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The kurtosis and skewness of net baryon-number fluctuations are studied for the magnetized phase
diagram of three-flavor quark matter within the Polyakov extended Nambu–Jona-Lasinio model. Two
models with magnetic catalysis and inverse magnetic catalysis are considered. Special attention is given to
their behavior in the neighborhood of the light and strange critical end points (CEPs). Several isentropic
trajectories that come close the CEPs are studied in order to analyze possible signatures of a CEP in the
presence of external magnetic fields. The effect of the magnetic field on the velocity of sound, v2s , when
both the light and strange CEPs are approached from the crossover region is also investigated by calculating
their temperature and baryon chemical potential dependencies at fixed distances from these CEPs. Regions
with large fluctuations but no CEP in nonmagnetized matter develop a CEP under the action of a strong
magnetic field. Besides, the Landau quantization of the quark trajectories may result in the appearance of
extra CEPs, in particular, in the strange sector for strong magnetic fields, identifiable by the net baryon-
number fluctuations. Stiffer (smoother) fluctuations in the region of the CEP are characteristic of models
that do not predict (do predict) the inverse magnetic catalysis at zero chemical potential. Particularly
interesting is the ratio χ4B=χ

2
B that has a more pronounced peak structure, indicating that it is eventually a

more convenient probe for the search of a CEP. The speed of sound shows a much richer structure in
magnetized quark matter and allows one to identify both chiral and deconfinement transitions.

DOI: 10.1103/PhysRevD.98.034003

I. INTRODUCTION

Notable theoretical and experimental efforts [1] are being
done to uncover the rich details of the QCD phase structure
[2,3], namely the nature of the hadron matter–quark gluon
plasma phase transition and the eventual existence of the
QCD chiral critical end point (CEP) in the phase diagram.
Experimentally, one of the main goals of the heavy ion

collision (HIC) programs has been to unveil the possible
existence and location of theCEPon theQCDphase diagram.
This topic has experienced great developments over the last
few years [4–6]. Nevertheless, the location of the CEP is still
a mystery, its search being a major goal of several ongoing
and future HIC experiments; the search for the CEP is being
undertaken in Super Proton Synchrotron (SPS) (NA61/
SHINE Collaboration) at CERN [7,8]; in the Relativistic
Heavy Ion Collider (RHIC) (STAR Collaboration) at
BrookhavenNational Laboratory [9,10]; and in future facilities

Facility for Antiproton and Ion Research (FAIR) at
GSI Helmholtzzentrum für Schwerionenforschung [11],
Nuclotron-based Ion Collider fAcility (NICA) at Joint
Institute for Nuclear Research [12], and J-PARC Heavy
Ion Project at Japan ProtonAccelerator Research Complex
(J-PARC) [13] (a review on the experimental search of the
CEP can be found in Ref. [14]). In addition, both NICA
and J-PARC-HI HIC programs are expected to create
extremely dense matter comparable to the neutron star
core, where the eventual first-order phase boundary can
also be explored.
Therefore, it is important to probe the QCD phase

transition and the possible existence of the CEP by
investigating potential measurable signatures that phase
transitions can leave in the final state of HIC experiments
(see Ref. [15]).
Fluctuations of conserved quantities, such as baryon,

electric charge, and the strangeness number, are very impor-
tant to the experimental search for theCEP in relativistic HIC.
Indeed, measurements of cumulants of the net proton (proxy
for net baryon) [16], net charge [9], and net kaon (proxy for
net strangeness) [10] are expected to provide relevant
information on the medium created by the collision (for a
review, see Refs. [17–20]). Experimentally, these quantities
are studied bymeasuring event-by-event fluctuations: a given
observable is measured on an event-by-event basis, and its
fluctuations are studied for the ensemble of events [19].
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Due to the second-order nature of the phase transition
that occurs at the CEP, divergences of correlation lengths
for a static system of infinite size will take place. Therefore,
cumulants of the net baryon number diverge [21,22],
making them particularly interesting. Kurtosis [23] and
skewness [24] for the net baryon-number fluctuation
distributions are connected to high-order cumulants, which
can be extracted from event-by-event fluctuations in HIC
experiments. Moreover, once they consist of cumulants
ratios they are independent of the volume of the system.
By using the (2þ 1)-flavor Nambu–Jona-Lasinio (NJL)

model, the study of fluctuations of conserved charges
(baryon number, electric charge, and strangeness) at finite
temperature and density has been done in Refs. [20,25,26].
The study of these fluctuations employing the (2þ 1)-
flavor Polyakov–Nambu–Jona-Lasinio (PNJL) [27] model
was performed in Refs. [28–31] at finite temperature and in
Refs. [29,31,32] at finite temperature and density.
Several conditions can affect the eventual existence and

