

Ivo André Serafim Ferreira

Depth Camera Based Image Processing for
Indoor Mobile Robot Localization and

Navigation

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Electrical and Computer Engineering

September, 2016

Depth Camera Based Image Processing

for Indoor Mobile Robot Localization

and Navigation

Ivo André Serafim Ferreira

Coimbra, September of 2016

Depth Camera Based Image Processing

for Indoor Mobile Robot Localization

and Navigation

Supervisor:

Prof. Dr. Urbano José Carreira Nunes

Co-Supervisor:
Prof. Dr. Ana Cristina Barata Pires Lopes

Jury:

Prof. Dr. Jorge Manuel Moreira de Campos Pereira Batista

Dr. Micael Santos Couceiro

Prof. Dr. Urbano José Carreira Nunes

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September of 2016

Acknowledgements

Firstly I would like to express gratitude to my advisors Professor Urbano Nunes and Dr.

Ana Lopes for their essential guidance, experience and encouragement. This dissertation

would be impossible without their dedication.

I also would like to express a special thanks to my colleagues André Conceição and

Urbano Nunes for their help whenever I needed and to Luís Garrote for his support and wise

advices.

I thank to Institute of Systems and Robotics for providing me the best conditions and

resources that allowed me to accomplish this final stage of my master degree. This work has

been supported by project Grant "AMS-HMI12: Assisted Mobility Supported by shared con-

trol and advanced Human Machine Interfaces" (FCT Project RECI \EEI-AUT\0181\2012),

co-funded by Fundação para a Ciência e Tecnologia and FEDER through "Programa Op-

eracional Factores de Competitividade do QREN com referência COMPETE: FCOMP-01-

0124-FEDER-027501".

To all my friends that somehow shared these past 5 years with me I express my gratitude,

with you I lived some good moments that I will definitely never forget.

Por fim, dirijo o meu maior agradecimento à minha familia, principalmente aos meus

pais, por todo o apoio que me deram, possibilitando a frequência e conclusão deste curso.

iii

Resumo

O aumento do desenvolvimento de plataformas robóticas móveis capazes de desempenhar

actividades de navegação, localização e mapeamento em ambientes partilhados com humanos

tem vindo a propulsionar áreas de investigação tais como a Robótica Móvel, Robótica Co-

operativa, Interação Homem-Máquina, etc. Esta questão ganha maior relevância quando se

reúnem as condições de criar uma plataforma robótica móvel própria, de raiz, tornando-a

num sistema robusto que serve de matéria de investigação a nível interno e porventura, mais

tarde, vir a ser colocado no mercado. O Interbot, robô social, é uma plataforma robótica

móvel desenvolvida pelo ISR para actuação em ambientes interiores partilhados com hu-

manos.

Nesta dissertação propõe-se um módulo de aquisição e processamento de imagem, mais

especificamente de imagens de profundidade, com o objectivo de fornecer ferramentas úteis

de localização e navegação para esta plataforma.

Em termos de hardware, é usado um sensor Microsoft Kinect One devidamente adaptado

à plataforma. Posto isto, desenvolveu-se um sistema de processamento de imagens de pro-

fundidade de baixa complexidade. O sistema recebe a informação do ambiente envolvente

através do sensor Microsoft Kinect One, estes dados são submetidos a uma primeira fase de

processamento, onde são extraídas as estruturas planares da imagem (planos da imagem)

e respectivos parâmetros (equação do plano, normal do plano, pontos do plano), e uma se-

gunda fase de processamento onde é gerado um laser scan com base nos dados previamente

processados. O utilizador tem a possibilidade de facilmente regular os parâmetros de config-

uração do sistema consoante as características do ambiente e a finalidade desejada. Todos os

algoritmos propostos foram desenvolvidos e testados em MatLab e ROS (Robotic Operating

System).

Palavras-chave: Robô, Robótica Cooperativa, Robótica Social, Navegação, Localização,

ISR, ROS, MatLab, Plataforma Robótica Móvel, Microsoft Kinect One, Detecção de Planos,

iv

Extração de Planos, Imagem de Profundidade, Processamento de Imagem.

v

Abstract

The increasing development of mobile robotic platforms able to perform activities such

as localization, navigation or even map building in human shared environments has been

propelling research areas such as Mobile Robotics, Cooperative Robotics, Human-Machine

Interaction, etc. This issue is especially relevant when there are conditions to create an

own mobile robotic platform from the scratch, making a robust system that serves inter-

nally for research purposes and perhaps to be placed on the market later on. The social

robot, Interbot, is a mobile robotic platform developed by the ISR for indoor environments

deployment.

In this dissertation an image processing and acquisition module, more specifically depth

images is proposed, with the aim of providing useful localization and navigation tools for

this platform.

In terms of hardware, it is used a Microsoft Kinect One sensor properly attached to the

Interbot platform. Hereupon, a low complexity depth image processing system was devel-

oped. The system acquires the surrounding environment information using the Microsoft

Kinect One sensor, this data is subjected to a first stage of processing, where the planar

structures of the image (image planes) and their information (plane’s equation, normal to

plan and points within the plane) are extracted, then a second processing phase where an

obstacle laser scan is generated based on the preprocessed data. The user has the ability to

easily adjust the system configuration parameters depending on the environmental character-

istics where he wants to use the system and depending on the desired purpose. All proposed

algorithms are developed and tested in MatLab and ROS (Robot Operating System).

Keyword: Robot, Cooperative Robotic, Social Robotics, Navigation, Localization, ISR,

ROS, MatLab, Mobile Robotic Platform, Microsoft Kinect One, Plane Detection, Plane

Extraction, Depth Image, Depth Image Processing.

vi

"Don’t watch the clock; do what it does. Keep going!"

— Sam Levenson

viii

Contents

Acknowledgements iii

Resumo iv

Abstract vi

Lista de Acrónimos xii

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation and context . 1

1.2 Goals . 2

1.3 Implementations and key contributions . 2

2 State of the art and background 6

2.1 3D Image segmentation . 6

2.1.1 Edge based methods . 7

2.1.2 Region based methods . 8

2.1.3 Hybrid methods . 11

2.2 Image representation . 11

2.3 RANSAC for plane detection . 15

2.4 Fast Sampling Plane Filtering . 16

2.5 Obstacle Scan . 18

3 Depth Image Processing 20

3.1 Fast Sampling Plane Filtering Plus . 20

x

3.1.1 Contributions . 24

3.2 Kinect Obstacle Scan . 28

4 Experimental setup 30

4.1 Offline experimental setup . 30

4.1.1 DAcM . 30

4.1.2 DPM . 31

4.1.3 DAnM . 32

4.2 Real-time experimental setup . 34

4.2.1 DAcM . 34

4.2.2 DPM . 34

4.2.3 ODAnN . 36

4.3 Interbot Platform . 37

5 Tests and results 38

5.1 Offline tests . 38

5.1.1 Plane detection and plane orientation detection 38

5.1.2 Kinect obstacle scan . 43

5.2 Real-time tests . 48

5.2.1 Map building . 49

6 Conclusion and future work 53

6.1 Conclusion . 53

6.2 Future work . 53

7 Bibliography 54

xi

List of Acronyms

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

BMS Battery Management System

DAcM Data Acquisition Module

DAnM Data Analysis Module

DPM Data Processing Module

FCT Fundação para a Ciência e Tecnologia

FSPF Fast Sampling Plane Filtering

xii

FSPF+ Fast Sampling Plane Filtering Plus

KOS Kinect Obstacle Scan

I/O Input and Output

ISR Institute of Systems and Robotics

NCC-RANSAC Normal Coherence Check Random Sample Consensus

OES Offline Experimental Setup

ODAnM Offline Data Analysis Module

PNG Portable Network Graphics

RANSAC RANdom SAmple Consensus

RtES Real Time Experimental Setup

RGB Red, Green and Blue

ROS Robot Operating System

xiii

SLAM Simultaneous Localization and Mapping

SRM Statistical Region Merging

USB Universal Serial Bus

xiv

List of Figures

1.1 Image Depth Processing main modules and key contributions. 3

2.1 Flowchart of the typical structure of a plane extraction algorithm. 7

2.2 Flowchart of the general structure of a region-growing plane extraction algo-

rithm. 10

2.3 2D coordinate systems used in images. 12

2.4 Color image representation. 12

2.5 Depth image representation. 13

2.6 Different types of images and points of view. 14

2.7 An overview of the RANSAC for plane detection application. 16

3.1 General structure of FSPF+. 21

3.2 Input and output FSPF+ algorithm data. 24

3.3 Representation of the imageSearchWindow3DPoints algorithm procedure. . . 26

3.4 normalRectifier procedure description. 28

3.5 Kinect obstacle scan generated from a depth image. 29

4.1 Offline experimental setup. 30

4.2 Caption of the experimental setups. 30

4.3 Ground floor of the ISR. 31

4.4 Data Acquisition Module. 32

4.5 Data Processing Module, information flow in ROS implementation. 33

4.6 Data Analysis Module. 33

4.7 Real-time experimental setup. 34

4.8 Data acquisition in the ground floor of the ISR. 35

4.9 Data Acquisition Module. 35

4.10 Data Processing Module, information flow in ROS implementation. 36

xv

4.11 Offline Data Analysis Module. 36

4.12 Interbot Platform main components. 37

5.1 Scene #1. 39

5.2 Results of scene #1. 39

5.3 Scene #2. 39

5.4 Results of scene #2. 40

5.5 Scene #3. 40

5.6 Results of scene #3. 40

5.7 Scene #4. 41

5.8 Results of scene #4. 41

5.9 Scene #5. 41

5.10 Results of scene #5. 42

5.11 Scene #6. 42

5.12 Results of scene #6. 42

5.13 KOS results of scene #1. 44

5.14 KOS results of scene #2. 44

5.15 KOS results of scene #3. 44

5.16 KOS results of scene #4. 45

5.17 KOS results of scene #5. 45

5.18 KOS results of scene #6. 45

5.19 Scene #7. 46

5.20 Scene #8. 46

5.21 Scene #9. 48

5.22 Blueprint of the ground floor of the ISR. 49

5.23 Map #1. 50

5.24 Map #2. 51

5.25 Map #3. 51

xvi

List of Tables

2.1 Plane extraction methods for range images. 7

2.2 Region-growing approachs. 10

2.3 Configuration parameters for Algorithm 1 17

3.1 Configuration parameters for Algorithm 3 20

4.1 Interbot Platform main components. 37

5.1 Configuration values of Algorithm 3 . 38

5.2 Results of the FSPF+ algorithm for ε = 5. 43

5.3 Results of the FSPF+ algorithm for ε = 10. 43

5.4 Configuration values of Algorithm 3. 49

5.5 Map building performance results. 52

xvii

1 Introduction

This chapter presents an introduction to this dissertation. Some insights concerning the

motivation and context of the developed work will be presented, as well the main goals and

key contributions. Moreover an global overview of the structure of this work is also presented

summarizing the content of each chapter.

