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a b s t r a c t

We have implemented the coupled three-dimensional wave packet approach in hyperspherical
coordinates for time-dependent reactive scattering calculations of triatomic systems. The coupling of
these wave packets arises through the rotation of the three particle plane by the Euler angles. The
necessary transformation from Jacobi to hyperspherical coordinates for the initialization and the reverse
transformation for the projection of the wave packet by the asymptotic state(s), and the coupled equation
ofmotion are presented briefly.Wedemonstrate theworkability and convergence profiles of the approach
on the D+ H2 system for total angular momentum equal to zero and non-zero situations.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The scattering experiments [1–8] that measure state-to-state
integral and differential cross-sections of triatomic reactions de-
mand rigorous, even full, quantum mechanical theory to interpret
those results. There are significant progresses on the exact treat-
ment of 3D as well as coupled 3D reactive scattering calculations
on accurate potential energy surfaces (PESs) [9–11] for isotopic
variants of H3. Both time-independent and time-dependent ap-
proaches are employed for such calculations with zero and non-
zero total angular momentum on a series of triatomic reactive
systems.

At the end of the 1960’s and beginning of the 1970’s, a num-
ber of attempts had beenmade to solve quantummechanically the
simplest possible chemical reaction, the collision of an atomwith a
diatomic molecule on an electronically adiabatic (single-sheeted)
PES, where the three atoms are confined to move on a space-fixed
straight line (collinear) [12]. Baer and Kouri [13] developed an in-
tegral equation to tackle the non-collinear problem, where Saxon
and Light [14] and Elkowitz and Wyatt [15] independently formu-
lated their approximate close coupling equations to investigate the
co-planar H+H2 reaction. Wolken and Karplus [16] implemented
the integro-differential equation derived by Miller [17] for 3D
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calculations on a H + H2 system within the vibrational basis ap-
proximation. Kuppermann et al. [18] proposed an accuratemethod
for solving the Schrödinger equation for the reaction A + BC →
AB + C or AC + B on a single Born–Oppenheimer (BO) PES with
the restriction that the motions of the three atoms are constrained
on a space-fixed plane. An extensive theoretical advancement had
been made on that approach by Kuppermann and Schatz [19].

The activity in quantum reactive scattering calculations for
triatomic systems was renewed in a huge way during the mid
1980’s. At that period of time, one can grossly identify four
categories of theoretical approaches that were pursued for such
calculations: The R-matrix propagationmethod developed by Light
and co-workers [20]; the approaches based on hyperspherical
coordinates to describe the system of atoms [21]; the S-matrix
formulation of the Kohn variational principle by Miller and co-
workers [17]; the work by Truhlar, Kouri and co-workers [22] who
utilized a methodology based on the Newton variational principle
employing a coupling scheme in the T -operator developed by Baer
and Kouri [23].

With the advancement ofmore precise product detectionmeth-
ods [4,8], experiments have been carried out to measure rovi-
brationally state-to-state integral and differential cross-sections
very accurately, and theoretical attempts made to interpret those
results for various triatomic reactive systems [24–26]. During
the 1990’s, many calculations of state-to-state scattering cross-
sections were performed by solving the time-independent nuclear
Schrödinger equation by implementing the Coupled Channel (CC)
approach in hyperspherical coordinates [27] such as to avoid the
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coordinate transformation from reactant to product channels. The
hyperspherical coordinates solve this problem by smoothly chang-
ing the frameof reference from the reactant, A+BC, to theproducts,
AC+ B and AB+ C. The CC method in hyperspherical coordinates
has yielded very accurate state-to-state cross-sections and reac-
tion probabilities for a variety of triatomic reactions. However, the
computational time for the CC approach scales inefficiently with
increasing J (total angular momentum) and Ni (the number of ba-
sis functions used for the ith internal coordinate), and generally,
such cost scales as (J


Ni)

3.
Time-dependent approaches based on wave packets were

introduced into reactive scattering [28], where such methods
overcome the computational scaling as J


i Ni


i logNi (if ith

degree of freedom is represented on an equally spaced grid basis),
and are ideal for multi-core multi-node computers to parallelize
while solving all partial waves [29] of the time-dependent
Schrödinger equation (TDSE). There are many good reasons for
pursuing the time-dependent wave packet methods: (a) A large
energy range in the translational coordinate can be covered by
a single wave packet; (b) The blending of classical and quantum
mechanics to develop newmethodologies becomes possible; (c) If
grid methods are used, the dissociation events are automatically
accounted even at the important high energy region; (d) As the
system mass and/or energy increases, the CPU requirement of
grid methods will not necessarily increase as state expansion
approaches; (e) It may be easy to extend such time-dependent
grid methods to non-adiabatic events, where multiple electronic
PESs are coupled with each other. As long as the calculation of the
Fourier transform of thewave function is themost time consuming
step, the CPU time should increase only about linearly with the
number of sheets in the PES, hence the computation time should
remain approximately constant via appropriate parallelization of
the equation of motion for the different sheets.

Although there were time-dependent wave packet calculations
based on the methodology formulated in Jacobi coordinates for
initial state resolved total cross-sections [30] and total reaction
probability [31], most such calculations were only for the simplest
case, J = 0, or could not be compared for non-zero angular
momentum cases with the corresponding time-independent
results because of the inherent reactant-product coordinate
transformation problem. Indeed, there were few attempts to
transform the coordinates when the wave packet reaches the
strong interaction region [32], but such approaches appear either
to be expensive or inaccurate. Conversely, when Zhang and co-
workers [33] introduced the ‘‘reactant-product decoupling’’ (RPD)
equation, such an approach has been recasted by Kouri and co-
workers [34], Zhang and co-workers [35], and Althorpe [36] over
a period of time to achieve an efficient algorithm. The calculations
based on RPD algorithms for initial state resolved integral and
differential cross-sections appear accurate and fully converged
even for non-zero total angular momenta. On the other hand,
Gray and Balint-Kurti [37] developed an accurate time-dependent
quantum dynamics method with real wave packets for reactive
scattering, which has been implemented to calculate integral and
differential cross-sections of various reactive systems.