location of the CEP. It is known that the presence of external
magnetic fields is one of them.1 Other circumstances that
affect the location of the CEP are the strangeness and the
isospin content of themedium [34–36]. Also considering the
effects of repulsive vector interactions and of the inverse
magnetic catalysis (IMC) mechanism [37,38], which have
opposite competing effects, will dramatically influence the
position of the CEP in the phase diagram [35].
The effect of magnetic fields is especially fascinating and

a very timely topic [39–41]. Several low-energy effective
models, including the NJL-type models, have been used to
investigate the impact of strong magnetic fields at finite
temperature [42–47] and at finite baryonic chemical poten-
tials [48–50]. Indeed, it was found that external magnetic
fields induce several CEPs in the strange sector [51], which
arise due to the multiple phase transitions that the strange
quark undergoes. The same happens for the light sector by
taking isospin breaking chemical potential [34,36].
Moreover, other regions of the QCD phase diagram are
affected by magnetic fields like the first phases of the
Universe [52,53] and compact stellar objects [54].
It becomes crucial, therefore, to understand how an

external magnetic field affects the structure of the QCD
phase diagram, namely its impact on the fluctuations of net
baryon number. At finite temperature, this was done in
Ref. [55]. We nowwill study this effect at finite temperature,
T, and baryonic chemical potential, μB, giving attention
to both the light and strange sectors, with the respective
CEPs and associated first-order phase transitions.
In this work, we study the magnetized phase diagram

using the (2þ 1)-flavor PNJL model from the point of view
of the kurtosis and skewness of net baryon-number
fluctuations near the light and strange CEPs, in both the

crossover and first-order transition regions. The model and
formalism are presented in Sec. II, while the results are in
Sec. III. Finally, in Sec. IV, we draw our conclusions.

II. MODEL AND FORMALISM

A. PNJL model

The magnetized three-flavor quark matter is investigated
using the (2þ 1)-flavor Nambu–Jona-Lasinio model
coupled to the Polyakov loop. The model Lagrangian
density reads

L ¼ q̄½iγμDμ − m̂c�qþ Lsym þ Ldet

− UðΦ; Φ̄;TÞ þ 1

4
FμνFμν: ð1Þ

The Lsym and Ldet denote, respectively, the scalar-pseudo-
scalar interaction and the ’t Hooft six-fermion interaction
[56,57],

Lsym ¼ Gs

X8

a¼0

½ðq̄λaqÞ2 þ ðq̄iγ5λaqÞ2� ð2Þ

Ldet ¼ −Kfdet ½q̄ð1þ γ5Þq� þ det ½q̄ð1 − γ5Þq�g: ð3Þ

The (eletro)magnetic tensor is given by Fμν ¼ ∂μAν
EM −

∂νAμ
EM, with Aμ

EM being the external (electro)magnetic
field. We consider a static and constant magnetic field in
the z direction, Aμ

EM ¼ δμ2x1B. The quark field is repre-
sented in flavor space by q ¼ ðu; d; sÞT, with (current) mass
matrix m̂c ¼ diagfðmu;md;msÞ. The Gell-Mann matrices
are denoted by λa. The external (electro)magnetic field
couples with both the quarks and the effective gluon field,
Aμ, through the covariant derivative, Dμ ¼ ∂μ −
iqfA

μ
EM − iAμ.2 The effective gluon field is given by

Aμ ¼ gstrongA
μ
a
λa
2
, where Aμ

a represents the SUcð3Þ gauge
field. The spatial components are neglected in Polyakov
gauge at finite temperature, i.e., Aμ ¼ δμ0A

0 ¼ −iδμ4A4. The
Polyakov loop value is defined as the trace of the Polyakov
line, Φ ¼ 1

Nc
⟪P exp i

R β
0 dτA4ðx⃗; τÞ⟫β, which is the order

parameter of the Z3 symmetric/broken phase transition in
pure gauge. For the pure gauge sector, we use the following
effective potential [58],

UðΦ; Φ̄;TÞ
T4

¼ −
aðTÞ
2

Φ̄Φþ bðTÞ ln½1 − 6Φ̄Φ

þ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2�; ð4Þ

where aðTÞ ¼ a0 þ a1ðT0

T Þ þ a2ðT0

T Þ2 and bðTÞ ¼ b3ðT0

T Þ3.
Its parametrization values are a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼
15.2, and b3 ¼ −1.75 [58], while the critical temperature

1A highly inhomogeneous magnetic field with a value of about
5m2

π is formed in some HIC, even if for a very short time [33].