1.1 Motivation and context

Today it is possible to find in research institutes, universities or even in the market mobile

robotic platforms able to perform guiding tasks, monitoring, patrolling buildings, cargo

transportation, etc. For these mobile platforms to operate efficiently, robust localization

and navigation systems are required, aiming to minimize localization loss issues, to allow

tracing motion paths quickly and safely from one point to another, and also to allow the

surroundings map generation as close as the original one. Mapping issue is one of the basics

of mobile robotics.

Map building is a process that can combine the use of the robot motion (odometry),

range finder devices, that provide range data of the surrounding environment (laser scan)

and also a scan matcher method. There are a wide range of mapping methods for such

platforms, those most commonly used in ROS implementation are the g_mapping [21] and

the hector_mapping [29].

A state of the art platform in this area is the CoBot Robot [47], [46], developed at

Carnegie Mellon University (CMU). The robot is equipped with state of the art localization,

navigation and mapping modules that allowed it to navigate autonomously, while performing

simple tasks, for over 1000km [7] during a time span of 4 years.

The ISR has internally developed a mobile robotic platform, called Interbot - social

robot [11], the social robot, that has been used for research purposes in various strands

of mobile robotics. In this context, the development of an image processing visual module

1

1.2. GOALS

based on Microsoft Kinect One sensor data, aiming to provide visual and geometrical tools for

enhancing localization, navigation and map building by the Interbot platform, was proposed.

This dissertation proposes a system that firstly processes in real-time the depth images

of the environment where the platform operates by extracting information from the planes

of these images and secondly generates a 2D obstacle scan of the platform’s surroundings.

This scan is then used to generate, also in real-time, the map of the environment.

1.2 Goals

This dissertation aims to develop useful indoor mobile robot localization and navigation

tools based on the processing of depth images to be implemented on mobile robotic platforms

such as the Interbot Platform. The defined goals were:

1. To develop an algorithm that processes depth images and extracts the planar structure

information (planes and normals to the planes) from these images;

2. To develop an algorithm that generates a multi-level laser scan based on the planes

that were extracted by the previously referred algorithm;

3. To develop a planes’ classification method;

4. To store all the generated data for future applications;

5. To conduct tests in order to evaluate the proposed algorithms.

1.3 Implementations and key contributions

The improvement of a depth image processing method [5], the enhancement of a 3D

point image processing method [4] and their implementation on a ROS framework are the

key contributions of this dissertation.

In order to develop a fully operational system, some ROS modules were used and other

were developed. Figure 1.1 illustrates the main developed modules described in this disser-

tation. The course flow of this dissertation and content of each chapter is the following:

2

CHAPTER 1. INTRODUCTION

Figure 1.1: Image Depth Processing main modules and key contributions.

Plane Extraction (Chapter 3)

• Fast Sampling Plane Filtering Plus (FSPF+): development of an improved version of

the FSPF algorithm [5].

• Depth image preprocessing algorithm: development of an algorithm based on depth

image pixel’s value constraints and its integration in the FSPF+ algorithm.

• 3D selection points: development of an algorithm for searching 3D points within a

provided image window and integration of this algorithm in the FSPF+ algorithm.

• Plane detection: integration of a RANSAC algorithm in the FSPF+ algorithm for

plane detection, selecting inlier and outlier points also providing plane’s information

such as plane equation, normal to detected plane and points’ plane.

• Plane normal rectifier: development of a plane rectifier algorithm base on the coef-

3

1.3. IMPLEMENTATIONS AND KEY CONTRIBUTIONS

ficients of the plane and its position within the 3D range image. Integration of this

algorithm in the FSPF+ algorithm.

• Plane orientation detection: development of an algorithm for plane orientation detec-

tion based on plane normal’s direction and its localization within the 3D range image.

This algorithm is capable of a five different plane orientation detection.

Obstacle Scan Generation (Chapter 3)

• Kinect Obstacle Scan (KOS): development of an improved version of the Obstacle scan

algorithm [4]. This improvement is based on a functionality that allows a multi-level

2D obstacle scan.

Data Storage (Chapter 3 and 4)

• Image plane structure data storage: filtered 3D image plane points, normals to 3D

image filtered plane points and kinect obstacle scan points are storage in text files for

future work applications.

• Depth image storage: the processed depth image is storage in portable network graphic

(PNG) format for later analysis purposes.

• Hokuyo’s laser scan points storage: the laser scan points are storage in a text file for

later test results comparison.

ROS Implementation (Chapter 4)

• kinect2_bridge package: integration of a ROS package kinect2_bridge for color, depth

and point cloud images acquisition.

• kinect_node package: development of a ROS package, kinect_node that implements

the FSPF+ and KOS developed algorithms.

• plane_filtering: a ROS node that implements the FSPF+ algorithm.

• kinect_obstacle_scan: a ROS node that implements the KOS algorithm.

• hector_mapping: integration of the ROS package hector_mapping for map building

purposes.

4

CHAPTER 1. INTRODUCTION

• RVIZ: integration of the ROS visualization tool Rviz for offline and real-time results

analysis.

In Chapter 5, several experiments for testing and validation of the proposed modules were

performed and their results are presented and discussed.

5

2 State of the art and background

This chapter introduces the fundamental topics for depth based plane detection with

application in indoor map building, navigation and localization. It reviews the state of the art

on 3D image segmentation and also important background theory on image representation,

RANSAC for plane detection and a plane filtering algorithm that supports the developed

work in this dissertation.

2.1 3D Image segmentation

3D perception is one of the crucial fields of research towards fully autonomous and robust

service robot operation. Without perception of the surrounding environment, service robots

will not be able to navigate, manipulate or interact with humans successfully.

This way some computer vision techniques such as image segmentation, more specifically

plane detection, is used to acquire information that will generate data allowing robots to

have perception of their surroundings.

Segmentation is the separation of one or more regions or objects in an image based on

a discontinuity or a similarity criterion [19]. A region in an image can be defined by its

border (edge) or its interior; if the image’s interior is known, it is always possible to define

the border, and vice versa.

Plane detection is one of the most popular approaches in retrieval of environment in-

formation once planar structures are abundant in human-made environments. Moreover it

is useful to model the environment with basic geometry, such as planes, spheres, curved

surfaces, etc. This provides important tools to understand and to manage the environment

from a robot’s point of view. Plane detection often yields a robust method, which is crucial

in several practical works. Planes could be extracted from data provided by different sensors

including video cameras [16], laser range finders [51] and 3D time-of-flight cameras [37].

Plane extraction methods can be classified according to the literature [35], [38] as: edge

6

CHAPTER 2. STATE OF THE ART AND BACKGROUND

based, region based and hybrid methods. Relevant works on plane extraction are categorized

in Table 2.1. Figure 2.1 presents the structure of a typical plane extraction method.

Table 2.1: Plane extraction methods for range images.

Method Description
Edge based [14], [27] Detects the edges of a range image and uses them to bound

the planar regions. It assumes that edges are borders between
different planar surfaces that have to be segmented separately.

Region based [1], [28],
[31], [37], [50]

Selects some seed points in range data and grows them into
regions based on the homogeneity of local features (surface
normal, point-to-distance, etc).

Hybrid [3], [20], [35] Combines both edge based and region growing techniques.

Figure 2.1: Flowchart of the typical structure of a plane extraction algorithm.

2.1.1 Edge based methods

In these kind of extraction methods two steps are required: 1) Edge detection, to detect

edge pixels using image operators such as the Gradient [9], the Laplacian [24], the Laplacian

of the Gaussian [23] and Canny filtering [10]; 2) Edge linking, to link adjacent edge pixels

into edges. Edges in a predefined neighborhood are linked if both magnitude and direction

of the gradient criteria is satisfied.

The main challenge occurring with edge based methods is to generate closed contours

from the edges. As referred before, the boundary and edge points are first identified and

then the extracted border points are used to segment the surface according to different

features (e.g. normal and curvature). Every region within a closed contour forms a segment.

These methods work well in images with good contrast between object and background and

they represent a similar approach to how humans segment images. In general, these methods

cannot guarantee closure of boundaries for surface extraction, resulting in the need of further

information. Moreover most of the edge based approaches are computationally expensive

and therefore not suitable for real time applications [2], another problem is noisy data. Once

7

2.1. 3D IMAGE SEGMENTATION

it is crucial to identify closed contours for these methods, sensor noise reduces robustness

significantly.

As a result region based approaches have played a dominant role in the vast majority of

image analysis systems.

2.1.2 Region based methods

The principle of region based or region-growing methods is to start with a seed region

and to grow it by neighborhood when the neighbors satisfy some conditions. They use local

neighborhood properties to seek the homogeneity within a specific feature or find variation

among the features, and merge spatially close points.

In other words, region based methods could start from one of this set of seed options

(starting pixels) [19]: 1) Predefined seeds; 2) All pixels as seeds; or 3) Randomly chosen seeds.

Then a two steps procedure is initialized: 1) Find starting points; 2) Include neighboring

pixels with similar features (e.g. gray level, texture, color). Here a similarity measure

must be selected (e.g. variance or standard deviation within a region, within a value range,

intensity difference within a region). There are two different variants of these procedures

[19]: 1) Select seeds from the whole range of gray levels in the image and then grow regions

until all pixels in image belong to a region; 2) Select seed only from objects of interest (e.g.

bright structures) and then grow regions only as long as the similarity criterion is fulfilled.

In range images, the neighbors of each point with pixel coordinates are available. In case of

unorganized 3D data, there is no information about the neighborhood in the data structure.

The most common method to compute neighbors in 3D is to compute a Kd-tree [26] to

search k nearest neighbors. The creation of a Kd-tree lies in O(NlogN) and the search of k

nearest neighbors of one point lies on O(logN). Region-growing methods can be categorized

on the following groups: Seeded region-growing [1], Unseeded region-growing [31] and model

based [8], [15] and [38].

1. Seeded region growing method [1] — this method takes a set of seeds as input along

with the image. The seeds mark each of the objects to be segmented. The regions are

iteratively grown by comparison of all unallocated neighboring pixels to the regions.

The difference between a pixel’s intensity value and the region’s mean δ is used as a

measure of similarity. The pixel with the smallest difference measured in this way is

assigned to the respective region. This process continues until all pixels are assigned

to a region. Because seeded region growing requires seeds as additional input, the

8

CHAPTER 2. STATE OF THE ART AND BACKGROUND

segmentation results are dependent on the choice of seeds, and noise in the image can

cause the seeds to be poorly placed.

