
Pedro Miguel Parola Duarte

Dissertação submetida para a satisfação parcial dos requisitos do grau de Mestre em Engenharia Electrotécnica e de Computadores

Julho de 2016

Application-specific Soft-GPGPU on Reconfigurable Substrates

Background of cover image source: FPGA implementation of a MicroBlaze (in orange) and one Compute Unit
(NEKO) (in blue).

UNIVERSIDADE DE COIMBRA
FACULDADE DE CIÊNCIAS E TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Application-specific Soft-GPGPU on Reconfigurable
Substrates

Pedro Miguel Parola Duarte

Dissertação para a obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Júri

Presidente: Doutor Vitor Manuel Mendes da Silva
Vogal: Doutor Jorge Nuno de Almeida e Sousa Almada Lobo

Orientadores

Orientador: Doutor Gabriel Falcão Paiva Fernandes
Co-orientador: Doutor Pedro Filipe Zeferino Tomás

Coimbra

Julho 2016

Pedro Miguel Parola Duarte: Application-specific Soft-GPGPU on Reconfigurable Substrates,
Tese de Mestrado em Engenharia Electrotécnica e de Computadores, ramo de especial-
ização em Computadores, Faculdade de Ciências e Tecnologia, Universidade de Coimbra
c© Julho 2016

Acknowledgments

Aos meus orientadores, Professor Gabriel Falcão e Professor Pedro Tomás, tenho a
agradecer toda a ajuda, sugestões e apoio, sem as quais não teria conseguido realizar este
trabalho. Sem o apoio do Professor Gabriel certamente teria desistido, mas passo a passo,
com pequenos avanços que muitas vezes não pareciam ajudar, conseguimos atingir o
que nos tínhamos proposto a fazer. Mais ainda tenho a agradecer-lhe as perspetivas de
futuro e todas as portas que me abriu ou deixou abertas. Também o Professor Pedro com
as suas sugestões certeiras que sempre ajudaram a dar o passo em frente e sem as quais
nunca se teriam atingido todos os objectivos propostos.

Agradeço ao Doutor João Andrade, por todas as tardes (dias) perdidas a dar-me
apoio quando nada o obrigava a fazê-lo.

I thank Ziliang Guo, for all the help and support he provided to better understand
MIAOW, without which I would still be in the system design stage. I would also like to
thank Sam for the help provided in writing this thesis.

Ao Zé, ao Jamaro, ao Manuel, e todos os restantes colegas de laboratório, não só
a ajuda que nunca me negaram, mas também todos os momentos de boa disposição
(procrastinação) que proporcionaram.

Sem o apoio incondicional da minha família não seria possível ter chegado aqui. Aos
meus Pais agradeço o permanente incentivo para aprender mais e maximizar o meu
capital humano, bem como todo o apoio.

Por fim, o meu mais especial agradecimento, para a Diana, por todo o apoio, preocu-
pação, e amor sem os quais teria enlouquecido provavelmente ainda antes de começar
esta tese.

A todos, muito obrigado,

Bran thought about it. ’Can a man still be brave if he’s afraid?’
’That is the only time a man can be brave,’ his father told him.

- George R.R. Martin, A Game of Thrones

Abstract

Driven by the increasing performance requirements of modern scientific applications,
general-purpose computing on modern graphics processing units (GPUs) have recently be-
come a common approach. However, although GPU’s massively parallel architectures
provide high flexibility and performance, off-the-shelf devices have fixed designs that
cannot be adapted towards the specific characteristics of the target applications. On the
other hand, application-specific architectures can be designed and implemented in re-
configurable fabric that can be easily tailored to maximize the performance of a given
application. However, such approaches often require a profound architectural redesign
at the presence of minimal algorithmic changes.

To overcome both issues, a new solution is herein proposed that relies on emerg-
ing implementations of general-purpose massively parallel and programmable architec-
tures on reconfigurable fabric, often referred to as soft-general-purpose GPUs (GPGPUs).
Hence, the proposed solution adopts the recently developed MIAOW implementation of
the AMD Southern Islands architecture, which is herein extended in order to support a
wide set of 154 instructions (up from 42 in the original design). Furthermore, to tackle im-
portant performance bottlenecks associated with the critical path and with the memory
access latency, a set of architectural improvements were introduced, providing a speed-
up of up to 80x when implemented on a Xilinx Virtex 7 FPGA. Finally, a new compile-time
methodology was proposed that, by trimming down the implemented resources, allows
tailoring the soft-GPGPU architecture towards the application characteristics, leading up
to 18% energy savings without any performance penalty.

Keywords

Soft GPGPU, application-specific architecture, re-configurable computing, architec-
tures, power-and energy-efficient computing, parallel processing, FPGA

viii

Resumo

Impulsionada pelas crescentes exigências de performance das aplicações científicas
modernas, a computação de propósito geral (general-purpose) em graphics processing units
(GPUs) tornou-se uma abordagem comum. No entanto, apesar da arquitetura massiva-
mente paralela das GPUs fornecer alta flexibilidade e desempenho, o design do hardware
em dispositivos comerciais é fixo, não podendo ser adaptado às características específi-
cas de cada aplicação. Por outro lado, é possível conceber e implementar arquiteturas,
específicas para uma dada aplicação, em tecidos reconfiguráveis. Estas, podem ser facil-
mente adaptadas para maximizar o desempenho de uma determinada aplicação. No en-
tanto, estas abordagens frequentemente requerem um profundo redesenho arquitetónico
na presença de alterações mínimas ao algoritmo.

Para superar ambas as questões, é aqui proposta uma nova solução que se baseia
em implementações emergentes de arquiteturas general-purpose massivamente parale-
las e programáveis em tecidos reconfiguráveis, muitas vezes apelidadas de soft-general-
purpose GPU (GPGPU). Assim, a solução proposta adota a implementação recentemente
desenvolvida chamada ’MIAOW’ e que é baseada na arquitetura da AMD Southern Is-
lands. O soft-GPGPU é aqui ampliado a fim de apoiar um conjunto amplo de 154 in-
struções (de 42 no projeto original). Além disso, para resolver os bottlenecks de per-
formance associados com o caminho crítico e com a latência de acesso à memória, um
conjunto de melhorias de arquitetura foram introduzidas, proporcionando uma melho-
ria de até 80x na performance, quando implementada numa field-programmable gate array
(FPGA) Xilinx Virtex 7. Finalmente, uma nova metodologia de tempo de compilação
foi proposta que, por diminuir os recursos consumidos pela implementadação, permite
a adaptação da arquitetura soft-GPGPU para as características de uma dada aplicação,
levando a uma poupança de energia de até 18% sem qualquer perda de desempenho.