2The quark electric charges are qd ¼ qs ¼ −qu=2 ¼ −e=3,
where e is the electron charge.
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is set to T0 ¼ 210 MeV in order to reproduce the pseu-
docritical temperature for the deconfinement coming from
lattice calculations [59].
The divergent ultraviolet sea quark integrals are regu-

larized by a sharp cutoff Λ in three-momentum space.
For the NJL model parametrization, we consider Λ ¼
602.3 MeV,mu¼md¼5.5MeV,ms¼140.7MeV,G0

sΛ2 ¼
1.835, and KΛ5 ¼ 12.36 [60].
At finite magnetic field, two model variants with distinct

scalar couplings are considered: the usual NJL model with
constant Gs ¼ G0

s coupling and a magnetic field dependent
coupling Gs ¼ GsðeBÞ [38]. The latter model gives a
decrease of both the chiral and deconfinement pseudocrit-
ical temperatures at μB ¼ 0 with increasing magnetic field
strength, in accordance with lattice QCD calculations [61],
while the opposite occurs for the G0

s model. Its functional

dependence is GsðζÞ¼G0
sð1þaζ2þbζ3

1þcζ2þdζ4Þ, where ζ¼eB=Λ2
QCD

(with ΛQCD ¼ 300 MeV). The parameters are a ¼
0.0108805, b ¼ −1.0133 × 10−4, c¼0.02228, and d¼
1.84558×10−4 [38]. Both models coincide at zero mag-
netic field, Gs ¼ G0

s ¼ GsðeB ¼ 0Þ. The gap equations are
solved within the mean field approximation (the equations
can be found in Refs. [62,63]).

B. Baryon-number susceptibilities

Fluctuations or cumulants of conserved charges, such as
baryon number, provide crucial information on critical
phenomena. In a thermal equilibrium medium, fluctuations
of conserved charges behave characteristically, enabling the
identification of the onset of deconfinement or the possible
existence of a CEP on the QCD phase diagram. They are
then expected to provide a characteristic signature for the
presence of a CEP that can be experimentally observed.
Herein, we focus on the baryon-number charge fluctua-
tions. The nth-order net baryon (generalized) susceptibility
is given by

χnBðT; μBÞ ¼
∂nðPðT; μBÞ=T4Þ

∂ðμB=TÞn : ð5Þ

Due to the extensivity property of cumulants, different
susceptibilities ratios,

χn;mB ≡ χnBðT; μBÞ
χmB ðT; μBÞ

; ð6Þ

are then calculated in order to eliminate the volume
dependence, allowing for a possible comparison with
experimental observables. In this work, we analyze the
following ratios,

χ4;2B ðT; μBÞ ¼
χ4BðT; μBÞ
χ2BðT; μBÞ

¼ κσ2; ð7Þ

χ3;1B ðT; μBÞ ¼
χ3BðT; μBÞ
χ1BðT; μBÞ

¼ SBσ3

M
; ð8Þ

where M ¼ VT3χ1B is the mean, σ2 ¼ VT3χ2B is the
variance, SB is the skewness, and κ is the kurtosis of the
net baryon-number distribution.

III. RESULTS

Herein, we analyze the qualitative dependence of the
net baryon-number fluctuations over the phase diagram
and the effect of an external magnetic field. We consider
quark matter with equal quark chemical potentials, μu¼
μd¼μs¼μq. The baryonic chemical potential is then given
by μB ¼ 3μq. For a finite magnetic field, we perform a
comparison between the Gs ¼ G0

s and Gs ¼ GsðeBÞ mod-
els (both models coincide at zero magnetic field).
The χ3B and χ4B net baryon-number susceptibilities for

eB ¼ 0 (left panels) and 0.3 GeV2 [middle panels for the
G0

s model and right panels for the GsðeBÞ model] are given
in Fig. 1. For a better understanding of their dependence on
T and μB, we present the following information on the
plots: the chiral (dashed black line) and the deconfinement
(dotted black line) pseudocritical boundaries, the first-order
chiral phase transition (black solid line), CEP (black dot),
and three isentropic trajectories (dark green dashed lines),
i.e., trajectories along which the system entropy over the
baryon density, s=ρB, is constant. The pseudocritical
boundaries, where the crossover transition is characterized
by an analytic behavior, allow for different definitions of
(pseudo)critical temperature through different observables.
The pseudocritical temperature is often defined as the
temperature at which the susceptibility of the order param-
eters takes its maximum value (the point where fluctuations
are largest). Using this definition, the PNJL model presents
Tps
χ ðμB ¼ 0Þ ¼ 200 MeV and Tps

