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SUMMARY

The algorithms for short-term load forecast (STLF), especially within the next-hour horizon, belong to
a group of methodologies that aim to render more effective the actions of planning, operating
and controlling electric energy systems (EES). In the context of the progressive liberalization of the
electricity sector, unbundling of the previous monopolistic structure emphasizes the need for load forecast,
particularly at the network level. Methodologies such as artificial neural networks (ANN) have been widely
used in next-hour load forecast. Designing an ANN requires the proper choice of input variables, avoiding
overfitting and an unnecessarily complex input vector (IV). This may be achieved by trying to reduce the
arbitrariness in the choice of endogenous variables. At a first stage, we have applied the mathematical
techniques of process-reconstruction to the underlying stochastic process, using coding and block entropies
to characterize the measure and memory range. At a second stage, the concept of consumption trend in
homologous days of previous weeks has been used. The possibility to include weather-related variables in
the IV has also been analysed, the option finally being to establish a model of the non-weather sensitive
type. The paper uses a real-life case study. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Distribution companies (DISCO) operating on a scenario of complete or partial unbundling of
the electricity sector are confronted with increasing demands on planning, management and
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operation of the networks. Relations with generation, transmission and retail companies
(GENCO, TRANSCO, RESCO) are now becoming increasingly complex (Gross and Galiana,
1987). Therefore, DISCOs play a major role in the managing and planning of distribution, with
an emphasis on the quality of the supply.

The supply quality rules that are being imposed by the regulatory authorities are becoming
more and more demanding. Thus, forecast plays a key role in this sector (Philipson and Willis,
1998). Several short-term load forecast (STLF) models have been developed in the last few
decades (Drezga and Rhaman, 1998; Hippert et al., 2001). However, few amongst them have
done a specific analysis of this sector (Chen et al., 1996; Fidalgo, 1999; Sargunaraj et al., 1997).
Next-hour load forecast allows DISCOs to address issues such as: network reconfiguration,
voltage control, maintenance planning and power factor correction. Methodologies for STLF
forecast are divided in three major groups (Al-Hamadi and Soliman, 2004): models that are
independent of weather changes (non-weather sensitive models), models depending on weather
changes (weather-sensitive models), and hybrid models. Methodologies based on artificial
neural networks (ANNs) have been widely used with, to some extent, satisfactory results.
However, design options are not always fully justified and frequently the models have a high
complexity level (Hippert et al., 2001).

The most important type of variable included in the input vector (IV) is the past time-series of
the variable being forecast (Hippert et al., 2001; Senjyu et al., 2002; Papalexopoulos et al., 1994;
Khotanzad et al., 1997). Other variables, of an auxiliary nature, are used and, not being directly
related to electricity consumption, they are usually represented by functions of the sinusoidal or
binary type with the goal of helping the ANN to detect periodic features of the load behaviour
(Drezga and Rhaman, 1998; Fidalgo, 1999).

The model that was developed, taking into consideration the pre-established time horizon and
the low correlation between active load and weather variables may be considered a non-weather
sensitive model (Al-Hamadi and Soliman, 2004). In fact, the active power time-series p(t) itself
contains the most important IV data.

In order to diminish arbitrariness in the definition of the IV and the prediction
algorithm, we have attempted a mathematical characterization of the stochastic process
underlying the data in the experimental time-series. Reconstruction of a process involves
two different, but related, steps. One is the identification of the grammar of the process, that is,
the allowed transitions in the state space. The second step is the identification of the measure,
which concerns the occurrence frequency of each orbit in typical samples. Identification of
grammars and measures (in particular Gibbs measures) has been dealt with recently, in
particular in the context of hydrodynamic turbulence and market analysis (Chazottes et al.,
1998; Mendes et al., 2002). Some of these techniques will be applied in Section 3 to our
experimental time-series.

The correlation between active load values in homologous days of the week has also been
considered.

