDD is the largest drop from peak to trough in a time 

span, the worst fall in the asset’s cumulative rate of return observed during the trading 

activity, i.e., of all the falls (designated by the expression max
𝐾<𝐿≤36

{∑ 𝑅𝐴𝑡
𝑚𝐾

𝑡=1 − ∑ 𝑅𝐴𝑡
𝑚𝐿

𝑡=1 ; 0}), 

MDD represents the largest. (Magdon-Ismail, 2004), for instance, regards the MDD measure 

as one of the most important among all available in the financial spectrum, particularly when 

applied with a normalized (1 year) Calmar. 

 The CR is commonly used by the Financial Industry as an auxiliary measure in a 

profitability-risk context, mostly because of its simple formula, ease to compute and also 

widespread acceptance among industry practitioners. Therefore it is relatively frequent to 

see comparing studies of the CR alongside with other ratios such as the Sharpe Ratio. 

 In two sequential studies, (Eling and Schuhmacher, 2007) and (Eling, 2008), the 

authors make a comparative analysis of several return-risk methods, including the CR, 

within the Hedge/Mutual Fund Industries, concluding for the superiority of the Sharpe Ratio, 

particularly as far as robustness is concerned. Nevertheless, the authors also admit that the 
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difference is not really that relevant in the context of these industries (in his own words «the 

choice of performance measure is not critical to fund evaluation») and therefore other return-

risk measures could be adopted without great loss. In a later article  (Schuhmacher and Eling, 

2011), the authors go even further, classifying, from a decision theoretical perspective, 

drawdown measures as equally good as the SR. These results are confirmed years later for 

US Fixed-Income, Equity and Asset Allocation Mutual Funds by (Ornelas et al., 2012). 

 There are several other articles – some in fact very recent – that employ the CR as a 

method of risk-return analysis in several financial-based industries, such as (Auer and 

Schuhmacher, 2013), (Dunis and Miao, 2006), (Wilinski et al., 2013), (Olszweski, 2014) or 

(Wilinski et al., 2014), making this measure as one of the most relevant available methods 

of return and risk assessment for financial markets. 
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3 Evolutionary Techniques applied to Finance 

 

 This chapter presents a review of the major evolutionary techniques that are currently 

applied to problems of optimization in the financial area, both with single and multiple 

objective functions. For over four decades, several operations research (OR) techniques have 

been used in the analysis of financial data. Among the most common soft OR techniques 

applied to financial markets are fuzzy logic, neural networks and evolutionary algorithms. 

Evolutionary Algorithms (EA) are a kind of metaheuristics that emulate the processes of 

biological mechanics of genetics, namely reproduction and mutation observed in living 

beings. This type of heuristic usually provides good results both in time efficiency and in 

solution quality; nevertheless, it does not guarantee absolute optima. These techniques may 

be used solely, on an isolated form, or combined, like for instance in (Leigh et al., 2002) or 

(Armano et al., 2002). (Leigh et al., 2002), for instance, combine neural networks for pattern 

recognition with Genetic Algorithms (GAs) to improve the correlation between the actual 

price increase of the NYSE composite index and the price increase estimated by the neural 

network model. (Armano et al., 2002) also use GAs along with Artificial Neural Networks 

(ANN) in a different perspective – GAs for quasi-stationary regimes’ (trends’) identification, 

and ANN for market price movement prediction. It is difficult to know which technique is 

the best. Usually, the better use we make out of them, the better the outcome. Nevertheless, 

(Chen et al., 2007) provide some insight on the reasons for the preference for evolutionary 

algorithms – they seem to grant better results in optimization problems, due partly to their 

evolutionary nature (retaining the best, discarding the worst), partly to their mechanics, 

performing global search. 

 

3.1 Generic Common Aspects to Population-Based Evolutionary Techniques 
 

3.1.1 Population 

Populations are nuclear to understand these algorithms’ mechanisms, for in their core 

we find the solutions we want to optimize. A population of an Evolutionary Algorithm is 
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constituted by a predetermined number of solutions, individuals or chromosomes. Each 

chromosome is composed by a set of parameters – designated by genes – that represent a 

solution for the problem being considered. In a sense, genes stand for the variable values 

inherent to the problem, and likewise, chromosomes represent a specific combination of 

these genes (variables) as a possible solution for the problem.  

The optimization process is based on the generation of an initial population and its 

evolution through an iterative procedure where a systematic selection process is performed 

in each iteration, according to a pre-established evaluation function that measures the fitness 

of each chromosome. The initial population is usually generated with some random process. 

At the end of the optimization process we ought to have a good or very good solution. Often 

these metaheuristics do not attain the global optimum; rather they efficiently – with limited 

computational effort and execution time – achieve what may be considered an appropriate 

solution; for many such problems, without the use of the metaheuristic, achieving the optimal 

solution via hard heuristics or traditional quantitative methods would be virtually impossible. 

This is the major advantage of metaheuristics: efficiency. 

 

3.1.2 Evolution and Reproduction 
 

3.1.2.1 Crossover 

 

Crossover is the operation of interaction of two (or more) chromosomes, designated 

as parents, to result into one, two (typically) or more different chromosomes called offspring. 

To each chromosome or individual of the population of any given iteration is defined a 

probability of being chosen for crossover – a crossover probability for individual 𝑖 = 𝑝𝑐
𝑖 . It 

is also predetermined how many crossover points will be required in the optimization 

process, let us say 𝑛𝑐. The location of these crossover points within the chromosomes extent 

may be deterministic or random. It is not unusual to use a single crossover point with random 

location. Applying 𝑛𝑐 crossover points means each chosen chromosome will be divided into 

𝑛𝑐 + 1 segments of genes. Then the algorithm selects two (or more) chromosomes with 

probability 𝑝𝑐
𝑖 , divides each one into 𝑛𝑐 + 1 segments and crosses the segments alternately 
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from the two parents, forming two different offspring chromosomes. An example with 2 

parents and 2 crossover points can be seen in Figure 1. 

 

Figure 1. Example of Crossover operation between two chromosomes with two different crossover points. 

 

Source: Author. 

 

In this process it is vital that offspring chromosomes inherit genetic material from all 

selected parents. This will allow the diversification of the resulting individuals and promote 

diversification of the elements constituting the population for the next generation, and thus 

avoiding premature convergence. Equally important is the validity of the resulting offspring, 

in the sense that the generated chromosomes must be feasible solutions in the context of the 

problem, and this very condition should be considered in the conceptualization of the 

crossover operator as an important criterion. 

 

3.1.2.2 Mutation 

 

Mutation, usually in very small amounts, represents a complement of diversification 

or the possibility of fine-tuning of a single chromosome (usually one gene within). For an 

individual 𝑖, it occurs with a predetermined probability 𝑝𝑚
𝑖 , such that every gene in each 

chromosome has this probability of changing its value. This change may be within a 

predetermined fixed or variable amplitude. The probability 𝑝𝑚
𝑖  is considerably small (around 

1%) and the gene value variations themselves are also relatively small. The purpose of this 

mechanism is to locally search for better solutions and perfect them as well as to escape from 

local optima. The mutation operator should be able to search all possible solutions (search 

space) and be able to produce feasible solutions when considering problems with constraints. 

Parents Offspring

Chromosome 1

Chromosome 2



[68] 

 

When a feasible solution is not met, a way to overcome this difficulty is to repeat the 

procedure until one is attained. Other possible way may be to control the mutation operator 

in such terms that generated solutions are always feasible. When this is not possible, 

infeasible solutions may be penalized in the fitness function. 

 

3.1.2.3 Replacement 

 

Replacement refers to the process of substitution of a chromosome by another in any 

given iteration of the optimization process in order to form the population for the next 

iteration. It involves the parent and the offspring populations. Extreme strategies are (Talbi, 

2009): steady-state replacement – where a unique chromosome with better evaluation 

replaces the worst solution of the population; generation replacement – where all offspring 

solutions replace all the population of the previous generation. Between these, there are 

many different strategies, stochastic or deterministic, which replace some of individuals of 

the population. Special kinds of replacement may also be considered, which include not only 

the parent and offspring populations, but also new individuals, e.g., the immigrant used in 

(Mendes et al., 2012), where a new random solution is included into a generation’s 

population to introduce new genetic material and prevent premature convergence in the 

optimization process. Either to constitute the population for the next iteration (where all or 

some parents may be replaced by offspring) or to choose the parents in the reproduction step, 

a selection method must be employed. 

 

3.1.3 Most Common Selection Methods 
 

3.1.3.1 Roulette Wheel Selection 

 

This method of chromosome selection, also designated as fitness proportionate 

selection, is based on the relative fitness of chromosomes: every solution 𝑖 of the population 

has the probability 𝑝𝑖 equal to 𝑓𝑖 𝐴𝐹⁄  to be selected, where 𝑓𝑖 is the fitness of chromosome 𝑖 

and 𝐴𝐹 represents the aggregate fitness of all the chromosomes of the population at that 
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specific moment. Figuratively, we may consider a pie with an outer roulette where each 

individual has a slice proportional to their probability (that is, each slice represents 𝑝𝑖% of 

the whole pie). In this manner, solutions with higher fitness have higher probability of being 

chosen. The selection of 𝑥  chromosomes is then obtained by spinning the roulette 𝑥 

independent times.  

 

3.1.3.2 Tournament Selection 

 

In a tournament selection procedure, 𝑦 chromosomes are randomly selected in a first 

phase (each individual with the same probability of being chosen). These 𝑦 qualify for the 

second phase of the procedure, where the solution with the highest fitness is selected. To 

obtain 𝑥 selected chromosomes, we perform independently the tournament procedure (the 2 

phases) 𝑥 times. We may determine specific cases (such as the binary tournament, where 

𝑦 = 2) and/or devise variations of this general mechanism – for instance, select more 

chromosomes in each run, create a tournament in phase 2, or any other. 

 

3.1.3.3 Rank-Based Selection 

 

In a rank-based selection mechanism, a rank/order is attributed to each chromosome 

according to their fitness. To the chromosome with the highest ranking is given the highest 

probability of being chosen, to the second in rank the 2nd highest probability and so forth 

until all chromosomes have been given a probability and the sum of all the probabilities is 

equal to one. The attribution of probabilities may be produced by several means with various 

reasonings but always respecting the condition that the highest the rank the highest the 

probability and also the probabilities of the population sum to one. For instance, (Talbi, 

2009) suggests the following formula to compute each chromosome’s probability: 

𝑝𝑖 =
2 − 𝑆

𝑁
∙

2𝑟𝑖(𝑆 − 1)

𝑁(𝑁 − 1)
  

where 
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𝑝𝑖 is the probability of chromosome 𝑖 being chosen; 

𝑟𝑖 is the rank of chromosome 𝑖; 

𝑆 is the selection pressure, 1 < 𝑆 ≤ 2; 

𝑁 is the size of the population. 

The selection pressure in this formula induces a bias towards better solutions, i.e., the greater 

𝑆 the higher will be the probability given to solutions that present better fitness. 

 

3.1.3.4 Random Selection 

 

Simple random selection may be considered in two different situations: 1) when 

every chromosome within a population has the very same probability of being chosen; 2) 

when for each chromosome at any given iteration there is the same probability of being 

chosen and not chosen (50%) – in this case the number of selected chromosomes is variable. 

 

3.1.4 Typical Optimization Procedure 

 

Evolutionary Algorithms possess a general structure that does not differ substantially 

from each other. The common initializer is usually a random generation of a base population. 

This generation may be more or less constrained, according with the purpose at hand or the 

conditions imposed by the problem itself. After this first step, the evolutionary algorithm 

proceeds with the generation of offspring, applying first the crossover operator, followed by 

mutation, and finally, replacement. In the next iteration, the generation of new offspring is 

repeated for the new population and the iterative process is repeated until a stopping 

condition is met. The solution with the best fitness is elected as the optimized solution. We 

may see this in the scheme presented below, which translates into pseudo-code the general 

structure of the algorithm. 
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Initialize Algorithm – generate initial population 𝑃0 

Do Until   Stop criteria is met (from iterations 𝑖 = 1 to 𝑖 = 𝐿) 

 Evaluate 𝑃𝑖−1 for Selection purposes 

 𝑃𝑖(𝑐) ← Apply Crossover in Selection of 𝑃𝑖−1 

 𝑃𝑖(𝑚) ← Apply Mutation in Selection of 𝑃𝑖(𝑐) 

 𝑃𝑖(𝑟) ← Apply Replacement in Selection of 𝑃𝑖(𝑚) and 𝑃𝑖−1 

 𝑃𝑖 = 𝑃𝑖(𝑟) 

 𝑖 = 𝑖 + 1 

End Do 

Optimal Solution   𝑆∗ ← Solution with the best fitness from 𝑃𝐿 

where 

𝑃𝑖 is the population at beginning of iteration 𝑖; 

𝑃𝑖(𝑐) represents the offspring population at iteration 𝑖 after the application of the crossover 

operator; 

𝑃𝑖(𝑚) stands for the offspring population at iteration 𝑖 after the application of the mutation 

operator; 

𝑃𝑖(𝑟) is the population at iteration 𝑖 after the application of the replacement operator; 

𝑃𝐿 is the population at the last iteration (𝐿). 
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3.2 Single Objective Evolutionary Techniques Applied to Financial Markets 
 

3.2.1 Genetic Algorithms 

 

Genetic Algorithms (GA) are some of the simplest and most intuitive metaheuristics 

designed in computational sciences. First conceived by John H. Holland and further 

developed by Kenneth Alan De Jong during the 1970’s in his Doctoral Thesis at the 

University of Michigan (DeJong, 1975), GAs – at the time designated as “adaptive” 

algorithm by De Jong – grew their influence as an efficient tool to solve non-conventional 

and complex problems to consolidate their status as basilar metaheuristics just on the turn of 

the century. Having its origins in a pure computer and communications sciences environment 

and financed by a grant from the National Aeronautics and Space Administration (NASA), 

it was natural that the first GAs adopted a configuration based in computational language 

(binary code). Nowadays, however, there is a multitude of other approaches to GA 

configuration, and it is rather common to see genes using float (real number) variables 

instead of binary variables. 

GAs, with more or less complexity, end up using the same basic structure – the same 

depicted in the pseudo-code of subsection 3.1.4. But the optimization process with a GA is 

often a difficult task. In order to get the utmost of the algorithm, the GA operators must be 

adapted to the peculiarities of the problem at hand. Although the framework or structure is 

well established, a great amount of work must be put in the fine-tuning of the population 

size and selection procedure, and the particular kind of crossover and mutation mechanisms 

– (Balas and Niehaus, 1998) tried several variations and developed a GA that outperforms 

the most common ones in the resolution of a set of theoretical problems. (Ghosh, 2012) 

focuses on the importance of initial population generation and its diversity and developed a 

method to avoid premature convergence and improve the chances of achieving the global 

optimum. (Hong et al., 2000) pay more attention to the mutation operator. In their view, 

mutation is the mechanism that guaranties diversity of the population in later phases of the 

optimization process, and therefore, should be influential enough to be able to diversify the 

population at any given iteration. The authors even propose the use of different mutation 

operators and their trial and error fine-tuning. The article culminates with the idea that the 
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best way to exploit mutation is by setting a dynamic mutation-based algorithm – 

simultaneous use different mutation operators, applied according to a mutation ratio. The 

mutation operators’ ratios vary according to the fitness of the respective offspring each 

operator produces. 

(Fu et al., 2013) study how a traditional GA may be improved in a context of portfolio 

management. The authors use several distinct GAs (among which a hierarchical GA) to 

optimize the TA indicators’ parameters and portfolio weights. The article succeeds in 

showing the versatility and adjustment capabilities of GAs in complex problem solving. 

In (Kim and Shin, 2007) the authors merge two types of artificial neural networks 

(ATNN - adaptive time delay neural networks, and TDNN - time delay neural networks) 

with a GA to form a combinatorial metaheuristic for stock market price prediction by 

detecting time patterns in historical data. In this specific metaheuristic the purpose of the GA 

is to optimize the number of time delays and network architectural factors, serving as a 

supporting mechanism for optimization. The use of the GA combined with the artificial 

neural networks (ANNs) improves the results obtained by the sole ANNs, increasing their 

accuracy in identifying price patterns. (Evans et al., 2013) used an ANNs- and GAs-based 

model applied to Foreign Exchange Market (FOREX), in particular to three of the most 

traded currency pairs: GBP/USD, EUR/GBP, and EUR/USD. The authors conclude, with a 

95% confidence level, for the non-random nature of these markets and present an overall 

23.3% annualized net rate of return. In a recent article, (Chang and Lee, 2017) combines also 

a Markov decision process with a GA build a new analytical framework and create a decision 

support system for the development of trading strategies. 

It is also common to find studies where a GA performance is compared with other 

metaheuristics. (Mokhatab Rafiei et al., 2011), for example, draws a parallel between three 

different models: one based in a GA, a second in an ANN and a third based in multiple 

discriminant analysis (MDA) with the purpose to distinguish bankrupt-prone from non-

bankrupt-prone corporations. In this research, the ANN-based model revealed itself as the 

most reliable reaching 98.6% and 96.3% accuracy rates for in-sample (IS) and out-of-sample 

(OOS) data. The GA model attained 92.5% and 91.5% accuracy rates for IS and OOS 

respectively and the worst performance came from MDA with 80.6% and 79.9%. 
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The survey by (Aguilar-Rivera et al., 2015) presents a thorough inquiry on the 

advantages and limitations of multiple Darwinian metaheuristics applied to the financial 

area, namely genetic algorithms, genetic programming, multi-objective evolutionary 

algorithms, learning classifier systems, co-evolutionary approaches, and estimation of 

distribution algorithms. The authors also conclude there has been a change of interest in each 

algorithm over time; GAs however remained the most popular category. In another survey, 

(Cavalcante et al., 2016) present a review of the most popular metaheuristics (ANNs, GAs, 

ML, …) applied to financial markets and  published in scientific articles from 2009 to 2015. 

Besides the literature review, this work establishes a systematic approach for the creation of 

an intelligent trading system and challenges the scientific community of this area to different 

possible developments for the near future. 

 (Štěpánek et al., 2012) use a GA to assess the possibility of abnormal returns in stock 

markets within a behavioural approach. The GA was mainly used to detect and predict 

behaviours, functions and associated parameters of market agents and in this way deduce 

price movements. The advantage of the used tool is the dynamic interaction of parameters 

in each iteration of the algorithm, portraying the GA simulation (or optimization process) to 

be a real dynamic development of agents’ behaviours and decision processes through a 

certain time span.  

 The advantages of GAs are well known and have warranted so far their popularity in 

the computation-related academic community. Nonetheless, the GA is not a perfect tool and 

in some cases may fall short in performance and effectiveness when solving specific 

problems. In this case, the combination of GAs with other metaheuristics may become 

handy; other times, we might need to take an altogether different path and use completely 

distinct techniques. Genetic programming might be a feasible alternative. 