Φ ðμB ¼ 0Þ ¼ 171 MeV at
B ¼ 0. However, lattice QCD results presents a different
order for these crossovers: Tχ ¼ 157 [64] and Tps

Φ ðμB ¼
0Þ ¼ 170 [59]. In general, in PNJL type models (or the
Polyakov-Quark-Meson model), the temperature of the
transitions is inverted. In the PNJL model, we have two
sectors to determine the respective scales: the NJL one
(fitted to chiral symmetry breaking phenomenology in
vacuum, a scale related to the strength of the condensate)
and the gluonic one (fixed by pure gauge results at finite
temperature with the scale T0). The coupling is done via the
covariant derivative. If T0 is allowed to vary, it is possible to
control the relative scales of the transitions and to obtain the
correct scale hierarchy for the transitions by increasing T0.
However, in this case, both the chiral and the deconfine-
ment transitions occur at too high temperatures [65].
The following qualitative features remain valid in the

presence or absence of B and, therefore, are valid for the
three scenarios of Fig. 1: (i) the χ3B values are asymmetric
with respect to the chiral transitions, with the χ3B > 0 being

NET BARYON-NUMBER FLUCTUATIONS IN MAGNETIZED … PHYS. REV. D 98, 034003 (2018)

034003-3



the region on the broken chiral symmetry region, and
(ii) the χ4B > 0 region is nearly symmetric with respect
to the χ4B < 0 one, which lies along the chiral crossover
boundary.
Regardless of the absence of a first-order phase transition

for the strange quark at eB ¼ 0, a region with a non-
monotonic dependence, very similar to the one around the
CEP, is seen for high values of μB [see panels (a) and (d)
of Fig. 1]. This result, which is attributed to the specific
model parametrization employed [66], is signaling the
proximity of a first-order phase transition for the strange
quark; a stronger scalar coupling would eventually give
rise to a first-order phase transition also for this sector. In
fact, a first-order phase transition for the strange sector
automatically appears when eight-quark interactions are
included [67].
The change of the chiral transition from crossover to first

order in strong magnetic fields is related with the filling of
Landau levels, and therefore, at least an additional CEP
emerges at high μB and at low T (the second black dot in
middle and right panels of Fig. 1) for both scalar coupling
models (see Ref. [51]). The appearance of multiple CEPs
in the strange sector was already reported in Ref. [51],
where the analysis of the strange quark condensate
(with T0 ¼ 270 MeV) showed multiple phase transitions.
Furthermore, multiple phase transitions for the light quarks
also occur when lower eB values are considered [34]. The
GsðeBÞmodel predicts both CEPs at lower μB and T values
than the G0

s model.

It is interesting that two additional nonmonotonic sus-
ceptibility regions are present, indicating critical regions, at
around μB ≈ 1350 MeV [see panels (b) and especially (e)
of Fig. 1 for χ4B]: a critical region at higher temperatures,
associated to the strange CEP, and a second one at low
temperatures with no connection with a first-order phase
transition. This second critical region is due to a fast
increase of the density of d quarks at small temperatures.
When the GsðeBÞ model is considered, these two critical
regions occur at different values of μB [see panels (c) and
(f)]: the critical region related with the strange quark and
the respective first-order transition with the CEP are pushed
to lower baryonic chemical potentials, while the critical
region associated with the d quark is practically unchanged
because its mass is already close to the current mass.
However, even in the absence of a CEP, this critical region
looks like a “near-CEP” region. At even higher values of
μB, a glimpse of a new critical region appears. This is the
second first-order phase transition for the strange quark
found in Ref. [51].
To examine possible signatures of a CEP in nearby

isentropes, we have determined three specific isentropic
trajectories (dark green solid-dashed lines in all panels of
Fig. 1): one that passes above the light CEP (i.e., in the
crossover region), s=ρB ¼ 15, which will be analyzed in
detail later; and two that take place in the low T and high μB
region, s=ρB ¼ 1 and 0.1 (clockwise direction).
At high baryonic chemical potentials, the s=ρB ¼ 1

isentrope shows a characteristic behavior [bending toward

(a) (b) (c)

(d) (e) (f)