The paper has the following structure: the case study is presented in Section 2, where
the different types of substations are described, along with the collected data, the time length
of the data series and the results of various correlations between consumption and
weather variables. The application of the process reconstruction techniques is carried out in
Section 3. In Section 4, the concept of trend is used and the IV established. Section 5 presents
results from the simulations. Finally, some conclusions on the methodology are included in
the last section.
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2. DATA ANALYSIS AND CASE STUDY CHARACTERISTICS

The case study is located around the city of Coimbra, in the centre of Portugal, comprising three
substations. Installed capacity and voltage level of these substations is of average dimension
(Alegria (ALG), Relvinha (RLV) e Alto de São João (ASJ)) (Figure 1). These three substations
are responsible for the electrical power supply to the city of Coimbra. The data series obtained
from each of these substations have a time span of approximately 3 years (from 21 December
1998 to 20 December 2001).

Data on the following variables was collected: active power (MW), inductive and capacitive
reactive power (Mvar), with a maximum time resolution of 1 h. Several types of weather
variables were also collected, with the purpose of carrying out correlation analyses, in order to
assess the advantages of including these variables in the IV. Correlation of electricity
consumption with climatic data may be strong in certain climates, particularly when high
humidity and temperature are current in summer or very low temperatures occur in winter. In
the case study, moderate temperature swings are accompanied by moderate humidity conditions
as well. Hence, a strong correlation was not to be expected (Santos et al., 2003).

Analysing the diagram in Figure 2, one observes that the daily peak load drops with the
coming of warmer seasons, which indicates a low impact of ventilation and air conditioning
loads. According to this, one would expect stronger correlations only in the wintertime. The

Figure 1. Simplified one-line diagram of the medium voltage network supplying the city of Coimbra.
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forecast time spans, as well as the weather conditions, do not favour strong correlations between
temperature and electrical energy consumption (Figure 3). Based on this analysis, the
composition of the IV relies essentially on the endogenous variables.

3. PROCESS RECONSTRUCTION AND MEMORY RANGE

Usually, the number of consumption instances, prior to the value to be estimated, that one must
take into account, is established in an arbitrary manner, based on experience obtained by using
correlation analysis (Drezga and Rhaman, 1998; Hippert et al., 2001) (Figure 4). What one must
find out is whether the amount of contiguous information that is chosen is appropriate or
whether it merely contributes to over-parameterize the model.

Coding and computing block entropies as used in Mendes et al. (2002) allows a rigorous
estimation of the effective memory range of process. This study was carried out for the data

Figure 2. (a) Scatter plot between the daily peak-load and the maximum temperature; and (b) variation of
the peak demand (in both cases between December 1998 and October 2000, city of Coimbra).

Figure 3. Scatter plot of the hourly values of active power load at hour t and temperature at hour t�2,
11:00 a.m. to 11:00 p.m., from 21 December 1998 to 15 Mach 1999.
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from the three substations yielding similar results. For that reason, it has been decided to
present only the results referring to the substation RLV (Figure 1).

The data was collected by the existing supervisory control and data acquisition system
(SCADA), with the time-scale resolution of 1 h. The data collection started in 21 December
1998. The period chosen for the analysis of the process was from 21 December 1998 to 15 March
2001, producing a set of N ¼ 19 584 values. The signal was discretized according to the
alphabet:

P
¼ f�5;�4;�3;�2;�1; 0; 1; 2; 3; 4; 5g; containing 11 levels (k ¼ 11). This discreti-

zation allows a satisfactory representation of the active power load pattern (Figure 5). The
whole signal length is, thereby, translated by means of this alphabet and the active power series
described by symbol sequences o ¼ p1; p2; . . . ; pi; . . . ; pk 2 S:

In the alphabet
P

the maximal number of distinct blocks of length N is 11N. The graph of
Figure 6(a) compares, for each size N, the actual number of distinct blocks that are present in
the signal with the maximum 11N. The deviation of the values from the maximum shows that the
signal rather than being completely random, has a non-trivial grammar.