2. Unseeded region growing method [31] — this method is characterized by not require

explicit seeds. It starts with a single region A1 — the pixel chosen here does not

markedly influence the final segmentation. At each iteration it considers the neigh-

boring pixels in the same way as seeded region growing. It differs from seeded region

growing in that if the minimum δ is less than a predefined threshold T then the pixel

is added to the respective region Aj, otherwise, the pixel is considered different from

all current regions Ai and a new region An+1 is created with this pixel. One variant

of this technique, proposed in [45] is based on pixel intensities. The mean and scatter

of the region and the intensity of the candidate pixel are used to decide whether the

pixel is added to the region, and the region’s mean and scatter are recomputed or the

pixel is rejected, and is used to form a new region.

3. Model based methods — a model based methods work well for a scene where objects can

be described by mathematical models such as plane, sphere, curved surface. RANSAC

[15], NCC-RANSAC [38] and Hough Transform based [8] may be viewed as a region

growing approaches since they clusters data points with similar property into a plane

[38]. The advantage of these region growing methods is that they are fast when there are

many planes to extract, robust to noise and extract the largest connected component

immediately. But some of them only use the distance from point to plane to extract

planes, which decreases the accuracy of correct planar region detection [13]. Some

problems with RANSAC based approaches [6], [15], [38] are that they are not model

consistent (the best model fit is done even if the data represents something else), the

model to be searched has to be known beforehand and it may fails when a scene

contains multiple intersecting planar surfaces [18].

Region based methods can result in over or under segmentation and region border can

be hard to locate. They are also sensitive to the choice of initial seed points. However model

based methods seem to be applicable in more general manner. Figure 2.2 presents a general

structure of the plane extraction methods outlined in Table 2.2.

9

2.1. 3D IMAGE SEGMENTATION

Table 2.2: Region-growing approachs.

Approach \ Paper Description
Fast Planar Clus-
tering and Polygon
Extraction from
Noisy Range Images
Acquired in Indoor
Environments [28]

This approach clusters range image data into coplanar points and ex-
tracts polygons from range images. The neighboring 3D points in the
range image are grouped into small patches of size k and the Hessian
plane parameters of each patch are computed. The algorithm searches
for coplanar patches by comparing the normal of neighboring patches
and their mean distance. The search for coplanar patches will end when
all patches are assigned to a cluster. At the end, the boundary points
are extracted for each cluster.

Fast Plane Detection
and Polygonalization
in noisy 3D Range Im-
ages [37]

A very fast approach to surface extraction for 3D maps. As stated in
[37]: "It consist in two stages: 1) A new plane fitting algorithm is used
where the standard mathematical formulation of the problem is revised to
an incremental version, allowing an efficient region growing. Second, the
segmented regions are polygonalized exploiting the fact that mobile robots
capture the 3D data as a sequence of 3D range images.".

Learning compact 3D
models of indoor and
outdoor environments
with a mobile robot
[22]

In this work a region growing algorithm to extract polygons from range
images is used. The range image coordinates are converted into polygons
in two steps. First, an expensive nearest neighbor search is performed
to cluster the points belonging to individual planes. Then the boundary
points are extracted to form irregular polygons. Second, the neighboring
smaller polygons are merged into larger polygons by looking for common
edges. The algorithm is time-consuming with a time complexity of O(n2),
where n is the number of coordinate points in the range image.

RANSAC [15] This is a model based region growing based algorithm that detects planes
by randomly sampling some points to construct a plane and then use the
remaining points to test whether the constructed plane is a good estimate.

NCC-RANSAC [38] Checks the normal coherences for all data points of inliers patches (on the
fitted plane) and removes the data points whose normal directions are
contradictory to that of the fitted plane. This process results in a number
of separate inlier patches, each of which is treated as a seed plane. A
recursive plane clustering process is then executed to grow each of the
seed planes until all planes are fully extracted.

Figure 2.2: Flowchart of the general structure of a region-growing plane extraction algorithm.

10

CHAPTER 2. STATE OF THE ART AND BACKGROUND

2.1.3 Hybrid methods

Hybrid methods aim to overcome the limitation of both edge-based and region-based

methods combining techniques from both these methods [32]. In [35] an hybrid robust

algorithm is proposed, this is able to localize region borders and edge points accurately, it

efficiently handles the regiown-growing over and under segmentation problem and reduces

outliers effects for the whole process. An improved robust estimator, which iteratively detect

and extract planar surfaces, is presented in [20]. The major problems of hybrid techniques

are the accuracy of the segmentation, efficiency in terms of speed of region growing around

the pixels [52] and the high computational requirements when merging the over-segmented

regions [48].

2.2 Image representation

This section addresses to basic image concepts as well as 2D\3D image mathematical

notation used in this dissertation.

A digital image is represented by a 2D rectangular array of discrete values. Both image

space and intensity ranges are quantified into a discrete set of values. We begin with an ideal

notion of an analog image created by an ideal optical system which we assume to have infinite

precision. Digital images are formed by sampling this analog image at discrete locations and

representing the intensity at a location as a discrete value [45]. All real images are affected

by physical processes that limit precision in both position and intensity. According to [45]:

1) An analog image is a 2D image F [x, y] which has infinite precision in spatial parameters

x and y and infinite precision in the intensity at each spatial point (x, y); 2) A digital image

is a 2D image I [r, c] represented by a discrete 2D array of intensity samples, each of which is

represented using a limited precision; 3) A picture function is a mathematical representation

f [x, y] of a picture as a function of two spatial variables x and y. These variables are real

values defining points of the picture and f [x, y] is usually also a real value defining the

intensity of the picture at point (x, y); 4) A multispectral image is a 2D image I [r, c] which

has a vector of values at each spatial point or pixel. If the image is actually a color image,

then the vector has 3 elements, the red (R), green (G) and blue (B) values.

A coordinate system must be used to address individual pixels of an image; to operate

on it in a computer program, to refer it in a mathematical formula, or to address it relative

11

2.2. IMAGE REPRESENTATION

to device coordinates. The most common used 2D coordinate systems are shown in Figure

2.3. In this dissertation a raster oriented coordinate system (Figure 2.3a) is adopted where

each pixel at row position i and column position j is represented by I(i, j). Hence, a color

digital image I is represented as shown in Figure 2.4. On the other hand, a depth digital

image I is represented as shown in Figure 2.5. This depth image was extracted from the

color image represented in 2.4. Despite the depth image just having two colors (white and

black), does not mean that its pixels’ depth only assume two different values.

(a) (b) (c)

Figure 2.3: 2D coordinate systems used in images: (a) raster oriented uses row and columns
coordinates starting at [0, 0] from the top left. (M,N) are the corresponding width and height
of the image in pixels; (b) Cartesian coordinate frame with [0, 0] at the lower left. (M,N) are
the corresponding width and height of the image in pixels; (c) Cartesian coordinate frame
with [0, 0] at the image center, where (w,h) are the corresponding width and height of the
image in pixels.

Figure 2.4: Color image representation.

12

CHAPTER 2. STATE OF THE ART AND BACKGROUND

Figure 2.5: Depth image representation.

Starting from the coordinate system of a depth image and its points it is possible to

convert them obtaining the 3D representation of this image regarding a coordinate system of

the camera’s frame. Thus a depth image pixel p at position (i, j) will get its 3D coordinates

[sx, sy, sz] according to the following set of equations [4]:

sx = p (i, j)

(
j

w − 1
− 0.5

)
tan

(
fH
2

)
(2.1)

sy = p (i, j)

(
i

h− 1
− 0.5

)
tan

(
fV
2

)
(2.2)

sz = p (i, j) (2.3)

where the size of the depth image in pixels is h × w, p(i, j) is the depth value of the depth

image pixel in position (i, j), fH and fV are the horizontal and vertical camera’s fields of view,

respectively. In Figure 2.6 the conversion of a depth image scenario to its 3D correspondence

is shown.

13

2.2. IMAGE REPRESENTATION

(a) (b)

(c)

(d)

(e) (f)

Figure 2.6: Different types of images and points of view: (a) Color image. (b) Depth image.
(c) 3D image of the depth image points (b). (d) Top view of (c). (e) Top left view of (c).
(f) Coordinate system of image (c).

14

CHAPTER 2. STATE OF THE ART AND BACKGROUND

2.3 RANSAC for plane detection

The RANdom SAmple Consensus was proposed published by Fischler and Bolles at SRI

International in 1981 [15]. The RANSAC algorithm is a resampling technique [12] to estimate

parameters of a model by random sampling observed data. Given a dataset of 3D points

inputData whose elements contain both inlier and outlier points, a distance threshold ε and a

minimum number of samples β required to fit a mathematical model, RANSAC uses a voting

procedure to find the optimal fitting result providing the model parameters such as plane

equation coefficients, normal to plane coefficients N, and the same number (β) of points P

that define the sampled plane. Data elements in the dataset are used as votes for one or

multiple models. The implementation of this voting procedure is based on two assumptions:

1) The noisy features will not vote consistently for any single model; 2) There are enough

features to agree on a good model. The RANSAC algorithm is essentially composed by two

steps that are iteratively repeated:

1. In the first step, a sample subset containing β data items P is randomly selected from

the input dataset inputData. A fitting model and the corresponding model parameters

are computed using only the elements of this sample subset. The cardinality of the

sample subset will always be equal or greater than 3 once RANSAC is searching for a

mathematical model described as a plane.

2. In the second step, the algorithm checks which elements of the entire dataset inputData

are consistent with the model instantiated by the estimated model parameters obtained

from the first step. A data element will be considered as an outlier, if it does not fit the

fitting model instantiated by the set of estimated model parameters within a maximum

distance threshold ε.

The set of inliers obtained for the fitting model is called consensus set P̂ . The RANSAC

algorithm will iteratively repeat the above two steps until the obtained consensus set in

certain iteration has the maximum number of inliers. RANSAC achieves its goal by repeating

the following steps: 1) Select a random subset of the original dataset inputData. Call this

subset the hypothetical inliers; 2) A model is fitted to the set of hypothetical inliers; 3) All

other data are then tested against the fitted model. Those points that fit well the estimated

model, according to some model-specific function, are considered as part of the consensus

set; 4) The estimated model is reasonably good if enough points (from 90% up to 99% of

15

2.4. FAST SAMPLING PLANE FILTERING

(a) (b)

Figure 2.7: An overview of the RANSAC for plane detection application: (a) 3D points
dataset inputData. (b) Inlier points P̂ of the best fitting model.

the points) have been classified as part of the consensus set; 5) Afterwards, the model may

be improved by reestimating it using all members of the consensus set. This procedure is

repeated a fixed number of times maxIterations 1, each time producing either a model which

is rejected because too few points are part of the consensus set, or a refined model together

with a corresponding consensus set size. In the latter case, we keep the refined model if its

consensus set is larger than the previously saved model.

The application of the RANSAC for plane detection is shown in Figure 2.7, Figure 2.7a

shows the 3D points dataset inputData that is provided to the RANSAC algorithm and

Figure 2.7b the inlier points P̂ of the best fitting model are shown.