FIG. 1. The χ3B (top panels) and χ4B (bottom panels) net baryon-number susceptibilities for zero magnetic field [panels (a) and (d)] and
eB ¼ 0.3 GeV2 within theG0

s [panels (b) and (e)] andGsðeBÞ [panels (c) and (f)] models. The following information is shown: the CEP
(black dot), the chiral first-order phase transition (black solid line), both the chiral (black dashed line) and deconfinement (black dotted
line) crossovers, and the s=ρB ¼ 15, 1, 0.1 isentropes (dark green solid-dashed lines), which appear in the clockwise direction,
respectively.
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the CEP as seen in panels (b) and (c) or (e) and (f)] near the
nonmonotonic susceptibility regions for the strange CEP;
due to the low temperature of these isentropes, a sudden
decrease/increase of the strange quark density must be
balanced by a rapid decrease/increase of the temperature
to keep s=ρB constant. Additionally, the s=ρB ¼ 0.1 isen-
trope for the GsðeBÞ model shows a bending toward the
negative (blue) region of the χ4B value at μB ≈ 1350 MeV
[see Fig. 1(f)]. This is the already referred critical region
without the presence of a CEP. Around the light first-order
phase transition, both isentropes behave as seen in Ref. [51].
The ratios χ3B=χ

1
B and χ4B=χ

2
B are plotted in Fig. 2. Aside

from the region near the CEP of the light quarks, χ3B=χ
1
B

also shows the presence of a slight nonmonotonic behavior
near the CEP related with the strange quark phase tran-
sition, especially in the presence of the magnetic field [see
panels (a), (b), and (c) of Fig. 2]. The χ4B=χ

2
B, otherwise,

shows a well-defined nonmonotonic structure near both
CEPs [see panels (d), (e), and (f) of Fig. 2] but no signal of
the multiple structure seen in Fig. 1 for χ3B and χ4B. Both
ratios show a clear distinction between the regions where
chiral symmetry is broken and (approximately) restored.
They are also sensitive to the deconfinement transition as
shown by their pronounced variation along the deconfine-
ment boundary at lower baryonic chemical potentials
(dotted black line). Even if both ratios are sensitive to
the presence of external magnetic fields, χ4B=χ

2
B has a

more pronounced peak structure, which indicates that it is

probably a more useful probe for the CEP and for the strong
magnetic field produced in early noncentral collisions.
Figure 2 also shows an interesting difference of the
magnetic fields effect on chiral and deconfinement tran-
sitions when the G0

s model or the GsðeBÞ model is
considered. Indeed, as already pointed out, the PNJL
model presents Tps

χ ðμB¼0Þ¼200MeV and Tps
Φ ðμB¼0Þ¼

171MeV at B ¼ 0 and thus a gap of 29 MeV between
the pseudocritical transition temperatures. At finite B, the
gap increases for the G0

s model, whereas it remains almost
unchanged for the GsðeBÞ model.
Let us now focus on the dependence of χ3B=χ

1
B and χ4B=χ

2
B

around the CEP of the light quarks. They are plotted as a
function of μB=μCEPB and T=TCEP in, respectively, Figs. 3
and 4, at eB ¼ 0, 0.3 and 0.6 GeV2 for both models. The
isentrope s=ρB ¼ 15 (dark green solid-dashed line) is also
shown. The phase diagram in terms of the ratios μB=μCEPB
and T=TCEP turns visible some features of the behavior
of the light quark condensate due to the magnetic field
independently of the location of the CEP. Indeed, the
enhancement of both fluctuation ratios at low μB due to B
reflects the effect of the magnetic field on the CEP location
ðTCEP; μCEPB Þ and the respective extension of the critical
region. Let us first consider the G0

s model: the increase of
the magnetic field localizes the strong fluctuations closer
to CEP and to the deconfinement crossover and separates
the chiral symmetry restoration and deconfinement cross-
overs with a valleylike feature. This is seen for both ratios.

(a) (b) (c)

(d) (e) (f)

FIG. 2. The χ3B=χ
1
B (top panels) and χ4B=χ

2
B (bottom panels) net baryon-number susceptibilities for zero magnetic field [panels (a) and

(d)] and eB ¼ 0.3 GeV2 within the G0
s [panels (b) and (e)] and GsðeBÞ [panels (c) and (f)] models. The following information is shown:

the critical point (black dot), the chiral first-order phase transition (black solid line), both the chiral (black dashed line) and
deconfinement (black dotted line) crossovers, and the s=ρB ¼ 15, 1, 0.1 isentropes (dark green solid-dashed lines), which appear in the
clockwise direction, respectively.
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TheGsðeBÞmodel behaves differently: the high fluctuation
range spreads to a larger extension when B increases, and
the region between the two crossover lines is filled with
larger fluctuation ratios. To summarize, the GsðeBÞ model,
which describes the IMC effect, gives rise to smoother
fluctuations that are detected in a larger region of the phase
diagram. This is also visible in Fig. 3, where it is not seen a
considerable enhancing of the fluctuation region; i.e., the
size of the nonmonotonic region seems to be independent
of the B strength for each model. The GsðeBÞmodel shows

an enlargement of the nonmonotonic region of the fluc-
tuation ratio with increasing magnetic field when compared
with the G0

s model.
Finally, the GsðeBÞ model predicts that μCEPB decreases

with B, and the chiral crossover at μB ¼ 0 possibly turns
into a first-order phase transition for high enough B [35].
This would lead to an increase of the fluctuation ratio at
low values of μB due to the dragging of the critical region
by the CEP. Although the G0

s model also predicts the same
tendency for eB < 0.3 GeV2, μCEPB increases for higher