The time-dependent wave packet approach using hyperspheri-
cal coordinates is convenient for treating reactive processes due to
the equivalent description of all rearrangement channels. Since the
problemof any triatomic reaction is a 4D quantummechanical one,
it is possible to formulate the ‘‘exact’’ solution in terms of coupled
3Dwave packets. Each 3Dwave packet represents the hyperradius,
ρ, and hyperangles, θ and φ, where such partial waves arise due
the quantization of rotation of the three particle plane. Billing and
co-workers [38] formulated the time-dependent wave packet ap-
proach using hypersperical coordinates, and performed 3D as well
as coupled 3D wave packet calculations on the D + H2 system for
the simplest case, J = 0 and J = 1, respectively. At present, we
implement the same formulation to carry time-dependent wave
packet calculation on triatomic system for J = 0 and J ≠ 0 cases.
Although there has been some progress on the methodological de-
velopment and calculations in Jacobi coordinates involving two
electronic states [39,40], we believe there is enough scope to for-
mulate new approaches and carry out calculations in hypershper-
ical coordinate system because of its inherent advantages. A major
aim for implementing this time-dependent wave packet approach
in hyperspherical coordinates is to extend such amethodology be-
yond Born–Oppenheimer, i.e., to multi-surface reactive scattering.

2. Theory

2.1. Initial wave packet in hyperspherical coordinates

The channel (reactive/non-reactive) independent asymptotic
solution to the reactive scattering of a triatomic system in Jacobi
coordinates could be of the following form:

Ψ →
1
Rr


γ ′vjl

uJl′

γ γ ′
(R)yJMjl (R̂, r̂)φvj(r), (1)

where yJMjl and φvj are Arthurs–Dalgarno (AD) states [41] and vi-
brational wave packets, respectively. The vibrational wave packet,
φvj, depends upon the rotational quantum number j through the
centrifugal coupling term. The volume element is given by:

R2dR r2drdR̂dr̂, (2)

where

dR̂ dr̂ = sinΘ ′ dΘ ′ dΦ ′ sin η dη dξ . (3)

The distance from the atom (A) to the center of mass of the
diatomicmolecule (BC) is R and the orientation of R in a space-fixed
coordinate system is given by the anglesΘ ′ andΦ ′ (see Fig. 1). The
bond distance of the BCmolecule is r and its orientation in a body-
fixed coordinate system (with R′ axis along z) is given by the angles
η and ξ . It is obvious that the function (1/R)uJl

γ γ ′
(R) is normalized

on R2 dR, (1/r)φvj(r) on r2 dr and the AD states yJljl(R̂ r̂) on dR̂ dr̂ .
In Jacobi coordinates, the wave packet can be initialized as:

Ψ →
1
r
φvj(r)y

JM
jl

1
R
χ(R), (4)

where 1
R χ(R) is a wave packet normalized on R2 dR.

In hyperspherical coordinates [42], the corresponding volume
element is

1
8
ρ5 sin θ cos θ dθ dφ dα sinβ dβ dγ , (5)

where ρ is the hyperradius, and θ and φ are the two hyperangles.
These three variables define the geometry of the ABC plane, while
the orientation of this plane in space is defined by the three Euler
angles α, β and γ .

The wave function used in our approach is given by the follow-
ing transformation:

ψ = (1/
√
8)ρ5/2

√
sin θ cos θ Ψ

= (1/
√
8)ρ5/2

√
sin θ cos θ

1
r
φvj(r)y

JM
jl

1
R
χ(R), (6)

where ψ has the volume element:

dρ dθ dφ dα sinβ dβ dγ . (7)
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Fig. 1. The position of the three atoms in the space-fixed coordinate system
(X ′, Y ′, Z ′) and the body-fixed coordinate system (x, y, z).

Substituting the Jacobi variables in terms of hyperspherical co-
ordinates for the reactant channel (A+ BC) (see Appendix A),

Rr =
1
2
ρ2

1− sin2 θ cos2 φ, (8)

and the initial wavefunction in Eq. (6) yields:

ψ =
1
√
8
ρ5/2
√
sin θ cos θ

2

ρ2

1− sin2 θ cos2 φ

φvj(r)y
JM
jl χ(R)

=

ρ

2


sin θ cos θ

1− sin2 θ cos2 φ


φvj(r)y

JM
jl χ(R), (9)

where the orientation angle of the diatom and the Jacobian are de-
fined as:

sin η =
cos θ

1− sin2 θ cos2 φ
(10)

and

J(Rrη|ρθφ) =
ρ

2
sin θ

1− sin2 θ cos2 φ
, (11)

respectively.
The initial wavefunction can therefore be written as:

ψ =

sin η J(Rrη|ρθφ) φvj(r)y

JM
jl χ(R). (12)

On the other hand, the wave packet ψ in Eq. (12) can be ex-
panded in terms of the Wigner D matrix as:

ψ =

J
K=−J

ΦK (ρ, θ, φ)


2J + 1
8π2

DJ∗
MK (α, β, γ ), (13)

where


2J+1
8π2 DJ

MK is normalized on dα sinβ dβ dγ . Thus, we have
K


dρ dθ dφ |ΦK |

2
= 1 (14)

where the summation implicitly considers all allowed K values.
Equating Eq. (13) with Eq. (12), the functional form of the initial

wave packet for the K th componentΦK (ρ, θ, φ) is given by:

ΦK (ρ, θ, φ) =


2J + 1
8π2


dα


dβ sinβ

×


dγ DJ

MK (αβγ )

×

sin η J(Rrη|ρθφ) φvj(r)y

JM
jl χ(R). (15)
This can be written in a more compact form by employing the AD
states yJMjl in termsofDmatrix and spherical harmonics (Y ), namely

yJMjl = (−1)
j−l−M


(2J + 1)(2l+ 1)/4π

×


µ


j l J
µ 0 µ


Yjµ(η, ξ)D

J
−M,−µ(Φ

′,Θ ′, 0), (16)

where 3− j symbols are the linear combining coefficients. Thus, by
substituting

Yjµ(η, ξ) = Cjµ(η) exp(iµξ), (17)

and

DJ
M,−µ(Φ

′,Θ ′, ξ) = exp(−iMΦ ′)dJM,µ(Θ
′) exp(iµξ), (18)

Eq. (16) assumes the form:

yJMjl =

(2J + 1)(2l+ 1)/4π (−1)j−l−M

×


µ


j l J
µ 0 −µ


Cjµ(η)D

J
−M,−µ(Φ

′,Θ ′, ξ). (19)