Palavras Chave

GPGPU sintetizáveis, arquitectura aplicação específica, computação reconfigurável,
arquiteturas, computação eficiente, processamento paralelo, FPGA

ix

Contents

Page

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Main Contributions . 4
1.4 Outline . 5

2 Soft-GPGPUs Overview 7
2.1 FlexGrip . 8
2.2 MIAOW . 10
2.3 FGPU . 13
2.4 Summary . 14

3 MIAOW Base Architecture 17
3.1 Base Instruction Set Architecture . 18

3.1.1 Compute Unit Architecture . 19
3.2 NEKO . 20
3.3 FPGA Design . 20

3.3.1 Base system . 23
3.3.2 Full system . 26
3.3.3 Simulation system . 26

3.4 FPGA Validation . 27
3.5 Summary . 30

4 Application-specific GPU Architecture 31
4.1 Enhancing functionality and throughput performance 32

4.1.1 Vector register direct access interface 32
4.1.2 Dual clock domain . 33
4.1.3 Internal block RAM memory . 33

4.2 System benchmark . 34
4.2.1 Applications . 34
4.2.2 Compute unit initialization . 35
4.2.3 Benchmarking procedures . 36

4.3 Application-Specific system development 39
4.4 Summary . 40

xi

Contents

5 Experimental Results 41
5.1 Synthesized Instruction Set Architecture . 42
5.2 Validation of dual-clock domain and BRAM usage 44

5.2.1 Benchmark results . 44
5.2.2 Area and power analysis . 47

5.3 Application-specific area gains and power savings 49
5.3.1 Power savings . 49
5.3.2 Area gains . 52

5.4 Summary . 54

6 Conclusions 55
6.1 Future work . 57

A Plots of benchmark results 63

B Energy consumption results 73

C Scalar Instruction Testing 83

D Vector Instruction Testing 103

E Memory Instruction Testing 129

xii

List of Figures

2.1 FlexGrip Streaming Multiprocessor’s pipeline 9
2.2 MIAOW’s Compute Unit Architecture . 11
2.3 Simplified MIAOW Pipeline . 11
2.4 FGPU’s Compute Unit main blocks . 13
2.5 FGPU’s Compute Unit main blocks internal organization 15

3.1 Base FPGA system . 25
3.2 Simplified FPGA system . 27

4.1 Simplified scheme of the improved FPGA system 34
4.2 OpenCL Code Example . 36
4.3 AMD CodeXL Assembly . 37
4.4 AMD CodeXL Pre-Initialized Registers . 38

5.1 Power requirements for the original and the two clock domain systems . . 48
5.2 Power requirements for the system with two clock domains and a BRAM

module . 49
5.3 Total on-chip power per system . 50
5.4 Power requirements for the matrix multiplication systems 50
5.5 Power requirements for the Gassian elimination and bitonic sort systems . 51
5.6 Power requirements for the K-means clustering system 51
5.7 Comparison in resource utilization between the system prior to the archi-

tectural trim-down and all the application-specific systems 53

A.1 Integer matrix multiplication results . 64
A.2 Floating-point matrix multiplication results 64
A.3 Matrix Gaussian elimination results - Compute Unit (CU) 65
A.4 Matrix Gaussian elimination results - Microblaze 65
A.5 Bitonic sort results . 66
A.6 K-means clustering benchmark results - 32points, 5clusters - CU 66
A.7 K-means clustering benchmark results - 32points, 10clusters - CU 67
A.8 K-means clustering benchmark results - 32points, 5clusters - Microblaze . 67
A.9 K-means clustering benchmark results - 32points, 10clusters - Microblaze 68
A.10 K-means clustering benchmark results - 64points, 5clusters - CU 68
A.11 K-means clustering benchmark results - 64points, 10clusters - CU 69
A.12 K-means clustering benchmark results - 64points, 5clusters - Microblaze . 69
A.13 K-means clustering benchmark results - 64points, 10clusters - Microblaze 70
A.14 K-means clustering benchmark results - 512points, 5clusters - CU 70
A.15 K-means clustering benchmark results - 512points, 10clusters - CU 71

xiii

List of Figures

A.16 K-means clustering benchmark results - 512points, 5clusters - Microblaze 71
A.17 K-means clustering benchmark results - 512points, 10clusters - Microblaze 72

B.1 Energy spent in the integer matrix multiplication benchmark 74
B.2 Energy spent in the floating-point matrix multiplication benchmark 74
B.3 Energy spent in the Gaussian elimination benchmark - Compute Unit (CU) 75
B.4 Energy spent in the Gaussian elimination benchmark 75
B.5 Energy spent in the bitonic sort benchmark 76
B.6 Energy spent in the K-means clustering benchmark - 32points, 5clusters -

CU . 76
B.7 Energy spent in the K-means clustering benchmark - 32points, 10clusters -

CU . 77
B.8 Energy spent in the K-means clustering benchmark - 32points, 5clusters -

Microblaze . 77
B.9 Energy spent in the K-means clustering benchmark - 32points, 10clusters -

Microblaze . 78
B.10 Energy spent in the K-means clustering benchmark - 64points, 5clusters -

CU . 78
B.11 Energy spent in the K-means clustering benchmark - 64points, 10clusters -

CU . 79
B.12 Energy spent in the K-means clustering benchmark - 64points, 5clusters -

Microblaze . 79
B.13 Energy spent in the K-means clustering benchmark - 64points, 10clusters -

Microblaze . 80
B.14 Energy spent in the K-means clustering benchmark - 512points, 5clusters -

CU . 80
B.15 Energy spent in the K-means clustering benchmark - 512points, 10clusters

- CU . 81
B.16 Energy spent in the K-means clustering benchmark - 512points, 5clusters -

Microblaze . 81
B.17 Energy spent in the K-means clustering benchmark - 512points, 10clusters

- Microblaze . 82

xiv

List of Tables

3.1 Type of instructions defined in Southern Islands’ ISA 21
3.2 Possible instruction operands as defined in the Southern Islands’ ISA . . . 22

5.1 Synthesized instruction set architecture (ISA). 42
5.2 Results for integer matrix multiplication. 45
5.3 Results for floating-point matrix multiplication. 45
5.4 Results for Gaussian elimination. 45
5.5 Results for K-means clustering computation. 46
5.6 Results for bitonic sorting algorithm. 47
5.7 Comparison in resource utilization between the original system and the

improved throughput performance systems, for Alpha Data’s ADM-PCIE-
7V3 [1] board. 48

xv

List of Tables

xvi

List of Acronyms

ALU Arithmetic and logic unit

AXI Advanced extensible interface

BRAM Block RAM

BUFG Global buffer

CPU Central processing unit

CU Compute unit

CUDA Compute Unified Device Architecture

DDR3 Double data rate 3

DMA Direct memory access

DSP Digital signal processor

ECC Error-correcting code

EDA Electronic design automation

FF Flip-flop

FGPU FPGA general-purpose GPU

FIFO First-in first-out

FPGA Field-programmable gate array

GPGPU General-purpose GPU

GPIO General purpose input/output

GPU Graphics processing unit

IoT Internet of things

IP Intellectual property (used in the context of hardware cores)

ISA Instruction set architecture

xvii

list of acronyms

JTAG Joint test action group

LED Light emitting diode

LSU Load store unit

LUT Lookup-table

MIAOW Many-core integrated accelerator of Wisconsin

MIG Memory interface generator

MIPS Microprocessor without interlocked pipeline stages

MMCM Mixed-mode clock manager

OCN On-chip network

OpenCL Open Computing Language

PC Program counter

PE Processing element

PLI Programming language interface

PLL Phase locked loop

RAM Random-access memory

RTL Register-transfer level

RTM Runtime memory

SALU Scalar ALU

SDK Software development kit

SGPR Scalar general purpose register

SIMT Single-instruction multiple-thread

SM Stream multiprocessor

SP Scalar processors

Tcl Tool command language

UART Universal asynchronous receiver/transmitter

VALU Vector ALU

VGPR Vector general purpose register

VHDL VHSIC hardware description language

xviii

List of listings

3.1 Sample program flow used to test the compute unit 28

Appendix/full_instruction_testing/scalar_instruction_testing.c 84

Appendix/full_instruction_testing/vector_instruction_testing.c 104

Appendix/full_instruction_testing/mem_instruction_testing.c 130

xix

List of listings

xx

1
Introduction

Contents
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Main Contributions . 4
1.4 Outline . 5

1

1. Introduction

Over the years, major advances in electronic design automation (EDA) have greatly sim-

plified embedded system design. From the introduction of the programmable micro-

controller to the general-purpose microprocessor, while passing through many smaller

dedicated circuits—which are readily available—, today’s system designer is able to ex-

ploit applications intrinsic parallelism, instead of focusing solely on the specific imple-

mentation details of every module. However, when it comes to high performance com-

puting capability, embedded design is still lacking good alternatives, which is becoming

critical, especially considering the rise of the Internet of things (IoT) and its demand for big

data processing in increasingly smaller and mobile gadgets [2]. To tackle such problems,

the current trends in big data processing are focusing on general-purpose GPUs (GPGPUs)

or on exploiting field-programmable gate arrays (FPGAs).