(a)

(b) (c)

(d) (e)

FIG. 3. The χ3B=χ
1
B net baryon-number susceptibility around the chiral CEP for eB ¼ 0 [panel (a)], eB ¼ 0.3 GeV2 within the G0

s

[panel (b)] and GsðeBÞ [panel (d)] models and eB ¼ 0.6 GeV2 within the G0
s [panel (c)] and GsðeBÞ [panel (e)] models. The following

information is shown: the CEP (black dot), the chiral first-order phase transition (black solid line), both the chiral (black dashed line) and
deconfinement (black dotted line) crossovers, and the s=ρB ¼ 15 isentrope (dark green solid-dashed line).

(a)

(b) (c)

(d) (e)

FIG. 4. The χ4B=χ
2
B net baryon-number susceptibility around the chiral CEP for eB ¼ 0 [panel (a)], eB ¼ 0.3 GeV2 within the G0

s

[panel (b)], and GsðeBÞ [panel (d)] models and eB ¼ 0.6 GeV2 within the G0
s [panel (c)] and GsðeBÞ [panel (e)] models. The following

information is shown: the CEP (black dot), the chiral first-order phase transition (black solid line), both the chiral (black dashed line) and
deconfinement (black dotted line) crossovers, and the s=ρB ¼ 15 isentrope (dark green solid-dashed line).
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values of B, and, consequently, fluctuations now are
reduced at low values of μB. A strong enhancement of

χ3ð4ÞB =χ1ð2ÞB at μB ¼ 0 with increasing B would, therefore,
signals the vicinity of a CEP at small μB values.
The s=ρB ¼ 15 isentropic trajectory at intermediate

temperatures and chemical potentials shows some similar-
ities for all panels of Fig. 3 (Fig. 4 presents the same
isentropic line). We see that a change in the isentropic
trajectory occurs while crossing the chiral (black dashed
line) and the deconfinement (black dotted line) phase
boundaries: as the temperature decreases, a first bend in
the s=ρB ¼ 15 isentrope occurs just slightly above the
chiral crossover, and a second bend in the opposite
direction occurs just slightly above the deconfinement
transition. The chemical potential and temperature decrease
continuously along the isentrope, except close to the
crossing of the crossovers when a more or less intense
backbending of the line to higher chemical potential occurs.
The larger effect occurs for the G0

s model.
In order to investigate how the strong fluctuation region

is affected by the magnetic field, we show the regions
where χ4B=χ

2
B ≥ 1.5 in Fig. 5. The results for eB ¼ 0 (red

(a)

(b)

FIG. 5. Region around the chiral CEP with χ4B=χ
2
B ≥ 1.5 for

eB ¼ 0 GeV2 (red), 0.3 GeV2 (green), and 0.6 GeV2 (blue)
within the G0

s (top) and GsðeBÞ (bottom) models.

(a) (b) (c)

(d) (e) (f)

FIG. 6. Sound velocity squared, v2s , as a function of temperature (top panels) and baryonic chemical potential (bottom panels) for
eB ¼ 0 (black lines), 0.3 GeV2 (red lines), and 0.6 GeV2 (blue lines) within theG0

s (dashed) andGsðeBÞ (solid) models around the light
CEP. Three values for the relative distance to CEP are considered: the T dependence is computed at μB=μCEPB ¼ 0.90 [panel (a)], 0.95
[panel (b)], and 0.99 [panel (c)], whereas the μB dependence is determined at T=TCEP ¼ 1.1 [panel (d)], 1.05 [panel (e)], and 1.01
[panel (f)].