Without loss of generality, it is possible to set the projection quan-
tum number M equal to zero and thereby,

DJ
0,−µ(Φ

′,Θ ′, ξ) = exp(iµξ)dJµ0(Θ
′)

=


4π

2J + 1
CJµ(Θ

′) exp(iµξ) (20)

and

DJ
0,K (α, β, γ ) = exp(−iKγ )(−1)K


4π

2J + 1
CJK (β). (21)

If Eq. (20) is now substituted in Eq. (19), the AD functions, yJMjl ,
assume the form:

yJMjl =

(2l+ 1) (−1)j−l−M

×


µ


j l J
µ 0 −µ


Cjµ(η)CJµ(Θ

′) exp(iµξ). (22)

By inserting next Eqs. (21) and (22) into Eq. (15), the final form of
the wave packet in hyperspherical coordinates becomes:

ΦK =

2π sin η J(Rrη|ρθφ)(2l+ 1)φvj(r) χ(R)(−1)j−l

×


µ


j l J
µ 0 −µ


Cjµ(η)AKµ, (23)

where

AKµ = (−1)K
 2π

0
dγ
 π

0
dβ sinβ

× exp(−iKγ + iµξ)CJK (β)CJµ(Θ
′), (24)

with the orthonormality condition:
K

A∗KµAKµ′ = δµµ′ (See Appendix B). (25)

While constructing the A matrix, the following relationship
(Appendix A) between the orientation (Θ ′ and ξ ) and Euler (β and
γ ) angles is employed:

cosΘ ′ = − sinβ cos γ , (26)

sin ξ = cosβ/ sinΘ ′. (27)
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The part of the wave function corresponding to A − BC relative
motion (translation) is described by a Gaussian wave packet,

χ(R) = N exp[−ik0R− a(R− R0)
2
], (28)

where

a = 1/(4σ 2
− iq), (29)

q = 2(R0 − Rf )/k0, (30)

N = (A/π)1/4, (31)

A = 8σ 2/(16σ 4
+ q2). (32)

The center of the wave packet is initially at R = R0 and will,
in the absence of forces, move in the negative R direction with
momentum p0 = h̄ k0. The imaginary term in the denominator
of the constant awill keep the wave packet narrow until it reaches
the ‘‘focal point’’, Rf . The initial collisional energy determines the
wavevector (k0) by employing the triatomic center of mass for the
reactants,µR = mA(mB+mC)/(mA+mB+mC), where the diatomic
(BC) reduced mass is given by µr = mBmC/(mB +mC).

2.2. The Hamiltonian and the coupled equations

The Hamiltonian operator describing a three-particle system
expressed in terms of Johnson’s hypersherical coordinates [42]
assumes the form:

Ĥ = −
h̄2

2µR

∂2

∂ρ2
+

2
µRρ2

L̂2(θ, φ)

+
1

µRρ2


Ĵ2x

1− sin θ
+

Ĵ2y
1+ sin θ

+
Ĵ2z

2 sin2 θ



−
2 cos θ Ĵz P̂φ
µRρ2 sin2 θ

+ V (ρ, θ, φ)+1V (ρ, θ), (33)

where

Ĵz = −ih̄


∂

∂γ


, (34)

P̂φ = −ih̄


∂

∂φ


, (35)

L̂2(θ, φ) = − h̄2


∂2

∂θ2
+

1
sin2 θ

∂2

∂φ2


, (36)

1V (ρ, θ) = −
h̄2

2µRρ2


1
4
+

4
sin2 2θ


. (37)

Although the angular momentum operators Ĵx and Ĵy are functions
of the Euler angles α, β and γ , their forms are not needed because
the Hamiltonian (Eq. (33)) can be simplified using the following
relation:

Ĵ2 = Ĵ2x + Ĵ2y + Ĵ2z , (38)

leading to:

Ĥ = −
h̄2

2µR

∂2

∂ρ2

+
2

µRρ2
L̂2(θ, φ)+

Ĵ2 − Ĵ2z
µRρ2 cos2 θ

+
Ĵ2z − 4 cos θ Ĵz P̂φ
2µRρ2 sin2 θ

+
sin θ

µRρ2 cos2 θ
1
2
[Ĵ2
+
+ Ĵ2
−
] + V (ρ, θ, φ)+1V (ρ, θ), (39)
where the raising and lowering operators have been introduced
using the relation:

Ĵ2x − Ĵ2y =
1
2
[Ĵ2
+
+ Ĵ2
−
]. (40)

When we substitute the wave packet ψ (Eq. (13)) and the
Hamiltonian (Eq. (39)) into the time-dependent Schrödinger equa-
tion (TDSE), the following set of coupled equations are obtained in
terms of partial waves (ΦK ):

ih̄
∂ΦK

∂t
=


−

h̄2

2µR

∂2

∂ρ2
+

2
µRρ2

L̂2(θ, φ)

+
h̄K(h̄K − 4 cos θ P̂φ)

2µRρ2 sin2 θ

+
h̄2
[J(J + 1)− K 2

]

µRρ2 cos2 θ

+ V (ρ, θ, φ)+1V (ρ, θ)


ΦK

+
sin θ

µRρ2 cos2 θ
[MK ,K+2ΦK+2 +MK ,K−2ΦK−2], (41)

where the last term couples the component ΦK to ΦK±2 via the
coupling elementMK ,K±2

MK ,K±2 =
h̄2

2


(J ∓ K)(J ± K + 1)(J ∓ K − 1)(J ± K + 2). (42)

A discrete representation of the partial waves ΦK (ρ, θ, φ) on
three-dimensional grids are introduced to propagate the coupled
wave packets with time.

2.3. Analysis of the outgoing wave packet

It is possible to project the outgoing wave packet onto asymp-
totic eigenstates at a fixed value of the hyperradius ρ. Since, in
hypersherical coordinates, all distances are represented by this sin-
gle variable, the inelastic coupling between different vibrational
stateswill vanish very slowlywithρ. An asymptotic propagation to
large values of the hyperradius is therefore necessary before accu-
rate reaction probabilities could be calculated. In the present work,
we project the wave packet onto asymptotic eigenstates at a fixed
value of Rwhich greatly simplifies or entirely removes the asymp-
totic propagation part of the problem [38].