 

3.2.2 Genetic Programming 

 

Genetic Programming (GP) is a single-objective evolutionary technique, developed 

by (Koza, 1992), that presents a substantial and relevant differences regarding all other 

evolutionary approaches – the algorithm unfolds in an inverted tree-like shape where the 
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branches represent possible paths the algorithm may choose. Each branch itself leads to a 

different function or complete program and not a static value for a parameter of the 

chromosome. When applied to finance, GP is commonly used as a trading rule discovery 

and evolvement approach. The structure may be more or less flexible, according to research 

purposes, in the way the tree branches are exchanged within the structure itself (crossover), 

the applied level of layers, and the mutation of the program in each branch. Too much 

flexibility and lack of constraints might lead to excessive complexity of the tree structure 

and inefficiency of the algorithm. 

GP is a relatively established technique in the finance academic field. (Kaboudan, 

2000) proposed, for instance, a single day-trading strategy based on the optimization 

provided by GP, where regressions applied in each branch were used to predict prices for 

the following day, with profitable returns for a pool of six stocks. (Potvin et al., 2004), on 

the other hand, presented a GP-based framework in order to generate profitable short term 

trading rules. The out-of-sample (OOS) results in this paper came short of what was expected 

and proved to be more effective when the observed markets were not on a rising trend.  

A similar approach was conducted by (How et al., 2009), but instead of dealing with 

individual stocks, the authors focused on three different indexes: Russell 1000 (large cap = 

top 1000 corporations of the Russell 3000 in terms of capitalisation), Russell 2000 (small 

cap = 2000 corporations with smaller cap from Russell 3000) and Russell 3000 (broad 

market). The purpose was to devise TA trading strategies based on the use of a GP and test 

how the average dimension of the studied corporations of each index might induce different 

OOS outcomes in terms of financial return of the defined rules. OOS results showed the 

market/index with more potential for predictability was the small cap (Russell 2000). But 

even for that market, after incorporating trading costs, profitable trading opportunities 

disappeared. 

Focusing on risk, in (Esfahanipour and Mousavi, 2011) a GP is used to generate risk-

adjusted TA trading rules, by adopting a conditional Sharpe ratio for that purpose (a 

CVaR-based risk measure). The method granted better results in comparison to a simple Buy 

and Hold (B&H) strategy. (Lensberg and Schenk-Hoppé, 2013) presents a GP algorithm 

used for optimization of hedging strategies (minimization of risk), under nonlinear 
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transaction costs. The algorithm showed a good ability to adapt to new pieces of information 

of the hedging strategy and also robustness regarding the parameter values. 

There are also variations to the original GP algorithm. For instance, (Li et al., 2006) 

proposes a Financial GP as a forecasting tool based on the original GP and the (discrete) 

Wavelet Transform, an image or signal processing method inherited from the engineering 

area, with interesting results in terms of prediction capabilities. (Luna et al., 2012) uses a 

grammar-guided GP for mining trading rules. The algorithm allows a great deal of flexibility 

and adaptability to specific problems, although keeping an accentuated elitist nature (selects 

in each iteration the best individuals with evaluation above a certain threshold). (Manahov 

et al., 2014) presents another variation of GP, a version of the strongly typed genetic 

programming learning algorithm to devise trading rules. With recourse to the three Russell 

indexes, arriving at similar conclusions of (How et al., 2009) – superiority of models 

developed for small-cap stocks.  

On another tone, (Bouaziz et al., 2016) focused on combining extended genetic 

programming with a hybrid artificial bee colony algorithm (itself a composite of artificial 

bee colony procedures with opposite-based particle swarm optimization. A similar approach 

is conducted in (Hsu, 2011), where a hybridization of a self-organizing map, a neural 

network and genetic programming is developed in order to predict stock prices. Another 

composite metaheuristic involving GP is used in (Yang et al., 2014): a GP algorithm based 

on the least squares method (GP-LSM), cumulating the flexibility of GP and the ability to 

improve the convergence speed concomitantly to the prediction accuracy (because of its 

nature and capacity to optimize the fitness of nonlinear models). By comparing the GP-LSM 

with other models, namely the seasonal auto regression integrated moving average 

(SARIMA) and back propagation artificial neural networks (BP-ANN), the authors of the 

article have shown how their model performs better than the other considered models. 

GP presents several good characteristics and is flexible enough to produce joint 

models with other metaheuristics/functions. An overview of the GP evolution since its 

inception until recent days is documented in (Kouchakpour et al., 2009). GP is highly 

regarded in the scientific community but it has a major drawback: the computational effort 

it requires. In the next subsections we will move on to two distinct single objective 

alternatives to GP, Evolution Strategies and Evolutionary Programming. 
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3.2.3 Evolution Strategies 

 

Evolution Strategies (EST) are associated with the work of (Schwefel, 1984), 

although first introduced by (Rechenberg, 1964), in Berlin – Technical University. This 

optimization method was developed independently from other evolutionary techniques and 

presents several peculiar characteristics. While GAs were initially designed for solution with 

discrete configuration (namely binary gene configuration), ESTs were developed in the 

context of continuous optimization within a real-value vector framework. The mutation 

factor usually assumes a random nature with Gaussian distribution (zero mean); the selection 

procedure uses a uniform random distribution, and replacement, which may assume two 

different generic forms: one, (𝜇 + 𝜆) , in this case, the population 𝜆  of offsprings will 

compete with the initial parents’ population 𝜇  for comparison and selection of the best 

population with size 𝜇 among the pool (𝜇 + 𝜆); or a second form, (𝜇, 𝜆), where the initial 

parent population 𝜇 is completely substituted by the new offspring population 𝜆 for the next 

iteration and eventually the best individuals of 𝜇 until the size of the initial population is 

achieved (which happens whenever 𝜆 < 𝜇  ). ESTs also allow the possibility of self-

adaptation of the mutation step size.  

(Beyer and Schwefel, 2002) analyse this branch of computational evolution, from its 

inception in the 1960’s in Germany to the 2000’s, concluding with a speculation of how 

subsequent developments in ESTs will come to be. (Schwefel, 1981) and (Schwefel, 1984) 

give a systematic presentation of this kind of algorithm. The EST has the ability to improve 

and accelerate the learning process of self-adaptation, particularly when 𝜆 > 𝜇. (Grill and 

Hartmann, 2000) focus on the efficiency of this kind of algorithms, where the coexistence 

of independent individuals (strategies) and the versatility of the algorithm proportionate the 

reduction of processing time and an enhanced applicability to particularly difficult and large 

scale problems. On another perspective, (Arnold and Beyer, 2003) evaluate the EST 

performance with the presence of Gaussian noise, and the EST reveals greater degree of 

robustness than other algorithms (direct pattern search, multi-directional search and implicit 

filtering) when dealing with high levels of noise. 

Several authors tried to introduce into EST some sort of variation in order to improve 

the algorithm. For instance, (Mezura-Montes and Coello, 2008) develop a variation of a 
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traditional EST approach and use other four different ESTs: the variation of a (𝜇 + 1) – EST 

designated as “𝑉(𝜇 + 1) − 𝐸𝑆𝑇”; (𝜇 + 𝜆) – EST without correlated mutation; (𝜇 + 𝜆) – 

EST with correlated mutation; (𝜇, 𝜆) – EST without correlated mutation; and (𝜇, 𝜆) – EST 

with correlated mutation. They compare these four ESTs with each other and with other 

state-of-the-art metaheuristics. The variation shows an interestingly competitive 

performance either regarding the other ESTs as well as the state-of-the-art benchmark 

metaheuristics. (Diouane et al., 2015) also propose a variation within the globally convergent 

ESTs with empirical results showing a competitive, efficient and robust performance when 

compared with state-of-the-art optimization solvers. Another variation – the GES (Grouped 

Evolution Strategies – presented in (Kashan et al., 2015) shows its merits in particular as a 

flexible and robust optimization methodology for complex problems.  

 

3.2.4 Evolutionary Programming 

 

Evolutionary Programming (EP) emerged as an evolutionary technique in the 1960’s 

with the work of (Fogel et al., 1966). It was developed mainly to improve computational 

performance through evolution of finite state machines. There is a major difference that 

diverges this optimization method from EST, which lies in the absence of any form of 

recombination/crossover. The evolution of the population is basically induced from 

mutation, which presents a Gaussian behaviour with zero mean. The selection of the next 

iteration’s population is stochastic using a fitness proportionate selection, choosing a 

population of size 𝜇  of the fittest individuals from the pool (𝜇 + 𝜇′),  where 𝜇  is the 

beginning population and 𝜇′ is the mutated population of each iteration. 

The same author that developed EP presented an article where a parallel between GA 

and EP performance was drawn – (Fogel, 1995). In this work, empirical results show the EP 

consistently outperformed the GA in a statistically significant way, under nonparametric 

hypothesis testing. Another comparison amongst GA and EP was conducted by (Abu-Zitar 

and Nuseirat, 2002), namely to understand their robustness when dealing with machine 

learning related problems. In this case, the performance of both techniques was similar and 

effective in achieving good results. In both techniques, fine-tuning was an essential part of 

performance improvement.  



[79] 

 

 The mutation operator is of paramount importance for EP. It has been subject of 

study, in particular in how it may be fine-tuned to avoid premature convergence to local 

optima or lack of diversity in the population at early stages of the optimization process. 

(Alam et al., 2012) address this specific question and introduce a new variation of EP, the 

DGEP - Diversity Guided EP as an optimization approach where the mutation step-size is 

influenced by the diversity information of the population at any given iteration. Empirical 

tests have shown interesting results, in particular in comparison to other forms of EP such 

as the CEP - Classical EP,  ALEP - Adaptive Lévy EP, and IFEP - Improved Fast EP; ALEP 

and IFEP use respectively  a Lévy and a Cauchy probability functions for the mutation 

operator as alternatives to the Gaussian probability function. 

 (Das et al., 2013) introduce another variation: instead of selecting deterministically 

the ith population member to apply a mutation of step-size conditioned by the Gaussian 

probability function, the authors propose a mixture of this procedure with the possibility of 

choosing randomly another population member to use upon the mutation operator, with a 

50% chance of choosing each procedure. Within the second possibility, the parent selection 

would be according to their respective fitness. This new bivariate parent selection scheme, 

p-best Adaptive Fast EP (AFEP), shows statistical superiority regarding final accuracy, 

speed and robustness, when compared with the previously mentioned CEP, ALEP, and also 

with the Fast EP (FEP), Modified EP (MEP), Adaptive Fast EP (AFEP) and finally EP based 

on Reinforcement Learning (RLEP). 

 

3.3 Multi-Objective Evolutionary Algorithms and Portfolio Optimization 
 

Multi-Objective Evolutionary Algorithms (MOEAs) represent a class of 

metaheuristics particularly adequate for portfolio optimization, since they can address the 

duality risk-return so characteristically present in portfolio optimization. There are many 

MOEAs, but some of them have emerged as more consistent in their effectiveness and 

efficiency. We will devote special attention to influential MOEAs that have consistently 

produced good performances over the years and were also used in the empirical studies of 

this work, namely the Nondominated Sorting Genetic Algorithm II (NSGA-II), introduced 
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by (Deb et al., 2002), and the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), 

developed by (Zitzler et al., 2001). 

 

3.3.1 Nondominated Sorting Genetic Algorithm II 

 

The NSGA-II was developed as an improvement to the original NSGA. It was first 

presented in (Deb et al., 2002). It was a reaction to several criticisms to the original 

algorithm, specifically, the high computational complexity of nondominated sorting, lack of 

elitism and the need of specifying the sharing parameter (𝜎𝑠ℎ𝑎𝑟𝑒). The improved algorithm 

follows these steps (Deb et al., 2002), pp. 184-186: 

 

𝑃𝑡 – Population at iteration T 

T – Maximum number of iterations 

 

Generate a Population 𝑃0 of size N 

For 𝑡 = 0 𝑡𝑜 𝑇 

 Evaluate Population 𝑃𝑡 

 Recombination of Population 𝑃𝑡; 

 𝑄𝑡 ← Mutation of Population 𝑃𝑡 after Recombination; 

 Generate 𝑅𝑡 = 𝑃𝑡  ∪  𝑄𝑡 of size 2N; 

 Evaluate Population 𝑅𝑡 – Rank (fitness) is given to each solution according 

to:  

 Non-domination sorting: (𝑖𝑟𝑎𝑛𝑘) – 1st phase of ordering by applying 

the fast-non-dominated-sort procedure; new sets of solutions are 

delimited according to their nondominance rank: 𝐹1, 𝐹2, 𝐹3 …; order 

the elements from the lowest to the highest rank – a solution 𝑖  is 

preferable to a solution 𝑗 (𝑖 ≺𝑛 𝑗) if (𝑖𝑟𝑎𝑛𝑘 < 𝑗𝑟𝑎𝑛𝑘) (the lower the 

rank the better the fitness); 

 Apply the Crowding Distance procedure: (𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ), 2nd phase of 

ordering for selection: a solution 𝑖  is preferable to a solution 𝑗  if 

[(𝑖𝑟𝑎𝑛𝑘 = 𝑗𝑟𝑎𝑛𝑘) and (𝑖𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)],  
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 Select 𝑃𝑡+1  from the sorted 𝑅𝑡  – the first N solutions are chosen for the 

Population of the next iteration; 

Next 𝑡 

Final Solutions = 𝑃𝑇 

 

The drawbacks pointed out to the original NSGA were therefore overcome or at least 

attenuated by this new algorithm: the computational complexity was reduced from 𝑂(𝑀𝑁3) 

to 𝑂(𝑀𝑁2), improving the optimization procedure in terms of required computational effort; 

the elitism was improved by the new fast-non-dominated sort and crowding distance 

selection procedures; and finally the specification of the sharing parameter is no longer 

needed, since this procedure is altogether abandoned and substituted by a 

crowded-comparison approach. 

Some studies have emphasized the interesting performance of this algorithm when 

compared with other MOEAs. NSGA-II has been considered particularly effective when 

adopting a few modifications, namely the predator-prey approach (Deb et al., 2006). New 

improvements to this algorithm have been introduced in (D’Souza et al., 2010), leading to 

the reduction of its running time and complexity, and therefore making it more attractive for 

solving practical problems.  

This algorithm has attained quite a success in the resolution of the asset portfolio 

optimization problem. In this respect, two articles can be highlighted: (Anagnostopoulos and 

Mamanis, 2011) and (Metaxiotis and Liagkouras, 2012). In the first, an exercise of portfolio 

optimization is conducted with recourse to six MOEAs, among which stands also the NSGA-

II. In all studied markets the NSGA-II performed at a high level, reaching the true Pareto 

front of the problems. (Metaxiotis and Liagkouras, 2012) on the other hand, make an 

extensive review of the most common MOEAs applied so far to portfolio management. The 

NSGA-II is present in the vast majority of reviewed articles. 

 Other works such as (Lwin et al., 2014) show the importance of this algorithm for 

solving portfolio optimization problems. In this last paper, and for most of the criteria of 

performance evaluation, the NSGA-II shows strong robustness, qualifying as one of the best 

algorithms in consideration by the author. Other articles reinforce this idea – (Duran et al., 

2009), (Mishra et al., 2009), (Mishra et al., 2010), (Mishra et al., 2016), (Lwin et al., 2017) 
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– and it is not difficult to state how the NSGA-II remains as one core MOEA, a reference 

for performance evaluation in this kind of problem. 

 

3.3.2 Strength Pareto Evolutionary Algorithm 2 

 

 

The SPEA-2 (Zitzler et al., 2001) results from an improvement of the original SPEA, 

an algorithm first developed by Zitzler and presented in his PhD thesis (Zitzler, 1999). In 

this new algorithm the fitness assignment strategy is fine-tuned, considering for each 

individual solution how many solutions it dominates and is dominated by. SPEA-2 

incorporates a nearest neighbour density estimation technique that enhances the optimization 

process. Its process can be described as a sequence of the following steps (Zitzler et al., 

2001): 

 

Input:  𝑁 – Population Size 

 𝑁̅ – Archive Size 

 𝑇 – Maximum number of iterations 

Output: A – Non-dominated set 

 

Initialization: Generate an initial population 𝑃0; set 𝑡 = 0 and create an empty archive 𝑃̅0 =

∅ 

 

For 𝑡 = 0 𝑡𝑜 𝑇 

 Fitness assignment: Calculate fitness values of individuals in 𝑃𝑡 and 𝑃𝑡̅ 

 Environmental selection: Copy all nondominated individuals in 𝑃𝑡  and 𝑃𝑡̅  to 

𝑃̅𝑡+1. If the size of 𝑃̅𝑡+1 exceeds 𝑁̅ then reduce 𝑃̅𝑡+1 by means of the truncation 

operator (mechanism establishing the condition that guarantees the size of the 

archive does not exceed the predefined threshold); otherwise, if the size of 𝑃̅𝑡+1 

is less than 𝑁̅, then fill 𝑃̅𝑡+1 with dominated individuals in 𝑃𝑡 and 𝑃𝑡̅ 
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 Termination: If 𝑡 > 𝑇 or another stopping criterion is satisfied then set A to the 

set of decision vectors represented by the nondominated individuals in 𝑃̅𝑡+1 . 

Stop. 

 Mating selection: Perform binary tournament selection with replacement on 𝑃̅𝑡+1 

in order to fill the mating pool and set 𝑃̅𝑡+1 to the resulting population. 

 Variation: Apply recombination and mutation operators to the mating pool and 

set 𝑃𝑡+1 to the resulting population. 

Next 𝑡 

Final Solutions = A 

 

The main differences of the new improved version of the algorithm lie in following 

facts: 1) the use of a fine-grained fitness assignment strategy which incorporates density 

information – (Zitzler, 1999), pp. 34-36, versus (Zitzler et al., 2001), pp. 6-7; 2) the archive 

size is fixed (contrary to the original SPEA, which could change its archive size through the 

iterations); 3) the original SPEA’s clustering technique used to limit the population size to 

𝑁 is replaced by a truncation method; and finally 4) only the solutions present in the archive 

are used as possible parents for mating – comparison between (Zitzler, 1999), pp. 32-40, and 

(Zitzler et al., 2001). 

The SPEA-2 represents another reference MOEA. In fact, NSGA-II and SPEA-2 

have been commonly used as benchmarks for the evaluation of new multiobjective 

algorithms. SPEA-2 has consistently proved to be a reliable alternative as far as MOEAs are 

concerned. Nevertheless, some studies report a less-than-efficient performance, particularly 

when compared to the NSGA-II, and when applied to portfolio optimization. For instance, 

in (Anagnostopoulos and Mamanis, 2011), SPEA-2’s results stay consistently just below 

NSGA-II’s, although not very far away. Other situations have arisen in portfolio 

optimization with SPEA-2: in  (Mishra et al., 2009), (Diosan, 2005) and (Lwin et al., 2013), 

its optimized fronts present lesser extension than those of the competitor algorithms, 

something that may create some difficulties in the evaluation of the optimized solutions’ 

quality. Still, SPEA-2 remains as one of the most consistent and important MOEAs up to 

date. In Chapter 5 we will compare the performance of these two MOEAs (NSGA-II and 

SPEA-2) applied to portfolio optimization within four distinct Stock Markets. 
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3.3.3 Other MOEAs 

 

(Metaxiotis and Liagkouras, 2012) present a survey of the most important MOEAs 

applied to portfolio management. Among them there are the already mentioned NSGA-II 

and SPEA-2, and a list of other reputed MOEAs. In this set we may consider: 

 Vector Evaluation Genetic Algorithm (VEGA) 

 Niched Pareto Genetic Algorithm II (NPGA-II) 

 Multi-Objective Genetic Algorithm (MOGA) 

 Pareto Envelope-based Selection Algorithm II (PESA-II) 

(Anagnostopoulos and Mamanis, 2011) identify in addition to some of the aforementioned 

algorithms, the 

 e-Multiobjective Evolutionary Algorithm (e-MOEA), 

a new algorithm that presents some interesting and promising results for the portfolio 

optimization problem. (Lwin et al., 2014) uses also the 

 Pareto Archived Evolution Strategy (PAES) 

as an alternative algorithm, by comparing its performance with the NSGA-II, the SPEA-2, 

the PESA-II, and a newly developed algorithm that shows outstanding results, the  

 Learning-Guided Multi-Objective Evolutionary Algorithm With External Archive 

(MODEwAwL), 

an algorithm that beats all the contesters by far in a set of different performance indicators 

(inverted generational distance, generational distance, diversity metric and hypervolume). 