NET BARYON-NUMBER FLUCTUATIONS IN MAGNETIZED … PHYS. REV. D 98, 034003 (2018)

034003-7



region), 0.3 (green region), and 0.6 (blue region) GeV2 for
the G0

s [panel (a)] and GsðeBÞ [panel (b)] models are
presented and show that the area of the χ4B=χ

2
B ≥ 1.5 regions

does not depend significantly on the magnetic field. The
main effect for the G0

s model is the rotation of the whole
region and the separation of the third brunch (at lower
temperatures), due to the growing gap between the chiral
and the deconfinement transition with increasing B. The
GsðeBÞ model, however, only shows a small rotation and a
rather constant gap between the crossover transitions. The
rotation of the whole region is also expected since the TCEP

has a smaller increase for the GsðeBÞmodel than for theG0
s

model. As referred to before, another effect is the widening
of the bands along or between the crossover lines within the
GsðeBÞ model, corresponding to a smoother behavior of
the condensate.
The sound velocity, v2s ¼ ∂P=∂E, is a fundamental

quantity in the expansion of hot and dense matter [68].
To investigate the effect of the magnetic field on v2s when
the light CEP is approached from the crossover region, we
calculate its T and μB dependencies at fixed distances from

the CEP. The temperature dependence, v2sðTÞ, is deter-
mined at μB=μCEPB ¼ f0.90; 0.95; 0.99g, while the μB
dependence, v2sðμBÞ, is calculated at T=TCEP ¼ f1.1;
1.05; 1.01g. We show in Fig. 6 the results for eB ¼ 0

(black), 0.3 GeV2 (red), and 0.6 GeV2 (blue) within the G0
s

(dashed lines) and GsðeBÞ (solid lines) models.
While the B ¼ 0 results show only a local minimum that

tends to zero in an increasingly stiffer way as the CEP gets
closer (independently if we approach the CEP by temper-
ature or baryonic chemical potentials as seen in both top
and bottom panels of Fig. 6, black line), two local
minimum, related with the deconfinement and chiral cross-
overs transitions, are present in both models for finite B
(see the red and blue curves in Fig. 6). Indeed, at B ¼ 0,
when we are very close to the CEP in the crossover
region, both transitions coincide [see e.g., panel (a) of
Fig. 4]: with the parametrization we are using, we
have different pseudocritical temperatures at μB ¼ 0

(Tps
χ ¼ 200 MeV and Tps

Φ ¼ 171 MeV) for eB ¼ 0, but
this difference almost vanishes at μB=μCEPB ¼ 0.90, giving
rise to just one minimum in the sound velocity (black line).

(a) (b) (c)

(d) (e) (f)

FIG. 7. Sound velocity squared, v2s , as a function of temperature (top panels) and baryonic chemical potential (bottom panels) for
eB ¼ 0.3 GeV2 within theG0

s (dashed) andGsðeBÞ (solid lines) models around the strange CEP. Three values for the relative distance to
CEP are considered: the T dependence is computed at μB=μCEPB ¼ 0.90 [panel (a)], 0.95 [panel (b)], and 0.99 [panel (c)], whereas the μB
dependence is determined at T=TCEP ¼ 1.1 [panel (d)], 1.05 [panel (e)], and 1.01 [panel (f)]. The black line for all panels is the sound
velocity squared at eB ¼ 0 in the near-CEP region for the strange sector: in panels (a), (b), and (c), v2sðTÞ is calculated at
μB ≈ 1473 MeV, and in panels (e), (f), and (g), v2sðμBÞ is calculated at T ¼ 1 MeV.

FERREIRA, COSTA, and PROVIDÊNCIA PHYS. REV. D 98, 034003 (2018)

034003-8



At μB=μCEPB ¼ 0.90, in the presence of a magnetic field, the
lowest minimum is due to the deconfinement transition,
and the second minimum is related to the chiral transition
[see the red and blue curves in panel (a) of Fig. 6]. This
second minimum tends to zero as the CEP gets closer
[see case μB=μCEPB ¼ 0.99, panel (c), in the same figure].
Thus, although the sound propagation in hot matter that
passes near the CEP slows down in the critical region, far
from the CEP, the decrease of sound velocity is more
pronounced on the deconfinement transition. Once again,
the increasing gap between the pseudocritical temperatures
for the G0

s model with B is clear in the top panels of
Fig. 6: the two minima separate from each other (see the
dashed lines). The effect of both transitions is also visible
in the v2sðμBÞ dependence [panels (d), (e), and (f) of the
same figure].
Finally, we analyze the effect of the magnetic field on the

square of the velocity of sound v2s when the strange CEP is
approached. In Fig. 7, we show results for magnetized
matter with eB ¼ 0.3 GeV2, red dashed(solid) lines cor-
responding to the G0

sðGsðeBÞÞ model, and nonmagnetized
matter (black line). The T and μB dependencies of v2s are
calculated at fixed distances from the CEP: the temperature
dependence, v2sðTÞ, is determined at μB=μCEPB ¼ f0.90;
0.95; 0.99g, and the μB dependence, v2sðμBÞ, is calculated
at T=TCEP ¼ f1.1; 1.05; 1.01g, and for nonmagnetized
matter, we take μB ≈ 1473 MeV and T ¼ 1 MeV, both
close to a near-CEP region for the strange sector.
We first consider the temperature dependence at fixed