The scattering amplitude in the channel specified by vibra-
tional, rotational and orbital quantum numbers v′, j′, l′ is obtained
as:

uJ
v′j′ l′(R; t) = 4R


dr

×


dη r sin η ρ−5/2(sin 2θ)−1/2φv′j′(r)

×


Kµ′

gj′ l′µ′A∗Kµ′Cj′µ′(η)ΦK (ρ, θ, φ), (43)

where

gjlµ =

2π(2l+ 1)(−1)j−l


j l J
µ 0 −µ


. (44)

The integration is performed over the (θ, φ) grid using the rela-
tions:

ρ =
√
2di R/


1− sin θ cos(φ − ϵi), (45)

r =
di ρ
√
2


1+ sin θ cos(φ − ϵi), (46)

sin η = cos θ/

1− sin2 θ cos2(φ − ϵi), (47)
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with the Jacobi factor (for fixed R) given by:

J(r, η|θ, φ)

=
d2i R sin θ

[1− sin θ cos(φ − ϵi)]

1− sin2 θ cos2(φ − ϵi)

, (48)

where di and ϵi are channel dependent constants. Since the pro-
jection is performed for a fixed value of R and the hyperradius is a
function of R, θ and φ, it is necessary to interpolate on the grid in
order to find the corresponding value ofΦK .

When the wave packet has passed the projection region the
amplitudes are Fourier transformed from time to energy space:

bJ
v′j′ l′(E; R) =

1
√
2π


dt uJ

v′j′ l′(R; t) exp(iEt/h̄). (49)

These amplitudes are now expanded on incoming and outgoing
waves,

bJ
v′j′ l′ = Ain

v′j′ l′kv′j′R h−(kv′j′R)+ Aout
v′j′ l′kv′j′R h+(kv′j′R), (50)

where

h±(kv′j′R) = −nl(kv′j′R)± ijl(kv′j′R) (51)

and jl and nl are spherical Bessel and Neumann functions, respec-
tively. The projection on the incoming component of the scattered
wave packet should, of course, be zero. The reaction probability
from the initial state (vjl) to the product state (v′j′l′) is obtained
as the ratio of the outgoing and incoming fluxes,

Pv′j′ l′←vjl =
Fv′j′ l′
Fvjl

, (52)

where

Fv′j′ l′ =
1
µout

kv′j′ |Aout
v′j′ l′ |

2, (53)

Fvjl =
1
µin

kvj|c lE |
2, (54)

c lE is the component with energy E contained in the initial wave
packet, kvj the wave number of the initial channel vj, and µin
and µout the appropriate center of masses for the reactants and
products, respectively. The weight in energy space is related (see
Appendix D) to the weight in k space through the relation:

|c lE |
2
=


µin

h̄k

2

|c lk|
2. (55)

|c lk|
2 can be obtained analytically for a Gaussianwave packet as:

|c lk|
2
=

2/π σ exp[−2σ 2(k− k0)2], (56)

but this expression is only valid for a free particle, i.e., correspond-
ing to a system initialized at very large separation. On the other
hand, if the incoming or outgoing wave packet is initialized or ana-
lyzed at a moderate value of R, the effective potential at the same R
appears as [V (R)+ l(l+1)/2µR2

], where the potential is averaged
over the spherical DOFs (degree of freedom), θ and φ, to calculate
the effective potential V (R).

2.4. The absorbing potential

The outgoing wave packet must be removed from the grid
just after the projection but before it reaches the grid boundary
at ρmax. This is accomplished by adding a negative imaginary
potential to the last grid points for the hyperradius. This absorbing
potential has no physical meaning, it is located far away from the
interaction region but is a device used to avoid reflection. The form
of the imaginary potential is arbitrary, the only requirement is that
the scattering amplitudes should be independent of the type of
function used. In the present work, we use an absorbing potential
of the following form:

VIm(ρ) = −
iVmax

Im

cosh2
[(ρmax − ρ)/α]

, ρ ≥ ρIm, (57)

where ρIm is the starting point for the absorbing potential. The
performance of the imaginary potential is not very sensitive to
the choice of Vmax

Im , but with α. The error at low energies indicates
that these components are not absorbed efficiently. To improve
the absorption, themagnitude of the absorbing potential should be
decreased. This will, however, lead to reflection at higher energies.
We therefore decided to decrease α linearly with time during the
absorption of thewave packet. By doing so the slowmoving energy
componentswill experience an absorbing potential of amagnitude
small enough to avoid reflection. This procedure led to a very
uniform error distribution over the entire energy range.

3. Propagation and computation details

We propagate the wave packet(s) in time by employing the
iterative Lanczos reduction technique. Such an algorithm is known
as a short time propagator, capable of automatically controlling
recursion bymonitoring themagnitude of the last few vectors, and
accurate enough for the analysis of the outgoing wave packet. In
order to recover the wave packet after each propagation step, we
need to store the transformation matrix constituted with Lanczos
recursion vectors. Since it is possible to store thismatrix in the core
memory, one can avoid repeated calculation for half of such vectors
are required for the next time step.

Although the actual bottleneck is the evaluation of the kinetic
energy operator by using the Fast Fourier Transformation (FFT)
method, it has the favorable property that the computational
effort scales as cN logN , where N is the total number of grid
points on the ρ, θ and φ coordinates. However, the CPU time is
still very high for the recursive calculation of the kinetic energy
operators for iterative Lanczos propagation on a number of grid
points up to 2×106 (256 × 64 × 128). In particular, because the
domain of θ varies from 0 to π/2 in the hyperspherical coordinate
system, the grid size needs to be doubled in that coordinate so
that the basis functions (plane waves) vanish at θ = 0 and π
leading to a sine transformation (see Appendix C). Moreover, the
computational cost increases tremendously as the total angular
momentum J increases, particularly because the projection of the
time dependent wave packets on asymptotic states (v′, j′) arising
due to various orbital angular momentum (l′).

Indeed, one can reduce the huge computational cost through
parallelization. The computation for a set of partial waves (Ks) is
then carried out in different nodes by employing the MPI thread,
where the time propagation and its projection for each partial
wave are performed throughOpenMp parallelization in a particular
node. Fig. 2 displays the computational cost as a function of J for
the serial and parallel algorithms. The results speak for themselves
by showing that the labor with parallelization is done much faster
than with a serial implementation.