1.1 Motivation

The recent evolution of graphics processing units (GPUs) to powerful multi-core acceler-

ators with massive parallel processing capability created new programming paradigms,

which resulted in two major frameworks, namely the Compute Unified Device Architecture

(CUDA) [3] and Open Computing Language (OpenCL) [4]. With these tools, programmers

can easily handle the processing of large amounts of data in relatively short periods of

time. Accordingly, some manufacturers have recently released special embedded GPG-

PUs [5] [6] in order to bring some of this computational power to smaller devices. Although

efficient and fast, hard GPGPUs still constrain flexibility when creating a hardware sys-

tem as they have no room for customization. On the other hand, for many application-

specific systems there is no need for most of the GPU’s functions, which results in wasted

power and circuitry area when standard solutions are used out of the box.

Moreover, while architectures have significantly evolved in order to efficiently and

massively exploit parallelism, FPGAs grew bigger to the point where dozens of soft-core

processors could be crammed inside a single chip [7]. Manufacturers were quick to real-

ize the enormous parallel capability of FPGAs and it didn’t take long for the appearance

of complex synthesis tools, capable of transforming programs in OpenCL and create spe-

cialized hardware, which can then be readily implemented in an FPGA (e.g., Xilinx SDAc-

cel [8] and Altera OpenCL SDK [9]). Although not having the same throughput perfor-

mance as GPUs in most applications, FPGAs offer the ability to create a fully customized

system which, in addition, results in significant power savings [10]. Reconfigurable sys-

tems come with two main drawbacks: the available resources—which, throughout this

document, are referred to as area—, as it restricts the size of the project that can be im-

plemented, and the time it takes from system design (either through register-transfer level

2

1.2 Objectives

(RTL) or using a specialized OpenCL-to-hardware tool) to bitstream completion. Hence,

a small change in the software implies changing the hardware, which may require hours

(if not days) waiting for the new hardware bitstream to be generated.

Soft-GPUs [11] [12] [13]—the implementation of a GPU on an FPGA—, are set out to ad-

dress some of the problems mentioned above, namely the GPU customization problem,

as well as the need to re-synthesize every change in the original algorithm and imple-

ment in the target FPGA. However, this recent addition still faces the limited area prob-

lem, which affects the number of computational units that can be added to the design. To

mitigate this problem, we propose application-specific soft-GPUs, a minimal GPU imple-

mentation to perform a given task without the need to re-synthesize the hardware if the

problem’s dimension is altered. The resulting area savings can then be used to increase

parallelism and, thus, throughput performance for a given task, and help saving power

by reducing the number of unused hardware resources. Accordingly, the final result of

the proposed work is an area and power optimized GPU core.

1.2 Objectives

Considering the above, the proposed objective is to provide future embedded system

designers with dedicated, ready to use, and highly optimized GPU cores. Therefore, the

main focus of this work is in the development of application-specific GPGPU cores, pro-

viding not only these but also the means so that others can create their own application-

specific soft-GPUs. Furthermore, the following objectives are proposed:

• Develop application-specific GPGPU cores;

• Improve state-of-the-art GPGPU cores, such as MIAOW, by increasing functionality

and throughput performance;

• Develop a framework to test the synthesized instruction set architecture (ISA) imple-

mentation;

• Be compatible with state-of-the-art programming languages, such as OpenCL or

CUDA, in order to easily allow offloading application computational kernels to the

soft-GPGPU;

• Develop a framework for easily designing application-specific GPGPU cores;

• Show the area and power benefits of allowing an adaptation of the computing re-

sources to the application characteristics.

3

1. Introduction

1.3 Main Contributions

In this thesis, we propose the modification of GPGPU cores in order to provide an

optimized system, in terms of area and power, for a given task. Thus, a selection of a

few popular, widely used, and computationally intensive applications is made, and a

pre-existent soft-GPGPU, namely MIAOW [12], is re-engineered to be fully optimized for

each application. Below, we highlight the main contributions of this work:

• Designed system: A Microblaze based system on a non-development board was de-

veloped, implemented, and validated. The board used in this work is primarily

intended to serve as a data-center FPGA, meaning that it does not possess the fea-

tures of development boards from Xilinx, which even have ready-to-use Microblaze

systems. A detailed explanation on the design procedures for non-development

boards is provided in Chapter 3.

• Instruction testing script: A comprehensive testing script was developed while val-

idating the soft-GPGPU used in this work. This script lists the currently running

instructions on the platform, and it can be seen in Appendices C, D, and E. A list

of all working instruction is also provided in Chapter 5.

• Corrections: A number of corrections to the soft-GPGPU’s functionalities were made

in this work, which mostly focused in correcting broken instructions, or increasing

the support for AMD’s Southern Islands ISA. All the corrections were communi-

cated to the original development team.

• Improved Throughput Performance: Modifications were made to the original soft-

GPGPU with the intent of increasing throughput performance. These include sep-

arating the system into two clock domains—decreasing execution time by 1.22x—,

and the addition of a block RAM (BRAM) module to the compute unit (CU), moving

data closer to the processing cores—further decreasing execution time by, at least,

4x when compared to the original value. These changes are explained in detail in

Chapter 4.

• Benchmarks: A timing profile for the implementation of the soft-GPGPU on the

FPGA is also provided. This profile was obtained by benchmarking a set of well-

known OpenCL applications. The results are provided in Chapter 5.

• Application-Specific Cores: Finally, the details behind the development of application

specific soft-GPGPUs are provided in Chapter 4, explaining the changes made to

the original core for each developed system. The resulting area and power savings

4

1.4 Outline

are displayed in Chapter 5, along with a consideration on the possibility of increas-

ing the clock frequency to improve throughput performance, made on a per-system

basis.

The enhancements proposed to the original compute unit resulted in a reduction of

execution time of at least 76% (4x), reaching 98% (31x) in the most favorable scenario,

while increasing the power requirement by only 10%. Furthermore, the cores’ tailoring

can result in power savings of up to 18%, leveraging the previous increase and releasing

enough resources to instantiate a second CU on the design.

1.4 Outline

This thesis is organized in six chapters. After the introduction presented in this chap-

ter, we discuss soft-GPUs, providing an insight into some of the most recent progresses

in the area. Chapter 3 focuses on the details of the GPU architecture which is targeted in

this work, as well as the FPGA design and validation procedures. We then focus on im-

proving the existing cores, describing the architectural changes made in order to optimize

the soft-GPGPU core for the chosen benchmarks, as detailed in chapter 4. Experimental

results are presented in chapter 5 and the conclusions and future work directions are in

chapter 6.

5

1. Introduction

6

2
Soft-GPGPUs Overview

Contents
2.1 FlexGrip . 8
2.2 MIAOW . 10
2.3 FGPU . 13
2.4 Summary . 14

7

2. Soft-GPGPUs Overview

Over the years many high-performance computating accelerators have been pro-

posed for field-programmable gate arrays (FPGAs). Initially, they mostly consisted of soft

vector processors [14] [15] which, although increasing the system’s throughput for most

tasks, lacked general support for conditional program execution. A few approaches of

graphics processing unit (GPU)-like processors were also conceived [16], grappling on to

some of GPU’s design concepts, but they mostly focused on extending a pre-existing pro-

cessor’s capability to support a few GPU-type instructions (for instance, vector arithmetic

operations). Recently, efforts have been made to implement complete compute units for

OpenCL platforms [12] [13], or stream multiprocessors (SMs) for CUDA platforms [11], on

FPGAs. These implementations bring the parallel computing capabilities of GPUs to

reconfigurable systems.