(Saborido et al., 2016) suggests the use of  

 Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) 

 Global Weighting Achievement Scalarizing Function Genetic Algorithm (GWASF-

GA) 

as alternatives to the NSGA-II. 
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As we may see, there is a list of important MOEAs perfectly adequate for portfolio 

optimization, and new alternative algorithms used in this area of Finance are emerging 

continuously, something that suggests a bright future for this branch of Applied OR. 

 

 





[87] 

 

4 Optimizing TA Trading Strategies with a Genetic 

Algorithm4 

 

In this chapter an empirical study is conducted in order to draw some conclusions 

about the Forex market behaviour. As remarked earlier, we will use data relative to the three 

major Forex crosses. To attain our goal we will develop a GA in order to search the feasible 

space of solutions and achieve a set of optimized solutions for each scenario [TA category; 

Market; Period]. These solutions (translatable into trading strategies) will later on be applied 

to out-of-sample (OOS) data, so we may know how effective they are. 

The chapter starts with a presentation of the Trading Model assumptions, where all 

the rationale employed in the model is described, including the adopted TA indicators and 

rules for trading. It will follow a presentation of our GA, its structure, pseudo code and 

mechanics. In a third part, we will present and discuss the results obtained both in-sample 

(IS) and OOS and draw conclusions about them.  

 

4.1 The Trading Model 

 

The model tries to replicate the trading environment in the Forex market with typical 

TA indicators and trading strategies commonly used by the industry. The purpose is to obtain 

and compare optimized solutions in three different TA categories – momentum, trend and 

breakout – and assess which ones produce better average outcomes. A solution consists of 

one indicator (belonging to one of these categories) with a given setting for its parameters. 

                                                   

 

4 Chapter 4 presents the empirical work of this Thesis published in the article Macedo, L.L., Godinho, P. and 

Alves, M.J. (2016), ‘A Comparative Study of Technical Trading Strategies Using a Genetic Algorithm’, 

Computational Economics, available at: https://doi.org/10.1007/s10614-016-9641-9. 
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Due to the complexity of the optimization task, a metaheuristic technique was 

chosen. A genetic algorithm is a suitable technique to achieve the proposed goal. It can easily 

embody the multi-dimensionality of the problem, that is, it can optimize simultaneously the 

solution structure (selection of the TA indicator) and the solution parameters (parameters of 

the indicator). In addition, the randomness factor in population generation and the variation 

of the parameters can help to avoid the trap of local optima and premature convergence in 

the optimization process, at the same time as the population evolves to yield solutions with 

a better fit. Our methodology seems better suited to the purpose at hand than other 

metaheuristics applied to Forex, such as artificial neural networks (ANNs), e.g. (Andreou et 

al., 2002); genetic programming (GP), e.g. (Neely and Weller, 2003), (Wilson and Banzhaf, 

2010); grammatical evolution (GE), e.g. (Brabazon and O’Neill, 2004). This is because GAs 

allow optimization of parameters of isolated TA indicators. GP is better for optimizing TA 

rules, combining them into more complex structures and even designing whole trading 

systems. ANNs are better suited for pattern recognition, establishing evolving relations 

through complex input-output models. GP or GE are more useful for finding new optimized 

rules, which is not the objective in mind – we deliberately assume the trading rules as 

predefined and stable, since it is those rules used by the trading industry that we want to 

verify. Moreover, with GP or GE, new trading rules could emerge that are completely 

unrelated to the TA philosophy.  

To achieve the proposed objective, the GA will optimize the evaluation function (EF) 

represented as:  

𝐸𝐹 =  
𝑃𝑟𝑜𝑓𝑖𝑡(𝐴𝑇)

𝑀𝐷𝐷(𝐴𝑇)⁄   

where AT is the account at the end of time T (end of the period) and MDD(AT) is the maximum 

drawdown of the account at the same time, defined in (3), Section 2.3.2.2. The MDD is the 

largest drop from peak to trough in a time span, the worst fall in account value observed for 

the trading activity. 

The intention is to maximize the ratio EF (in-sample), where the numerator has the 

measure of total profit, and the denominator has a risk measure – the maximum drawdown 

(MDD). Once the maximization process has been completed the optimized trading strategies 
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(indicator and parameters) are applied to out-of-sample data. The analysis will be conducted 

with regard to a measure of return, Return on Account (RoA), computed as: 

𝑅𝑜𝐴 =
𝑃𝑟𝑜𝑓𝑖𝑡 (𝐴𝑡)

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑎𝑝𝑖𝑡𝑎𝑙
∗ 100%  

 

4.1.1 Assumptions 

 

The study concentrates on three major currency markets: EUR/USD, GBP/USD and 

USD/JPY. We use daily quotes. Throughout the article, currency crosses are expressed under 

the ISO 4217 code format (“BBB/CCC”, where “BBB” = Base currency and “CCC” = 

Counter currency). Traded quantities are designated in base currency. A standard lot trades 

100 000 base currency units, with a leverage of 1:100, meaning that for every traded lot we 

allocate the equivalent to 1 000 base currency units to margin, expressed in counter currency. 

The interest rate differential, for rollover computation, is defined as the arithmetic difference 

between base currency and counter currency daily interest rates. Rollovers are calculated at 

the end of the day (time 𝑡 ) and multiplied by the respective closing price to become 

expressed in counter currency terms. For simplification, absolute profits, percentage in point 

(pip), margins, standard deviations and trading costs are designated in counter currency. At 

any given time t, the trading signal devised by an indicator assigns a trading position 𝑌𝑡 

(long, short or out-of-the-market, indicated by signals “1”, “1” and “0”, respectively) at the 

beginning of time 𝑡 + 1. The difference between 𝑌𝑡 and 𝑌𝑡−1 defines the action to take at 

time 𝑡 + 1. For instance, if 𝑌𝑡−1 = 1 and 𝑌𝑡 = 1, the short position remains unchanged and 

no action is taken; if 𝑌𝑡−1 = 1 and 𝑌𝑡 = +1 the position is reversed from a short position to 

a long position and 2 lots of 100 000 currency units are bought (𝑌𝑡 − 𝑌𝑡−1 = +2); if 𝑌𝑡−1 = 

1 and 𝑌𝑡 = 0, this implies a change from a short position of 1 lot to an out-of-the-market 

situation by buying 1 lot (𝑌𝑡 − 𝑌𝑡−1 = +1) in 𝑡 + 1, and so on. Execution prices in 𝑡 + 1 are, 

by assumption, considered at the opening price. To compute MDD and the RoA in percentage 

terms we consider a starting trading account size (equity) of 50 000.00 currency units for the 

EUR/USD and GBP/USD markets, 5 000 000.00 units for USD/JPY. For every period, the 
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account size restarts with the mentioned equity figures. Whenever an account hits zero value, 

an order is triggered to clear all open positions and exit the market.  

 

4.1.2 Example of indicator application and RoA Calculation 

 

We present an example of the computation of a solution RoA (Table 1). For 

simplification purposes, we have restricted the period of potential transactions to a 15-day 

span and ignored trading costs. SMA(n) represents a simple moving average with a moving 

window of n observations. 

Table 1. Computation of a solution’s RoA. 

 

Source: Author. 

 

Assume the algorithm has generated (in the training phase) a solution within the trend 

category where the selected indicator is an SMA crossover, taking long positions when 

SMA(3) > SMA(5) and short positions otherwise. This strategy is applied to the out-of-the 

sample data in Table 1. The moving averages are applied to the close prices and are presented 

in columns (6) and (7) of Table 1. The difference between the two averages is given in 

column (8) and the respective positions to assume on each day are in column (9), where “1” 

represents long and “-1” short positions. In this case we can only have a position signal after 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Day OPEN MAX MIN CLOSE SMA(3) SMA(5) SMA(3) - SMA(5) Position (Y t ) Profit (DP t ) Account Value

1 1.2765 1.2831 1.2716 1.2823 0 0.00 50 000.00

2 1.2824 1.2836 1.2774 1.2793 0 0.00 50 000.00

3 1.2793 1.2835 1.2739 1.2799 1.2805 0 0.00 50 000.00

4 1.2799 1.2911 1.2773 1.2870 1.2821 0 0.00 50 000.00

5 1.2871 1.2894 1.2803 1.2819 1.2829 1.2821 0.0008533 1 0.00 50 000.00

6 1.2820 1.2895 1.2762 1.2789 1.2826 1.2814 0.0012000 1 -310.00 49 690.00

7 1.2789 1.2903 1.2767 1.2870 1.2826 1.2829 -0.0003400 -1 810.00 50 500.00

8 1.2867 1.2912 1.2744 1.2791 1.2817 1.2828 -0.0011133 -1 730.00 51 230.00

9 1.2791 1.2797 1.2705 1.2725 1.2795 1.2799 -0.0003467 -1 660.00 51 890.00

10 1.2725 1.2765 1.2704 1.2719 1.2745 1.2779 -0.0033800 -1 60.00 51 950.00

11 1.2718 1.2805 1.2692 1.2785 1.2743 1.2778 -0.0035000 -1 -660.00 51 290.00

12 1.2786 1.2866 1.2766 1.2853 1.2786 1.2775 0.0011067 1 -680.00 50 610.00

13 1.2850 1.2888 1.2810 1.2832 1.2823 1.2783 0.0040533 1 -150.00 50 460.00

14 1.2832 1.2847 1.2777 1.2824 1.2836 1.2803 0.0033733 1 -80.00 50 380.00

15 1.2824 1.2940 1.2818 1.2863 1.2840 1.2831 0.0008267 1 390.00 50 770.00

770.00
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the 5th day, as the longest SMA needs 5 days to compute its first value. On day 5 we can see 

the system signals a long position, which will be taken on the next day at the opening price. 

Therefore, at the end of day 6 we have 1 trading lot of 100 000 base currency units bought 

at 1.2820 and valued at 1.2789. This represents a loss of -310.00 counter currency units 

[(1.2789 – 1.2820)*100 000= -310.00]. On day 7 we keep a long position of one lot (signal 

at day 6) and so the profit will be equal to the difference of the closing price on day 7 and 

the closing price on day 6, i.e. [(1.2870 – 1.2789)*100 000= +810.00]. When the position 

changes from long to short on day 8 (signal on day 7) we sell 2 lots at 1.2867 – one to offset 

the previous trading position and the other to take a short position. At the end of day 8 we 

have produced 730.00 in counter currency profits: (1.2867 - 1.2870)*100 000 + (1.2867 - 

1.2791)*100 000 = -30.00 (loss for offsetting previous position) + 760.00 (profit from the 

short position). Following this reasoning, at the end of the period we would have a net 

cumulative profit of 770.00, which represents a RoA of 770 / 50 000 = 1.54%.  

Below are presented the formulae used to calculate the daily profit (𝐷𝑃𝑡), where are 

taken into consideration all possible scenarios for the position held at each time period. 

Continuous long position, 𝑌𝑡−2 = 1 and 𝑌𝑡−1 = 1: 

𝐷𝑃𝑡 = (𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡−1

𝑐𝑙𝑜𝑠𝑒)  

Reversing from a short to a long position, 𝑌𝑡−2 = −1 and 𝑌𝑡−1 = 1: 

𝐷𝑃𝑡 = (𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛) + (𝑃𝑡−1
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛)  

Continuous short position, 𝑌𝑡−2 = −1 and 𝑌𝑡−1 = −1:  

𝐷𝑃𝑡 = −(𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡−1

𝑐𝑙𝑜𝑠𝑒) = (𝑃𝑡−1
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑐𝑙𝑜𝑠𝑒)  

Reversing from a long to a short position, 𝑌𝑡−2 = 1 and 𝑌𝑡−1 = −1: 

𝐷𝑃𝑡 = −[(𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛) + (𝑃𝑡−1
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛)]

= (𝑃𝑡
𝑜𝑝𝑒𝑛 − 𝑃𝑡

𝑐𝑙𝑜𝑠𝑒) + (𝑃𝑡
𝑜𝑝𝑒𝑛−𝑃𝑡−1

𝑐𝑙𝑜𝑠𝑒) 
 

From a long position to out of the market, 𝑌𝑡−2 = 1 and 𝑌𝑡−1 = 0: 
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𝐷𝑃𝑡 = (𝑃𝑡
𝑜𝑝𝑒𝑛 − 𝑃𝑡−1

𝑐𝑙𝑜𝑠𝑒)  

From a short position to out of the market, 𝑌𝑡−2 = −1 and 𝑌𝑡−1 = 0: 

𝐷𝑃𝑡 = −(𝑃𝑡
𝑜𝑝𝑒𝑛 − 𝑃𝑡−1

𝑐𝑙𝑜𝑠𝑒) = (𝑃𝑡−1
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛)  

From out of the market to a long position 𝑌𝑡−2 = 0 and 𝑌𝑡−1 = 1: 

𝐷𝑃𝑡 = (𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛)  

From out of the market to a short position, 𝑌𝑡−2 = 0 and 𝑌𝑡−1 = −1: 

𝐷𝑃𝑡 = −(𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 − 𝑃𝑡

𝑜𝑝𝑒𝑛) = (𝑃𝑡
𝑜𝑝𝑒𝑛 − 𝑃𝑡

𝑐𝑙𝑜𝑠𝑒)  

𝑃𝑡
𝑜𝑝𝑒𝑛

and 𝑃𝑡
𝑐𝑙𝑜𝑠𝑒 stand for open and close prices at a given day t. 

The account profit is computed as: 

𝑃𝑟𝑜𝑓𝑖𝑡 (𝐴𝑡) = ∑ 𝐷𝑃𝑡

𝑇

𝑡=1

  

 

4.1.3 Technical Indicators 

 

Technical indicators have been presented in Subsection 2.2.2.2. In this chapter, we 

consider TA indicators of three categories: trend, momentum and breakout. Regarding the 

trend category, the indicators were mainly based on crossing moving averages: double 

simple moving average crossover, double exponential moving average crossover, triple 

simple moving average crossover, directional movement index and moving average 

convergence divergence. Within the momentum category the following indicators were 

considered: relative strength index, Williams’ %R and stochastic oscillator. The breakout 

indicators used in this work are average true range (ATR), Bollinger Bands, close price, 

exponential moving average +/- k standard deviations and double exponential moving 

average breakout.  
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Table 2. TA indicators used, respective parameters to be optimized and constraints associated. 

 

Source: Author. 

 

There are five distinct kinds of parameters on which the indicators depend: 

 𝛼𝑖 =
w𝑡−1

w𝑡
⁄ ∶ ratio between weights of observations in moment 𝑡 − 1 and moment 

𝑡 for the computation of an Exponential Moving Average; 

 𝑛𝑖: number of observations of the moving window for the calculation of indicator 𝑖; 

 𝑢𝑏𝑖: upper bound of indicator 𝑖; 

 𝑙𝑏𝑖: lower bound of indicator 𝑖; 

 𝑘𝑖: number of standard deviations used for the computation of indicator 𝑖. 

Indicator Category Parameters Parameter Constraints

Relative Strengh Index (RSI) Momentum ub RSI ; lb RSI ; n RSI 0<ub i ≤1; 0≤lb i <1; lb i <ub i ; 1≤n i ≤30

Williams' %R Momentum ub %R ; lb %R ; n %R -1<ub i ≤0; -1≤lb i <0; lb i <ub i ; 1≤n i ≤30

Stochastic Oscillator (SO) Momentum a F%D ; a S%D ; n F%K ; n F%D ; n S%D 0<a i ≤1; 1≤n i ≤30

Double SMA Crossover Trend n SMA1 ; n SMA2 1≤n i ≤30

Double EMA Crossover Trend a EMA1 ; a EMA2 ; n EMA1 ; n EMA2 0<a i ≤1; 1≤n i ≤30

Triple SMA Crossover Trend
a TSMA1 ; a TSMA2 ; a TSMA3 ; n TSMA1 ; 

n TSMA2 ; n TSMA3

0<a i ≤1; 1≤n i ≤90

Moving Average Convergence 

Divergence (MACD)
Trend

a FastEMA ; a SlowEMA ; a Signal ; 

n FastEMA ; n SlowEMA ; n Signal

0<a i ≤1; 1≤n i ≤30

Directional Movement Index 

(DMI)
Trend

a DI_ATR ; a EMA+DM ; a EMA-DM ; 

n DMI

0<a i ≤1; 1≤n i ≤30

Average True Range (ATR) Breakout
a CP_EMA_ATR ; a ATR ; n CP_EMA_ATR ; 

n ATR

0<a i ≤1; 1≤n i ≤30

Bollinger Bands (BB) Breakout n SMA_BB ; k BB 2≤n i ≤30; 0≤k i ≤5

Close Price EMA ± k Breakout
a CP_EMA_StDv ; n CP_EMA_StDv ; 

k Long_CP_EMA_StDv ; k Short_CP_EMA_StDv

0<a i ≤1; 2≤n i ≤30; 0≤k i ≤5

Double EMA Breakout Breakout
a DbEMA1 ; a DbEMA2 ; n DbEMA1 ; 

n DbEMA2

0<a i ≤1; 1≤n i ≤30
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The indicators, parameters and constraints are summarized in Table 2. The trading 

rules based on these indicators were presented in Subsection 2.2.2.2 and are also 

summarized in Table 3.  

 

Table 3. Adopted TA trading rules, associated to the respective indicators. 

 

Source: Author. 