μB. TheG0
s model shows an interesting feature, not seen for

the GsðeBÞ model, as the CEP is approached in the μB
direction from below [dashed lines in panels (a), (b), and (c)
of Fig. 7]. The first minimum of v2sðTÞ at lower values of T
corresponds to the critical region, but with no CEP, related
with the d quark [see panels (b) and (d) of Fig. 1]. The
second minimum corresponds to the strange first- order
transition. The GsðeBÞ model shows only this last mini-
mum related with the strange first-order transition. The
black line calculated for eB ¼ 0 in the near-CEP region
shows a monotonic behavior, decreasing as T decreases,
signaling the approach of the near CEP.
We now study the μB dependence of v2s at fixed T. When

we approach the CEP from above taking several values of T
[panels (d), (e), and (f) of Fig. 7], v2sðμBÞ shows at lower μB
a peaked minimum in both models of magnetized quark
matter. These minima correspond to the minimum that the
black line for eB ¼ 0 shows at μB ≈ 1473 MeV, the near-
CEP region. For eB ¼ 0, v2s becomes negative at the lowest
values of μB shown. This signals the entry into the first-
order region of the light quarks that occurs at a much larger
μB than in the magnetized matter considered. The GsðeBÞ
model (red-solid lines) shows a second minimum around
μB ≈ 1350 MeV, due to the critical region with no CEP
connected to the d quark. At high μB, another minimum
occurs again for both models. This is related with a second

CEP for the strange quark found in Ref. [51] that appears at
lower temperatures.

IV. CONCLUSIONS

The effect of the magnetic field on the QCD phase
diagram, and, in particular, on the kurtosis and the skew-
ness of the net baryon-number fluctuations, is discussed.
Two different models of the (2þ 1)-flavor PNJL model are
considered: one with the usual constant scalar coupling,G0

s ,
and the other with a magnetic field dependent coupling,
GsðeBÞ, including the IMC mechanism for the chiral
symmetry restoration crossover at zero chemical potential.
Both the symmetry chiral restoration of the light and the
strange sectors are discussed. The kurtosis and the skew-
ness of the net baryon-number fluctuations are calculated
all over the QCD phase diagram, and special attention is
given to their behavior in the neighborhood of the light-
quark and strange quark CEP. In order to understand which
kind of signatures could possibly be identified in heavy
ion collisions, several isentropic lines that come close the
CEP are studied. Another property that is analyzed is the
velocity of sound in the vicinity of both CEPs.
Several conclusions are drawn from the present study.

First of all, we have confirmed that the presence of the
magnetic field may result in the appearance of extra CEPs,
in particular, in the strange sector. For some of the new
CEPs, the chemical potential localization of the CEP is
already identifiable in the nonmagnetized QCD phase
diagram. This is true for the strange sector. However, there
are other critical regions that originate from the Landau
quantization of the quark trajectories and appear only in
magnetized matter. In the present study, this was observed
with the identification of a critical region connected with
the d quark. The identification of the change on the critical
behavior, in particular, of the appearance of new CEPs, was
carried out from the analysis of the kurtosis and the
skewness of the net baryon-number fluctuations. In mag-
netized matter, the behavior of χnB fluctuations up to fourth
order close to the critical regions is stiffer, and even more
stiff if the G0

s model is taken. Considering the fluctuation
ratios, some of these differences disappear, but several
features could still distinguish the two models for mag-
netized matter. The GsðeBÞ model with IMC shows a
smoother behavior so that the fluctuation ratios spread over
a larger region. This was particularly true for the region
between the two crossover transitions at low chemical
potential. Moreover, the χ4B=χ

2
B has a more pronounced

peak structure, which indicates that it may be a more
convenient probe for the CEP and even for the strong
magnetic field produced in early noncentral collisions.
The behavior of the sound velocity close the CEPs is

reflecting in a very clear way the changes in the QCD phase
diagram originated by the magnetic field; in particular, it is
sensitive to both, the deconfinement and the chiral sym-
metry restoration, transitions. Close to critical regions, this
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quantity always presents a depression, which may have a
stiffer behavior in the proximity of a CEP or a smoother
behavior if only a region with large fluctuations but no CEP.
These last regions of phase diagrammay, however, transform
into CEPs if stronger magnetic fields come into play.
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