Soft-GPUs present two main advantages. First, they possess the ability to be pro-

grammed with a new binary, instead of having to recompile the entire hardware system

for every small change in the application, resulting in significant time savings since hard-

ware synthesis can take hours to complete. Furthermore, they allow developing in-depth

hardware configurations, leading to finely tuned architectures and implementations.

In this chapter we focus on these recently developed platforms, introducing the pro-

posed architectures and describing them into some level of detail. Afterwards we select

the best suited candidate on which we concentrate efforts and develop our work.

2.1 FlexGrip

The very first communicated implementation of a soft-general-purpose GPU (GPGPU)

was FlexGrip (FLEXible GRaphIcs Processor) [11]. FlexGrip is a register-transfer level (RTL)

implementation of an SM with multiple scalar processors (SP). Most of the system was

written in VHSIC hardware description language (VHDL), while a few modules were cre-

ated using MATLAB’s Simulink and later converted to RTL. It is based on the single-

instruction multiple-thread (SIMT) model, in which all SPs are running the same instruc-

tion on different threads of execution. The soft-GPGPU core features a five stage pipeline

which can be observed in Figure 2.1. The stages are organized as Fetch, Decode, Read,

Execute and Write.

The SM receives a program in warps, i.e., a collection of threads which share the

same program counter. To dispatch these warps there is a warp unit (i.e., warp scheduler)

coordinating instruction execution while maintaining information about each warp, such

as a thread mask, responsible for controlling which threads are executed; a state register,

indicating the current state of the warp, which can be either Ready, Active, Waiting or

Finished; and the program counter. The warp scheduling is done based on a round-

8

2.1 FlexGrip

Figure 2.1: FlexGrip Streaming Multiprocessor’s pipeline. The 5 basic stages are ’Fetch’, ’Decode’, ’Read’,
’Execute’ and ’Write’. The warp unit is responsible for keeping information about warps. ’Fetch’ grabs the
instructions from memory and delivers them for decoding. The ’decode’ stage extracts key information from
the instruction, for instance the operation to be performed, the source and output operands and predicate
data. ’Read’ is responsible for delivering the data sources identified in the decode stage to the execute stage.
’Execute’ performs the operation, providing the results to the ’write’ stage, which is responsible for storing
data. Image courtesy of the FlexGrip development team.

robin algorithm, i.e, attributing equal time slots to each warp and going through them

using a circular mode. To start execution, the warp unit passes the base program counter

to the ’fetch’ stage causing an instruction load for the current warp, the instruction is

then delivered for decoding in the next stage and the program counter is incremented,

pointing to the next instruction. The ’decoding’ stage has to break down the instruction

in order to extract the opcode, operation to be executed, source operands, and the result’s

destination, as well as predicate data.

Upon receiving the details for the source operands the ’read’ unit determines if the

values should be obtained from the vector register file or from memory, either shared

or global, and will perform loads accordingly, delivering the obtained data to the ’exe-

cute’ stage. If the data is to be read from memory, a special set of registers, designated

as address register file, is used to determine the address to access. Should the instruction

include the optional predicate flags, these will be used to obtain a predicated instruction

and the thread mask will suffer an update, resulting from the combination between the

existing mask with the obtained value. After obtaining the source operands and updat-

ing the thread mask, these values arrive at the ’Execute’ stage. Here, a number of SPs run

the opcode, extracted in ’Decode’, on the operators, obtained in ’Read’. This execution

follows the control of the thread mask, which selects the SPs that should run the instruc-

tion. Apart from the SPs there is one control flow unit which is responsible for branch

and barrier instructions. Finally, the ’write’ stage is responsible for storing the results.

As was the case with reads, writes can be performed in either the vector register file, for

9

2. Soft-GPGPUs Overview

intermediate data, in the address register file, for addresses, in the predicate register file,

for predicate flags, or in global memory, for final results.

The main novelty in FlexGrip is the support for direct GPU compilation, i.e., the bina-

ries to program the system are generated by unmodified standard NVIDIA tools. The de-

sign is based on NVIDIA’s G80 instruction set, which is compatible with CUDA 1.0, and

has 27 working integer GPU instructions. With just these instructions FlexGrip is able to

run 5 CUDA benchmarks, namely matrix multiplication, matrix correlation, matrix trans-

pose, bitonic sort, and autocorrelation. All of these benchmarks are implemented using

only integer operations as there are no floating-point arithmetical units, meaning that the

core has reduced functionality for most real life applications.

In order to run, the SM needs to be connected to a MicroBlaze microprocessor, which

acts as the host processor and supplies the SM with both instructions (program binary)

and data, upon which processing will recall. It is worth noticing that in [11] the authors

implemented an SM with eight SPs on an ML605 Virtex-6 board but were capable of creat-

ing a system with up to 32 SPs in simulation environment. This means that, had the board

presented sufficient resources, a full Fermi SM (32 CUDA cores) could be implemented,

which is a remarkable achievement, even if we consider the reduced functionality, like

the lack of floating-point operations.

2.2 MIAOW

While FlexGrip focused on NVIDIA’s architecture, a different approach was taken by

many-core integrated accelerator of Wisconsin (MIAOW) [12]. MIAOW is based on AMD’s

notion of an OpenCL compute unit. Instead of presenting multiple SPs, OpenCL’s com-

pute unit has a single scalar arithmetic and logic unit (ALU) and multiple, up to four, vector

ALUs (VALUs), which can operate in, up to, 64 scalar words at once. MIAOW was mostly

developed in Verilog, utilizing a few C/C++ modules, through programming language in-

terface (PLI), to model the memories, memory controllers and on-chip network (OCN). The

compute units (CUs)’ architecture can be seen in Figure 2.2.

One can visualize MIAOW’s pipeline as being composed by six stages: ’Fetch’, ’De-

code’, ’Issue’, ’Register Read’, ’Execute/Memory Access’, and ’Write Back’, where the

fifth stage depends on the type of instruction being issued, since some of the stages can

be decomposed in multiple sub-stages. A simplified scheme of the pipeline can be seen

in Figure 2.3.

The CU receives a program in wavefronts, i.e., a collection of 64 work-items, known

as threads in NVIDIA’s terminology, which share the same program counter. Each wave-

front has a set of associated data, such as the program counter, the wavefronts’ identifier,

10

2.2 MIAOW

Figure 2.2: MIAOW’s compute unit architecture. The architecture does not have a one on one correspon-
dence with the pipeline. The blocks Fetch, Instruction Buffer, and Wavepool all belong to the Fetch stage
of the pipeline. Decode and Schedule correspond to the Decode and Issue stages, respectively. Scalar ALU,
Vector Integer ALU, Vector Floating Point ALU, and LSU all correspond to the Execute/Memory Access
stage. All other modules are memory, either register files, SGPR and VGPR, local memory, LDS, or global
memory, GPU Memory. Image courtesy of the MIAOW development team.

and the base address for both scalar and vector registers, and local memory. The ’Fetch’

unit is the input port for instructions, therefore it has to receive the supra-mentioned data

and place the wavefront on a queue, known as the ’Wavepool’, where it waits until being

selected for decoding. The selection process is done in round robin mode. At any given

time, up to forty wavefronts can be present in the CU.