Indicator Trading Rules (moment t , to take effect in t+1 )

Relative Strengh Index (RSI)
Y t =1 if RSI t ≤lb RSI  and RSI t-1 ≥lb RSI ; Y t =-1 if RSI t ≥ub RSI  and RSI t-1 ≤ub RSI ; 

Y t =Y t-1  otherwise

Williams' %R
Y t =1 if %R t ≤lb %R  and %R t-1 ≥lb %R ; Y t =-1 if %R t ≥ub %R  and %R t-1 ≤ub %R ; 

Y t =Y t-1  otherwise

Stochastic Oscillator (SO) Y t =1 if Fast%D t >Slow%D t ; Y t =-1 if Fast%D t <Slow%D t ; Y t =0 otherwise

Double SMA Crossover Y t =1 if SMA1 t >SMA2 t ; Y t =-1 if SMA1 t <SMA2 t ; Y t =0 otherwise 
(SMA1 = Fast MA ; SMA2 = Slow MA)

Double EMA Crossover Y t =1 if EMA1 t >EMA2 t ; Y t =-1 if EMA1 t <EMA2 t ; Y t =0 otherwise 
(EMA1 = Fast MA ; EMA2 = Slow MA)

Triple SMA Crossover

Y t =1 if SMA1 t >SMA2 t  and SMA1 t >SMA3 t ; Y t =-1 if SMA1 t <SMA2 t  and 

SMA1 t <SMA3 t ; Y t =0 otherwise 
(SMA1 = Fast MA ; SMA2 = Intermediate MA ; SMA3 = Slow MA)

Moving Average Convergence Divergence 

(MACD)
Y t =1 if MACD t >Signal t ; Y t =-1 if MACD t <Signal t ; Y t =0 otherwise

Directional Movement Index (DMI) Y t =1 if +DI t >-DI t ; Y t =-1 if +DI t <-DI t ; Y t =0 otherwise

Average True Range (ATR)
Y t =1 if Close Price t >EMA+ATR t ; Y t =-1 if Close Price t <EMA-ATR t ; Y t =0 

otherwise

Bollinger Bands (BB)
Y t =1 if Close Price t >SMA_BB+k_BB t ; Y t =-1 if Close Price t <SMA_BB-k_BB t ; 

Y t =0 otherwise

Close Price EMA ± k
Y t =1 if Close Price t >EMA+k_Long.  t ; Y t =-1 if Close Price t <EMA-k_Short.  t ; 

Y t =0 otherwise

Double EMA Breakout

Y t =1 if Close Price t >EMA1 t  and Close Price t >EMA2 t ; Y t =-1 if Close 

Price t <EMA1 t  and Close Price t <EMA2 t ; Yt=0 otherwise 
(EMA1 = Fast MA ; EMA2 = Slow MA)

Y t =1  : long position

Y t =0  : out of the market

Y t =-1  : short position
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4.1.4 Chromosome Configuration 

 

A solution (chromosome) is composed of a set of parameters, confined to a category 

of TA indicators. For every solution, the GA activates only one indicator (represented by 

boolean variables); the rest remain latent as shadow indicators, with their respective 

parameters. Indicators of the same category are thus competing with each other. In the 

generic example shown in Figure 2, the hypothetical category in question consists of three 

different indicators: Boolean variables d1, d2, d3 identify whether the respective indicators 

are active or not (only one can be active); parameters pij refer to the parameters of each 

current indicator (pij is the parameter j of the indicator i). In this example, indicator 2 is 

active.  

 

Figure 2. Representation (encoding) of a single generic solution of a hypothetical category, where indicator 2 

is active and indicators 1 and 3 are inactive (latent indicators). 

 

Source: Author. 

 

This configuration allows more flexibility than the use of a single indicator because 

it provides an opportunity for indicator interchange and hence more diversity in the 

optimization process. We chose to use the optimization of individual indicators and not a 

combination of two or more so that the validity of each single TA indicator could be 

discerned.  

 

4.1.5 Algorithm Structure and Optimization Rationale 

 

In the training phase, the objective is to identify the combination of parameters that 

maximizes EF, defined as a risk-adjusted return. The procedure includes a training phase, 

where the category/indicator selection and the parameter optimization are fulfilled by the 

d 1 p11 p12 p13 d 2 p21 p22 p23 p24 p25 d 3 p31 p32

d 1 =0 d 2 =1 d 3 =0
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GA, and a testing phase. In this last phase, the previously optimized solutions are applied to 

the out-of-sample data. Different experiments for each category of indicators within each 

single market are performed. Every experiment consists of an in-sample training period of 

two years and an out-of-sample testing timespan of one semester, according to the schedule 

in Figure 3.  

For each market, indicator category and timespan, the genetic algorithm will produce 

a set of N optimized solutions, each resulting from an independent run, n=1,…,N. We have 

considered N=50 for each of the 16 timespans. The purpose is to assess the average return 

(RoA) of each set to draw conclusions. A solution is composed of an active indicator and its 

parameters. 

 

Figure 3. Rolling window timespans. 

 
Source: Author. 

 

4.1.5.1 Algorithm 

 

It is a difficult task to define the most appropriate size of a population and a suitable 

number of iterations in a GA. While small populations and/or small numbers of iterations 

run the risk of under-covering the solution space (being trapped in local optima), large 

populations and/or large numbers of iterations may require an excessive computational 

effort. Schaffer et al. (1989) concluded that for a representative series of multiple genetic 

algorithms, an appropriate population size should be set between 20 and 30. A similar result 

1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem. 1º Sem. 2º Sem.

In-sample period

Out-of-sample period
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was reported by (Haupt and Haupt, 2000), who argue that small population sizes combined 

with larger mutation rates perform better, not only by achieving better results but also by 

doing so in a shorter execution time. (Papadamou and Stephanides, 2007) also suggested a 

population of 30 as a suitable population size for GAs applied to TA indicator analysis, 

taking into consideration performance and computational effort. 

We did a preliminary test using the same markets, taking a population size of 30 and 

a very large number of iterations in order to set an appropriate number of iterations to use. 

The results showed that the algorithm produced large improvements up to the 100th iteration 

for most of the trials, but, after that iteration, the improvements were generally not 

significant. Further experiments were conducted in our algorithm with different population 

sizes: 50, 100 and 200 chromosomes, all with 500 iterations.  

 

Figure 4. Comparison of the GA performance with different population sizes (30, 50, 100 and 200). Each line 

represents the average performance of a sample of 10 independent runs for each population scenario in the 

EUR/USD market. 

  

Source: Author. 
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The average performances are presented in Figure 4 and show evidence that after the 

100th iteration there are only small improvements. We may see that around the 80th iteration 

average performances of the GA become very similar. In this context, we have decided to 

use 100 iterations and a population size of 30 in the optimization process. 

The following scheme describes the optimization process. The algorithm starts with 

the random generation of a population of 𝐽 trading strategies that will be subject to crossover 

and mutation through 𝐼 iterations. At the end of the 𝐼th iteration, the algorithm will produce 

an in-sample optimized solution. As stated above, 𝐽 and 𝐼 will be 30 and 100, respectively.  

 

𝑖= Iteration number, 𝑖 = 1, … , 𝐼 

𝑗= Solution number within the Population 

P(𝑖) = Population per market for each TA indicators’ category at the end of iteration 𝑖 

𝑆𝑖𝑗= 𝑗th solution (trading strategy) at iteration 𝑖; 𝑖 = 1, … , 𝐼; 𝑗 = 1, … , 𝐽; 

P(𝑖) ={𝑆𝑖𝑗; 𝑗 = 1,2, … , 𝐽} 

Generate P(0), the original population, formed by 𝐽 random trading strategies (solutions) 

For 𝑖 = 1 𝑡𝑜 𝐼 

For 𝑗 = 1 𝑡𝑜 𝐽 

𝑆𝑖𝑗← Crossover 𝑆(𝑖−1)𝑙 with 𝑆(𝑖−1)𝑘; 𝑙 and 𝑘 randomly selected 

𝑆𝑖𝑗
∗  ← Best of (𝑆(𝑖−1)𝑗;  𝑆𝑖𝑗) according to the evaluation function EF 

𝑆𝑖𝑗
′  ← Mutation of 𝑆𝑖𝑗

∗  

𝑆𝑖𝑗
∗∗ ← Best of (𝑆𝑖𝑗

∗ ; 𝑆𝑖𝑗
′ ) according to the evaluation function EF 

 Next j 

P(𝑖) ={𝑆𝑖𝑗
∗∗; 𝑗 = 1,2, … , 𝐽} 

Next 𝑖 

Output 𝑆∗∗∗← Best Strategy of P(𝑖) 

 

In the end, considering all markets, categories and periods, we have a set of 7 200 optimized 

trading strategies 𝑆∗∗∗  covering all scenarios (N #markets  #categories  #periods = 

50*3*3*16 = 7 200), to be tested with out-of-sample data. 
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4.1.5.2 Crossover and Mutation 

The adopted crossover operator is a binary crossover with a single randomly selected 

cutting point. For every population of J valid solutions, the algorithm picks the first solution 

(our reference element), which will be compared with an offspring generated by the 

crossover operator. Next, the algorithm randomly selects two different solutions from the 

population and applies the crossover operator, originating a single offspring. The offspring 

receives the genetic material from the first parent up to the cutting point and from the second 

parent thereafter. The offspring must have only one indicator active. Whenever this 

condition does not hold the algorithm goes on to select one active indicator (randomly, to 

prevent excessive elitism) – see an example in Figure 5.  

 

Figure 5. Crossover operator: a solution obtained by crossover where indicator 1 becomes active (randomly 

selected). Genetic material from indicators 2 and 3 remains latent. 

 

Source: Author. 

 

The algorithm compares the EF value of the offspring with the reference element’s 

value and the best of them is selected to integrate the population of the next iteration. Then, 

the algorithm applies mutation with a certain probability to this solution. The solution 

obtained after mutation replaces the original solution in the population of the next iteration 

only if it has a better EF value. The algorithm picks the next solution (2nd) as a reference 

(a) d1(a) p11(a) p12(a) p13(a) d2(a) p21(a) p22(a) p23(a) p24(a) p25(a) d3(a) p31(a) p32(a)

d1=0 d2=0 d3=1

(b) d1(b) p11(b) p12(b) p13(b) d2(b) p21(b) p22(b) p23(b) p24(b) p25(b) d3(b) p31(b) p32(b)

d1=0 d2=1 d3=0

d1(a) p11(a) p12(a) p13(a) d2(a) p21(a) p22(a) p23(a) p24(b) p25(b) d3(b) p31(b) p32(b)

d1=1 d2=0 d3=0
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element and repeats the procedure until all J solutions of the current population have been 

evaluated against J alternative offspring. 

Regarding the mutation operator, the probability of mutation of each gene (parameter 

of the indicator) is 1% except for the Boolean variables di. There is also the possibility of 

genetic material recovery provided by a random re-selection of the active indicator. This 

consists of a recalculation of the di values that is always performed at every iteration. In this 

process each indicator has the same probability of being chosen. Only one di can take the 

value “1”. The type of mutation depends on the specificities of each parameter, according to 

the following conditions:  

 𝛼𝑖, ∆𝑢𝑏𝑖, ∆𝑙𝑏𝑖  ∈ ]−0.05000; +0.05000[, following a uniform density probability 

function; 

 ∆𝑛𝑖  ∈ {−1; +1}, with equal probability of choosing each element; 

 𝑘𝑖  ∈ ]−0.50000; +0.50000[, following a uniform density probability function. 

 

Variations in parameters 𝛼𝑖 , 𝑢𝑏𝑖 , 𝑙𝑏𝑖and 𝑘𝑖  occur in figures up to five decimal places, as 

shown above in the intervals. The major contribution of this mutation operator and re-

selection procedure lies in the possibility of recovering latent or shadow genetic material, 

which may prevent a premature convergence of the algorithm. Our algorithm presents a 

linear time complexity O(n), where n stands for data input (daily open-high-low-close price 

quotes). The time required to execute our algorithm increases in proportion to the used 

amount of input data, making it a less time consuming algorithm.  

 

4.2 Empirical Results and Discussion 

 

In this section, we will apply the optimized solutions obtained by the GA in the in-

sample data to the out-of-sample data. The results in terms of the average RoAs will be 

compared with those obtained from the preeminent indicator (the most frequently selected 

indicator in each set of 50 optimized solutions), considering the usual industry values for the 
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parameters. We can therefore evaluate the GA’s ability to optimize the parameter values. 

The commonly used parameter values, according to the industry – (Aronson, 2007), (Colby, 

2003), (Kirkpatrick and Dahlquist, 2011), (Murphy, 1999), (Schwager, 1996) – are: 

 

RSI: 𝑛 = 14; upper threshold = 70%; lower threshold = 30%; 

Williams’%R: 𝑛 = 10; upper threshold = -20%; lower threshold = -80%; 

Stochastics: 𝑛𝐹𝑎𝑠𝑡%𝐾 = 5; 𝛼𝐹𝑎𝑠𝑡%𝐷 = 1;  𝑛𝐹𝑎𝑠𝑡%𝐷 = 3; 𝛼𝑆𝑙𝑜𝑤%𝐷 = 1; 𝑛𝑆𝑙𝑜𝑤%𝐷 = 3; 

Moving Average Crossovers: 𝑛1 = 5 (short term – a trading week); 𝑛2 = 20 (medium term 

– one trading month); and if necessary 𝑛3 = 60 (long term – three trading months); 

For all EMAs, consider  𝛼 = 0.8; 

MACD: 𝑛𝐹𝑎𝑠𝑡𝐸𝑀𝐴 = 12; 𝑛𝑆𝑙𝑜𝑤𝐸𝑀𝐴 = 26; 𝑛𝑆𝑖𝑔𝑛𝑎𝑙 = 9; all 𝛼 = 0.8; 

DMI: 𝑛𝐷𝑀𝐼 = 14; all 𝛼 = 0.8; 

ATR: 𝑛𝐶𝑃_𝐸𝑀𝐴_𝐴𝑇𝑅 = 5; 𝑛𝐴𝑇𝑅 = 14; all 𝛼 = 0.8; 

BB: 𝑛 = 10; all 𝑘 = 2; 

𝐶𝑃 ± 𝑘𝜎: 𝑛 = 5; all 𝑘 = 1; 𝛼 = 0.8. 

 

The training process was executed in the simplest possible way, trading one standard 

lot without trading costs and stops. In Forex markets we deal with two distinct kinds of costs: 

1) spreads and 2) rollover, usually a fraction of the spread measured in pips (around 0.2 pips 

in EUR/USD or GBP/USD markets, for instance) that accrues to interest rate differentials, 

increasing unfavorable or attenuating favorable differentials. In our case, the rollover 

(effective cost) was excluded from the training phase but not the interest rate differential 

itself, which may be a cost or a profit to the trader. In-sample RoAs are in 6 month adjusted 

rates (in proportion), so they may be related and compared to out-of-sample RoAs. 

 

4.2.1 Trading Strategy Return without Trading Costs 

 

The analysis of in-sample results allows us to conclude that all kinds of TA 

techniques present positive returns; breakout systems have consistently the worst in-sample 

RoA performances within each market and momentum and trend optimized strategies show 
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very similar figures. Figure 6 presents a boxplot with the returns of all combinations of 

currency crosses and TA categories. In each boxplot, the bottom, middle and top of the boxes 

represent the 25th, 50th and 75th percentiles, respectively; the top and bottom whiskers stand 

for the maximum and minimum, respectively, excluding outliers; outliers are represented by 

‘+’. The related results are presented in the Appendix. 

 

Figure 6. Return (%) of the optimized solutions, in-sample without costs, from the 1st semester of 2001 to the 

2nd semester of 2008. On the top, in brackets, are presented the average semestral returns (%) for each 

combination currency cross / TA category. 

 

Source: Author. The related results are presented in Table A 1. 

 

In this figure it is possible to see the median value in the middle of each box. The 

bottom of the box represents the lower quartile (25th percentile of RoAs), meaning 25% of 

all RoAs stand below that value, while the top of the box stands for the upper quartile (75th 

percentile RoA value), meaning 75% of all RoA observations are lower than that mark. The 
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lower and the upper whiskers stand for the minimum and maximum values, excluding 

outliers. Outliers are represented with crosses (plus sign) and represent extreme values, less 

than 1.5 times of lower quartile or higher than 1.5 times of upper quartile. On the top of each 

figure, in brackets, are shown the average RoA values for each currency cross / TA category 

combination. We may see how the optimization procedure produces very different outcomes 

by market, enabling us to conclude that each market has its own singularities and inherent 

characteristics promoting or preventing the exploitation of TA profitable trading 

opportunities, in tune with Lo’s AMH. 

Table 4 presents the profitabilities for out-of-sample data, per semester. The table is 

organized by market, and within each market we have three columns with the mean 

profitabilities by TA category followed by the respective return median values. Below the 

median stands the respective p-value to the non-parametric Wilcoxon test, where “H0: The 

median is statistically equal to zero” and “H1: The median is not statistically equal to zero”, 

to assess the statistical significance of the measures of central tendency. A very small p-

value is indicative against the null hypothesis. On a fourth column of each market it is 

presented the correspondent semester price variation of the first currency in relation to the 

second one. 

 Regarding the mean profitabilities, it is noticeable how all TA categories produce 

out-of-sample aggregate positive outcomes. These positive semestral returns show 

consistency, in particular with reference to the GBP/USD market. This market produces the 

best outcomes, with trend-based profitabilities staying well ahead. When comparing TA 

strategy-based results with price variation, we may see in the EUR/USD market that average 

results are consistently better when the EUR appreciates against the USD. In four out of the 

11 semesters in which the EUR rises against the USD, all TA categories present good 

average RoAs, while the same only happens once in the five semesters in which the dollar 

appreciates against the euro. The other semesters present mixed results, depending on the 

TA category. The same is true regarding the GBP/USD when the GBP appreciates against 

the USD, although the trend category behaves positively in some cases when the opposite 

happens (see 2005-2nd and 2008-2nd semesters). In the USD/JPY market there is not a defined 

tendency – when the JPY appreciates strongly against the USD (2003-2, 2004-2, 2008-1, 
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2008-2 or 2010-2) the trading returns vary from heavy losses to strong profits. Mixed results 

are attained when the USD appreciates against the JPY.  

 

Table 4. Return (%) of the optimized solutions, out-of-sample without costs. 

  

RoA (%)
Price

Semester Mean Median Mean Median Mean Median Variation

2003-1 16,6  15,4  18,8  21,0  16,8  18,8  9,8  

<0.0001 <0.0001 <0.0001

2003-2 6,3  3,4  16,2  15,1  25,7  28,0  10,3  

<0.0001 <0.0001 <0.0001

2004-1 24,2  34,0  0,1  -4,4  -31,5  -32,0  -3,1  

<0.0001 0,8205    <0.0001

2004-2 1,7  2,7  1,0  -5,1  28,4  28,7  11,1  

0,1876    0,6745    <0.0001

2005-1 -14,1  -14,1  -14,9  -13,4  -17,3  -18,4  -10,8  

<0.0001 <0.0001 <0.0001

2005-2 5,4  8,6  6,7  3,4  0,2  1,5  -2,0  

0,0042    0,0001    0,0831    

2006-1 -3,1  -2,1  -2,1  -1,3  -3,9  -5,5  8,0  

0,0042    0,2487    0,0001    

2006-2 -1,9  -1,5  3,4  5,0  -0,7  -0,3  3,2  

0,0781    0,0081    0,2220    

2007-1 1,8  1,5  1,1  0,9  -2,7  -2,8  2,6  

0,0081    0,0136    0,0002    

2007-2 -13,3  -14,8  -0,7  1,7  14,0  14,6  7,7  

<0.0001 0,6535    <0.0001

2008-1 16,1  14,7  5,2  -2,9  8,1  10,2  8,1  

<0.0001 0,2861    <0.0001

2008-2 -1,9  -10,7  -11,3  -14,8  9,9  6,8  -11,3  

0,7758    0,0349    0,0001    

2009-1 -4,6  -4,0  9,0  9,7  -5,7  -2,1  0,5  

0,0733    0,0001    0,0052    

2009-2 -10,3  -9,8  -12,3  -12,1  -5,7  -4,4  2,1  

<0.0001 <0.0001 <0.0001

2010-1 5,6  14,6  -3,8  -8,0  -2,0  -4,5  -14,7  

0,0207    0,1018    0,0014    

2010-2 16,0  18,9  -4,4  -5,6  8,6  10,0  9,4  

<0.0001 0,0017    0,0012    

Aggregate 44,49  12,00  42,32  30,90  

Semestral Average 2,78  0,75  2,64  1,93  

EUR/USD

Trend Momentum Breakout
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Table 4. (cont.) Return (%) of the optimized solutions, out-of-sample without costs. 