2.4 Fast Sampling Plane Filtering

The Fast Sampling Plane Filtering Algorithm (FSPF) was developed by Biswas [4]. This

algorithm is used to filter depth images providing the plane filtered points, plane to point

normals and a set with all outlier depth image points. The procedure of this method is

outlined in Algorithm 1 and its configuration parameters are presented in Table 2.3.

It starts by taking a depth image I of size h × w as its input parameter (line 1) then

initializes three lists, one that will contain all the image plane filtered points FP , one with

its normals to the filtered planes NP , and a third one with all the image outlier points OP

(lines 2-4). While the maximum number of sampled neighborhoods nneighbor or the maximum

number of image filtered points nfilt are greater than the number of sampled neighborhoods

k or greater than the number of filtered points n, respectively, the algorithm will perform an

iterative procedure (lines 7-25). The number of sampled neighborhoods is incremented (line
1≈ 1000 iterations on a MatLab application [30] and ≈ 10000 iterations on a C++ application [36].

16

CHAPTER 2. STATE OF THE ART AND BACKGROUND

Table 2.3: Configuration parameters for Algorithm 1

Parameter Description
nfilt Maximum total number of filtered points
nneighbor Maximum number of neighborhoods to sample
l Number of local samples
Ω Neighborhood for global samples (in pixels)
∆ Plane size in world space for local samples
ε Maximum distance threshold for planes
αin Minimum inlier fraction to accept local sample

8). Then an initial random 2D point p0 is generated within the limits of the image and two

more points p1 and p2 are selected within a neighborhood of size Ω around the position of

p0 (lines 9-11). The 3D points [s0, s1, s2] for each 2D point [p0, p1, p2] are then computed

(line 12) according to the set of equations (2.1) , (2.2) and (2.3) presented in Section 2.2.

The normal of the plane is computed based on the three 3D points (line 13), followed by

the mean depth z̄ of the same 3D points is computed as well (line 14). The size of a search

window H × W is defined based on the following parameters: the mean depth z̄, the size

of I, both horizontal fH and vertical fV fields of view, and the minimum expected size ∆ of

the planes in the world (lines 15-16). A version of the RANSAC algorithm [numInliers, P̂ ,

N]← RANSAC[p0, W, H, l, ε] is used for providing a set of 3D inlier points P̂ that make

part of the filtered plane, its corresponding normal N and the total number of inlier points

numInliers. In addition to p0, W and H this subroutine requires also the number of local

samples l and the plane distance threshold ε. If the total number of inlier points numInliers

is greater than a defined threshold αin × l, where αin is the minimum fraction of inlier points

to accept a set of sampled points, then all the plane inlier points P̂ are added to the list

FP , its normals to the filtered planes N are added to the list NP , and the the number of

filtered plane points n is incremented (lines 19-21), otherwise all image filtered points P̂

are added to the outlier points list OP (line 23). When the while condition (line 7) turns

false, the algorithm exits the iterative loop and the three lists containing all the image plane

filtered points FP , the corresponding normals to planes NP , and image outlier points OP are

returned as output parameters (line 26). This algorithm was the starting point to the work

developed in Chapter 3.

17

2.5. OBSTACLE SCAN

Algorithm 1 Fast Sampling Plane Filtering from [6]
1: procedure PlaneFiltering(I)
2: FP ← {} . Plane filtered points
3: NP ← {} . Normals to filtered planes
4: OP ← {} . Outlier points
5: n← 0 . Number of plane filtered points
6: k ← 0 . Number of neighborhoods sampled
7: while (k < kmax) ∧ (n < nmax) do
8: k ← k + 1
9: p0 = [rand(0,h-1),rand(0,w-1)]

10: p1 = p0 + [rand(-Ω,+Ω),rand(-Ω,+Ω)]
11: p2 = p0 + [rand(-Ω,+Ω),rand(-Ω,+Ω)]
12: Reconstruct s0, s1, s2 from p0, p1, p2 . Using equations (2.1), (2.2) and (2.3)
13: r = (s1−s0)×(s2−s0)

‖(s1−s0)×(s2−s0)‖ . Compute plane normal
14: z̄ =

sz0+sz1+sz2
3

. Compute mean depth
15: W = w

(
∆
z̄

)
tan (fH) . Search window width

16: H = h
(

∆
z̄

)
tan (fV) . Search window height

17: [numInliers, P̂ , N]← RANSAC[p0, W, H, l, ε]
18: if numInliers > αinl then
19: Add P̂ to FP
20: Add N to NP

21: n← n+ numInliers
22: else
23: Add P̂ to OP

24: end if
25: end while
26: return FP , NP , OP

27: end procedure

2.5 Obstacle Scan

The Obstacle Scan algorithm was developed by Biswas [4] . Using the filtered points of

the depth image provided by the FSPF it is possible to generate an obstacle scan similar to

the laser rangefinder scan. This obstacle scan will be a list of nN points where each point

SN [j] value is the distance of the closest obstacle along the ray from the robot in the direction

of fH
(

i
nN

+ 1
2

)
. The Obstacle Scan covers an angular field of view fH with nN bins, thus

providing an angular resolution of fH
nN

. The Algorithm 2 lists the Obstacle Scan procedure

that receives a list of image filtered plane points FP its input parameter (line 1). A list of

nN points is initialized with a default value (infinite) for every one of its elements (line 2).

For all elements of FP an interactive procedure will start (lines 4-10). If any point of FP has

a distance smaller than the minimum depth value εN then this point is disregarded (line 5).

If not, the angle θ between the y-axis and the x-axis of the camera frame is computed (line

18

CHAPTER 2. STATE OF THE ART AND BACKGROUND

7), followed by the distance ρ between the camera and the current point (line 8). The index

j of the current point is computed based on the number of elements nN of the scan points

SN , its θ and the camera’s horizontal field of view fH (line 9). The distance value of the

scan for a defined direction SN [j] is given by the minimum value between the current SN [j]

value and the current ρ value (line 10). The Obstacle Scan algorithm returns as its output

parameter, a the list of distance points SN (line 10). This algorithm was also the basis for

the algorithm developed in Section 3.2.

Algorithm 2 Obstacle Scan from [4]
1: procedure ObstacleScan(FP)
2: SN [j]←∞∀j ∈ [0, nN]
3: for all si ∈ FP do
4: if szi < εN then
5: continue
6: end if
7: θ = atan2 (syi , s

x
i)

8: ρ =
√

(sxi)
2 + (syi)

2

9: j = floor

[
nN

(
θ− fH

2

fH

)]
10: SN [j]←− min (SN [j] , ρ)

11: end for
12: return SN
13: end procedure

19

3 Depth Image Processing

This chapter describes the developed algorithms and the code that processes the depth

images by detecting some features such as planes from the image scenario and their corre-

sponding points.

The plane detection from depth images and the obstacle scan generation algorithms

developed provide important and useful data that could be applied in some future work such

as indoor mobile robot localization and navigation tasks.

3.1 Fast Sampling Plane Filtering Plus

The new FSPF+ algorithm was developed based on the FSPF [4] presented in Section

2.4. The FSPF+ has some improvements regarding the plane point filtering possibilities and

also the depth image point preprocessing.

The description of the FSPF+ algorithm is supported by Figure 3.1, where the algorithm

is generally presented and by Algorithm 3, where the algorithm is detailed and the main

changes are outlined in bold. All the configuration parameters required by the FSPF+ are

listed in Table 3.1.

It starts by taking a depth image I of size h × w, a maximum depth value maxDepth,

a minimum depth value minDepth and a maximum distance threshold value ε as its input

Table 3.1: Configuration parameters for Algorithm 3

Parameter Description
nMin Minimum number of points to consider a plane
nRequired Minimum number of points that has to be analyzed
Ω Neighborhood for global samples (in pixels)
∆ Plane size in world space for local samples (in m)
ε Maximum distance threshold for planes (in mm)
β Minimum number of points to generate a mathematical model
fH Kinect 2 horizontal field of view (in degrees)
fV Kinect 2 vertical field of view (in degrees)

20

CHAPTER 3. DEPTH IMAGE PROCESSING

Figure 3.1: General structure of FSPF+.

21

3.1. FAST SAMPLING PLANE FILTERING PLUS

parameters (line 1). Then two lists are initialized, one that will contain all the image plane

filtered points FP and another one with its normals to the filtered planes NP (lines 2-4).

The variable that will work as the stopping criterion pointsLeft is initialized with the total

number of the depth image pixels (line 5). A subroutine [auxI]← depthConstraints[I, min-

Depth, maxDepth] is used to classify all the pixels from the image as "eligible" or "illegible"

according to their depth value and maxDepth, minDepth input values (line 6). While the

total number of unfiltered points pointsLeft is smaller than a given threshold nRequired the

algorithm will perform an iterative procedure (lines 8-26). This approach continues by sam-

pling three points from I : p0 a random eligible point, p1 and p2 two also random eligible

points selected within a neighborhood of size Ω around p0 (lines 8-10). The 3D point co-

ordinates [sx, sy, sz] for each 2D point [p0, p1, p2] are then computed (line 11) according

to the conversion equations 2.1 , 2.2 and 2.3. The size of a search window is defined based

on the mean depth of the latter computed 3D coordinates, the size of I, both horizontal

fH and vertical fV fields of view and the minimum expected plane size in world ∆ (lines

12-14). A second subroutine [points]← imageSearchWindow3DPoints[p0, W, H, I, auxI, fH ,

fV] selects all eligible depth image points within a search window of size W x H around

p0 and computes the corresponding 3D points (inputData) (line 15). Given these points a

RANSAC subroutine [P, P̂ , N]← RANSAC[inputData, ε, β] is used providing a set of 3D

inlier points P̂ that make part of the filtered plane, its corresponding normal N and the three

points that define the filtered plane P (line 16). The number of image plane inlier points is

defined as the size of the P̂ set (line 17). The algorithm uses a fourth subroutine [rectifiedN,

plane]← normalRectifier[N, P] which classifies each filtered plane as a ceiling plane, ground

plane, left plane, right plane or front plane (line 18). Whether a plane is classified as ground

plane or ceiling plane, both its filtered points and plane normal are discarded (line 20). If the

total number of inlier points is bigger than a defined threshold nMin then all the plane inlier

points are added to the list FP , their normals to the filtered planes are added to the list NP

and both the number of filtered plane points n and the number of sampled neighborhoods k

are incremented (lines 23-25). When the while condition (pointsLeft > nRequired) turns

false (line 7), the algorithm exits the iterative loop and the two lists containing all the image

plane filtered points FP and the corresponding normals to planes NP are returned as output

parameters (line 28). In Figure 3.2 an example of the application of the FSPF+ algorithm is

shown. The colors in which the FSPF+ results are represented are with gradient effect, from

red to purple (hot and cold, respectively). Red represents a very close plane (0.5 meters)

and purple represents a plane that is very far away (4.5 meters).