4. Results and discussions

For the testing purposes and the sake of comparisons with
previouswork, we perform 3Dwave packet [Φ(ρ, θ, φ)] dynamics
on the D + H2 (v = 0, 1; j = 0) system using the Siegbahn–
Liu–Truhlar–Horowitz (SLTH) [9] as well as Double Many - Body
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Fig. 2. The computation time (hours) as a function of J for various number of basis
sets. The red square and black circle symbols depict the computation time (hour)
for serial and parallel (OpenMp) runs, respectively.

- Expansion (DMBE) [11] BO PESs to calculate non-reactive [D +
H2 (v

′, j′)] and reactive [DH(v′, j′)+H] transition probabilities over
a range of initial kinetic energies of the incoming atom (D) with
total angular momentum J = 0. Moreover, for the D + H2 (v =
0, j = 0) system, coupled 3D wave packet [ΦK (ρ, θ, φ)] dynamics
has been carried out on the same BO PESs for a series of non-
zero total angular momenta, J = 1–20, where the wave packet
of the system is constituted with J or J + 1 number of partial
waves depending upon the initial rotational state (j) of the diatom.
Table 1 depicts the various parameters involved in our dynamical
calculations.

The modulus of the time-dependent wave packet can be con-
veniently visualized in hyperspherical coordinates due to its high
symmetry, where the densities are mapped onto the equator of a
hypersphere with radius ρ and hyperangles θ and φ. In Figs. 3–5,
we have used a stereographic projection technique [43] with β =
sin θ cosφ and γ = sin θ sinφ to display the time-dependent den-
sity for J = 0, 10 and 20 cases, respectively, where the collisional
energy of the incoming atomD is 1.11 eV and the initial state of the
diatom H2 is v = 0, j = 0. The plots clearly illustrate the change of
reactive transition probabilities to non-reactive ones with increas-
ing total angular momentum J at a fixed total energy of 1.34 eV.

Figs. 6 and 7 display vibrationally resolved reaction proba-
bilities due to the collision of D + H2 system with initial state
(v = 0, j = 0) and (v = 1, j = 0), respectively, for total angu-
lar momentum J = 0, where in all cases, we compare our calcu-
lated probabilities with those obtained by Zhang and Miller [17]
employing the time-independent Kohn variational principle based
S-matrix approach. When calculations are performed on SLTH PES,
Fig. 6a demonstrates the convergence of the probabilities with
respect to the increasing number of grid points on different coor-
dinates (ρ, θ, φ). Although the reaction probabilities are fully con-
verged with the set of grid points, 128⊗ 64⊗ 128 for the ρ, θ and
φ coordinates, we prefer to perform our calculations with the set
Fig. 3. Time-dependent density of the wave packet (|ψ2
|) for J = 0. The axes β and γ are defined by sin θ cosφ and sin θ sinφ, respectively.
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Fig. 4. Same as Fig. 3 for J = 10.
256 ⊗ 64 ⊗ 128. Indeed, because the projection on a particular R
(i.e., R∗) requires interpolation of the wave packet on the ρ coor-
dinate, we perform dynamics calculations with a high number of
grid points (256) in that coordinate. On the other hand, Fig. 6b de-
picts the comparison of the reactionprobabilities obtainedbyusing
SLTH and DMBE PESs, where transition probabilities from DMBE
PES are slightly closer with Zhang and Miller’s [17] results than
the SLTH ones. When we carry out the dynamics on DMBE poten-
tial and analyze at different asymptotic projection distance (R∗),
Fig. 6c displays those probabilities which appear fully converged
after 3 Å onwards over a long range of initial KE of the incoming
atom (D). In summary, Fig. 6 shows that the agreement between
our calculated results either by using SLTH or DMBE PESs and the
ones of Zhang andMiller is reasonable over the entire energy range,
whereas in Fig. 7, we find that there is some disagreement at all
energies, particularly, those obtained from SLTH PES and the tran-
sition probabilities for v′ = 1 with DMBE PES. In general, it ap-
pears reaction probabilities from DMBE PES lie somewhat closer
to Zhang and Miller [17] results carried out on SLTH. Although the
threshold behavior of our calculated probability is quite correct,
the resonances are slightly different and that may be due to time-
independent versus time-dependent approach or to some remote
extent to the adiabatic BO PES itself.

Fig. 8 depicts the rovibrational reaction probabilities calculated
by using SLTH and DMBE PESs for the collision D + H2 (v = 0,
j = 0) with total angular momentum J = 0 as a function
of rotational quantum number, j′, for the product DH (v′, j′) at
different initial kinetic energies of the incoming atom, D. At
the energies of 1.0 and 1.5 eV, the agreement between the two
calculated results for v′ = 0 with Zhang and Miller [17] is quite
encouraging, whereas the probabilities calculated for v′ = 0
and 1 at initial kinetic energies of 0.6 and 1.0 eV show some
disagreement, particularly, at high j′ values. The other reason for
some disagreement could be the projection of the wave packet on
various initial kinetic energies starting with a specific total energy
of the system.

In Fig. 9, we present the reaction probabilities calculated by
employing SLTH and DMBE PESs for the collision, D + H2 (v =
0, j = 0) as a function of the initial kinetic energy of the incoming
atom, D, when the total angular momentum (J) of the system is
1. In the same plot, the corresponding data from Miller and Zhang
on SLTH are also depicted. The reaction probabilities obtained by
using SLTH PES for v′ = 0 and 2 agree quite closelywith the ones of
Zhang and Miller over the entire energy range, but there are some
differences at higher energies for the reaction probabilities on v′ =
1. On the other hand, the transition probabilities calculated with
DMBE PES have good agreement with Zhang and Miller [17] over
the entire energy range for all final vibrational states (v′). Finally, in
Figs. 10 and 11, we demonstrate the reaction probability obtained
by using SLTH and DMBE PESs for v′ = 0 and 1, respectively, as a
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Fig. 5. Same as Fig. 3 as in Fig. 4 for J = 20.
Fig. 6a. Vibrationally resolved reaction probabilities for J = 0 with the H2
molecule initially on the v = 0, j = 0 state. All calculations are performed on
SLTH PES, where convergence of reaction probabilities are shown as function of
basis set: black (128 ⊗ 64 ⊗ 128), bright green (256 ⊗ 64 ⊗ 128), deep green
(256⊗64⊗256), magenta (128⊗128⊗128) and red (256⊗128⊗128), whereas
the blue circles depict Zhang and Miller’s results [J. Chem. Phys. 91, 1528 (1989)].
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

function of total angular momentum of the system (J) at various
initial kinetic energies of the incoming atom, D. The agreement
with the results of Zhang and Miller looks close enough for v′ = 0
case (see Fig. 10), but disagreements are observed for v′ = 1 (see
Fig. 11).
Fig. 6b. Vibrationally resolved reactionprobabilities for J = 0with theH2 molecule
initially in the v = 0, j = 0 state. Red line: SLTH (256⊗64⊗128); green line: DMBE
(256⊗ 64⊗ 128); circle (blue) symbols: Zhang and Miller’s results [J. Chem. Phys.
91, 1528 (1989)]. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