 

 

 

 

RoA (%)
Price

Semester Mean Median Mean Median Mean Median Variation

2003-1 0,4  1,2  8,2  6,6  12,9  13,4  2,9  

0,7981    <0.0001 <0.0001

2003-2 24,1  24,2  10,8  14,2  48,8  49,6  8,2  

<0.0001 <0.0001 <0.0001

2004-1 -30,5  -35,2  2,1  -1,4  -17,8  -15,9  2,0  

<0.0001 0,5988    <0.0001

2004-2 5,8  5,8  5,3  7,9  14,3  16,5  5,3  

0,0002    0,1660    <0.0001

2005-1 9,8  11,0  -0,2  -1,0  -5,6  -10,4  -6,7  

<0.0001 0,7391    0,0010    

2005-2 23,1  25,8  8,6  9,1  3,7  3,7  -3,9  

<0.0001 0,0001    0,0001    

2006-1 -3,6  -5,0  7,3  11,9  -0,6  -0,8  7,4  

0,0421    0,0019    0,2332    

2006-2 16,3  20,7  5,5  5,0  13,4  13,0  6,0  

<0.0001 0,0003    <0.0001

2007-1 5,6  8,2  -7,9  -7,2  0,2  2,3  2,5  

0,0001    <0.0001 0,0849    

2007-2 13,5  12,6  9,7  7,8  -8,4  -7,8  -1,1  

<0.0001 <0.0001 <0.0001

2008-1 -21,9  -25,5  4,6  -0,5  -24,5  -20,5  0,3  

<0.0001 0,3039    <0.0001

2008-2 49,6  85,2  -16,2  -10,5  22,5  -2,8  -26,5  

<0.0001 0,0013    0,0618    

2009-1 28,6  32,0  36,7  38,9  -2,6  0,7  12,5  

<0.0001 <0.0001 0,5921    

2009-2 -17,9  -19,8  -18,5  -18,2  3,2  0,7  -1,9  

<0.0001 <0.0001 0,2447    

2010-1 1,0  2,0  2,6  2,5  0,0  -0,6  -7,5  

0,1490    0,0484    0,5463    

2010-2 -5,1  -5,7  -5,9  -6,4  0,0  1,1  4,4  

<0.0001 0,0057    0,7030    

Aggregate 98,84  52,65  59,55  3,85  

Semestral Average 6,18  3,29  3,72  0,24  

Trend Momentum

GBP/USD

Breakout
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Table 4. (cont.) Return (%) of the optimized solutions, out-of-sample without costs. 

 

Source: Author. 

 

RoA (%)
Price

Semester Mean Median Mean Median Mean Median Variation

2003-1 2,0  0,6  9,2  8,6  3,4  3,7  0,8  

0,1942  <0.0001 <0.0001

2003-2 5,5  5,0  3,7  3,4  1,5  2,6  -10,5  

<0.0001 <0.0001 0,0618    

2004-1 11,4  16,2  5,9  5,2  11,5  8,6  0,9  

0,0001  <0.0001 <0.0001

2004-2 -21,1  -25,7  -19,2  -20,6  -22,4  -27,8  -5,1  

<0.0001 <0.0001 <0.0001

2005-1 1,4  2,3  -5,1  -4,9  -1,9  -0,1  7,9  

0,0703  0,0003    0,0884    

2005-2 8,3  9,5  -10,2  -13,0  -3,3  -1,3  6,3  

0,0002  <0.0001 <0.0001

2006-1 -1,4  -1,9  5,7  4,6  4,6  4,0  -2,8  

0,4602  <0.0001 0,0001    

2006-2 -4,0  -4,5  0,4  -2,2  8,4  10,5  4,1  

0,0004  0,5657    <0.0001

2007-1 0,9  -0,5  15,6  14,5  9,4  9,0  3,4  

0,7391  <0.0001 <0.0001

2007-2 -9,4  -9,7  5,6  4,3  -12,4  -12,9  -9,3  

<0.0001 0,0001    <0.0001

2008-1 4,0  13,6  4,5  7,4  -5,3  -5,2  -5,0  

0,2369  0,0067    <0.0001

2008-2 31,2  25,4  4,2  4,3  25,8  31,3  -14,5  

<0.0001 0,7906    <0.0001

2009-1 -19,1  -18,3  -12,8  -14,1  -10,5  -9,5  6,1  

<0.0001 <0.0001 <0.0001

2009-2 1,7  -0,6  -1,6  -0,4  1,6  0,9  -3,3  

0,9269  0,2408    0,0050    

2010-1 -3,8  -4,2  5,5  6,0  2,4  1,4  -4,8  

0,0001  <0.0001 0,2009    

2010-2 -3,3  -0,8  -8,3  -9,2  -0,2  -0,1  -8,3  

0,0659  <0.0001 0,9193    

Aggregate 4,23  3,05  12,64  -34,37  

Semestral Average 0,26  0,19  0,79  -2,15  

USD/JPY

Trend Momentum Breakout
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Figure 7 presents a box-plot of the TA preeminent indicator profitabilities for each 

period, market and category. Figure 8 shows another box-plot with the difference between 

the returns obtained by the GA optimization process and those of the preeminent indicators, 

i.e., the excess returns from the optimized solutions. 

 

Figure 7. Return (%) of the preeminent TA indicator, out-of-sample without costs, from 1st semester 2003 to 

the 2nd semester 2010. In brackets are presented the average RoAs (%) for each combination currency cross / 

TA category.  

 

Source: Author. The related results are presented in Table A 2. 

 

It may also be seen in Figure 8 how excess returns are positive in the majority of 

cases. This shows our GA was able to fine-tune the parameters in a way that allowed it, in 

most cases, to beat the correspondent TA indicators using the parameter values commonly 

accepted by the trading industry. The consistency is also corroborated by the cumulative 
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positive excess returns. All cumulative returns are above 40% and, in some cases (in the 

GBP/USD market for instance), they are much higher. 

 

Figure 8. Excess Returns (%) of the optimized solutions with respect to the preeminent TA indicator of each 

period, out-of-sample without costs, from 1st semester 2003 to the 2nd semester 2010. In brackets are presented 

the average excess returns (%) for each combination currency cross / TA category.  

 

Source: Author. The related results are presented in Table A 3. 

 

A comparison of out-of-sample average returns with the average returns of a large 

set (10 000) of random solutions was also performed. These solutions were generated by 

randomly creating trading position signals out of the 3 possible (“+1”, “-1” or “0” to 

designate long, short or out-of-the-market positions), each with equal probability of being 

selected. All the averages of random solutions are very close to zero and our out-of-sample 

results present significantly better cumulative figures. The results are shown in Table A 4. 
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Regarding the predictive power of TA indicators per se, the out-of-sample overall 

results without costs (Table 4), present somewhat attractive figures for the timespan of eight 

years, with the majority of periods showing positive outcomes in all markets. Return varies 

within markets and with the kind of applied strategy. The USD/JPY presents lower marks in 

almost all categories, suggesting fewer opportunities for sustained trading profits. This fact 

may also suggest a greater level of market development in terms of efficiency – a notion that 

is consistent with the AMH theorized by Andrew Lo. Among all three sorts of trading 

strategies, trend category seems to produce the best outcome. 

 

Table 5. Out-of-sample return correlations between TA categories, by market. 

  

Source: Author. 

 

Correlations between return of categories within the studied markets (Table 5) show 

a positive tendency – the only two negative correlations are very close to zero (EUR/USD 

breakout vs. trend: -0.002; GBP/USD breakout vs. momentum: -0.044); the others are mildly 

(e.g., GBP/USD momentum vs. trend: +0.199) to highly positive (see for instance USD/JPY 

breakout vs. trend or breakout vs. momentum: +0.834 and +0.612, respectively). This 

suggests optimized solutions for a given period in each market tend to generate outcomes 

Trend Momentum Breakout Price Var.

Trend 1

Momentum 0.472 1

Breakout -0.002 0.420 1

Price Var. 0.209 0.548 0.562 1

Trend 1

Momentum 0.199 1

Breakout 0.604 -0.044 1

Price Var. -0.332 0.612 -0.032 1

Trend 1

Momentum 0.468 1

Breakout 0.834 0.612 1

Price Var. -0.280 -0.168 -0.142 1

EUR/USD

GBP/USD

USD/JPY
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with similar signal and overall proportion, with particular focus to the USD/JPY, no matter 

what TA category of indicators is used.  

Also in Table 5, price variation vs TA category return correlations show in the 

EUR/USD and USD/JPY how returns are negatively correlated with USD price variation, 

i.e., RoAs in all categories tend to be positive when USD price decreases against the other 

currency. In the GBP/USD there is a strong positive correlation of GBP price variation and 

TA momentum category (equivalent to a strong negative correlation of USD price variation 

and momentum category), but this tendency does not hold regarding the other TA categories: 

the correlation varies from -0.332 with trend to +0.612 with momentum and almost zero 

correlation with breakout strategy categories. 

 

Table 6. Out-of-sample return correlations between markets, split by TA category. 

  

Source: Author. 

 

The correlation between markets intends to assess the consistency of TA trading 

strategy’s categories throughout all studied markets, i.e., whenever a TA category works 

(does not work) in a period in a specific market, it should (should not) work in the other 

EUR/USD GBP/USD USD/JPY

EUR/USD 1

Trend GBP/USD -0.447 1

USD/JPY 0.230 0.151 1

EUR/USD 1

Momentum GBP/USD 0.637 1

USD/JPY 0.093 -0.305 1

EUR/USD 1

Breakout GBP/USD 0.593 1

USD/JPY -0.349 0.181 1

EUR/USD 1

Price Var. GBP/USD 0.689 1

USD/JPY -0.182 0.346 1
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markets. We can see in Table 6 there is not consistency in profitabilities of TA strategies 

throughout the studied markets for each TA category, which in turn may imply that markets 

seem to possess, at any given period, distinct inherent characteristics preventing them from 

reacting evenly to similar trading strategies. This might be a consequence of structural 

market divergences or circumstancial differences following a process of change (different 

stages of market efficiency).  

 

Figure 9. MDD (%) for the optimized solutions, in-sample without costs, from 1st semester 2001 to the 2nd 

semester 2008. In brackets are presented the average MDDs (%) for each combination currency cross / TA 

category.  

 

Source: Author. The related results are presented in Table A 5. 

 

Regarding risk, measured by MDD (Figure 9 and Figure 10), we may see how in-

sample results seem to be much more concentrated around the median. Out-of-sample MDD 

values are more widespread and present a considerable greater number of outliers than in-
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sample results. The divergence between in-sample and out-of-sample risk levels shown by 

momentum and trend systems versus breakout systems increases in out-of-sample MDD. 

This might suggest breakout strategies (which present less risk) possess inherent risk-

mitigating characteristics that may rely, for instance, in their signal generator ability to 

promptly react to price change, and with that avoid more effectively unfavorable market 

moves. When put into a market’s perspective, we may acknowledge the USD/JPY shows 

better MDD percentages, qualifying as the less risky market. The GBP/USD shows signs of 

being the riskiest of all studied markets, but it should not be forgotten this is the market that 

allows greatest return, so we may detect a direct relation between risk and return applied to 

the use of TA.  

 

Figure 10. MDD (%) for the optimized solutions, out-of-sample without costs, from 1st semester 2003 to the 

2nd semester 2010. In brackets are presented the average MDDs (%) for each combination currency cross / TA 

category.  

 

Source: Author. The related results are presented in Table A 6. 
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4.2.2 Trading Strategy Return Considering Spreads and Rollover Costs 

 

Table 7. Return (%) of the optimized solutions, out-of-sample, with costs. 

 

RoA (%)

Semester Mean Median Mean Median Mean Median

2003-1 14,2  13,6  15,4  17,5  15,1  17,7  

<0.0001 <0.0001 <0.0001

2003-2 0,2  -3,5  12,1  10,8  24,0  26,2  

0,5463    <0.0001 <0.0001

2004-1 19,0  28,6  -2,7  -5,9  -33,9  -34,0  

<0.0001 0,6191    <0.0001

2004-2 -3,3  -2,6  -2,7  -8,7  27,0  27,5  

0,0038    0,2078    <0.0001

2005-1 -18,7  -18,5  -18,3  -17,2  -18,9  -19,7  

<0.0001 <0.0001 <0.0001

2005-2 1,0  4,0  3,1  -0,0  -1,4  0,1  

0,2184    0,0422    0,8431    

2006-1 -8,3  -8,1  -4,4  -2,9  -5,2  -6,7  

<0.0001 0,0160    <0.0001

2006-2 -7,3  -5,4  0,9  3,0  -2,4  -2,0  

<0.0001 0,6191    0,0003    

2007-1 -1,2  -2,1  -1,8  -1,6  -4,1  -4,5  

0,0248    0,0074    <0.0001

2007-2 -15,3  -16,6  -2,7  -0,8  12,2  12,8  

<0.0001 0,0959    <0.0001

2008-1 10,0  8,1  2,9  -5,2  6,0  7,4  

<0.0001 0,7030    0,0002    

2008-2 -6,1  -17,5  -13,3  -16,3  8,0  5,1  

0,0998    0,0116    0,0010    

2009-1 -7,4  -6,4  5,9  6,6  -7,5  -3,3  

0,0038    0,0027    0,0003    

2009-2 -13,3  -12,7  -16,3  -16,9  -7,0  -5,5  

<0.0001 <0.0001 <0.0001

2010-1 3,5  12,6  -7,0  -10,7  -3,3  -5,9  

0,0812    0,0093    0,0002    

2010-2 13,8  17,2  -7,2  -9,2  7,1  8,3  

<0.0001 <0.0001 0,0037    

Aggregate -19,19  -36,06  15,74  

Semestral Average -1,20  -2,25  0,98  

EUR/USD

Trend Momentum Breakout
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Table 7. (cont.) Return (%) of the optimized solutions, out-of-sample, with costs. 

 

 

RoA (%)

Semester Mean Median Mean Median Mean Median

2003-1 -2,3  -1,3  5,2  4,2  10,2  9,6  

0,0358    0,0004    <0.0001

2003-2 21,5  22,0  7,7  11,2  46,9  48,0  

<0.0001 0,0012    <0.0001

2004-1 -32,8  -37,4  -0,5  -3,6  -19,8  -17,8  

<0.0001 0,7832    <0.0001

2004-2 3,6  3,8  2,4  5,4  12,8  15,0  

0,0242    0,3823    <0.0001

2005-1 7,5  8,8  -2,4  -3,1  -7,2  -11,5  

0,0004    0,1236    0,0001    

2005-2 20,9  24,3  6,5  7,0  2,2  2,3  

<0.0001 0,0028    0,0009    

2006-1 -6,5  -6,9  5,4  10,0  -1,9  -2,1  

0,0013    0,0133    0,0107    

2006-2 14,3  18,6  3,9  3,5  11,8  12,3  

<0.0001 0,0088    <0.0001

2007-1 3,0  5,6  -10,2  -9,5  -1,7  0,6  

0,0004    <0.0001 0,9654    

2007-2 10,8  9,1  7,4  5,8  -10,2  -9,6  

<0.0001 0,0002    <0.0001

2008-1 -25,1  -28,8  2,2  -3,3  -27,2  -22,6  

<0.0001 0,7246    <0.0001

2008-2 46,7  82,4  -18,5  -12,4  20,6  -3,6  

<0.0001 0,0006    0,0798    

2009-1 25,4  28,9  33,6  36,2  -5,1  -1,6  

<0.0001 <0.0001 0,2113    

2009-2 -21,4  -23,5  -22,3  -22,2  0,7  -1,3  

<0.0001 <0.0001 0,7832    

2010-1 -2,7  -2,0  -0,8  -1,4  -1,5  -1,7  

0,1689    0,5921    0,0254    

2010-2 -10,7  -11,3  -10,7  -10,5  -3,9  -3,1  

<0.0001 <0.0001 0,0050    

Aggregate 52,16  8,88  26,71  

Semestral Average 3,26  0,56  1,67  

GBP/USD

Trend Momentum Breakout
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Table 7. (cont.) Return (%) of the optimized solutions, out-of-sample, with costs. 

 

Source: Author. 

 

RoA (%)

Semester Mean Median Mean Median Mean Median

2003-1 -0,9  -4,2  6,9  6,1  -0,0  1,1  

0,5789    <0.0001 0,2732    

2003-2 2,6  2,4  0,3  0,2  -1,0  0,6  

0,0133    0,7758    0,2690    

2004-1 8,9  14,2  2,8  2,1  9,5  6,8  

0,0005    0,0384    <0.0001

2004-2 -24,3  -28,8  -22,5  -23,8  -25,4  -31,5  

<0.0001 <0.0001 <0.0001

2005-1 -0,8  0,7  -7,4  -6,6  -3,4  -1,9  

0,9269    <0.0001 <0.0001

2005-2 5,4  6,9  -13,5  -17,0  -4,9  -2,8  

0,0047    <0.0001 <0.0001

2006-1 -4,6  -5,2  2,8  2,0  3,2  3,1  

0,0104    0,0814    0,0052    

2006-2 -6,9  -6,8  -2,0  -4,8  6,9  8,9  

<0.0001 0,0349    <0.0001

2007-1 -3,8  -5,8  13,0  11,3  7,7  7,3  

0,0007    <0.0001 <0.0001

2007-2 -13,6  -14,1  3,1  1,4  -14,6  -15,2  

<0.0001 0,0393    <0.0001

2008-1 -1,2  8,7  1,3  5,4  -7,1  -7,0  

0,5722    0,4312    <0.0001

2008-2 25,7  23,5  1,4  2,7  24,6  30,2  

<0.0001 0,8431    <0.0001

2009-1 -24,2  -23,7  -17,7  -19,5  -12,5  -11,2  

<0.0001 <0.0001 <0.0001

2009-2 -2,2  -4,8  -3,6  -3,0  -0,1  -0,7  

0,0462    0,0025    0,6744    

2010-1 -6,7  -7,8  3,5  4,0  0,7  -0,2  

<0.0001 0,0002    0,9654    

2010-2 -7,8  -7,9  -11,1  -11,3  -2,8  -2,7  

<0.0001 <0.0001 0,0765    

Aggregate -54,29  -42,64  -19,13  

Semestral Average -3,39  -2,67  -1,20  

USD/JPY

Trend Momentum Breakout
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In the simulation with costs we have considered spreads of 2 pips and rollover costs 

of 0.2 pips for the EUR/USD and GBP/USD markets; 200 pips and 20 pips respectively for 

the USD/JPY market. These spreads are to be taken on a per turn basis, i.e., they are in 

reference to a single market’s action of buying or selling. Rollover costs are added 

(subtracted) to (from) unfavorable (favorable) interest rate differentials. 