22

CHAPTER 3. DEPTH IMAGE PROCESSING

Algorithm 3 Fast Sampling Plane Filtering Plus
1: procedure PlaneFilteringPlus(I,maxDepth,minDepth, ε)
2: FP ← {} . Plane filtered points
3: NP ← {} . Normals to filtered planes
4: n← 0 . Number of plane filtered points
5: pointsLeft← h× w . Initial number of unfiltered points
6: [auxI]← depthConstraints[I, minDepth, maxDepth]
7: while (pointsLeft > nRequired) do
8: p0 = [rand(0,h-1),rand(0,w-1)]
9: p1 = p0 + [rand(-Ω,+Ω),rand(-Ω,+Ω)]

10: p2 = p0 + [rand(-Ω,+Ω),rand(-Ω,+Ω)]
11: Compute s0, s1, s2, from p0, p1, p2
12: z̄ =

sz0+sz1+sz2
3

13: W = w
(

∆
z̄

)
tan fH

2

14: H = h
(

∆
z̄

)
tan fV

2

15: [inputData]← imageSearchWindow3DPoints[p0,W,H, I, auxI, fH , fV]
16: [P, P̂ , N]← RANSAC[inputData, ε, β]
17: inliers ← size of P̂
18: [rectifiedN, plane]← normalRectifier[N, P]
19: if (plane = ground) ∧ (plane = ceiling) then
20: inliers = 0
21: end if
22: if inliers > nMin then
23: Add P̂ to FP
24: Add rectifiedN to NP

25: n← n+ inliers

26: end if
27: end while
28: return FP , NP

29: end procedure

23

3.1. FAST SAMPLING PLANE FILTERING PLUS

(a) (b)

(c) (d)

Figure 3.2: Input and output FSPF+ algorithm data: (a) Color image. (b) Depth image.
(c) Results of FSPF+ algorithm applied to (b). (d) Results of FSPF+ algorithm applied to
(b) after filtering the planes classified as ground and ceiling planes.

3.1.1 Contributions

Although the structure of the FSPF+ algorithm is very similar to FSPF’s structure [4],

some functionalities were added in order to improve the performance of the algorithm in

several ways. The new functionalities are the following:

1. Starting from the input parameters of Algorithm 3 (line 1), the inclusion of the

maximum and minimum depth range values allows the FSPF+ to be easily configured

to most of the environment scenes where the algorithm has to run. The same occurs

to the ε value, allowing the user to decide if the desired results have to be more or less

accurate.

2. After working with the Microsoft Kinect [34] for a while and analyzing the provided

depth images it was concluded that those images had a high number of pixels with

noisy values, in order to overcome this problem it was developed a subroutine that

analyzes each pixel of the provided depth image and then classifies each one of them as

"eligible" or "illegible" regarding the defined depth range constraints on Algorithm

24

CHAPTER 3. DEPTH IMAGE PROCESSING

3 (line 5). The purpose of this subroutine is to do an initial image pixel filtering in

order to accelerate the main image plane filtering procedure and to disregard the image

pixels with noisy values. This subroutine is called depthConstraints and is outlined in

Algorithm 4.

Algorithm 4 Depth Constraints
1: procedure depthConstraints(I,minDepth,maxDepth)
2: auxI ← {} . Empty auxiliar 2D image
3: w ← width of image I
4: h ← height of image I
5: for i = 1 : h do
6: for j = 1 : w do
7: if I(i, j) <= minDepth || I(i, j) > maxDepth then
8: auxI(i, j) = 1 . Illegible pixel
9: else

10: auxI(i, j) = 0 . Eligible pixel
11: end if
12: end for
13: end for
14: return auxI
15: end procedure

3. The stopping criterion was also modified once the original FSPF stopping criterion 2.4

was not strict enough to guarantee that all image planes were filtered. This way the

stopping criterion was defined by the following equation:

nRequired = [(h× w) − illegiblePoints]× 0.01 (3.1)

The resulting number of points nRequired is good enough to obtain a good detection

of planes from the depth image. The fraction of required points (1%) that guarantees

a good plane detection was empirically computed.

4. The dataset of 3D points inputData that will be provided to the RANSAC algorithm

has to be defined based on a search window of size H × W around a middle point p0.

However the boundaries of the image represent a problem once the point p0 is randomly

generated. In Figure 3.3a an example where the middle point p0 (orange pixel) has

a localization far from the image’s boundaries is shown, this way the definition of

the corresponding image search window is direct like the conversion of its 2D points

to 3D points inputData. During the conversion process of 2D points to their 3D

coordinates these points become illegible and the pointsLeft variable is decremented.

25

3.1. FAST SAMPLING PLANE FILTERING PLUS

In situations when the point p0 is located nearby the image’s boundaries the search

window sometimes has to be resized in order to not include invalid pixels. In Figure

3.3b two examples of invalid search windows and the adjustment of the same search

windows are shown. The conversion procedure is then applied to these search windows.

This subroutine is called imageSearchWindows3DPoints and outlined in Algorithm

5.

(a)

(b)

Figure 3.3: Representation of the imageSearchWindow3DPoints algorithm procedure: (a) p0
(orange pixel) far from the image boundaries. (b) Two examples of image search windows
adjustment for p0 (orange pixels) near the image boundaries. The black pixels in both
images represent illegible points previously defined.

5. Providing this 3D points dataset inputData, the plane distance threshold ε and the

minimum number of samples β required to a function to fit a mathematical model the

RANSAC algorithm computes the best fitting model providing the plane normal N,

the plane inlier points P̂ and the three 3D points P that define the plane. In the FSPF

algorithm, an initial image plane is computed based on the three 3D points previously

computed, then the RANSAC algorithm will figure it out which search window’s points

26

CHAPTER 3. DEPTH IMAGE PROCESSING

Algorithm 5 Image Search Window 3D Points
1: procedure imageSearchWindow3DPoints(p0,W,H, I, auxI, fH , fV)
2: inputData← {} . Empty set of 3D points
3: w ← width of image I
4: h ← height of image I
5: i ← i coordinate of p0
6: j ← j coordinate of p0
7: A← ceil([i−H/2, j −W/2]) . Search window left upper corner
8: B ← ceil([i−H/2, j +W/2]) . Search window right upper corner
9: C ← ceil([i+H/2, j −W/2]) . Search window left bottom corner

10: D ← ceil([i+H/2, j +W/2]) . Search window left bottom corner
11: if I(i,j) is nearby the image’s boundaries then
12: Adjust A, B, C and D values
13: end if
14: for i = A(1, 1) : C(1, 1) do
15: for j = C(1, 2) : D(1, 2) do
16: if auxI(i,j) is Eligible then
17: Computes sx, sy, sz
18: auxI(i, j) = 1 . Image pixel turns illegible
19: pointsLeft = pointsLeft− 1
20: inputData = [inputData; sx sy sz]

21: end if
22: end for
23: end for
24: return inputData
25: end procedure

belong to this image plane. This approach could look similar to the one presented

in this dissertation however it can be easily proven that if the computed initial 3D

image points s0, s1 and s2 belong to different image planes, then the resultant plane

will not correspond to a real image plane. A problem of this nature will not occur

when using the subroutine imageSearchWindow3DPoints followed by the RANSAC

implementation as proposed in the FSPF+ Algorithm 3.

6. A totally new feature is added to the FSPF+ thats consists in the possibility to classify

the image planes provided by the RANSAC algorithm. Firstly the localization of plane

in the image is computed, then the corresponding normal to the filtered plane is verified,

whether its direction is correct or needs to be rectified. Finally the provided image

plane is classified as ceiling plane, ground plane, left wall plane, right wall plane or

front plane regarding both its normal coefficients and localization. This feature allows

the FSPF+ algorithm to filter specific planar structures such as the image ground,

ceiling or even frontal structures. In Figure 3.4 the image plane normal rectification

27

3.2. KINECT OBSTACLE SCAN

Figure 3.4: normalRectifier procedure description.

and classification are shown. This subroutine is called normalRectifier and is outlined

in Algorithm 6 and a brief procedure description is shown Figure 3.4.

Algorithm 6 Normal Rectifier
1: procedure normalRectifier(N,P)
2: plane← {} . Plane orientation flag
3: rectifiedN ← {}
4: Computes xmean, ymean, zmean from P . Plane middle point
5: if N has no correct direction then
6: Rectifies N by changing its signal
7: rectifiedN ← N rectification by signal changing
8: Plane← classification
9: else

10: rectifiedN ← N
11: Plane← classification

12: end if
13: return rectifiedN, plane
14: end procedure

3.2 Kinect Obstacle Scan

The Obstacle Scan previously presented in Section 2.5 was studied and a new version

was developed, the Kinect Obstacle Scan (KOS). The KOS algorithm allows the user to

generate a multi-level obstacle scan. The Algorithm 7 receives a list of image filtered plane

points FP provided by the FSPF+, a minimum depth value minDepth and the height value

scanHeight of the desired obstacle scan from the Microsoft Kinect One frame [34] as its input

parameters (line 1). A list of nN points is initialized with a default value (infinite) for every

one of its elements (line 2). For all elements of FP an interactive procedure will start (lines

4-13). If any point of FP has a distance smaller than the minimum depth value minDepth

28

CHAPTER 3. DEPTH IMAGE PROCESSING

then this point is disregarded (line 5), the point is also disregarded when its height does

not respect the scanHeight constraint (line 8). Then the angle θ between the x-axis and the

z-axis of the camera frame is computed (line 10), followed by the distance ρ between the

camera and the current point (line 11). The index j of the current point is computed based

on the number of elements nN of the scan points SN , its θ and the camera’s horizontal field

of view fH (line 12). The distance value of the scan for a defined direction SN [j] is given by

the minimum value between the current SN [j] value and the current ρ value (line 13). KOS

algorithm returns as its output parameter, a list of distance points SN (line 15).

(a)

(b)

Figure 3.5: Kinect obstacle scan generated from a depth image: (a) Color image. (b) KOS
of (a) for a height of 30 cm from the ground level.

Algorithm 7 Kinect Obstacle Scan
1: procedure KinectObstacleScan(FP ,minDepth, scanHeight)
2: SN [j]←∞∀j ∈ [0, nN]
3: for all si ∈ FP do
4: if szi < minDepth then
5: continue
6: end if
7: if ((syi < scanHeight− 100) ‖ (syi > scanHeight+ 100)) then
8: continue
9: end if

10: θ = atan2 (sxi , s
z
i)

11: ρ =
√

(sxi)
2 + (szi)

2

12: j = ceil

[
nN

(
θ+

fH
2

fH

)]
13: SN [j]←− min (SN [j] , ρ)

14: end for
15: return SN
16: end procedure

29

4 Experimental setup

This chapter describes the different experimental setups that were developed to test the

proposed methods. There are two different main setups, the Offline Experimental Setup

(OES) and the Real-time Experimental Setup (RtES).