Upon selection, a wavefront is passed to the ’Decode’ stage. There, a few parameters

are extracted such as the opcode, operation to be executed; the source operands, which

can range from one to three; the destination, and multiple flags, depending on the type

of instruction. A few instructions use double word length, requiring two fetches and the

Figure 2.3: MIAOW’s follows a six stage pipeline. The instruction is fetched and then decoded. After
decoding it will wait until scheduling, or issuing, can be done. Once issued, the necessary operands will
be read from the register file and the operation will be executed, ending with a register write back. The
execution of a memory operation will require an address computation prior to the memory access.

11

2. Soft-GPGPUs Overview

joining of the two halves, before the extraction process—decoding—can begin. Based

on the extracted values, the ’Decode’ unit will automatically select the type of execution

unit to be used, either VALU, SALU, or load store unit (LSU); and translate logical register

addresses into physical addresses. The decoded instruction then reaches the ’Issue’ stage

where it waits until all dependencies have been resolved, only starting execution when

all operands are ready to be accessed. If the instruction happens to be a “barrier” or a

“halt”, the ’Issue’ unit will handle it immediately, not requiring any intervention from

the remaining stages. For all other instructions, as soon as the operands are ready, it is

scheduled for execution, causing a read from the register files, ’Register Read’. According

to the unit selected in the ’Decode’ stage, one of three possible types of operation will be

executed. If the instruction operates only on scalar operands, then SALU will be selected

and an arithmetical or logical operation will be performed on the operands. A different

scenario occurs for vector instructions, as VALU will be selected and multiple values will

be operated at once, each value corresponding to a different thread. To determine which

threads in the vector are executed, a mask, called “execute mask”, will be read. This mask

can be read and written to, by normal scalar operations, meaning that there can be a fine

control over which threads execute at any given time. Finally, if a memory instruction is

casted, the LSU will be activated and a memory access will be performed. Before issuing

the memory access request, however, the LSU performs an address calculation. Once

execution finishes, a ’Write-Back’ will occur to either a result register, the execution mask

or to the conditional control flags, which, among other things, serve as primary output

for comparison instructions.

MIAOW is based on AMD’s Southern Islands instruction set architecture (ISA) [17],

which has been used in a few of the brands’ boards. The implemented CU supports 154

instructions from the ISA, being able to run unmodified OpenCL applications, i.e., it can

run the kernel generated by the standard compiler without hand tuning. It is the first

soft-GPGPU implementation to incorporate floating-point operations, thus considerably

extending the range of possible applications.

To run a program, a system including a MicroBlaze soft-processor and DDR3 memory

is required in order to supply the instructions and data to the compute unit.

In simulation, MIAOW can have up to four VALUs, each supporting 64 threads,

which represents a full AMD Southern Islands CU. In the FPGA, however, develop-

ers could only implement a single VALU due to area limits on the board used, a VC707

Virtex-7 [12].

In summary, MIAOW presents a very realistic approach to GPGPU design on an

FPGA since it is largely based on a real GPGPUs’ ISA, and has support for a wide range

12

2.3 FGPU

of instructions, but the lack of hardware resources available on the FPGA prevented the

implementation of a full Southern Islands CU.

2.3 FGPU

The most recent addition to the soft-GPGPU repertoire is FPGA general-purpose GPU

(FGPU) [13]. Unlike the previously presented MIAOW, FGPU implements its own ISA,

a subset of MIPS assembly with extra, OpenCL-inspired, instructions, in order to create

a soft SIMT processor. The RTL design was performed using VHDL and optimized for

FPGA implementation.

Instead of presenting a single CU, or SM, as the previous two implementations, FGPU

has multiple CUs, up to eight, each containing eight processing elements (PEs). Having

multiple CUs requires an additional coordination effort, since there has to be a dispatcher

which schedules jobs to the CUs, and a global memory access module, or controller, to

coordinate the memory accesses from all the units. In FGPU, job dispatch to the CUs is

done by a workgroup dispatcher, meaning that a whole block of wavefronts is assigned

to a CU at once.

The CU is organized in four major types of blocks, the wavefront scheduler, the run-

time memory (RTM), the processing elements, and the CU memory controller, as can be

seen in Figure 2.4. Upon receiving a workgroup, the wavefront scheduler performs its

Figure 2.4: FGPU’s Compute Unit main blocks. The CU has four major blocks, the wavefront scheduler,
responsible for execution; the CU memory controller, responsible for memory accesses; the runtime memory,
which holds data that can only be determined at runtime; and the processing elements, responsible for
executing the instructions. Image courtesy of the FGPU development team.

division in wavefronts, composed of 64 work-items, or threads. A wavefront manager

then controls which instruction is executed in the PEs, the current program counter (PC),

and wakes up instructions, paused due to memory accesses, upon access completion.

Before initializing execution, however, the wavefront scheduler also has to initialize the

RTM. The RTM consists of a dual port random-access memory (RAM), which can be writ-

ten by either the workgroup scheduler, when assigning a workgroup to the CU, or by the

wavefront scheduler, when it schedules a wavefront for execution on the PEs. Its purpose

13

2. Soft-GPGPUs Overview

is to hold data which can only be determined at runtime, such as local indices of work-

items, and the global offset of scheduled workgroups. Once the RTM is initialized, the

wavefront can be sent to the PEs. The PEs are responsible for executing instructions. As

seen in Figure 2.5, each PE has a register file, which can contain 2048 words, and an ALU,

which can perform operations with, up to, three operands. Each PE will repeat a given

instruction eight times, resulting in the same operation being performed 64 times, one

for each work-item in the wavefront. If a memory instruction is issued, the CU memory

controller is called. An incoming request is placed in a first-in first-out (FIFO) buffer by a

controller, called station. If the request is a write then the address and data are written

in the FIFO and the controller can serve the next request. In case of a read operation, the

address is placed in the FIFO and the station will listen to the data read until the request

is fulfilled. After the read has been served, a write-back unit will place the data in the

register file.

Differently from previous implementations where the host central processing unit

(CPU) was a soft-CPU, in FGPU the programs are sent to the soft-GPGPU unit by an

ARM processor, present in the ZC706 Zynq board used [13].

FGPU’s main novelty is the inclusion of multiple CUs on an FPGA. The design re-

quired not just the CUs but a control structure as well, in the form of a workgroup sched-

uler and a global memory controller. Designers implemented 18 assembly instructions,

which, although limited, was sufficient to run four benchmarks, namely memcopy, vec-

mul and vecadd, FIR (5 taps), and cross correlation.

2.4 Summary

This chapter introduced the currently known soft-GPGPU approaches and described

their architectural characteristics. All these approaches differentiate from each other.

The first approach, FlexGrip, focused on NVIDIA’s SM and on the CUDA programming

model, while the remainder two focused on OpenCL’s description of a CU. In what

concerns the last two options, while MIAOW focused on implementing an existing ISA,

FGPU developers created their own.

MIAOW’s use of a real world ISA is interesting as it supports AMD legacy code,

which provides the means to use a more diverse set of benchmarks and also allows taking

conclusions that are applicable to real systems. Moreover, the support of floating-point

operations further broadens the scope of possible applications when compared to Flex-

Grip. Furthermore, it also allows programs to be compiled using standard AMD tools,

which means that no special compiler development is needed in order to test its function-

ality, as is the case with FGPUs’ ISA. Since MIAOW has an extensive synthesized ISA, it

14

2.4 Summary

features support for currently available programs. For these reasons, MIAOW has been

selected as the base CU in this thesis.

To gain further insight into the workings of MIAOW, the next chapter focuses on the

Southern Islands ISA, explaining in detail the inner architecture of a Southern Islands

compute unit. It also describes in detail the system’s design and validation procedures,

focusing not only in the instantiation and connection of modules, but the testing proce-

dures as well.