With the inclusion of reasonable trading costs (Table 7), we notice how apparently 

attractive out-of-sample profits simply disappear. The medians of the observed results 

remain, in general, statistically different from zero, but the aggregate average returns suffer 

deeply. An exception seems to be the GBP/USD market, with the use of trend strategies, 

which still presents some interesting results. The outcomes suggest these markets might be, 

considering more realistic assumptions, relatively efficient.  

 

Figure 11. Return (%) of the preeminent TA indicator in each period, out-of-sample, with costs, from 1st 

semester 2003 to the 2nd semester 2010. In brackets are presented the average RoAs (%) for each combination 

currency cross / TA category.  

 

Source: Author. The related results are presented in Table A 7. 
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We can see in Figure 11 and Figure 12 how the returns of optimized solutions remain 

superior compared to those of the correspondent preeminent indicators applying the industry 

parameters. In spite of that, the inclusion of trading costs in our analysis suggests a decline 

of the excess returns of the strategies provided by the GA compared to figures without costs, 

with the exception of momentum and breakout techniques in the GBP/USD market, where 

there is a small improvement in RoAs (compare Figure 8 with Figure 12). 

 

Figure 12. Excess Returns of the optimized solutions compared to the preeminent TA indicator of each period, 

out-of-sample, with costs, from 1st semester 2003 to the 2nd semester 2010. In brackets are presented the average 

excess returns (%) for each combination currency cross / TA category.  

 

Source: Author. The related results are presented in Table A 8. 

 

Another conclusion we may draw refers to the inclusion of trading costs – breakout 

strategies demonstrate more resiliency (their outcomes suffer less). This assessment is 

reinforced by the lower observed risk levels stressed by the MDD values, comparing Figure 

10 with Figure 13. 
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Figure 13. MDD (%) for the optimized solutions, out-of-sample, with costs, from 1st semester 2003 to the 2nd 

semester 2010. In brackets are presented the average MDDs (%) for each combination currency cross / TA 

category.  

 

Source: Author. The related results are presented in Table A 9. 

 

Momentum and trend strategies’ risk levels remain close to each other. Breakout 

systems seem to produce consistently smaller MDD values. Nevertheless, the inclusion of 

trading costs only increases the MDD by about 1.5 to 2 percentage points, a change that does 

not acutely affect average risk levels. 

 

4.3 Conclusion 

 

The original GA proposed in this chapter presents a good advantage in comparison 

to the most commonly used GAs: a wide set of solutions in the search process with the 

possibility of genetic material recovery from shadow indicators allows greater diversity of 
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inherited genetic material and prevents a precocious convergence in the optimization 

process. The use of a large number of in-sample/out-of-sample timespans with reference to 

the overall trading period minimizes the likelihood of obtaining results misled by data 

mining. For the aggregate period of 2003-2010, the out-of-sample results obtained from the 

optimized solutions outperform substantially the corresponding most frequently used TA 

indicators with traditional industry parameters. Results for the Forex crosses vary widely 

within the considered markets and the TA trading strategy categories – which suggests not 

all kinds of trading strategies present the same predictive power; and not all markets perform 

equally or show the same inner characteristics. This may be a symptom of the existence of 

different stages of efficiency development, an idea compatible with Andrew Lo’s AMH. The 

inclusion of trading costs in Forex trading changes significantly the landscape in terms of 

average return – the majority of results turns negative, and the existence of profitable trading 

opportunities seems elusive when considering more realistic assumptions. This suggests 

markets may be more efficient than return without costs implied, an observation showing 

strong evidence in favour of the EMH for the three major Forex markets. There is also a 

negative correlation between USD price variation and TA categories RoAs, with a few 

exceptions in the GBP/USD market. 

 The somewhat interesting return figures and the statistical significance of attained 

results do not provide the conditions or sustenance to assert the validity of TA as an effective 

isolated tool in trading activities within the three major Forex markets, particularly when 

considering more realistic terms. This may be seen as an argument in favour of market 

efficiency. (Shmilovici et al., 2009)  also tested efficiency in several Forex markets 

concluding in favour of market efficiency, particularly when dealing with intraday data. Also 

(Ozturk et al., 2016) tested the EUR/USD and GBP/USD with crossover, Bollinger Bands 

and divergence TA indicators, reaching similar results to the presented in this chapter – 

limited positive results and profits in 60% of the number of trades, but without trading costs. 

Our findings are consistent with (Kuang et al., 2014) and (Fang et al., 2014), that conclude 

there are no strong evidences of TA indicator’s predictive power. We may also see in (Yu et 

al., 2013) how the inclusion of trading costs affects return, turning profits into losses, just as 

shown in our empirical work. 
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5 Portfolio Optimization with Multi-Objective 

Evolutionary Algorithms5 

 

Portfolio optimization has been one of the most hectic areas in the field of Finance. 

All major Financial Institutions deal with this kind of problem, usually focused in two 

distinct objectives: how to maximize returns and simultaneously minimize associated risk. 

Therefore it is no surprise to see how much the academic literature centres its analysis on 

this topic, and how so many methods of optimization spring from Universities, Conferences 

and the global Financial Industry. 

One of the most successful techniques applied to portfolio optimization has been the 

use of multi-objective evolutionary algorithms. These metaheuristics are particularly 

adequate to this kind of optimization problem, since they are able to produce Pareto fronts 

representing the existing trade-offs between return and risk. (Metaxiotis and Liagkouras, 

2012) present an interesting review of the most important MOEAs applied specifically to 

portfolio optimization.  

In this chapter we propose a portfolio model, identifying the adopted return and risk 

measures, the MOEAs selected for performance comparison, the TA indicators used in the 

simulation and the data and methodology applied in the developed work. Presentation of 

empirical results and their discussion will ensue.  

 

5.1 Mean-Semivariance Portfolio Optimization 
 

As explained is Chapter 2, traditionally portfolio optimization problems use variance 

(or standard deviation) as a measure of risk (Subsection 2.3.1.1). Although commonly 

                                                   

 

5 Chapter 5 presents the empirical work of this Thesis published in the article: Macedo, L.L., Godinho, P. and 

Alves, M.J. (2017), ‘Mean-semivariance portfolio optimization with multiobjective evolutionary algorithms 

and technical analysis rules’, Expert Systems with Applications, Elsevier Ltd, Vol. 79, pp. 33–43. 
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accepted, this measure is not the most appropriate for assessing risk, since it considers 

equally adverse deviations (below average) as well as favourable ones (above average). An 

adequate alternative, since investors are concerned with adverse variations, is the mean-

semivariance framework for portfolio optimization, explained in detail in Subsection 2.3.1.2. 

The difficulty with the computation of semivariance resides on the endogenous 

nature of the portfolio semicovariance matrix, which depends on the weights given to each 

asset, i.e., a change in weights affects the periods in which the portfolio underperforms the 

benchmark. When using MOEAs, the difficulty of computing the semivariance is overcome 

by nature, since the computation is made by iterations and, in each iteration, the weights of 

the portfolio(s) are known a priori because they are generated by the algorithm. Knowing 

the weights, we may compute the portfolio average return (used as the benchmark) and 

consequently determine in which periods the portfolio underperforms the benchmark. 

Therefore, in this respect, MOEAs seem to be adequate tools for portfolio optimization under 

a mean-semivariance framework.  

 The multiobjective portfolio optimization problem that we consider can be 

formulated as follows:  

max  𝐸(𝑅𝑃) =  ∑ 𝑤𝑖𝐸(𝑅𝑖)

𝑛

𝑖=1

= ∑ ∑ 𝑤𝑖

𝑅𝑖𝑡

𝑇

𝑛

𝑖=1

𝑇

𝑡=1

   

min 𝑆(𝑅𝑃) = ∑ ∑ 𝑤𝑖𝑤𝑗𝑆𝑃𝐶

𝑛

𝑗=1

𝑛

𝑖=1

  

Subject to: 

∑ 𝑤𝑖

𝑛

𝑖=1

= 1  

𝑆𝑃𝐶 = 𝐸(min(0, 𝑅𝑃 − 𝐶)2) =
1

𝑇
∑[min (0, 𝑅𝑃𝑡 − 𝐶)]2

𝑇

𝑡=1
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where 𝑃 stands for portfolio, 𝑤𝑖 is the weight of asset 𝑖 in the portfolio, 𝑅𝑃 is the portfolio 

overall return, 𝑅𝑖𝑡  is the return of asset i in period t, 𝑛 is the number of assets, 𝑆 is the 

semivariance (as defined by Markowitz) and 𝑇 is the number of periods considered in the 

analysis. In this work, the benchmark is 𝐶 = 𝐸(𝑅𝑃) and the 𝑤𝑖s represent constant weights 

without taking into consideration rebalancing costs. These constant weights are adopted in 

all trading strategies. For the purpose of simplicity, when we mention Buy-and-Hold (B&H) 

hereafter it is meant as holding the position with constant weights, i.e., after each day there 

is a rebalancing process such that all changes in the weights – due to daily profits and losses 

of the portfolio assets – are neutralized and the weights remain as initially (unaltered or 

constant). 

 

5.2 Multiobjective Evolutionary Algorithms Applied to Portfolio 

Optimization 
 

 Both NSGA II and SPEA 2 have been considered as two of the best currently 

available MOEAs and they are often used in comparative studies within multiobjective 

problems, e.g. (Mishra et al., 2010), (Anagnostopoulos and Mamanis, 2011), (Lwin et al., 

2014). One particular area in which these algorithms have been successfully applied is stock 

portfolio optimization. Considering two objective functions, risk and return, the problem of 

portfolio optimization possesses the very characteristics MOEAs are tailored for, especially 

when taking into consideration some more realistic assumptions, like cardinality (maximum 

number of admissible stocks in the portfolio), round-lot constraints (stocks/assets often  trade 

in  standard units, called the lots, composed by a predetermined number of shares, usually 

but not necessarily 100 – (Skolpadungket et al., 2007), or the incorporation of trading costs. 

In this kind of problems, both SPEA 2 and NSGA II have been references in the literature, 

and they usually present consistently better results than alternative techniques – (Duran et 

al., 2009), (Mishra et al., 2009), (Metaxiotis and Liagkouras, 2012). We will use these 

algorithms implemented in Matlab Release 2016a. 
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5.3 Technical Analysis Indicators and Trading Strategies 
 

This empirical work uses 3 different TA indicators (MACD, RSI and BB), which give 

origin to four distinct associated trading strategies applied to stock market portfolio 

optimization:  

 Moving Average Convergence/Divergence (MACD),  

 Relative Strength Index (RSI),  

 Conventional Bollinger Bands (BB) and  

 Contrarian Bollinger Bands (CBB)  

all to be compared with the B&H6 scenario, as a reference for normal profits.  

The use of TA in trading has been viewed with scepticism from the Academic world 

regarding the attainment of above normal returns. Several studies present strong evidence in 

favour of TA, either based on indicator analysis, such as (Brock et al., 1992) and (Pinto et 

al., 2015), or based on chart analysis, like (Lo et al., 2000). However, other studies, such as 

(Allen and Karjalainen, 1999) and (Neely, 2003), acknowledge little value in TA-based 

strategies; this is particularly so when some more realistic assumptions - like the existence 

of transaction costs – are considered (Macedo et al., 2016). In this context, it is important to 

gather further empirical evidence for or against the validity of TA as an effective tool to 

exploit market inefficiencies, namely in stock markets. As mentioned, we decided to test the 

optimization algorithms under four common TA strategies and their respective trading rules:  

 MACD (Subsection 2.2.2.2.5) – The common technical strategy associated with this 

indicator states that we should have a long7 position when the MACD value rises 

above the Signal line and be short8 in the market when the opposite situation occurs. 

In our case, since we are considering stocks preventing the usage of short positions, 

                                                   

 

6 As mentioned in the previous subsection, in Chapter 5 “B&H” does not represent a pure B&H strategy 

but rather a B&H with rebalancing such that the daily profits and losses are redistributed in order to 

maintain constant weights. 

7 A long position is a net buying position in the market. 

8 A short position is a net selling position. 
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we will be long if MACD>Signal and be out of the market if MACD≤Signal. We will 

not assume short positions.   

 RSI (Subsection 2.2.2.2.6) – In our specific case, and since we are dealing with stock 

portfolios, the following rule of trading will be adopted: we will be long in the market 

if RSI>30% and the price is on an upward move (price in the present day is larger 

than price in the previous day), and we will be out of the market otherwise. 

 BB (Subsection 2.2.2.2.9) – In the conventional case, a long position will be taken in 

day 𝑡  if price in 𝑡 − 1  is simultaneously above 𝑆𝑀𝐴𝑡−1
𝑛𝑆𝑀𝐴𝐵𝐵 − 𝑘𝐵𝐵 ∙ 𝜎  and below 

𝑆𝑀𝐴𝑡−1
𝑛𝑆𝑀𝐴𝐵𝐵  to avoid false triggering. If these conditions are not met, we will be out 

of the market. 

 CBB (Subsection 2.2.2.2.9) – In the CBB case, we will assume a long position in 

moment 𝑡 if price in 𝑡 − 1 is below 𝑆𝑀𝐴𝑡−1
𝑛𝑆𝑀𝐴𝐵𝐵 + 𝑘𝐵𝐵 ∙ 𝜎. 

These are commonly adopted trading strategies in the industry, but other valid strategies 

could be used. For a more detailed study of these indicators, see for instance (Kirkpatrick 

and Dahlquist, 2011) or (Kaufman, 2013). 

 

5.4 Data and Methodology 
 

This study uses data from several Stock Exchanges provided by DataStream (now 

Eikon), a part of Thompson-Reuters corporation. We have aggregated stocks of countries 

with economic similarities (dimension, perceived efficiency and liquidity) to form four 

different markets: market Tier 1 – stocks of countries in development (Argentina, Brazil and 

South Africa), market Tier 2 – stocks of peripheral developed countries (Greece, Portugal 

and Belgium), market Tier 3 – stocks of fully developed countries (UK, Australia and The 

Netherlands), and finally, stocks of the US market. This study uses daily adjusted closing 

price data (in EUR) of stocks from the following countries (with the number of corporations 

within brackets): Argentina [15], Brazil [17], South Africa [13], Greece [15], Portugal [15], 

Belgium [15], UK [15], Australia [15], The Netherlands [15] and the US [49]. Prices span a 

period of almost 16 years (15 ¾ years, from 2000-01-03 to 2015-10-01) for all stocks. 

Corporations were selected by order of appearance in DataStream queries and according to 
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the required condition of data availability (with data from year 2000 on). Lists of all 

corporations/assets are presented in the Appendix (Tables A9 to A12). 

 Data is organized in matrices of dimension 𝑇 ∗ 𝑛, being 𝑇 the total time span duration 

and 𝑛 the number of assets of each market to optimize in a portfolio. In our specific case, 

𝑇 = 4109 and 𝑛 = 45 for markets Tiers 1 to 3 and 𝑛 = 49 for the US market. The rates of 

return will be considered as continuous in time and compound, and therefore they will follow 

the model of continuous compound rates as formulated below: 

 

𝑃𝑖𝑡 = 𝑃𝑖(𝑡−1) ∙ 𝑒𝑥𝑝𝑅𝑖𝑡  

 

where 

𝑃𝑖𝑡 is the price of asset 𝑖 at day 𝑡; 

𝑅𝑖𝑡 is the rate of return of asset 𝑖 at day 𝑡. 

 

The rate of return at day 𝑡, for any asset 𝑖, is determined by: 

 

𝑅𝑖𝑡 = ln (𝑃𝑖𝑡) − ln(𝑃𝑖(𝑡−1))  

  

This expression will be applied to all price matrices in order to obtain rates of return 

of all assets in all considered markets, generating four new matrices of  (𝑇 − 1) ∗ 𝑛, starting 

at day 2000-01-04. A new column (4108*1) of daily returns of 0.0000766551 is added to 

each matrix. This column represents the returns of a risk-free asset (Cash), which 

corresponds to a yearly rate of return of 0.02 (or 2%). The final matrices will have 

dimensions 4108*50 for the US market and 4108*46 for markets Tiers 1 to 3. These raw 

matrices represent the rates of return in a pure B&H scenario for each considered market. 

Applying the rules mentioned in 5.3 to a market matrix we obtain its correspondent 

matrix of binary elements (with “1” for long positions and “0” for out-of-the-market) of each 

trading strategy and market. To these matrices is added a new column of “1”s for the Cash 

asset, which does not vary according to TA trading rules. By executing an element-wise 

multiplication of these binary matrices with the previous B&H matrix of returns we generate 

a new matrix for each trading strategy for the market at question, i.e., matrices MACD, RSI, 

BB and CBB for each market. At the end of this procedure we have 20 matrices of returns (4 

markets times 5 trading strategies, including the B&H scenario). 
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These 20 return matrices all include trading costs – daily returns are deducted of their 

respective trading costs. Currently, with the emergence of Internet-based trading apps and 

brokerage firms’ fierce competition, trading costs may assume infinitesimal percentages. For 

the purpose of this work, we consider a percentage trading cost over trading amounts of 

0.05% per round, or 0.10% per round-turn. A round-turn is a complete cycle of buying and 

selling an asset. Each of these return matrices is then split into 2 different matrices, one for 

IS data (first 10 years, 2000-01-04 to 2009-12-31) and another for OOS data (last 5 ¾ years, 

from 2010-01-02 to 2015-10-01). 

In the optimization process using NSGA-II (see Subsection 3.3.1) and SPEA-2 (details 

in Subsection 3.3.2), the genes that form a single chromosome (portfolio solution) represent 

the asset weights in the portfolio. A chromosome is therefore a vector 

( 𝑤1, 𝑤2, … , 𝑤𝑛), with 𝑤𝑖 ∈ ℝ, 𝑤𝑖 ≥ 0 , 𝑖 = 1, 2, … , 𝑛 , and  ∑ 𝑤𝑖
𝑛
𝑖=1 = 1;  𝑛  = 46 in 

Markets Tier 1 to 3 and 𝑛 = 50 in the US market. The sum of all weights 𝑤𝑖 , 𝑖 = 1, … , 𝑛  is 

normalized to 1 after crossover and mutation and before fitness evaluation, i.e. 𝑤𝑖 = 𝑤𝑖
′/𝑊, 

= 1, … , 𝑛, 𝑊 = ∑ 𝑤𝑖
′𝑛

𝑖=1 , where 𝑤𝑖
′ represents the weight of the 𝑖th asset after the algorithm 

operations and 𝑤𝑖 is the normalized weight. It is important to reinforce that these are constant 

weights and rebalancing costs are not taken into account. 

The adopted parameters for the algorithms NSGA-II and SPEA-2 are the following: 

 

 Initial population: 𝑛𝑝𝑜𝑝 = 100 chromosomes; 

 Maximum number of elements in the archive of non-dominated solutions: 𝑛𝑎𝑟𝑐ℎ =

100 chromosomes; this archive is the outcome of the algorithm (the optimized 

solutions) 

 Maximum number of iterations: 𝑛𝑖𝑡𝑒𝑟 = 300 

 Crossover probability: 𝑝𝑐 = 0.9 

 Mutation probability: 𝑝𝑚 = 0.02 

  

The experiment setting follows the steps below: 

 

1. For all markets (Tiers 1, 2, 3 and US) and strategies (B&H, CBB, BB, MACD and 

RSI), do: 
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a. Optimize populations of 100 randomly generated solutions by applying the 

multiobjective algorithm (NSGA-II / SPEA-2) to IS data; perform 25 

independent runs, each run producing a set (front) of at most 100 non-

dominated  solutions (portfolios); 

b. Compute the hypervolume (HV) measure (Zitzler and Thiele, 1999) for the 

set of non-dominated solutions and select the set with median HV value 

among the 25 independent runs; 

c. Use the weights of the solutions in the selected population and apply them to 

OOS data in order to generate the respective OOS population of solutions; 

2. Compare the optimized populations (one per market) for the 5 strategies, for both the 

IS and the OOS data. 