4.1 Offline experimental setup

The OES depicted in Figure 4.1 is composed by three main modules: the Data Acquisi-

tion Module (DAcM), the Data Processing Module (DPM) and the Data Analysis Module

(DAnM).

Figure 4.1: Offline experimental setup.

Figure 4.2: Caption of the experimental setups.

4.1.1 DAcM

In the DAcM, a Microsoft Kinect One [34] is used through the kinect2_bridge ROS

package [49] to collect color and depth images into a Dataset #1 and the corresponding

point clouds into a Dataset #2. A Hokuyo UTM-30LX [25] laser range finder is also used to

30

CHAPTER 4. EXPERIMENTAL SETUP

collect laser scans from the same environments, such as those shown in Figure 4.8, through

the hokuyo_node ROS package [40] into a Dataset #3. The info flowchart of the DAcM is

shown in Figure 4.4.

(a) (b)

(c) (d)

Figure 4.3: Ground floor of the ISR. (a) Area A. (b) Area B. (c) Area C. (d) Area D.

4.1.2 DPM

The DPM is a ROS based implementation where the algorithms presented in Chapter 3

are adapted to a ROS supported language in order to process the DAcM’s referred datasets.

The information flow in the ROS implementation is shown in Figure 4.5 supported by Figure

4.2.

Hence a new kinect_node ROS package was created in order to implement the FSPF+

and the KOS algorithms presented in Chapter 3. This package is composed by two nodes:

1. plane_filtering: here the FSPF+ algorithm is implemented in C++ programming lan-

guage. This node subscribes the /kinect2\sd\image_depth_rect topic [sensor_msgs/Image

Message type [41]] from the iaiKinect2 ROS package [49], publishes /Fp_cloud and

/Np_cloud topics [sensor_msgs/PointCloud Message type [43]] and exports the fil-

teredPoints and the planeNormals text files with their values, respectively;

2. kinect_obstacle_scan: here the KOS algorithm is implemented. This node subscribes

31

4.1. OFFLINE EXPERIMENTAL SETUP

the /Fp_cloud topic, publishes the /kinect_scan topic [sensor_msgs/LaserScan Mes-

sage [42] type] and exports a text file with its values.

The Rviz is a 3D visualization tool for ROS that allows the user to see the values of the

subscribed/published ROS topics.

Figure 4.4: Data Acquisition Module.

4.1.3 DAnM

The DAnM analyzes the output data files of DAcM and DPM and computes the results

of each desired test based on MatLab [33] routines. The info flowchart of this module is

shown in Figure 4.6 also supported by Figure 4.2.

32

CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.5: Data Processing Module, information flow in ROS implementation.

Figure 4.6: Data Analysis Module.

33

4.2. REAL-TIME EXPERIMENTAL SETUP

4.2 Real-time experimental setup

The RtES depicted in Figure 4.7 is composed by three main modules: the Data Acqui-

sition Module (DAcM) and the Data Processing Module (DPM) mounted on the Interbot

Platform [11] and the Offline Data Analysis Module (ODAnM). The following figures are

supported by Figure 4.2.

Figure 4.7: Real-time experimental setup.

4.2.1 DAcM

In DAcM the Microsoft Kinect One [34] collects color and depth images and the corre-

sponding point clouds through the use of the kinect2_bridge ROS package [49], while the

Interbot Platform [11] navigates along the ground floor of ISR, Figure 4.8b, at the same

time the Hokuyo laser range finder [25] collects the laser scans using the hokuyo_node ROS

package [40]. The ROS topics published in the DAcM are then subscribed in the following

modules of the RtES. The flowchart of the DAcM is shown in Figure 4.9.

4.2.2 DPM

In DPM the given ROS topics from DAcM are processed in a real-time ROS based

implementation presented in Figure 4.10. Some of the ROS packages used in this module

were already described in the previous Section 4.1.2.

The hector_mapping ROS package [29] which is used on the Interbot Platform [11] for

localization and mapping issues is used here as well. This ROS package subscribes the

/kinect_scan topic and publishes the /map topic [nav_msgs/OccupancyGrid Message type

[39]] and the /slam_out_pose topic [geometry_msgs/PoseStamped Message type [44]]. A

png file generated_map with the generated map can also be also exported.

34

CHAPTER 4. EXPERIMENTAL SETUP

The Gazebo robotic simulation tool [17] is used to test the localization of the Interbot

Platform using the hector_mapping topics in a simulation environment. It is important to

refer that the Rviz allows a real-time visualization of the processed data.

(a) (b)

Figure 4.8: Data acquisition in the ground floor of the ISR: (a) Interbot Platform. (b)
Interbot collecting data.

Figure 4.9: Data Acquisition Module.

35

4.2. REAL-TIME EXPERIMENTAL SETUP

Figure 4.10: Data Processing Module, information flow in ROS implementation.

4.2.3 ODAnN

The I/O image files provided from DPM are analyzed lately through an inspection pro-

cedure (not real-time) in order to conclude about the performance of the test done. This

analysis is done apart from the Interbot Platform [11]. The data flowchart of ODAnM is

presented in Figure 4.11.

Figure 4.11: Offline Data Analysis Module.

36

CHAPTER 4. EXPERIMENTAL SETUP

4.3 Interbot Platform

The Interbot Platform [11] is a robotic moving platform developed in the ISR. The

motors’ drivers, the battery management system and the platform’s framework were all

developed from scratch for this robot. This platform could be described by three main

modules: 1) BMS and motor drivers; 2) Raspberry Pi 2; 3) I/O sensors & laptop. The main

components of the Interbot Platform are presented in Figure 4.12 and listed in Table 4.1.

Figure 4.12: Interbot Platform main components.

Table 4.1: Interbot Platform main components.

Name # Name
1 Touchscreen monitor 6 Rear Microsoft Kinect One
2 Front Microsoft Kinect One 7 Keyboard
3 Laptop 8 Raspberry Pi 2
4 Hokuyo UTM30-LX 9 Power interface
5 BMS & Motor Drivers 10 Framework

Further information about the main modules of the Interbot Platform and its components

can be found in [11].

37

5 Tests and results

This chapter presents all the tests that have been done to verify and validate the proposed

methods. It is divided in two main sections based on the experimental setups that were used

to test the algorithms. Firstly the FSPF+ and KOS algorithms are tested in offline mode,

using the OES. Secondly, both algorithms are tested in real-time using the RtES.

5.1 Offline tests

5.1.1 Plane detection and plane orientation detection

The FSPF+ is tested using the OES. The collected datasets have information about nine

scenes from the ground floor of the ISR. The FSPF+ was tested on each one of the nine

scenes using a value of ε of 5 mm and 10 mm. The defined input parameters of the algorithm

are minDepth = 400 mm, maxDepth = 4500 mm, the configuration values of the FSPF+ are

listed in Table 5.1. The main goals of this set of tests is to compare the original scenes with

the results of the FSPF+ algorithm regarding the plane detection and plane’s orientation

detection, and to verify the influence of the ε value. For each scene, the color and depth

image, and point cloud are presented. Next to this original data two sets of figures are

depicted presenting, for the two values of ε, the results of the algorithm before and after the

plane’s orientation detection. As referred before the colors in which the FSPF+ results are

represented are with gradient effect, from red to purple (hot and cold, respectively). Red

represents a very close plane (0.5 meters) and purple represents a plane that is very far away

(4.5 meters).

Table 5.1: Configuration values of Algorithm 3

Parameter Value Parameter Value
nMin 40 ε 5-10

nRequired 99 % of eligible points β 3
Ω 60 fH 70.6
∆ 0.5 fV 60

38

CHAPTER 5. TESTS AND RESULTS

(a) (b) (c)

Figure 5.1: Scene #1: (a) Color image. (b) Depth image. (c) Point cloud.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2: Results of scene #1 for ε = 5 (a) to (d) and for ε = 10 (e) to (h) . (a)-(e) Front
view of filtered points. (b)-(f) Top view of the filtered points. (c)-(g) Front view of filtered
points after plane classification. (d)-(h) Top view of filtered points after plane classification.

(a) (b) (c)

Figure 5.3: Scene #2: (a) Color image. (b) Depth image. (c) Point cloud.

39

5.1. OFFLINE TESTS

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Results of scene #2 for ε = 5 (a) to (d) and for ε = 10 (e) to (h) . (a)-(e) Front
view of filtered points. (b)-(f) Top view of the filtered points. (c)-(g) Front view of filtered
points after plane classification. (d)-(h) Top view of filtered points after plane classification.

(a) (b) (c)

Figure 5.5: Scene #3: (a) Color image. (b) Depth image. (c) Point cloud.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.6: Results of scene #3 for ε = 5 (a) to (d) and for ε = 10 (e) to (h) . (a)-(e) Front
view of filtered points. (b)-(f) Top view of the filtered points. (c)-(g) Front view of filtered
points after plane classification. (d)-(h) Top view of filtered points after plane classification.

40

CHAPTER 5. TESTS AND RESULTS

(a) (b) (c)

Figure 5.7: Scene #4: (a) Color image. (b) Depth image. (c) Point cloud.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.8: Results of scene #4 for ε = 5 (a) to (d) and for ε = 10 (e) to (h) . (a)-(e) Front
view of filtered points. (b)-(f) Top view of the filtered points. (c)-(g) Front view of filtered
points after plane classification. (d)-(h) Top view of filtered points after plane classification.

(a) (b) (c)

Figure 5.9: Scene #5: (a) Color image. (b) Depth image. (c) Point cloud.

41

5.1. OFFLINE TESTS

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10: Results of scene #5 for ε = 5 (a) to (d) and for ε = 10 (e) to (h) . (a)-(e) Front
view of filtered points. (b)-(f) Top view of the filtered points. (c)-(g) Front view of filtered
points after plane classification. (d)-(h) Top view of filtered points after plane classification.

(a) (b) (c)

Figure 5.11: Scene #6: (a) Color image. (b) Depth image. (c) Point cloud.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: Results of scene #6 for ε = 5 (a) to (d) and for ε = 10 (e) to (h) . (a)-(e) Front
view of filtered points. (b)-(f) Top view of the filtered points. (c)-(g) Front view of filtered
points after plane classification. (d)-(h) Top view of filtered points after plane classification.

42

CHAPTER 5. TESTS AND RESULTS

Table 5.2: Results of the FSPF+ algorithm for ε = 5.

Scene # Image
points

Illegible
points

Inlier
points

Outlier
points

Remaining
points Elapsed time (ms)

1

217088

24.7% 46.58% 27.94% 1634 89.5
2 19.9% 44.5% 34.66% 1736 122.9
3 31.6% 33.94% 33.77% 1484 134.2
4 10.9% 59.9% 26.54% 1932 104.9
5 55.99% 13.8% 29.76% 955 120.8
6 36.85% 31.98% 30.52% 1370 130.8

Table 5.3: Results of the FSPF+ algorithm for ε = 10.