Figure 2.5: FGPU’s Compute Unit main blocks internal organization. The wavefront scheduler receives
complete workgroups, through the fetch, and divides them into wavefronts, these will later be dispatched by
the wavefront manager. The RTM will receive data from both the workgroup scheduler and the wavefront
scheduler and will allow executing wavefronts to access this data. A processing element will receive an
instruction, gather the operands from the register file, and execute it in the ALU; if the instruction is a
memory access it will create a request and pass it to the CU memory controller. In the CU memory controller,
the controller, or station, receives memory requests placed in the buffer and dispatches them to a FIFO
buffer; if a read is performed, when the requested data arrives a write back module will place this data on
the register files. Image courtesy of the FGPU development team.

15

2. Soft-GPGPUs Overview

16

3
MIAOW Base Architecture

Contents
3.1 Base Instruction Set Architecture . 18

3.1.1 Compute Unit Architecture . 19
3.2 NEKO . 20
3.3 FPGA Design . 20

3.3.1 Base system . 23
3.3.2 Full system . 26
3.3.3 Simulation system . 26

3.4 FPGA Validation . 27
3.5 Summary . 30

17

3. MIAOW Base Architecture

In the previous chapter the general characteristics of current soft-GPGPUs were re-

ported, as well as their working mechanics in terms of pipeline organization. The most

suitable candidate to work with was identified, and it consists of MIAOW, the implemen-

tation of a compute unit (CU) based on AMD’s Southern Islands instruction set architecture

(ISA) [17]. Taking this into consideration, and before delving into application-specific soft-

GPGPUs, this chapter starts by describing key features of the selected ISA. Then, a few

considerations are made on current limitations of the FPGA version of MIAOW, NEKO.

Later, the bring-up procedures required to have a working system are outlined, detailing

how the system is ported to the platform used in this work. The hardware validation

process is described, along with a characterization of the instruction validation script

developed, in terms of program flow. Finally, a list of corrections made to the original

system is presented.

3.1 Base Instruction Set Architecture

MIAOW is based on AMD’s Southern Islands ISA and its internal architecture is also

inspired by the manufacturers corresponding device architecture. As with most other

AMD graphics processing units (GPUs), MIAOW has three main modules responsible for

kernel execution, namely, the host interface, the ultra-threaded dispatcher, and the com-

pute unit. Hence, it operates as follows.

Initially, the host compiles a given kernel, which is meant to execute on the GPU, and

loads it into memory. Afterwards, it specifies the memory region for the input data, and

reserves space for the output. Finally, the host creates a command buffer to instruct the

GPU, through the host interface, on how to execute the workload.

The host interface consists of a command processor. It is responsible for communicat-

ing with the host processor, and scheduling on-chip workloads. This interface is set to re-

ceive commands from the host through memory-mapped buffers. These can set pipeline

state data, perform explicit dispatch/direct memory access (DMA) orders, or operations for

memory/cache synchronization. After receiving the commands, the host interface acts

by initializing state registers, scheduling the workloads received, performing the DMA

operations required, or satisfying scheduled synchronizations.

The ultra-threaded dispatcher receives commands from the host interface, and is re-

sponsible for distributing work across the CUs. At the start of execution, this unit receives

the workgroups—groups of threads which can belong to more than one wavefront—, and

checks which compute unit has sufficient resources to accommodate the given wavefront.

Upon finding a compute unit that can handle the workgroup, the dispatcher marks the

18

3.1 Base Instruction Set Architecture

resources as occupied, sends the workgroup and all related information, such as allocated

memory buffer addresses, to the selected unit, and emits a command to start execution.

The CU is responsible for kernel execution. Upon receiving a workgroup, the CU

begins dispatching instructions to the execution units, such as, the load store unit (LSU),

the scalar ALU (SALU), or the vector ALUs (VALUs). A CU can operate in more than one

wavefront at a time, using its available execution units to achieve parallelism. Once a

given workgroup finishes execution, the CU waits until a new one arrives. Each CU is

composed by instruction logic units, such as fetch, instruction buffer, decode, and issue;

scalar and vector ALU units; scalar and vector register files; a high-bandwidth shared

memory; and a one level cache, to increase memory access efficiency.

3.1.1 Compute Unit Architecture

As explained when describing MIAOW’s architecture (see Section 2.2), after receiving

the start execution command, the CU starts filling its pipeline, fetching one instruction

per cycle, until either all the execution units are busy, or the end of execution is reached.

After fetching one instruction, the CU decodes it, extracting the operation code—which

defines the type of instruction—, the operands, the results destination, among other in-

formation that depend on the type of instruction.

The Southern Islands ISA has two major types of instructions—scalar and vector.

A scalar instruction operates on a single word (32-bit) which is shared between all the

threads in the wavefront. A vector instruction, on the other hand, operates in up to 64

threads at the same time, applying the execution mask, a 64-bit vector in which each bit

corresponds to a different thread. This mask marks the threads which are affected by the

instruction, and which are not. Operations of either type are further subdivided accord-

ing to the execution unit used, either the ALU, for computation, or the LSU, for memory

access. The operations that use the ALU are named after either by the number or type

of operands; or by the operation performed. For memory operations, division is made

between the type of memory accessed, which can be local data share—local to the com-

pute unit—, or external memory—through cache. The complete set of instruction types

is described in Table 3.1.

After knowing the type of instruction to be performed and, consequently, the execu-

tion unit, the operands are fetched. The possible operands, as well as their number, de-

pend on the specific instruction type. Scalar and vector instructions can use the general

purpose registers available, either scalar or vector, respectively, as inputs for operations.

Furthermore, scalar instructions can operate on masks, like the execution mask; the vec-

tor condition code, which stores results of vector comparisons; the scalar condition code,

which stores either the results of comparisons between scalars, or the carry-out of SALU

19

3. MIAOW Base Architecture

operations; the program counter; and on literal constants. Vector instructions can also ac-

cess the scalar general purpose registers (SGPRs), the execution mask, and literal constants;

apart from having access to the vector general purpose registers (VGPRs), and to the local

data share memory. The possible operand list is summarized in Table 3.2.

Upon gathering the operands, the execution unit identified when decoding the in-

struction can begin executing, if it is available. The implemented compute unit has four

types of execution units, they are the LSU, the SALU, the floating-point VALU, and the in-

teger VALU. Since every execution unit can perform more than one instruction, a second

decode is performed inside this unit, selecting the exact operation to execute. A typical

ISA [17] implementation defines the CU as having a single LSU, a single SALU, and four

of each VALUs, allowing multiple instructions to be performed simultaneously.

3.2 NEKO

MIAOW follows AMD’s definition of a CU closely, but has a few major differences,

due to either being a work in progress, and also because of physical FPGA limits.

For instance, MIAOW does not possess either the local data share or the level one

cache, as of yet. This causes two major problems. First, there is no support for data

share instructions—these access the local memory of the CU—, which reduces the scope

of usable applications. Furthermore, without cache, all memory requests have to access

slow external memory, which increases memory access delay.

Due to FPGA limits, MIAOW can not yet entirely fit in a single design and, there-

fore, a reduced version was developed and named NEKO. The main difference between

NEKO and MIAOW lies in the number of VALUs. Although a full CU would have eight

VALUs—four integer and four floating-point—, MIAOW’s developers had to limit this

number to one of each, in order to fit the system on an FPGA. This reduces the available

parallelism, since the ability to execute more than one instruction using the same VALU

type at once is lost. When choosing the applications to run on NEKO, the current limi-

tations of the CU have to be considered. This work uses the FPGA version of MIAOW,

NEKO, since it is intended to have a working system on existing platforms. This ver-

sion is distributed across 189 files, including major, sub-modules, and sub-sub-modules,

which roughly amount to 35 thousand lines of code.