 

 The outcome of the optimization process using each MOEA in the IS data is a set of 

25 fronts of 100 optimized solutions per each combination market-strategy. Comparing all 

fronts would be unpractical Therefore, a criterion was used to select a representative front 

for each combination: we computed the hypervolume (HV) value of each front (Zitzler and 

Thiele, 1999) and the front with the median HV value was selected as the representative of 

the MOEA optimization outcome for each combination. HV measures the volume of the 

multidimensional region that is dominated by the set of non-dominated solutions that is being 

assessed. This quality indicator can assess both convergence and diversity of the non-

dominated solutions, and larger values of HV indicate better approximation sets. We applied 

the code of (Fonseca et al., 2006) to compute the HV values. 

 

 

5.5 Empirical Results and Discussion 
 

 

The main goals of this empirical work are to assess: 

1) which of the algorithms presents a better performance both in and out-of-sample (IS 

vs. OOS); 

2) what is the impact of the chosen TA strategies on the non-dominated frontiers; 
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 Figure 14 and Figure 18 present the IS and OOS outcomes (risk-return frontiers of 

non-dominated portfolios with median HV value), respectively, for all five strategies and for 

each market, resulting from the application of the NSGA II algorithm. Figure 15 and Figure 

19 show the IS and OOS outcomes resulting from the SPEA 2 algorithm. In-sample frontiers 

result from the optimization process itself; out-of-sample results depict in-sample solutions 

applied to out-of-sample data.  

 

Figure 14. NSGA II frontiers of non-dominated solutions, in-sample, under 5 strategies (B&H, CBB, BB, 

MACD and RSI), with costs, regarding all 4 aggregate markets (Tiers 1, 2, 3 and US). 

 

Source: Author. 
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Regarding the in-sample results obtained with NSGA II (Figure 14), the US market 

is the one generating the most similar non-dominated frontiers among all strategies, and they 

are very close to the B&H median frontier, suggesting a great level of efficiency in this 

market. The strategy using BB trading rules presents the best IS median non-dominated 

frontiers for the markets Tier 2 and 3. Conversely, CBB is the strategy that produces the 

median frontiers closest to the B&H scenario, suggesting little advantage in using its 

associated trading strategy.  

The market presenting better BB IS results is the Tier 3, which in theory would be 

the 2nd most efficient market (following the US stock market). This is interesting since it 

would be expected that the less efficient the market, the more likely it would be to present 

exploitable trading opportunities and, therefore, the better the non-dominated frontiers that 

would result from the optimization process with IS data. This might suggest trading 

opportunities may not arise in less efficient markets as it was supposed to, and/or market 

liquidity plays an important role in materialising profit opportunities. Tier 3 also shows how 

the use of some trading strategies (MACD and RSI) may hurt the overall output, presenting 

results that are even worse than the B&H scenario. However, we must stress that IS results 

may be the result of some overfitting, so we must be careful in not giving too much 

importance to the conclusions regarding the IS performance of the strategies. 

The IS results of SPEA 2 (Figure 15) show a different spectre: the solutions are much 

more concentrated within a small semi-variance interval, which prevents the possibility of 

deducing sustained conclusions. Still, we may see BB presents the best median front in 

markets Tier 2 and 3. The limited extension of the non-dominated sets does not allow much 

further comparison within each market. 
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Figure 15. SPEA 2 frontiers of non-dominated solutions, in-sample, under 5 strategies (B&H, CBB, BB, 

MACD and RSI), with costs, regarding all 4 aggregate markets (Tiers 1, 2, 3 and US). 

 

Source: Author. 
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Figure 16. Performance comparison between NSGA II and SPEA 2 algorithms for the five TA strategies 

(B&H, CBB, BB, MACD and RSI) in each market, within the four stock markets (Tiers 1, 2, 3 and US). 

 

Source: Author. 

 

The very limited extension of the IS fronts obtained by SPEA 2 is reinforced in 

Figure 16, which presents a comparison of NSGA II and SPEA 2 performances in IS data. 

Notice that the scales of semi-variance have been reduced with respect to Figure 14 in order 

to allow legibility of SPEA 2 fronts; otherwise, it would be almost impossible to see their 

shapes. The dashed lines represent the NSGA II frontiers for each strategy; the continuous 

lines stand for the SPEA 2 frontiers. We can observe that in markets Tier 1 to 3 the non-
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dominated frontiers obtained by both algorithms are very close to each other, but NSGA II 

consistently outperforms SPEA 2, for all strategies.  

The main conclusions obtained with this comparison (NSGA II outperforming SPEA 

2 and SPEA 2 frontiers presenting a lesser extent than those of the NSGA II) are similar to 

the conclusions reached by (Mishra et al., 2009), (Diosan, 2005) or (Lwin et al., 2013) in 

portfolio optimization problems. In order to have a better perception of this fact, we have 

further analysed the evolution of the population throughout generations using NSGA II and 

SPEA 2 in a run for the conventional Bollinger Bands (BB) strategy in the US market (the 

case that has shown the greatest divergence in terms of front length). Populations in iterations 

10, 50, 100, 200 and 300 of the optimization process are presented in Figure 17, so a notion 

of the population evolution may be inferred. It can be observed that SPEA 2 population starts 

with a relatively dispersed population but, as it approaches the later iterations, it tends to 

maintain the front extension or to narrow it slightly, concentrating the population in the 

middle of the Pareto front. On the other hand, NSGA II stimulates diversity in the population 

at the same time it approaches the Pareto front.  

A possible reason for this discrepancy between the two algorithms may be the way 

diversity is promoted in the selection procedure of each algorithm. NSGA II uses a crowding 

distance, which measures the distance of each individual to its nearest neighbours on the 

objective function space. A non-dominated solution with a smaller value of the crowding 

distance is more crowded by other solutions and it will be less preferred to integrate next 

population than another non-dominated solution with higher crowding distance. SPEA 2 

uses a density estimation technique. Density information is incorporated in the fitness 

function to discriminate between individuals having identical raw fitness. The way the 

density information is calculated and considered in the selection procedure is different from 

the crowding distance technique of NSGA II. The latter algorithm emphasizes the boundary 

solutions of the non-dominated set, finding solutions closer to the outlying edges of the 

Pareto front. This fact may lead NSGA II to provide a broader range of solutions. 

This difference in behaviour is not fully replicated in all combinations market / 

trading strategy. It seems that some markets and/or strategies are more prone to induce this 

divergence in the performance of the algorithms, leading us to conclude that data also plays 

an active relevant role in this matter. 
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Figure 17. Comparison of the evolution of NSGA II and SPEA 2 populations throughout iterations for the BB 

strategy in US market. 

 

Source: Author. 

 

 Regarding OOS (Figure 18 and Figure 19), overall results obtained by the BB 

strategy are very interesting. Considering the application of NSGA II a, the BB strategy 

emerges as the most consistent and giving better OOS results among all the TA strategies 

that were considered. This conclusion confirms the IS results, which in turn suggests the 

good IS results were not exclusively due to potential overfitting. MACD also reveals some 

interesting results in OOS data, performing better than B&H in most markets. The RSI 

indicator shows better performances in less developed markets. The CBB strategy shows 

mixed results, with better performances in the US market and Tier 3, and staying close to 

B&H in less developed markets (Tiers 1 and 2). 
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Figure 18. NSGA II out-of-sample frontiers corresponding to the in-sample non-dominated solutions, under 5 

strategies (B&H, CBB, BB, MACD and RSI), with costs, regarding all 4 aggregate markets (Tiers 1, 2, 3 and 

US). 

 

Source: Author. 
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Figure 19. SPEA 2 out-of-sample frontiers corresponding to the in-sample non-dominated solutions, under 5 

strategies (B&H, CBB, BB, MACD and RSI), with costs, regarding all 4 aggregate markets (Tiers 1, 2, 3 and 

US). 

 

Source: Author. 

 

 Similarly to the IS behaviour, OOS results are very limited for solutions generated 

by SPEA 2. The analysis of SPEA 2 OOS results (Figure 19) shows that the BB trading 

strategy produces the best outcome among all strategies, supporting this trading strategy as 

the best one within the studied TA techniques. In addition, the results of SPEA 2 suggest 

that the RSI strategy performs OOS better than B&H in all markets. The MACD may be 
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considered the strategy with the less interesting results of all, particularly in markets Tier 2 

and 3.  

 

5.6 Conclusion 

 

Regarding the empirical work presented in this chapter, overall results show that 

there is quite a difference between the outcome obtained with NSGA II and with SPEA 2. 

The former algorithm produces much wider IS non-dominated frontiers, which have similar 

shapes. On the other hand, the latter algorithm presents IS non-dominated frontiers with 

different shapes and positions and the solutions are more concentrated presenting low 

diversity. NSGA II systematically outperforms SPEA 2, in an in-sample comparison. Results 

also show how the use of TA indicators with associated trading strategies may influence the 

frontiers of non-dominated portfolios. In most markets, conventional Bollinger Bands (BB) 

presents better out-of-sample results, deeming it as the most profitable TA trading tool and 

the strategy of election among all studied.  
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6 Conclusion 

  

The study portrayed in this Thesis addresses the relevance of TA in the context of 

trading. It tries to validate a link between TA indicators and above normal results. To achieve 

that intent, we have used several evolutionary techniques applied to the optimization of the 

parameters of these indicators.  

Two distinct empirical approaches were conducted:  

1. a first one, where an original GA was developed to optimize parameters of three 

different categories of TA indicators (trend, momentum and breakout) within the 

Forex market (three different crosses: EUR/USD, GBP/USD and USD/JPY) and 

trading with a single trading account; 

2. a second one, where, with the use of two established MOEAs (the NSGA-II and the 

SPEA-2), the weights of portfolios were optimized for 4 different TA trading 

strategies (MACD, RSI, BB and CBB) and compared with the B&H, all strategies 

with constant weights, in the context of portfolio optimization of stock markets of 

distinct levels of development and liquidity. 

The results obtained were diverse and it would be interesting to address once more 

the objectives identified earlier in Chapter 1 (Introduction) and draw a conclusion about each 

and every mentioned goal. For convenience, all the objectives will be replicated here, each 

followed by a comment about the related achieved empirical results: 

1. To compare the performance of diverse markets, to know how efficient markets are; 

In this study, we assessed efficiency by analysing the potential for achieving excess 

returns using strategies based on technical analysis. Our experimental simulation generated 

a broad spectrum of divergent results in this matter; if by one token, several Forex markets 

seemed very efficient particularly when considering trading costs it is also true that some 

other appeared less efficient allowing exploitation of good profit opportunities, such as the 

GBP/USD. The same happens in portfolio management with Stock markets: The US market 

seemed much more efficient than markets Tier 1, 2 or 3, with little possibility to attain 
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substantial profits. The main conclusion is that it was possible to detect different degrees of 

efficiency in different markets. 

2. To find out if TA is effectively useful for trading, both for portfolio management and 

direct account trading activities;  

We could find trading opportunities in several markets when optimizing portfolios 

attaining interesting financial results for some trading strategies, namely BB, even 

considering established trading costs figures. Also in forex it was possible to achieve good 

results for the GBP/USD market. Therefore, the simulation allowed to gather some evidence 

showing TA may induce trading opportunities in some markets at some periods of time. 

Nevertheless it is also important to notice the overall temporal lack of consistency in the 

gains obtained with recourse to TA. 

3. To determine which of the studied TA indicators shows more potential to be used as 

a predicting tool; 

In Forex markets, the category of indicators that has shown consistently better IS 

results was momentum; curiously, with OOS data, the category showing more resiliency and 

robustness was trend for the EUR/USD and GBP/USD markets and breakout for the 

USD/JPY market. The inclusion of trading costs changes the verdict for the EUR/USD 

market from trend to breakout category. Regarding portfolio optimization, the overall best 

trading strategy may be considered the BB, which attains better IS and OOS results in most 

of the markets. 

4. To assess if evolutionary techniques help in any way to improve financial 

performance (via parameters fine-tuning), with reference to traditional parameters 

used in TA; 

This assessment can only be made with reference to the application of the GA used 

in Chapter 4, since it was in this simulation we optimized the parameters of each indicator. 

The conclusion we arrived at is that the GA we developed allows to produce better 

performances when compared with the use of TA indicators with traditionally accepted 

parameters. 
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5. To compare performances of up-to-date MOEAs in portfolio optimization problems, 

which involve risk-return trade-offs and where a Pareto front can be obtained; 

The results obtained by the two MOEAs revealed a superiority of the NSGA-II 

performance. This superiority is reflected in both the extension of the non-dominated front 

and its proximity to the Pareto front. 

6. To verify if existing costs affect significantly the attained results in all studied 

markets; 

The admission of trading costs in the Forex markets has shown an important effect 

in the final results. In this case the introduction of reasonable costs into the trading activity 

does affect the results. On the other hand, in portfolio optimization, the inclusion of regular 

trading costs did not affect substantially overall final results. So we cannot state a definitive 

conclusion about this factor in trading profitability. 

As a final word, it is important to state how this work, in spite of producing several 

important conclusions, stimulates further research in this area, since some of the results were 

not completely conclusive. It would be interesting to explore other types of markets, such as 

Bonds, Futures, Commodities, and different Stock Markets from diverse countries: for 

instance, make some comparative analysis by market segment (including different 

corporations’ stocks of the same segments). Other alternative path of research could be the 

development and optimization of different trading models, both in a single account and 

portfolio optimization perspectives, employ other metaheuristics or combinations of 

metaheuristics with other techniques such as artificial neural networks. But the scope could 

go even further, and make for example some combination of Fundamental and Technical 

Analysis indicators. There is an endless array of possibilities of research in this area and the 

path to follow will largely depend on the relevance of the subject of inquiry. 
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Appendix 

 

TABLE A 1. Profitability (%) of the optimized solutions, in-sample without costs. 

 

Source: Author. 

 

 

TABLE A 2. Profitability (%) of the preeminent TA indicator in each period, out-of-sample without costs. 

 

Source: Author. 

 

Profitability (% )

Period Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2001-1 to 2002-2 13,9  18,0  10,0  15,9  18,3  17,7  22,8  23,3  18,0  

2001-2 to 2003-1 20,0  23,7  14,9  17,5  20,7  21,0  21,9  26,3  17,1  

2002-1 to 2003-2 20,6  23,0  24,5  29,1  25,0  34,3  19,1  24,1  14,9  

2002-2 to 2004-1 30,9  26,5  17,6  25,7  30,4  27,9  20,5  24,2  16,6  

2003-1 to 2004-2 31,6  26,7  20,0  27,9  34,2  31,0  15,2  20,5  10,7  

2003-2 to 2005-1 21,0  20,3  10,2  28,4  28,8  18,5  15,6  21,0  5,9  

2004-1 to 2005-2 16,8  15,9  6,5  27,3  25,8  12,8  19,5  17,9  5,7  

2004-2 to 2006-1 17,4  17,2  7,1  27,7  25,2  14,1  14,6  17,7  11,8  

2005-1 to 2006-2 17,2  18,4  3,9  26,4  24,0  13,6  12,4  20,4  18,5  

2005-2 to 2007-1 13,1  17,9  9,6  19,1  17,7  20,4  14,0  20,6  12,3  

2006-1 to 2007-2 12,2  16,5  10,4  22,7  23,3  12,6  17,9  20,7  7,7  

2006-2 to 2008-1 17,2  21,3  16,6  17,0  34,0  7,2  18,5  21,7  12,3  

2007-1 to 2008-2 27,8  31,2  19,2  42,9  51,1  39,8  37,0  37,5  20,1  

2007-2 to 2009-1 28,1  35,5  14,5  52,2  63,3  37,2  28,3  33,4  15,3  

2008-1 to 2009-2 25,3  29,5  13,5  40,1  50,7  26,2  25,7  28,9  9,8  

2008-2 to 2010-1 22,9  33,3  11,8  35,5  37,9  27,2  17,3  19,7  12,3  

Cumulative 336,21  374,84  210,49  455,53  510,18  361,57  320,36  377,80  208,96  

Annual Average 42,03  46,85  26,31  56,94  63,77  45,20  40,05  47,22  26,12  

EUR/USD GBP/USD USD/JPY

Profitability (% )

Semester Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2003-1 -3,6  -12,4  2,1  -21,8  6,8  -21,5  0,9  0,6  8,8  

2003-2 22,4  -20,7  -7,8  26,1  -45,3  4,6  -10,4  15,9  3,2  

2004-1 0,5  31,1  -5,4  -23,5  -13,6  2,9  12,4  -16,5  -3,4  

2004-2 -18,4  -27,0  -0,8  -21,8  6,8  3,2  -10,8  -27,4  -33,0  

2005-1 -2,7  -21,5  3,5  4,8  7,6  11,5  -11,6  -0,4  -0,1  

2005-2 -28,4  13,5  -3,7  -8,0  -0,6  0,9  2,7  -13,1  2,1  

2006-1 -4,0  -4,6  -5,0  42,7  7,8  -1,6  3,4  2,6  -1,7  

2006-2 -12,7  -1,3  1,2  -19,4  -5,0  -1,4  -17,4  8,9  -5,3  

2007-1 -15,5  -4,2  -4,2  -25,3  9,5  1,5  -18,4  12,3  -16,1  

2007-2 7,0  -7,8  -9,6  -21,9  4,3  2,4  1,4  7,7  3,7  

2008-1 -5,0  14,7  -16,0  -4,0  9,9  -11,0  18,0  -8,3  -4,1  

2008-2 33,8  -63,4  52,3  18,1  -50,7  11,1  -6,6  -13,9  -15,2  

2009-1 7,8  6,4  3,5  -69,5  10,7  7,4  0,2  15,0  0,3  

2009-2 -9,4  -6,7  -7,1  30,6  -21,2  -17,4  12,7  -12,5  -0,8  

2010-1 6,2  -5,9  -6,3  35,2  -6,4  -3,4  -6,0  4,7  0,7  

2010-2 13,0  -8,1  -7,3  -14,1  -23,3  2,2  -9,1  -18,5  -5,6  

Cumulative -9,01  -117,70  -10,78  -71,58  -102,83  -8,78  -38,70  -42,85  -66,55  

Annual Average -1,13  -14,71  -1,35  -8,95  -12,85  -1,10  -4,84  -5,36  -8,32  

EUR/USD GBP/USD USD/JPY
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TABLE A 3. Excess Returns of the optimized solutions compared to the preeminent TA indicator of each 

period, out-of-sample without costs. 

 

Source: Author. 

 

TABLE A 4. Profitability (%) of randomly generated solutions, out of sample, one standard lot, without costs, 

uncompounded semestral rates. 

 

Source: Author. 