5. Summary

We have implemented a time-dependent 3D (J = 0) as well
as coupled 3D (J ≠ 0) wave packet approach for any triatomic
reactive system in hyperspherical coordinates so that all chan-
nels are even handedly treated. The method involves a grid repre-
sentation for the hyperspherical coordinates (ρ, θ, φ), where the
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Table 1
Data for the initialization, projection, absorbing potential discussed in the text. Run
1: v = 0, j = 0, J = 0, 1, . . . , 25; Run 2: v = 1, j = 0, J = 0.

Grid size:
Nρ 256
Nθ 64
Nφ 128
(ρmin, ρmax)/Å (0.85, 7.15)
Molecular constants:
De/eV 4.748
re/Å 0.741
β/Å−1 1.950
Translational wave
packet:
R0/Å 3.50
Rf /Å 1.68
σ/Å 0.21
k0 (Å

−1
) 22.76 (Run 1) 15.12 (Run 2)

Initial state:
Evj (eV) 0.2706 (Run 1) 0.7864 (Run 2)
Propagation:
1t (10−16 s) 0.50
Magnitude of the five
last Lanczos vectorsa

10−8–10−7

Absorbing potential:
Vmax
Im /eV 2.07
αb (Å) 0.30–0.20
Range of the
absorbing
potential (Å)

5.50–7.15

Projection:
R (Å) 2.75
ρ range (Å) 2.83–3.99
Vib. states v′ = 0, . . . , 2
Rot. states j′ = 0, . . . , 12
a The vectors are normalized, i.e., the total magnitude of all vectors is one.
b α is decreased linearly during the absorption of the wave packet.

Fig. 6c. Vibrationally resolved reaction probabilities for J = 0with theH2 molecule
initially in the v = 0, j = 0 state as a function R∗ (asymptote projection distance).
Red line: SLTH (256 ⊗ 64 ⊗ 128); green line: DMBE (256 ⊗ 64 ⊗ 128); circle
(blue) symbols: Zhang and Miller’s results [J. Chem. Phys. 91, 1528 (1989)]. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

rotation of the triatomic plane is quantized through a basis set ex-
pansion. By employing this approach, calculated reaction probabil-
ities as a function of initial kinetic energy of the incoming atom (D)
for the D + H2 system agrees reasonably with Zhang and Miller’s
results [17] for J = 0 and J ≠ 0 cases. Some disagreements at
higher energies could conceivably be due to the following reasons:
(i) single-energy dynamical calculation and projection over the en-
tire energy range; (ii) time-dependent versus time-independent
methodologies. Of course, we cannot exclude even if remotely, the
possibility that it may also be due to the subroutine that has been
utilized in the various calculations for the ground BO PES.

The present approach has two advantages: (a) the number of
bases required for the quantization of the rotation of triatomic
Fig. 7. Vibrationally resolved reaction probabilities for J = 0 with the H2 molecule
initially in the v = 1, j = 0 state. Square (red) symbols: present results using SLTH
potential (256 ⊗ 64 ⊗ 128); circle (blue) symbols: Zhang and Miller’s results [J.
Chem. Phys. 91, 1528 (1989)]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

plane are usually smaller than the number of grid points needed
to represent the other internal DOF; (b) the algorithm can be quite
efficiently parallelizable leading to the same computational (clock)
timewith increasing J except for the overheaddue to theprojection
on various rovibrational states (v′, j′) for different orbital angular
momentum, l′. Although the other time consuming part is the use
of FFT for evaluating the kinetic energy operator, the vectorization
of the grid through the implementation of parallel FFT algorithm
reduces the computational time immensely. Since our principal
aim is to extend themethod tomulti-surface problems, the present
approach based on hyperspherical coordinates will be easy to
implement almost without increasing the computational time.
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Appendix A. Transformations between Jacobi and hyperspher-
ical coordinates

Since we need to use Jacobi coordinates asymptotically to de-
fine the initial wave function of the triatomic system and wish to
perform the dynamics in hyperspherical coordinates, it is neces-
sary to establish the relations between these two sets of coordi-
nates. Consider a space-fixed coordinate system (X ′, Y ′, Z ′) such
that the three atoms A, B, C initially lie on the (X ′, Y ′) plane (see
Fig. 1). If the diatom (B–C) and the incoming atom A coincide with
the Y ′ and X ′ axis, respectively, the orientation of the R vector will
be defined by the angles, Θ ′ = π/2 and Φ ′ = 0 (see Fig. 1) in the
space-fixed coordinate system. On the other hand, the orientation
of the r vector for the diatomic molecule will be specified by the
angles, η and ξ in the body-fixed coordinate system.