A very general class of measures for stochastic processes is the class of Gibbs measures. In this
context a very simple characterization of the memory range of the process is obtained from the
growth of the block entropies. Let

Hk ¼ �
X

p1���pk

m½p1 � � � pk� logðm½p1 � � � pk�Þ ð1Þ

be the entropy associated to blocks of size k, m½p1 � � � pk� representing the probability of finding
within the series a sequence of contiguous values of the p1 � � � pk type (Chazottes et al., 1998;
Mendes et al., 2002). Using the empirical block probabilities m½p1 � � � pk� one computes Hk for
successively larger k. Then, the memory range of the process is found when Hk �Hk�1 tends to
a constant value. In practice, for a long memory process, this difference after converging to its
constant value, starts to decrease. This is an effect of lack of statistics, because for a finite sample
there is a small probability that all grammatically allowed blocks will appear in the signal.

The graph of Figure 6(b) shows the Hk �Hk�1 values computed for our time-series. It clearly
shows the short-term memory of the signal, in the sense that the next-hour value depends

Figure 4. Daily load pattern}contiguous instances of consumption (active power).
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essentially on the information related to the previous state. Therefore, it may be assumed that
the information based on many contiguous values is of small importance and that the main
focus should be on incorporating into the IV the information regarding the previous hour
together with other (non-time-contiguous) information as explained below.

Figure 5. Example of the discretization of the original SCADA data by means
of the proposed alphabet (RLV substation).

Figure 6. (a) Possible and actual numbers of combinations of blocks of the alphabet;
and (b) entropy values.
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4. THE TREND CONCEPT

The analysis of block entropies has revealed that the use of long chains of contiguous values
does not result in any sort of advantage in the design of the IV of the ANN. Moreover it
possibly contributes to an overparameterization of the model.

Figure 7. Auto-correlation values, showing local maxima at homologous instants in the past.

Figure 8. Time-scale divisions adopted in the analyses of active power time-series.
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The composition of the IV will have to rely essentially on a careful analysis of both the auto-
correlations of the active power and its possible interdependences with the exogenous variables.
One notices that the values of auto-correlation are more important in the cases of the two
previous hours, deteriorating quite rapidly for deeper excursions into the past. This behaviour is
to be expected due to the fact that one is comparing different periods of the day (Figure 7). The
values become higher when one considers the correlation of the most recently available active
power values with those of homologous instants of homologous days of previous weeks,
showing two relative maxima in the two previous weeks (Figure 7).

One should point out the similarity between the coefficients around the homologous values
p(t�168) and p(t�336). The inclusion of these values p(t�167), p(t�169), p(t�335) and p(t�337)
in the IV provides information regarding the consumption trend in past homologous periods.
The evolution of the auto-correlation coefficients is always downward as one moves deeper into
the past, which can be explained by the seasonal variation of consumption, which entails
different load patterns.

We have, therefore, divided the information into periods (Figure 8), according to the
evolution of the average daily temperature.

In spite of the low correlation of electricity consumption with weather variables in this
forecast horizon, this division into periods allows for a neural network (ANN) that has been
trained in a given period to be used in a simulation in similar weather conditions, helping the
network to better deal with weather-related effects. The IV is the one defined in Figure 9. It also
includes reactive power instances in the 2 h prior to the forecast Q(t�1) and Q(t�2), due to the
fact that they show important correlations with the target variable, and generate improvements

Figure 9. Composition of the input vector.

Table I. Next hour forecast active power}data analysis.

RLV substation
ME
(MW)

MAD
(MW)

MSE
(MW2)

RSE
(MW)

MPE
(%)

MAPE
(%)

Period 5 from 99/12/21 to 00/03/15 �0.03 0.36 0.25 0.50 �0.27 2.27
Period 6 from 00/03/16 to 00/05/31 �0.03 0.41 0.41 0.64 �0.43 2.76
Period 7 from 00/06/01 to 00/09/15 0.05 0.28 0.15 0.38 0.42 1.97
Period 8 from 00/09/16 to 00/12/20 �0.02 0.33 0.22 0.47 �0.33 2.16
Period 9 from 00/12/21 to 01/03/15 �0.11 0.37 0.31 0.56 �0.75 2.31
Period 10 from 01/03/16 to 01/05/31 �0.02 0.27 0.16 0.40 �0.31 2.04
Period 11 from 01/06/01 to 01/09/15 0.05 0.26 0.13 0.36 0.42 1.97
Period 12 from 01/09/16 to 01/12/20 �0.11 0.37 0.27 0.52 �1.09 2.75
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in the performance of the model (Santos et al., 2003). This is shown through the beneficial
influence on the mean squared error (MSE) regarding the ANN training set of values.