3.3 FPGA Design

The work in this thesis uses an Alpha Data’s ADM-PCIE-7V3 [1] board. This board fea-

tures a Xilinx 7 series FPGA [18], specifically, XC7VX690T. The board used, and its FPGA,

20

3.3 FPGA Design

Table 3.1: Type of instructions defined in Southern Islands’ ISA

Operands Type Name Description

Sc
al

ar

Scalar ALU

SOP2 Scalar instruction with two inputs
and one output.

SOPK Scalar instruction with one inline
constant input and one output.

SOP1 Scalar instruction with one input
and one output.

SOPC Scalar instruction with two inputs
and producing a comparison result.

SOPP Scalar instruction with one in-
line constant input and perform-
ing a special operation (for exam-
ple: branch).

Scalar memory SMRD Scalar instruction performing a
memory read from L1 memory

Ve
ct

or

Vector ALU

VOP2 Vector instruction taking two in-
puts and producing one output.

VOP1 Vector instruction taking one input
and producing one output.

VOPC Vector instruction taking two in-
puts and performing one compari-
son.

VOP3 Vector instruction taking three in-
puts and producing one output. Al-
lows redirecting comparison out-
puts to scalar registers (instead of
the vcc register).

Vector Memory Vector
memory

Vector memory instructions (read /
write) working on external mem-
ory.

Local Data Share Data
share

Vector memory instructions (read /
write) working on local memory.

21

3. MIAOW Base Architecture

Table 3.2: Possible instruction operands as defined in the Southern Islands’ ISA

Type Operand Name Description

Sc
al

ar

SGPR0-SGPR103 Scalar general purpose registers
VCC_LO Lower 32 bits of the vector condi-

tion code
VCC_HI Upper 32 bits of the vector condi-

tion code
TBA_LO Lower 32 bits of the trap handler

base address
TBA_HI Upper 32 bits of the trap handler

base address
TMA_LO Lower 32 bits of the pointer to data

in memory used by trap handler
TMA_HI Upper 32 bits of the pointer to data

in memory used by trap handler
TMP0-TMP11 Trap handler temporary registers

M0 Memory register 0
EXEC_LO Lower 32 bits of the execution mask
EXEC_HI Upper 32 bits of the execution mask

-16-64 Literal integer constants -16 to 64
0.5 Literal constant 0.5
-0.5 Literal constant -0.5
1.0 Literal constant 1.0
-1.0 Literal constant -1.0
2.0 Literal constant 2.0
-2.0 Literal constant -2.0
4.0 Literal constant 4.0
-4.0 Literal constant -4.0

VCCZ Result of the comparison between
VCC and zero. Automatically up-
dated with every change to VCC.

EXECZ Result of the comparison between
the execution mask and zero. Au-
tomatically updated with every
change to EXEC.

SCC Scalar condition code.
LDS direct Input read directly from local data

share
Literal constant 32-bit literal constant that follows

the current instruction

Vector
— All of the above

VGPR0-255 Vector general purpose registers
Exception: According to the ISA [17], SMRD instructions cannot receive literal constants as input.

22

3.3 FPGA Design

are different from the ones used by MIAOW’s original development team. Therefore, it

was necessary to port their system, redesigning it to attend to the board’s features.

System design was made using Xilinx’s Vivado Design Suite [19], which did not, orig-

inally, feature support for Alpha Data’s board. To work around this issue, a modified

version of the board support files from Xilinx SDAccel [8] was developed and used, effec-

tively adding support to the board in Vivado [19].

After adding the board support files to Vivado, system design could ensue. The fol-

lowing subsection addresses the composition of the system supporting the CU’s execu-

tion. Afterwards, the instantiation of NEKO is described, focusing on how it connects to

the base system.

3.3.1 Base system

To design the system which supports the compute unit, Xilinx’s tutorial for embedded

design [20] was used. Since the board featured in the tutorial is different from the available

one, it can not be followed directly. Nonetheless, the ideas behind system development

remain valid and the work-flow is very similar to the one described in the tutorial.

The base system has four major components, which are a soft microprocessor, called

Microblaze [21], a DDR3 RAM memory controller [22], a timer [23], and a debug module [24]

for Microblaze.

Microblaze: The Microblaze soft processor [21] is responsible for controlling execu-

tion, like a regular host processor would. It also acts as an ultra-threaded dispatcher for

the CU. Much like a regular host processor, Microblaze instructs the CU to execute a

given kernel, performs the required memory operations to provide data to the CU, and

retrieves results after computation. The Microblaze also controls the interaction between

all components in the system. The developed system does not possess DMA capabilities,

therefore, the microprocessor is responsible for handling memory transfers. Furthermore,

since it acts as an ultra-threaded dispatcher, the Microblaze is also responsible for CU ini-

tialization procedures, such as setting initial register values, and satisfying the compute

unit’s memory requests. When instantiating a Microblaze microprocessor it is required to

set the local memory size—from none to 128KB—, the cache size—from none to 64KB—,

the clock domain, and whether a debug module should be present.

Memory Interface Generator: The memory controller, known as memory interface

generator (MIG) [22], is responsible for intermediating memory accesses, as would be ex-

pected, but also for clocking and resetting the system. The latter is due to the constraint,

set by Vivado, that MIG has to be connected to the boards clock and reset ports. Since

only an adapted board support files is available, the memory controller needs some mod-

ifications in order to function correctly. For instance, due to Vivado’s restrictions, the in-

23

3. MIAOW Base Architecture

put clock period needs to be set to a value higher than 1500ps, while the original value

is 1250ps. The value 2500ps (or 400MHz) was used, since this is the highest frequency

clock directly available on the board. Moreover, it is desirable to have the system clock

with the highest possible frequency. MIG controls the system’s clock by applying a ratio

between the input and output clocks. This ratio is set to its lowest value (2:1) guaran-

teeing the maximum possible frequency for the system’s clock. With this setting, for an

input clock of 400MHz, the system’s clock is 200MHz. To simplify memory initialization,

and read/write operations, one needs to disable error-correcting code (ECC) functionality.

Changing this functionality requires altering the memory part selected in MIG, to one

that has a data width of 64bits, since if it had 72bits, similarly to the board’s memories,

it would be required, by Vivado, to have the ECC functionality enabled. This change

requires searching for a memory part, on a predefined list in Vivado, with the desired

data width while still matching the remaining characteristics, namely, the buffer size, the

rank, and voltage. The closest memory that fits this criteria has a different total size—

4GB, when the original had 8GB—, leaving part of the memory unused. Moreover, the

difference in size reduces the addressable memory, which requires bounding the ’extra’

address pins to zero. Otherwise, they act as antennas and alter the outcome of a memory

access. After selecting the new part, its timing parameters are altered to match the ones

in the board’s memories. Alpha Data sets the memories to be disabled by default, the

system needs to activate them by driving a pin (AA24) high (’1’).

The timer module [23] is used mainly to monitor Microblaze’s execution times.

Microblaze’s debug module [24] allows the debugging of a Microblaze processor

through a joint test action group (JTAG) interface. It also emulates a Universal asynchronous

receiver/transmitter (UART) module, not originally featured in the board, enabling print-

ing to the console.

All major modules are connected to the Microblaze by an advanced extensible interface

(AXI) [25] bus, where the processor acts as a master, and all other peripherals are consid-

ered slaves. For debug purposes the general purpose input/output (GPIO) pins were also

instantiated as part of an AXI slave peripheral. These are responsible for on board light

emitting diode (LED) lights.