In order to find the position vectors r′ and R′ at any point in the
configuration space, we use the following relations:

r′ = Õr, (A.1)

R′ = ÕR, (A.2)

where Õ specifies the rotation matrix defining the rotation of the
triangle formed by the three atoms.
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Fig. 8. Rotational distributions for J = 0 at 0.6 eV (a), 1.0 eV (b and d) and 1.5 eV (c). Square (red) symbols: SLTH (256⊗64⊗128); triangle up (green): DMBE (256⊗64⊗128);
circle (blue) symbols: Zhang and Miller’s results [J. Chem. Phys. 91, 1528 (1989)]. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Fig. 9. Vibrationally resolved reaction probabilities for J = 1 with the H2 molecule
initially in the v = 0, j = 0 state. Red line: SLTH (256 ⊗ 64 ⊗ 128); green line:
DMBE (256⊗ 64⊗ 128); circle (blue) symbols: Zhang and Miller’s results [J. Chem.
Phys. 91, 1528 (1989)]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

The definition of the hyperspherical coordinates in terms of the
above mass-weighted Cartesian coordinates is introduced as

rx = −
ρ
√
2


cos

θ

2
+ sin

θ

2


cos

φ

2
, (A.3)

Rx =
ρ
√
2


cos

θ

2
+ sin

θ

2


sin
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2
, (A.4)

ry =
ρ
√
2


cos

θ

2
− sin

θ

2


sin

φ

2
, (A.5)
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ρ
√
2


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θ

2
− sin

θ

2


cos

φ

2
, (A.6)
Fig. 10. Reaction probability D + H2 (v = 0, j = 0) → HD(v′ = 0, all
j′) + H as a function of J, for several values of E(eV). Square (red) symbols: SLTH
(256⊗64⊗128); triangle up (green): DMBE (256⊗64⊗128); circle (blue) symbols:
Zhang and Miller’s results [J. Chem. Phys. 91, 1528 (1989)].

rz = Rz = 0, (A.7)

which in turn lead to

r2 = r2x + r2y =
1
2
ρ2(1+ sin θ cosφ), (A.8)

R2
= R2

x + R2
y =

1
2
ρ2(1− sin θ cosφ), (A.9)

r2 + R2
= ρ2, (A.10)

and

r · R = rxRx + ryRy = −
1
2
ρ2 sin θ sinφ. (A.11)

The angle between the r and R vectors is known as:

cos γ ′ =
r · R
rR
=

− sin θ sinφ
1− sin2 θ cos2 φ

, (A.12)
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Fig. 11. Reaction probability D + H2 (v = 0, j = 0) → HD(v′ = 1, all
j′) + H as a function of J, for several values of E(eV). Square (red) symbols: SLTH
(256⊗64⊗128); triangle up (green): DMBE (256⊗64⊗128); circle (blue) symbols:
Zhang and Miller’s results [J. Chem. Phys. 91, 1528 (1989)].

which, at ρ → ∞, becomes identical to the diatomic orientation
angle (γ ′ = η).

Since theAD states are expressed in termof spherical harmonics
Yjµ(γ

′, ξ) with γ ′, ξ defining the orientation of the diatomic
molecule in a body-fixed coordinate system, the corresponding R
vector along the Z-axis is given by
R = (0, 0, R), (A.13)
where the orientation of R′ in a space-fixed coordinate system
Θ ′ and Φ ′ also define the AD states and the angle Θ ′ can be
evaluated as:

R′ = ÕR (A.14)

cosΘ ′ =
R · (0, 0, 1)
|R′|

=
R′z
R′
. (A.15)

When we use the Euler’s rotation matrix of the form given as in
Eq. (A.16) (see Box I), in Eq. (A.14), we obtain

R′z = sinβ
ρ
√
2


cos

θ

2
sin


γ −

φ

2



− sin
θ

2
sin


γ +

φ

2


. (A.17)

While employing R′ = R, the space-fixed orientation angle Θ ′
obtained from Eqs. (A.9) and (A.15) becomes

cosΘ ′ =

sinβ

cos θ2 sin

γ − φ

2

− sin θ
2 sin

γ + φ

2


√
1− sin θ cosφ

. (A.18)

In the asymptotic limit, we substitute θ = θ0 = π/2 to obtain:

cosΘ ′ = − sinβ cos γ . (A.19)
On the other hand, in order to determine ξ , we first rotate r to r′
(see Eq. (A.1)) and define a rotation of R′ such that:

TR′ =

0
0
R′


. (A.20)

With this rotated R′ vector along the Z-axis in this body-fixed
system, the orientation of r′ in the same coordinate system
becomes

r ′′ = Tr′ =

r ′′x
r ′′y
r ′′z

 = r sin η cos ξ
r sin η sin ξ

r cos η


, (A.21)

with angles η and ξ .
When we substitute Eq. (A.1) in Eq. (A.21), we getr ′′x
r ′′y
r ′′z

 = TÕ

rx
ry
0


, (A.22)

where the Tmatrix is given by

T =

cosΘ ′ cosΦ ′ cosΘ ′ sinΦ ′ − sinΘ ′

− sinΦ ′ cosΦ ′ 0
sinΘ ′ cosΦ ′ sinΘ ′ sinΦ ′ cosΘ ′

 , (A.23)

with Θ ′ and Φ ′ specifying the orientation of R′ in the space-fixed
coordinate system. Considering Eq. (A.22), we have

r ′′z =

kl

T3kÕklrl. (A.24)

When we substitute Eq. (A.14) in Eq. (A.20), we get the following
equation by using orthonormality condition of T matrix

T3j =
1
R′


l

ÕjlRl. (A.25)

Inserting Eq. (A.25) and employing the orthonormality condition
of Õ matrix,


k ÕkmÕkl = δml in Eq. (A.24), we obtain

r ′′z =
1
R′

kl


m

ÕkmÕklRmrl

=
1
R′

lm


k

ÕkmÕkl


Rmrl

=
1
R′
(Rxrx + Ryry). (A.26)

Whenwe substitute Eq. (A.21) and Eqs. (A.3)–(A.6) in Eq. (A.26),
we obtain

cos η =
− sin θ sinφ

1− sin2 θ cos2 φ
. (A.27)

We can now use the same procedure to find sin ξ by considering
r ′′y ,

r ′′y =

k

T2k


l

Õklrl =

k

T2kÕk1rx +

k

T2kÕk2ry (A.28)

with (rz = 0).
Introducing the following relations

T21 = − sinΦ ′ = −
R′y

R′ sinΘ ′
= −

1
R′ sinΘ ′

(Õ21Rx + Õ22Ry),

T22 = cosΦ ′ =
R′x

R′ sinΘ ′
=

1
R′ sinΘ ′

(Õ11Rx + Õ12Ry), (A.29)

leads to

r ′′y = r sin η sin ξ =
cosβ

R′ sinΘ ′
ρ2

2
cos θ, (A.30)

where we have used
ryRx − rxRy = (ρ

2/2) cos θ,

Õ11Õ22 − Õ12Õ21 = cosβ, (A.31)
with

rR′ =
1
2
ρ2

1− sin2 θ cos2 φ (A.32)

and

sin η =
cos θ

1− sin2 θ cos2 φ
, (A.33)

to finally obtain

sin ξ = cosβ/ sinΘ ′. (A.34)
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6)
Õ =

cos γ cosα cosβ − sinα sin γ − sin γ cosα cosβ − sinα cos γ sinβ cosα
cos γ cosβ sinα + sin γ cosα cosα cos γ − sin γ cosβ sinα sinβ sinα