5. SIMULATION RESULTS

Standard feedforward backpropagation ANN have been used for the forecast models, with a
fully connected architecture and a single hidden layer, the hyperbolic tangent being used as the

Figure 10. Results of simulations, showing a 1 week time span: (a) actual and predicted active power
values; and (b) corresponding MPE values.
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common activation function. The output is activated with linear functions. The number of
neurons in the hidden layer was half of the one of the input layer. The IV was normalized
between �1 and 1. This is a well-proven arrangement, adequate when, as in the present case, the
relations between the variables at stake have a strong non-linear behaviour (Hippert et al.,
2001).

Simulations have been carried out with data not used in training, testing or validating the
ANN. In order to evaluate the performance of the forecast model, some current statistical
indicators are used (De Lurgio, 1998). The most significant indicator, as is generally accepted
for comparing different approaches, is the mean average percentage error (MAPE) (Hippert
et al., 2001). Other statistical indicators are also necessary, in order to provide a more
comprehensive view of the forecast results. Parameters such as the mean percentage error
(MPE), mean error (ME) should not deviate much from zero, as a sign of a desirable lack of bias
in the forecast period. Other statistical indicators are relevant as the mean absolute deviation
(MAD), MSE and the residual standard error (RSE). In Table I a set of calculated parameters is
presented for the same periods that help to assess the model performance.

Figure 10 shows some examples of the results obtained with the models of the next-hour load
forecasts, which should be self-explanatory.

It is difficult to make an exact comparative study with different documented approaches. In
fact, there are many factors influencing the design of the ANN which are unknown, such as, for
example, the internal structure or the number of training epochs used. However, it is possible to
compare the developed IV with a different structure developed by Fidalgo (1999) (Figure 11).
This IV was formerly applied to the distribution sector in the north region of Portugal. It uses
four contiguous precedent values of the active power p(t�1), p(t�2), p(t�4) and p(t�4) and

Figure 11. Input vector developed by Fidalgo (1999).

Table II. Next hour forecast active power}data analysis between different input vectors.

ALG substation
ME
(MW)

MAD
(MW)

MSE
(MW2)

RSE
(MW)

MPE
(%)

MAPE
(%)

Developed vector simulation period
from 03/01/05 to 03/01/15

0.12 0.46 0.50 0.64 0.31 1.63

Fidalgo vector simulation period
from 03/01/05 to 03/01/15

0.06 0.69 0.88 0.85 0.02 2.53
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those of the past 2 weeks p(t�168) and p(t�336). It also uses information of four sinusoidal
functions with the aim of informing the ANN of the consumption cycles, according to the hour
of the day and the day of the week. A comparative result of the MAPE is presented in Table II.

The MAPE value is better in the case of the developed vector.

6. CONCLUSIONS

STLF has an important role in the electricity distribution sector, as it is subsidiary to the control
and management of networks, aiding in decision-making. The growing tendency towards
electric systems unbundling makes the implementation of forecast methodologies in all levels of
the EES all the more necessary.

The ANN, working as a methodology for short-term forecast, has been widely used with
satisfactory results. However, there are always some arbitrary traits in the choice of the
variables that constitute the IV. To reduce this arbitrariness, the concepts of memory range
(through block entropies estimation) and consumption trend have been used, with the aim of
defining IVs of small dimensions, avoiding model overparameterization.

This kind of vector has been compared to other proposals in the literature, showing in general
satisfactorily improved results. The models were trained with consumption values of the year
1999 and simulation has been performed up until 2002, maintaining a good performance level
throughout. They were also tested in different types of substations with different load
configurations. The reactive power was also included in the composition of the IV, producing a
slight improvement in the model behaviour.
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