Excess Returns (% )

Semester Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2003-1 20,2  31,2  14,7  22,1  1,4  34,5  1,1  8,6  -5,4  

2003-2 -16,2  36,8  33,5  -2,0  56,0  44,2  15,8  -12,3  -1,7  

2004-1 23,7  -31,0  -26,1  -7,0  15,7  -20,7  -1,1  22,4  14,9  

2004-2 20,1  28,0  29,2  27,6  -1,5  11,1  -10,3  8,3  10,6  

2005-1 -11,4  6,6  -20,7  5,0  -7,8  -17,1  13,0  -4,7  -1,8  

2005-2 33,8  -6,8  3,9  31,0  9,3  2,8  5,6  2,8  -5,4  

2006-1 1,0  2,5  1,1  -46,3  -0,5  1,1  -4,8  3,1  6,3  

2006-2 10,8  4,6  -1,9  35,7  10,6  14,8  13,4  -8,5  13,7  

2007-1 17,3  5,3  1,4  30,9  -17,4  -1,4  19,3  3,3  25,5  

2007-2 -20,3  7,1  23,7  35,4  5,4  -10,8  -10,9  -2,1  -16,0  

2008-1 21,1  -9,5  24,1  -17,9  -5,3  -13,5  -14,0  12,8  -1,2  

2008-2 -35,7  52,1  -42,4  31,5  34,5  11,5  37,8  18,2  41,0  

2009-1 -12,4  2,6  -9,2  98,1  26,0  -10,0  -19,3  -27,9  -10,8  

2009-2 -0,8  -5,7  1,4  -48,5  2,6  20,5  -11,0  10,9  2,4  

2010-1 -0,6  2,1  4,4  -34,2  9,0  3,5  2,3  0,8  1,7  

2010-2 3,0  3,6  15,9  9,0  17,5  -2,1  5,8  10,2  5,4  

Cumulative 53,50  129,69  53,10  170,42  155,47  68,33  42,93  45,90  79,19  

Annual Average 6,69  16,21  6,64  21,30  19,43  8,54  5,37  5,74  9,90  

EUR/USD GBP/USD USD/JPY

Profitability (% ) EUR/USD GBP/USD USD/JPY

Semester

2003-1 0,2  0,0  -0,1  

2003-2 -0,0  -0,0  0,0  

2004-1 -0,0  0,1  -0,1  

2004-2 0,1  0,2  -0,1  

2005-1 -0,1  -0,1  0,1  

2005-2 -0,0  0,1  -0,2  

2006-1 -0,1  -0,1  0,2  

2006-2 -0,1  -0,3  0,0  

2007-1 0,1  0,1  0,0  

2007-2 0,2  0,1  0,0  

2008-1 0,0  -0,1  -0,0  

2008-2 0,3  0,2  0,1  

2009-1 -0,2  -0,4  0,0  

2009-2 -0,1  -0,1  0,1  

2010-1 -0,2  0,1  0,0  

2010-2 -0,1  0,1  0,0  

Cumulative -0,19  -0,14  0,15  

Annual Simple Average -0,02  -0,02  0,02  

Annual Compound Average -0,02  -0,02  0,02  



[165] 

 

 

TABLE A 5. MDD (%) for the optimized solutions, in-sample without costs. 

 

Source: Author. 

 

 

TABLE A 6. MDD (%) for the optimized solutions, out-of-sample without costs. 

 

Source: Author. 

Maximum Drawdown (% )

Period Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2001-1 to 2002-2 8,4  7,6  10,6  13,6  9,9  8,5  8,8  9,0  10,6  

2001-2 to 2003-1 7,9  6,5  9,5  9,7  10,7  7,8  8,5  9,1  9,0  

2002-1 to 2003-2 7,8  9,2  10,0  9,6  10,8  7,9  7,5  6,7  5,6  

2002-2 to 2004-1 9,5  12,4  11,5  14,6  13,4  11,9  8,5  7,8  7,4  

2003-1 to 2004-2 8,7  15,5  12,5  13,5  14,8  11,7  10,3  9,2  5,7  

2003-2 to 2005-1 11,6  14,0  16,0  13,0  11,7  11,6  9,4  8,7  5,9  

2004-1 to 2005-2 12,5  13,3  7,5  11,8  11,4  5,9  8,3  9,0  6,1  

2004-2 to 2006-1 12,0  12,1  10,6  10,6  11,8  7,9  11,1  10,1  8,2  

2005-1 to 2006-2 8,5  9,4  8,5  11,8  13,4  8,6  10,4  10,3  6,3  

2005-2 to 2007-1 9,4  8,1  9,2  12,1  13,3  10,3  8,1  10,5  6,7  

2006-1 to 2007-2 7,8  7,7  7,4  9,6  10,5  10,4  10,3  9,1  9,6  

2006-2 to 2008-1 9,1  7,7  7,8  13,2  13,8  16,4  11,8  9,7  10,0  

2007-1 to 2008-2 15,5  13,9  10,3  14,1  15,5  15,0  8,9  9,5  10,6  

2007-2 to 2009-1 17,6  15,6  7,6  13,7  12,3  15,3  11,0  12,1  12,8  

2008-1 to 2009-2 16,9  15,1  7,7  14,6  13,6  10,4  9,6  10,2  16,8  

2008-2 to 2010-1 17,9  19,9  13,4  12,8  13,1  12,7  12,3  10,6  10,6  

Semester Average 11,3  11,7  10,0  12,4  12,5  10,8  9,7  9,5  8,9  

EUR/USD GBP/USD USD/JPY

Maximum Drawdown (% )

Semester Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2003-1 12,4  10,0  8,9  19,1  18,2  13,5  11,1  10,5  13,9  

2003-2 13,0  15,0  10,4  11,1  17,4  9,4  8,5  9,3  8,3  

2004-1 13,7  21,4  37,2  41,4  25,2  34,5  12,9  12,3  8,4  

2004-2 18,2  16,4  8,9  17,7  18,9  20,2  27,6  25,5  26,6  

2005-1 21,1  24,7  19,5  17,5  19,1  18,2  11,7  14,6  7,7  

2005-2 15,3  13,8  15,2  14,4  17,1  13,3  14,7  20,0  7,4  

2006-1 22,4  16,2  9,2  19,1  18,7  10,8  16,1  14,2  6,1  

2006-2 11,8  13,2  6,5  12,8  14,0  5,1  11,2  8,1  5,1  

2007-1 6,4  7,2  7,0  13,2  18,0  8,4  13,4  11,9  11,9  

2007-2 19,4  13,4  12,5  14,6  17,2  23,8  18,7  14,6  21,7  

2008-1 15,2  18,2  13,9  35,4  19,9  30,3  17,3  18,0  17,4  

2008-2 33,9  47,5  30,3  31,7  62,9  22,6  16,1  27,5  13,1  

2009-1 27,2  19,4  17,2  16,5  16,1  26,8  31,9  28,2  20,8  

2009-2 21,8  22,9  9,1  31,8  31,8  21,8  12,7  12,1  15,3  

2010-1 19,7  25,7  9,7  16,9  18,6  13,5  13,5  10,7  11,1  

2010-2 15,8  23,6  11,3  16,3  18,6  13,8  15,0  18,9  12,1  

Semester Average 18,0  19,3  14,2  20,6  22,0  17,9  15,8  16,0  12,9  

EUR/USD GBP/USD USD/JPY
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TABLE A 7. Profitability (%) of the preeminent TA indicator in each period, out-of-sample, with costs. 

 

Source: Author. 

 

 

TABLE A 8. Excess Returns of the optimized solutions compared to the preeminent TA indicator of each 

period, out-of-sample, with costs. 

 

Source: Author. 

 

 

Profitability (% )

Semester Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2003-1 -4,9  -13,7  1,8  -23,5  5,3  -25,8  -0,6  -3,1  5,3  

2003-2 21,0  -21,8  -11,5  24,8  -46,3  4,1  -11,8  12,8  2,8  

2004-1 -1,0  29,8  -5,7  -25,1  -16,6  2,5  11,0  -20,2  -6,5  

2004-2 -19,8  -27,9  -1,3  -5,7  -11,2  -2,3  -13,4  -31,4  -37,1  

2005-1 -4,1  -22,5  2,8  3,6  6,3  10,9  -12,9  -3,7  -0,5  

2005-2 -29,8  12,1  -4,1  -9,2  -1,8  0,4  1,6  -13,9  1,8  

2006-1 -5,5  -5,7  -5,8  41,3  4,9  -2,1  1,9  1,4  -2,1  

2006-2 -14,0  -2,5  0,9  -21,0  -8,2  -2,0  -19,4  7,6  -8,9  

2007-1 -17,2  -5,2  -4,7  -26,7  6,5  1,1  -19,8  11,0  -19,5  

2007-2 5,8  -8,4  -13,2  -23,2  3,2  -1,1  0,2  6,8  1,2  

2008-1 -6,5  13,2  -19,7  -5,4  6,7  -14,4  16,5  -9,5  -6,9  

2008-2 32,6  -64,2  50,0  16,7  -51,6  10,5  -8,1  -14,9  -16,0  

2009-1 5,5  3,3  2,8  -70,8  7,8  3,9  -1,3  14,2  -0,3  

2009-2 -11,8  -9,9  -7,7  29,3  -24,4  -20,6  11,6  -13,5  -1,3  

2010-1 5,1  -9,3  -7,1  34,2  -9,7  -6,4  -7,3  3,9  0,1  

2010-2 11,7  -9,4  -7,8  -15,4  -26,7  -0,7  -10,9  -21,7  -6,3  

Cumulative -32,93  -142,27  -30,38  -76,06  -156,10  -42,01  -62,59  -74,16  -94,43  

Annual Average -4,12  -17,78  -3,80  -9,51  -19,51  -5,25  -7,82  -9,27  -11,80  

EUR/USD GBP/USD USD/JPY

Excess Returns (% )

Semester Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2003-1 19,1  29,2  13,3  21,2  -0,1  36,0  -0,3  9,9  -5,3  

2003-2 -20,8  33,9  35,6  -3,3  54,0  42,9  14,4  -12,5  -3,8  

2004-1 20,0  -32,4  -28,2  -7,7  16,1  -22,3  -2,1  23,1  16,1  

2004-2 16,5  25,2  28,4  9,3  13,6  15,1  -10,8  8,9  11,8  

2005-1 -14,6  4,2  -21,7  3,8  -8,7  -18,1  12,1  -3,7  -2,9  

2005-2 30,8  -9,1  2,7  30,1  8,3  1,8  3,8  0,3  -6,7  

2006-1 -2,7  1,3  0,6  -47,9  0,6  0,2  -6,5  1,3  5,3  

2006-2 6,7  3,4  -3,2  35,3  12,2  13,9  12,5  -9,6  15,8  

2007-1 16,0  3,4  0,6  29,7  -16,7  -2,8  16,0  2,0  27,2  

2007-2 -21,1  5,7  25,5  33,9  4,1  -9,2  -13,8  -3,6  -15,7  

2008-1 16,6  -10,2  25,7  -19,6  -4,5  -12,8  -17,7  10,8  -0,1  

2008-2 -38,7  51,0  -42,1  30,0  33,1  10,1  33,8  16,3  40,6  

2009-1 -12,9  2,5  -10,4  96,2  25,8  -8,9  -23,0  -31,8  -12,2  

2009-2 -1,4  -6,5  0,7  -50,7  2,0  21,2  -13,8  9,9  1,2  

2010-1 -1,7  2,4  3,8  -36,9  9,0  4,9  0,6  -0,3  0,6  

2010-2 2,1  2,2  14,9  4,7  16,0  -3,2  3,1  10,6  3,5  

Cumulative 13,74  106,21  46,12  128,21  164,98  68,72  8,29  31,52  75,30  

Annual Average 1,72  13,28  5,77  16,03  20,62  8,59  1,04  3,94  9,41  

EUR/USD GBP/USD USD/JPY
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TABLE A 9. MDD (%) for the optimized solutions, out-of-sample, with costs. 

 

Source: Author. 

 

 

TABLE A 10. List of Market Tier 1 stocks used in the portfolio optimization problem. 

 

Source: Author. 

 

Maximum Drawdown (% )

Semester Trend Momentum Breakout Trend Momentum Breakout Trend Momentum Breakout

2003-1 13,0  10,4  9,3  20,3  19,3  14,3  12,3  11,2  15,4  

2003-2 15,0  16,2  11,1  11,7  18,3  9,9  9,5  10,7  9,4  

2004-1 14,2  22,4  39,2  43,2  26,3  35,8  13,7  13,6  9,1  

2004-2 20,5  18,1  9,2  18,5  19,9  21,1  30,2  28,2  29,2  

2005-1 24,5  26,6  21,0  18,5  19,8  18,9  12,4  15,7  8,5  

2005-2 16,8  14,7  16,1  14,9  17,7  14,2  15,8  22,3  8,4  

2006-1 25,0  17,3  9,9  20,5  19,7  11,4  17,4  15,1  6,6  

2006-2 14,2  14,1  7,3  13,4  14,5  5,5  12,9  9,0  5,6  

2007-1 7,3  8,2  7,9  14,0  19,3  9,1  15,7  12,2  12,6  

2007-2 20,5  14,0  13,0  15,5  17,9  24,7  21,3  15,2  23,4  

2008-1 17,2  19,1  14,7  37,8  21,1  32,6  19,4  18,9  18,4  

2008-2 36,2  48,5  31,3  32,5  63,6  23,4  17,2  28,4  13,3  

2009-1 28,8  20,5  18,2  17,2  16,9  28,0  34,9  30,0  21,9  

2009-2 23,8  25,8  10,1  34,0  34,2  23,0  14,6  12,9  16,1  

2010-1 20,7  27,4  10,5  18,6  20,1  14,3  15,0  11,2  12,0  

2010-2 16,5  24,6  11,9  19,0  21,6  15,9  17,6  20,4  13,3  

Semester Average 19,6  20,5  15,1  21,9  23,1  18,9  17,5  17,2  13,9  

EUR/USD GBP/USD USD/JPY

Argentina Brazil South Africa

AGROMETAL AMAZONIA ON ADVTECH

BANCO SANTANDER RIO ''B'' AMPLA ENERGIA E SERVICOS ON AFRICAN OXYGEN

CAPEX ATOM PARTICIPACOES ANGLOGOLD ASHANTI

CAPUTO B MERC BRASIL PN ARCELORMITTAL SA.

CARLOS CASADO ''B'' BANCO DO NORD ON CAXTON & CTP PB&PRT.

CELULOSA BANCO ESTADO ESP. SANTO BANEST ON DATATEC

COLORIN BIC MONARK ON FIRSTRAND

ENDESA COSTANERA BNCO ALFA INVEST PN GOLD FIELDS

GOFFRE BOMBRIL PN HARMONY GOLD MNG.

IRSA CEMEPE INVEST PN MMI HOLDINGS

MORIXE HERMANOS CIA TECIDOS SANTANENSE PN NEDBANK GROUP

NUEVO BANCO SUQUIA ''B'' CNCO.ALFA DE ADMO. SR.F PN RMB

SNIAFA COMR.FINCA. INMB. ''A'' CONST AD LIN PN TSOGO SUN

SOCIEDAD COMERCIAL DEL PLATA CORREA RIBEIRO PN

TRANSPORTADORA DE GAS DEL SUR DHB INDUSTRIA E COMERCIO ON

OI PN

REDE ENERGIA ON

Market Tier 1
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TABLE A 11. List of Market Tier 2 stocks used in the portfolio optimization problem. 

 

Source: Author. 

 

 

TABLE A 12. List of Market Tier 3 stocks used in the portfolio optimization problem. 

 

Source: Author. 

 

Greece Portugal Belgium

AEGEK CIMENTOS DE PORTL.SGPS BEFIMMO

AEOLIAN INVESTMENT FUND CIPAN LIMITED DATA COFINIMMO

ALTEC HOLDINGS COMPTA COLRUYT

ATHENA COPAM LIMITED DATA DEXIA

ATTICA HOLDINGS EDP ENERGIAS DE PORTUGAL FLUXYS BELGIUM ''D''

ATTI-KAT ESTORIL SOL ''B'' IMMOBEL

AXON HOLDINGS FENALU LIMITED DATA PICANOL

BANK OF GREECE IMMOBL.CON.GRAO-PARA RETAIL ESTATES

EDRASIS PSALLIDAS LISGRAFICA SABCA

EKTER LITHO FORMAS PORTUGUESA LIMITED DATASIPEF

ELTRAK PROPERTY OREY ANTUNES SOLVAC

ELVIEMEK LAND DEVELOPMENT LOGIST.PK.SOCIETY AGUAS DA CURIA LIMITED DATA SPADEL

EMPORIKOS DESMOS SONAE SGPS TESSENDERLO

FLEXOPACK SONAGI LIMITED DATA UMICORE

FLR MLS C SARANTOPOULOS TOYOTA CAETANO VAN DE VELDE

Market Tier 2

UK Australia Netherlands

AVIVA AGL ENERGY AFC AJAX

BRITISH AMERICAN TOBACCO ALUMINA AND INTL.PUBLISHERS

BRITISH LAND AUST.FNDTN.INV.COMPANY ARCADIS

BT GROUP COCA-COLA AMATIL ASML HOLDING

IMPERIAL BRANDS DEXUS PROPERTY GROUP BATENBURG TECHNIEK

KINGFISHER FORTESCUE METALS GP. BINCKBANK

LLOYDS BANKING GROUP GPT GROUP BRILL

PEARSON JAMES HARDIE INDS.CDI. EUROCOMMERCIAL

PRUDENTIAL NEWCREST MINING HEINEKEN

RECKITT BENCKISER GROUP OIL SEARCH HEINEKEN HLDG.

ROLLS-ROYCE HOLDINGS QBE INSURANCE GROUP RELX

SSE SANTOS ROYAL DUTCH SHELL A

TESCO STOCKLAND STERN GROEP

VODAFONE GROUP TRANSURBAN GROUP USG PEOPLE

WPP WESTFIELD WOLTERS KLUWER

Market Tier 3
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TABLE A 13. List of U.S. Market stocks used in the portfolio optimization problem. 

 

Source: Author. 

 

ADOBE SYSTEMS CONOCOPHILLIPS MERCK & COMPANY

AMAZON.COM COSTCO WHOLESALE MICROSOFT

AMERICAN EXPRESS DOW CHEMICAL MORGAN STANLEY

AMGEN DUKE ENERGY ORACLE

APPLE EXXON MOBIL PEPSICO

AT&T FEDEX PFIZER

BANK OF AMERICA FORD MOTOR PROCTER & GAMBLE

BANK OF NEW YORK MELLON GENERAL ELECTRIC REGENERON PHARMS.

BIOGEN GOLDMAN SACHS GP. STARBUCKS

BLACKROCK HEWLETT-PACKARD TARGET

BOEING HOME DEPOT TEXAS INSTRUMENTS

CATERPILLAR INTEL TIME WARNER

CHEVRON INTERNATIONAL BUS.MCHS. UNION PACIFIC

CISCO SYSTEMS JOHNSON & JOHNSON WAL MART STORES

CITIGROUP JP MORGAN CHASE & CO. WALT DISNEY

COCA COLA LOCKHEED MARTIN

COLGATE-PALM. MCDONALDS

US Market
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