Scene # Image
points

Illegible
points

Inlier
points

Outlier
points

Remaining
points Elapsed time (ms)

1

217088

24.7% 56.41% 18.86% 1634 41.80
2 19.9% 58.61% 21.39% 1736 57.61
3 31.6% 41.65% 26.74% 1484 53.99
4 15.6% 73.8% 15.23% 1932 52.23
5 55.99% 18.99% 25.09% 955 53.59
6 36.85% 40% 23.13% 1370 54.07

After reviewing the planes detection results it is possible to conclude that these results are

quite satisfactory comparing the same with the the point cloud of each scene. As expected,

the results for ε = 5 reveal to be better look than for ε once the number of points per plane

decreases and the plane detection acquracy increases. Moreover it is also possible to refer

that the density of planes increases for ε = 10.

In all these scenes, planes classified as ground and ceiling planes are filtered as it could

be seen in figures (c), (d), (g) and (h) of all scene results figures. The plane orientation

detection reveals to be efficient once these kind of planes were removed almost completely.

In terms of time consumption, as it is presented in Table 5.2 and in Table 5.3 as the ε

value doubles from 5 to 10 the elapsed time decreases in a 0.45 scale factor.

Considering the results of Table 5.3, the FSPF+ algorithm runs at 19 Hz which is con-

sidered to be a real time procedure.

5.1.2 Kinect obstacle scan

In this section the KOS algorithm is tested using the OES. The input parameters of this

algorithm were defined as minDepth = 500 mm and scanHeight = -0.500 m. The results of

the algorithm for both values of ε are presented also the Hokuyo’s laser scans of the same

six scenes are depicted in the following figures. The goal of this set of tests is to compare

43

5.1. OFFLINE TESTS

the KOS with the Hokuyo’s scan and to verify how could the KOS’s performance improve

or worsen for different values of ε. These results are depicted in Figures 5.13 up to Figure

5.18.

(a) (b) (c)

Figure 5.13: KOS results of scene #1: (a) Laser scan. (b) KOS for ε = 5 over the laser scan.
(c) KOS for ε = 10 over the laser scan.

(a) (b) (c)

Figure 5.14: KOS results of scene #2: (a) Laser scan. (b) KOS for ε = 5 over the laser scan.
(c) KOS for ε = 10 over the laser scan.

(a) (b) (c)

Figure 5.15: KOS results of scene #3: (a) Laser scan. (b) KOS for ε = 5 over the laser scan.
(c) KOS for ε = 10 over the laser scan.

44

CHAPTER 5. TESTS AND RESULTS

(a) (b) (c)

Figure 5.16: KOS results of scene #4: (a) Laser scan. (b) KOS for ε = 5 over the laser scan.
(c) KOS for ε = 10 over the laser scan.

(a) (b) (c)

Figure 5.17: KOS results of scene #5: (a) Laser scan. (b) KOS for ε = 5 over the laser scan.
(c) KOS for ε = 10 over the laser scan.

(a) (b) (c)

Figure 5.18: KOS results of scene #6: (a) Laser scan. (b) KOS for ε = 5 over the laser scan.
(c) KOS for ε = 10 over the laser scan.

The provided data show that the KOS algorithm has very good results when comparing

with the Hokuyo’s laser scans. As previously referred, the results improve when the ε value

decreases.

The multi-level kinect obstacle scan functionality was tested in scenes #7 and #8 depicted

in Figure 5.19 and in Figure 5.20. For both scenes the corresponding color and depth images

45

5.1. OFFLINE TESTS

are presented also the Hokuyo’s laser scan and the KOS are presented, the last one for

different scan heights. The results of these tests are presented in the following figures.

(a) (b)

(c) (d) (e)

Figure 5.19: Scene #7: (a) Color image. (b) Depth image. (c) Laser scan. (d) Laser scan
and KOS for same height. (e) Laser scan and KOS for an higher scan height.

(a) (b)

(c) (d) (e)

Figure 5.20: Scene #8: (a) Color image. (b) Depth image. (c) Laser scan. (d) Laser scan
and KOS for same height. (e) Laser scan and KOS for an higher scan height.

In this set of tests the results shows a slight deviation between the KOS and the laser

46

CHAPTER 5. TESTS AND RESULTS

scans in the left walls of the scenes, this was mainly due to the inclination which the white

test plates have and also due to a small deviation of the Microsoft Kinect One frame regarding

the Hokuyo’s frame. Both tests were done with a ε value equals to 5.

An additional plane orientation detection test was performed. The scene #9 presented

in Figure 5.21a shows a test scenario with an obstacle in the middle. First the FSPF+

algorithm is used filtering just ground and ceiling planes, then its results are provided to the

KOS algorithm which generates the kinect obstacle scan of the scene shown in Figure 5.21f.

Next the same procedure is done this time also filtering the front planes of the scene. The

result is depicted in Figure 5.21g. The comparison of both results could be seen in Figure

5.21h.

47

5.2. REAL-TIME TESTS

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 5.21: Scene #9: (a) Color image. (b) Depth image. (c) FSPF+ filtered points. (d)
FSPF+ filtered points after removing ground and ceiling planes. (e) FSPF+ filtered points
after removing ground, ceiling and frontal planes. (f) KOS of (c). (g) KOS of (d), the red
points represent the frontal planes and the green points represents the remaining planes. (h)
KOS of (e).

The obtained results conclude once again that the FSPF+ plane orientation detection

has a good performance leading to good results.

5.2 Real-time tests

The FSPF+ and KOS algorithms were tested using the RtES. In these real-time tests

maps are created based on the output of the developed algorithms and the hector_mapping

ROS package [29]. The main aim of this set of tests the capacity of map building of the

48

CHAPTER 5. TESTS AND RESULTS

proposed algorithm by comparing the blueprints of the ground floor of the ISR building with

the map generated using the Hokuyo Laser Scan [25] and also with the map generated using

the KOS. The configuration values of the FSPF+ algorithm are listed in Table 5.4. The

input parameters of the FSPF+ algorithm were defined as: minDepth = 500 mm, maxDepth

= 4500 mm and ε = 20 mm. The KOS’s input parameters were defined as minDepth = 0.5

m and scanHeight = -0.3 m, corresponding to 0.5 m from the ground level and 0.3 m from

the Hokuyo’s height position.

Table 5.4: Configuration values of Algorithm 3.

Parameter Value Parameter Value
nMin 40 ε 20

nRequired 90 % of eligible points β 3
Ω 60 fH 70.6
∆ 0.5 fV 60

5.2.1 Map building

The blueprint of the ground floor of the ISR building in shown in Figure 5.22, the red

box indicates the area where the tests took place.

Firstly a map using the Hokuyo’s laser scan was created, this map is shown in Figure

5.23. As referred in Section 4.2.1 the laser scans were acquired while the Interbot Platform

[11] was remotely controlled navigating along the selected area. Secondly two more maps

were created using the KOS, these maps are depicted in Figure 5.24 and 5.25.

Figure 5.22: Blueprint of the ground floor of the ISR.

49

5.2. REAL-TIME TESTS

By comparing both KOS generated maps (Map #2 and Map #3), it is possible to say

that both maps represent a good copy of the original building blueprint. It it important to

refer that each one of these two maps was created by a single run from the red point to the

blue point. On the other hand, Map #1 was generated after a more complex run along the

area. It is also clear to conclude once the Hokuyo’s range sensor has a maximum range of

30m versus a 4.5m maximum range of the Microsoft Kinect One sensor that the time needed

to build the same area’s map is significantly reduced, also localization issues, such as the

pose loss, are decreased.

Figure 5.23: Map #1, map generated using the Hokuyo’s laser scan.

50

CHAPTER 5. TESTS AND RESULTS

Figure 5.24: Map #2, map generated using the KOS where the red point is the starting
point, and the blue point is the finish point.

Figure 5.25: Map #3, map generated using the KOS where the red point is the starting
point, and the blue point is the finish point.

Some mapped areas of Map #1 could not be mapped when used the KOS due to the

fact of max range limitation combined with the characteristics of the hector_mapping. This

algorithm does not use the robot’s odometry for localization neither for navigation purposes.

The map building procedure is completely guided by the laser scans, this way when the

51

5.2. REAL-TIME TESTS

building blueprint has long corridors with a few useful features the map generation procedure

will result in erroneous mapping sections. However when none of these conditions are present

the hector_mapping does have a good performance [11]. As it can be seen on Table 5.5 the

developed system, when used for a map building application under the configuration values

referred in Table 5.4 has a real-time performance of about 40Hz.

Table 5.5: Map building performance results.

Map # FSPF+ processing
time per frame (ms)

KOS processing
time per frame (ms)

System
performance (Hz)

Map creation
elapsed time (s)

1 40 127
2 29 0.3 40 253
3 29 0.3 40 286

52

6 Conclusion and future work

6.1 Conclusion

This dissertation presented an improved depth image processing algorithm and a func-

tional obstacle scan algorithm that provide useful tools for localization and navigation of

indoor mobile robots. These algorithms were developed in order to be applied in the In-

terbot Platform, increasing its functionalities. However these algorithms might be used in

mobile robots or system that use a depth image acquisition sensor. The ROS implementation

of the developed work has a great importance once it has great tools not only for testing

software but also to be published and shared within the scientific community in a robotic

standard framework. The tests done gave empirical evidence that the whole system had a

high performance contributing for a more robust Interbot Platform in terms of its navigation

and localization modules.

6.2 Future work

A plane merging module would improve the functionalities of the current version of

the FSPF+ algorithm, also a more robust plane’s orientation detection algorithm might

be developed, allowing the classification of slanting planes. Starting from the output data

of the FSPF+ algorithm, namely the normals to filtered planes, a SLAM algorithm can

be developed enabling the Interbot Platform to have in-house localization and mapping

modules. An additional module that combines both KOS and Hokuyo’s laser scan would

definitely increase the robustness of the Interbot Platform mitigating the maximum range

problem of the KOS and the one-level laser scan of the Hokuyo range sensor. A more complex

work can be done regarding the 3D map building based on the FSPF+ plane detection. A

thorough experimental set of tests to the proposed algorithms would also complement the

results obtained in this dissertation.

53

7 Bibliography

[1] Rolf Adams and Leanne Bischof. Seeded region growing. IEEE Transactions on pattern

analysis and machine intelligence, 16(6):641–647, 1994.

[2] Georg Arbeiter, Steffen Fuchs, Joshua Hampp, and Richard Bormann. Efficient segmen-

tation and surface classification of range images. In 2014 IEEE International Conference

on Robotics and Automation (ICRA), pages 5502–5509. IEEE, 2014.

[3] Olga Regina Pereira Bellon, Alexandre Ibrahim Direne, and Luciano Silva. Edge detec-

tion to guide range image segmentation by clustering techniques. In Image Processing,

1999. ICIP 99. Proceedings. 1999 International Conference on, volume 2, pages 725–729.

IEEE, 1999.