− cos γ sinβ sin γ sinβ cosβ


(A.1

Box I.
Appendix B. Orthonormality of the initial wave packet

The normalization of the wave packet (see Eq. (14)) is defined
as:

dρ dθ dφ|Φk|
2
= 1. (B.1)

If Eq. (23) is now considered, we may write:

Φ∗kΦk = 2π sin η J(Rrη|ρθφ)(2l+ 1)φ∗vj(r)φvj(r)χ
∗

× (R)χ(R)

µ


µ′


j l J
µ 0 −µ


j l J
µ′ 0 −µ′


× Cjµ(η)Cjµ′(η)AKµAKµ′ , (B.2)

where J(Rrη|ρθφ) is a Jacobi factor and

J(Rrη|ρθφ) dρ dθ dφ = dR dr dη, (B.3)
dR χ∗(R)χ(R) = 1, (B.4)
drφ∗vj(r)φvj(r) = 1, (B.5)

leading to
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Since

2π


dη sin ηCjµ(η)Cjµ′(η) = 1 only for µ = µ′ (B.7)

and

(2l+ 1)

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
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µ 0 −µ


j l J
µ 0 −µ


= 1, (B.8)

the only possibility is
K

AKµAKµ′ = δµµ′ . (B.9)

Appendix C. Sine transform

For a given ρ and φ, let us denote the amplitudes of the wave
packet on the θ grid within the domain 0 to π/2 by

χ(θ1), χ(θ2), . . . , χ(θN−1), χ(θN). (C.1)

It is now important to note that while performing Fast Fourier
transformation (FFT) on those amplitudes to evaluate the kinetic
energy operator(s), the basis functions do not obey the boundary
condition, i.e., the corresponding cosine and sine functions do not
vanish either at θ = 0 or π/2, respectively. In order to resolve this
problem, we double the grid with appropriate amplitudes as given
below:
χ(θ1), χ(θ2), . . . , χ(θN−1), χ(θN),−χ(θN),−χ(θN−1), . . . ,

−χ(θ2),−χ(θ1). (C.2)
The following scheme explores the necessity of doubling the

grid in a symmetric manner with negative sign. Any one of the
above discrete amplitudes (χ(θl)s) can be written in terms of
Fourier coefficients:

χ(θk) =

2N
n=1

Ck
n exp(−iκnθk), κn =

2π
L
; n ≤ N

=
2π
L
(n− 1− 2N); n > N (C.3)

where

C l
m =

2N
l=1

χ(θl) exp(iκmθl)1θ. (C.4)

If we now substitute the anti-symmetric form of the amplitudes
(see Eq. (C.2)), Eq. (C.4) can be rewritten as:

C l
m =

N
l=1

2i sin(κmθl)1θ; m ≤ N

C l
m′ = −

N
l=1

2i sin(κ2N−m+1θl)1θ; m′ > N. (C.5)

Therefore, we have

C l
2N = −C

l
1,

C l
2N−1 = −C

l
2,

...

and so on.

(C.6)

Accordingly, we have the following anti-symmetric string of
Fourier coefficients for the lth amplitude,χ(θl), of thewave packet:

C l
1, C

l
2, . . . , C

l
N−1, C

l
N ,−C

l
N ,−C

l
N−1, . . . ,−C

l
2,−C

l
1. (C.7)

If we back substitute Eq. (C.7) in Eq. (C.3), we can rewrite the am-
plitudes, χ(θ1) and χ(θ2N) as given below:

χ(θ1) = −2i
N

n=1

C1
n sin(κnθ1),

χ(θ2N) = 2i
N

n=1

C2N
n sin(κnθ1). (C.8)

Thus, we find the following relationship:

χ(θ2N) = −χ(θ1),

χ(θ2N−1) = −χ(θ2),

...

and so on.

(C.9)

which has been assumed in Eq. (C.2) for the required Sine transfor-
mation.Moreover, it is important to note that in this scheme, either
the amplitudes (Eq. (C.8)) or the Fourier coefficients (Eq. (C.5)) are
expressed in terms of sine functions.
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Appendix D. Time energy Fourier transform

The relationship between the weight in k space of a given
component of a Gaussian wave packet (see Eq. (28)) and its weight
in energy space is derived via the free particle propagator [44]

K(R, t = 0; R∗, t) =


µ

2π ih̄t

 1
2

exp


iµ(R∗ − R)2

2h̄t


. (D.1)

The amplitude of the wave packet at a specified time, t , and point
in space, R∗, can be expressed as

χ(t, R∗) =

∞

−∞

dR K(R, 0; R∗, t)χ(t = 0, R). (D.2)

The Fourier transformation from time to energy space is now
performed,

b(E; R∗) =
1
√
2π


∞

−∞

dtχ(t, R∗) exp(iEt/h̄)

=
1
√
2π

Nc

∞

−∞

dR


∞

−∞

dt tγ−1

× exp


iα
2


t −

β2

t


exp[−ik0R− a(R− R0)

2
], (D.3)

where

c =


µ

2π ih̄
, (D.4)

γ = 1/2, (D.5)

α =
2E
h̄
=

h̄k2

µ
, (D.6)

β = i

µ

2E
(R∗ − R). (D.7)

The integral in brackets can be solved analytically [45] giving

I =


2π i
α

exp[−ik(R∗ − R)]. (D.8)

Substitution of this result together with the expressions for c and
α into Eq. (D.3) yields

b(E; R∗) =
µ

h̄k
exp(−ikR∗)

1
√
2π

N

∞

−∞

dR

× exp[−ik0R− a(R− R0)
2
] exp(ikR)

=
µ

h̄k
exp(−ikR∗)

1
√
2π


∞

−∞

dR χ(t = 0, R)

× exp(ikR) =
µ

h̄k
exp(−ikR∗)ck. (D.9)

Thus, we have shown that

|cE |2 =


µ

h̄k

2

|ck|2. (D.10)
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