[4] Joydeep Biswas. Vector map-based, non-markov localization for long-term deployment

of autonomous mobile robots. 2014.

[5] Joydeep Biswas and Manuela Veloso. Fast sampling plane filtering, polygon construction

and merging from depth images.

[6] Joydeep Biswas and Manuela Veloso. Fast sampling plane filtering, polygon construction

and merging from depth images.

[7] Joydeep Biswas and Manuela M. Veloso. Localization and navigation of the cobots over

long-term deployments. The International Journal of Robotics Research, 32(14):1679–

1694, 2013.

[8] Dorit Borrmann, Jan Elseberg, Kai Lingemann, and Andreas Nüchter. The 3d hough

transform for plane detection in point clouds: A review and a new accumulator design.

3D Research, 2(2):1–13, 2011.

54

CHAPTER 7. BIBLIOGRAPHY

[9] DH Brandwood. A complex gradient operator and its application in adaptive array

theory. In IEE Proceedings F: Communications Radar and Signal Processing, volume

130, pages 11–16, 1983.

[10] John Canny. A computational approach to edge detection. IEEE Transactions on

pattern analysis and machine intelligence, (6):679–698, 1986.

[11] André Conceição. Interbot mobile robot: Navigation modules. 2016.

[12] Konstantinos G Derpanis. Overview of the ransac algorithm. Image Rochester NY,

4(1):2–3, 2010.

[13] Jean-Emmanuel Deschaud and François Goulette. A fast and accurate plane detection

algorithm for large noisy point clouds using filtered normals and voxel growing. In Pro-

ceedings of 3D Processing, Visualization and Transmission Conference (3DPVT2010),

2010.

[14] Ting-Jun Fan, Gerard Medioni, and Ramakant Nevatia. Segmented descriptions of 3-d

surfaces. IEEE Journal on Robotics and Automation, 3(6):527–538, 1987.

[15] Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. Commun.

ACM, 24(6):381–395, June 1981.

[16] David F Fouhey, Daniel Scharstein, and Amy J Briggs. Multiple plane detection in

image pairs using j-linkage. In Pattern Recognition (ICPR), 2010 20th International

Conference on, pages 336–339. IEEE, 2010.

[17] Open Source Robotics Foundation. Gazebo. http://gazebosim.org. [Online; accessed

12-August-2016].

[18] Orazio Gallo, Roberto Manduchi, and Abbas Rafii. Cc-ransac: Fitting planes in the

presence of multiple surfaces in range data. Pattern Recognition Letters, 32(3):403–410,

2011.

[19] Rafael C Gonzalez and Richard E Woods. Digital image processing. Nueva Jersey,

2008.

[20] Paulo FU Gotardo, Olga Regina Pereira Bellon, Kim L Boyer, and Luciano Silva. Range

image segmentation into planar and quadric surfaces using an improved robust estimator

55

http://gazebosim.org

and genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 34(6):2303–2316, 2004.

[21] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques for

grid mapping with rao-blackwellized particle filters. IEEE transactions on Robotics,

23(1):34–46, 2007.

[22] Dirk Hähnel, Wolfram Burgard, and Sebastian Thrun. Learning compact 3d models

of indoor and outdoor environments with a mobile robot. Robotics and Autonomous

Systems, 44(1):15–27, 2003.

[23] Robert M Haralick and Linda G Shapiro. Image segmentation techniques. Computer

vision, graphics, and image processing, 29(1):100–132, 1985.

[24] Michiel Hazewinkel. Witt vectors. part 1. Handbook of algebra, 6:319–472, 2009.

[25] Hokuyo. Hokuyo UTM30-LX. https://www.hokuyo-aut.jp/02sensor/07scanner/

utm_30lx.html, 2012. [Online; accessed 12-August-2016].

[26] Runzhen Huang and Kwan-Liu Ma. Rgvis: Region growing based techniques for volume

visualization. In Computer Graphics and Applications, 2003. Proceedings. 11th Pacific

Conference on, pages 355–363. IEEE, 2003.

[27] Xiaoyi Jiang. An adaptive contour closure algorithm and its experimental evaluation.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1252–1265,

2000.

[28] Ravi Kaushik, Jizhong Xiao, Samleo L Joseph, and William Morris. Fast planar cluster-

ing and polygon extraction from noisy range images acquired in indoor environments.

In Mechatronics and Automation (ICMA), 2010 International Conference on, pages

483–488. IEEE, 2010.

[29] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexible and scalable slam

system with full 3d motion estimation. In Proc. IEEE International Symposium on

Safety, Security and Rescue Robotics (SSRR). IEEE, November 2011.

[30] Peter Kovesi. A general purpose implementation of the RANSAC algorithm in MatLab.

http://www.peterkovesi.com/matlabfns/Robust/ransac.m, 2003. [Online; accessed

04-September-2016].

56

https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html
http://www.peterkovesi.com/matlabfns/Robust/ransac.m

CHAPTER 7. BIBLIOGRAPHY

[31] Zheng Lin, Jesse Jin, and Hugues Talbot. Unseeded region growing for 3d image seg-

mentation. In Selected papers from the Pan-Sydney workshop on Visualisation-Volume

2, pages 31–37. Australian Computer Society, Inc., 2000.

[32] Yu Liu and Youlun Xiong. Automatic segmentation of unorganized noisy point clouds

based on the gaussian map. Computer-Aided Design, 40(5):576–594, 2008.

[33] MathWorks. MatLab. http://www.mathworks.com/products/matlab/. [Online; ac-

cessed 12-August-2016].

[34] Microsoft. Microsoft Kinect for Xbox ONE. https://developer.microsoft.com/

en-us/windows/kinect, 2014. [Online; accessed 11-August-2016].

[35] Abdul Nurunnabi, David Belton, and Geoff West. Robust segmentation for multiple

planar surface extraction in laser scanning 3d point cloud data. In Pattern Recognition

(ICPR), 2012 21st International Conference on, pages 1367–1370. IEEE, 2012.

[36] Point Cloud Library (PCL). An implementation of the RANSAC (RAndom SAm-

ple Consensus) algorithm in C++. http://docs.pointclouds.org/trunk/sample_

_consensus_2include_2pcl_2sample__consensus_2ransac_8h_source.html, 2009.

[Online; accessed 04-September-2016].

[37] Jann Poppinga, Narunas Vaskevicius, Andreas Birk, and Kaustubh Pathak. Fast plane

detection and polygonalization in noisy 3d range images. In 2008 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pages 3378–3383. IEEE, 2008.

[38] Xiangfei Qian and Cang Ye. Ncc-ransac: a fast plane extraction method for 3-d range

data segmentation. IEEE transactions on cybernetics, 44(12):2771–2783, 2014.

[39] ROS. Grid Occupancy Message. http://docs.ros.org/api/nav_msgs/html/msg/

OccupancyGrid.html. [Online; accessed 03-September-2016].

[40] ROS. Hokuyo Node. http://wiki.ros.org/hokuyo_node. [Online; accessed 12-

August-2016].

[41] ROS. Image Message. http://docs.ros.org/api/sensor_msgs/html/msg/Image.

html. [Online; accessed 12-August-2016].

[42] ROS. LaserScan Message. http://docs.ros.org/api/sensor_msgs/html/msg/

LaserScan.html. [Online; accessed 12-August-2016].

57

http://www.mathworks.com/products/matlab/
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
http://docs.pointclouds.org/trunk/sample__consensus_2include_2pcl_2sample__consensus_2ransac_8h_source.html
http://docs.pointclouds.org/trunk/sample__consensus_2include_2pcl_2sample__consensus_2ransac_8h_source.html
http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html
http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html
http://wiki.ros.org/hokuyo_node
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html

[43] ROS. PointCloud Message. http://docs.ros.org/api/sensor_msgs/html/msg/

PointCloud.html. [Online; accessed 12-August-2016].

[44] ROS. Pose Stamped Message. http://docs.ros.org/api/geometry_msgs/html/msg/

PoseStamped.html. [Online; accessed 03-September-2016].

[45] Linda Shapiro and George C Stockman. Computer vision. 2001. ed: Prentice Hall,

2001.

[46] Manuela Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosenthal, Tom Kollar, Cetin

Mericli, Mehdi Samadi, Susana Brandao, and Rodrigo Ventura. CoBot Robots. http:

//www.cs.cmu.edu/~coral/projects/cobot/. [Online; accessed 05-September-2016].

[47] Manuela Veloso, Joydeep Biswas, Brian Coltin, Stephanie Rosenthal, Tom Kollar, Cetin

Mericli, Mehdi Samadi, Susana Brandao, and Rodrigo Ventura. Cobots: Collaborative

robots servicing multi-floor buildings. In 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 5446–5447. IEEE, 2012.

[48] S Vishvjit and A Nalwa. A guided tour of computer vision, 1993.

[49] Thiemo Wiedemeyer. IAI Kinect2. https://github.com/code-iai/iai_kinect2,

2014 – 2015. [Online; accessed 12-August-2016].

[50] Junhao Xiao, Benjamin Adler, Jianwei Zhang, and Houxiang Zhang. Planar segment

based three-dimensional point cloud registration in outdoor environments. Journal of

Field Robotics, 30(4):552–582, 2013.

[51] Michael Ying Yang and Wolfgang Förstner. Plane detection in point cloud data. In

Proceedings of the 2nd int conf on machine control guidance, Bonn, volume 1, pages

95–104, 2010.

[52] EA Zanaty, MT El-Melegy, MR Girgis, and Walaa M Abd-Elhafiez. Hybrid image

segmentation method based on seed region growing and edge detection.

58

http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud.html
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
http://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
http://www.cs.cmu.edu/~coral/projects/cobot/
http://www.cs.cmu.edu/~coral/projects/cobot/
https://github.com/code-iai/iai_kinect2

	Acknowledgements
	Resumo
	Abstract
	Lista de Acrónimos
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and context
	1.2 Goals
	1.3 Implementations and key contributions

	2 State of the art and background
	2.1 3D Image segmentation
	2.1.1 Edge based methods
	2.1.2 Region based methods
	2.1.3 Hybrid methods

	2.2 Image representation
	2.3 RANSAC for plane detection
	2.4 Fast Sampling Plane Filtering
	2.5 Obstacle Scan

	3 Depth Image Processing
	3.1 Fast Sampling Plane Filtering Plus
	3.1.1 Contributions

	3.2 Kinect Obstacle Scan

	4 Experimental setup
	4.1 Offline experimental setup
	4.1.1 DAcM
	4.1.2 DPM
	4.1.3 DAnM

	4.2 Real-time experimental setup
	4.2.1 DAcM
	4.2.2 DPM
	4.2.3 ODAnN

	4.3 Interbot Platform

	5 Tests and results
	5.1 Offline tests
	5.1.1 Plane detection and plane orientation detection
	5.1.2 Kinect obstacle scan

	5.2 Real-time tests
	5.2.1 Map building

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	7 Bibliography