The final base system can be seen in Figure 3.1. System design followed an iterative

process where each module was separately added, and its functionality was tested. This

made system debugging easier as, at a given time, only one module was being debugged,

instead of the whole system. Once the support system was designed, NEKO was added

to it, along with any modules required to guarantee the CU’s functionality.

24

3.3
FPG

A
D

esign

sys_diff_clock

ddr3_sdram_socket_j7

mig_7series_0

Memory Interface Generator (MIG 7 Series)

CLK_REF DDR3
S_AXI
SYS_CLK

sys_rst

ui_clk_sync_rst
ui_clk

mmcm_locked
init_calib_completearesetn

sys_diff_clock_0

rst_mig_7series_0_200M

Processor System Reset

slowest_sync_clk
ext_reset_in
aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]
peripheral_aresetn[0:0]

mdm_1

MicroBlaze Debug Module (MDM)

S_AXI MBDEBUG_0
S_AXI_ACLK
S_AXI_ARESETN

Interrupt

Debug_SYS_Rst

microblaze_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI
M01_AXI
M02_AXI
M03_AXI
M04_AXI

ACLK
ARESETN[0:0]
S00_ACLK

S00_ARESETN[0:0]
M00_ACLK

M00_ARESETN[0:0]
M01_ACLK

M01_ARESETN[0:0]
M02_ACLK

M02_ARESETN[0:0]
M03_ACLK

M03_ARESETN[0:0]
M04_ACLK

M04_ARESETN[0:0]

axi_gpio_0

AXI GPIO

S_AXI
GPIOs_axi_aclk

s_axi_aresetn

led_6bits

axi_timer_0

AXI Timer

S_AXI
capturetrig0
capturetrig1

generateout0
generateout1

pwm0
interrupt

freeze
s_axi_aclk
s_axi_aresetn

axi_intc_0

AXI Interrupt Controller

s_axi

interrupts_axi_aclk
s_axi_aresetn
intr[0:0]

microblaze_0

MicroBlaze

INTERRUPT DLMB
ILMB

M_AXI_DP

DEBUG
Clk
Reset

microblaze_0_local_memory

DLMB
ILMB

LMB_Clk
SYS_Rst[0:0]

xlconstant_0

Constant

dout[0:0]
reset

ram_pon[0:0]

util_vector_logic_0

Utility Vector Logic

Op1[0:0]
Op2[0:0]

Res[0:0]

power_ok[0:0] xlconstant_1
dout[0:0] ram_addr_15[0:0]

Constant

Figure 3.1: Base FPGA system. This system consists of a Microblaze microprocessor connected to a series of peripherals, namely, a set of general purpose pins (axi_gpio_0),
a memory controller (mig_7series_0), a debug module (mdm_1), and a timer (axi_timer_0).

25

3. MIAOW Base Architecture

3.3.2 Full system

NEKO, like the other major components, needs to be connected to the Microblaze,

through an AXI interface. To guarantee that NEKO, or MIAOW for that matter, remains

compatible with all FPGA boards, the original development team decided that instead of

adding AXI capability directly to the CU, this feature should be added to an intermediary

interconnect peripheral. This peripheral acts as a bridge between the processor and the

CU, by having a set of memory mapped registers that allows the compute unit to com-

municate with the processor, and vice versa. The peripheral needs to be developed and

packaged through Vivado’s intellectual property (IP) Integrator [26]. The work-flow of this

tool can be seen in Xilinx’s examples on how to create a custom IP module [27], and how

to package it using the IP Integrator [28].

After adding the interconnect peripheral as an AXI slave, it is necessary to guarantee

that all timing constraints are satisfied. In order to do so, the clock frequency should be

set to 50MHz, as suggested by the original design team. This setting requires using a

clock divider, known as clocking wizard [29], to reduce the system’s frequency from the

200MHz that MIG [22] outputs, to the required value. The resulting clock then feeds all

modules in the design, except for the MIG, that receives the board’s clock signal directly.

Since NEKO is a CU independent of the FPGA vendor, manufacturer specific mod-

ules have to be separately instantiated. Thus, it is required to add a block RAM (BRAM)

module to the system, which is used by NEKO as an instruction buffer, and as register

files.

Once all modules are placed in the design, a top level entity—known as top level

wrapper—is added to the project. This wrapper instantiates and connects the design and

the CU and sets the system’s inputs and outputs. Finally, the synthesis, implementation,

and bitstream generation tools are executed. This allows the board to be programmed

with the designed system. A simplified version of the design is shown in Figure 3.2.

After downloading the system’s bitstream to the FPGA, it can be directly pro-

grammed through Xilinx software development kit (SDK) [30], in C. This programmability

concedes an evaluation of the running state of NEKO. Nevertheless it does not allow for

an assessment of the internal state of the CU. A lower level examination of the CU is

required if a hardware debug of the system is to be performed.

3.3.3 Simulation system

To explore architectural details of a given system, at signal level, Xilinx provides the

Vivado Simulator [31]. This tool provides the means to perform a timing simulation of the

CU, by setting each individual port to the desired values for a preset number of clock

cycles [32]. Exploring NEKO on this level of detail helps, not only to debug it, but to gain

26

3.4 FPGA Validation

Figure 3.2: Simplified FPGA system. This system consists of a Microblaze microprocessor connected to a se-
ries of peripherals, namely, a set of general purpose pins (axi_gpio_0), a memory controller (mig_7series_0),
a debug module (mdm_1), a timer (axi_timer_0), and the interconnect to the CU.

a level of familiarity with the pipeline architecture that would otherwise not be available

from the high-level view given in the SDK.

The simulation system focuses on NEKO, removing all the complexity added from the

remaining system. Although allowing a quicker debug, this also requires a new project

to be created. Afterwards, simulation can ensue by either setting all signals manually

and advancing the current time, or by running a tool command language (Tcl) script [33]

containing commands. Either approach results in a simulation waveform, providing a

deep analysis of the system.

3.4 FPGA Validation

System design and validation followed a lock-step approach, where a single major

module was added, and immediately validated, at each iteration. This approach permits

27

3. MIAOW Base Architecture

a rapid identification of implementation errors, since only a module is being validated at

a given time.

To start the iteration process, however, a baseline must be set. This primitive sys-

tem is initially composed solely by a processor, Microblaze, and a feedback mechanism,

namely, LED lights. Each iteration adds a new functionality: whether being more feed-

back mechanisms—like console-printing capability—, or the ability to measure time. Ad-

ditionally, the memory space is extended by adding a MIG module to interact with exter-

nal DDR3 memory.

Validation follows a thorough verification process, where all required functionalities

for a given module are tested. Each new iteration re-validates the former one, to guar-

antee that there is no loss in functionality, and adds tests for the appended component.

All the blocks that compose the base system are added and validated prior to inserting

NEKO and the interconnect peripheral in the system.

As described in Sub-section 3.3.2, to allow a platform independent CU, an AXI pe-

ripheral that establishes communication between the Microblaze processor and NEKO

needs to be instantiated. The interconnect module and NEKO are tested simultaneously

since they are so intrinsically related. A two step validation is thus performed. First, the

connection between the modules is assessed by writing values to the memory mapped

registers in the interconnect and, afterwards, reading the values back. This tests the con-

nection since a write to a memory mapped register is propagated to the CU and, when

reading the value back, this value is directly provided by NEKO—instead of the register

that was previously written to. Following this step, a set of simple programs in AMD’s

Southern Islands [17] machine code are run on the CU, through the Microblaze processor.

These programs consist of a few instructions that operate on the data registers, created

by consulting AMD’s ISA [17]. The generated binaries are hard-coded to the C program in

hexadecimal form, through an unsigned int table. The program flow can be seen in List-

ing 3.1. Microblaze starts by writing a few values to the CU’s registers and populating

the CU’s instruction buffer with the given machine code. After initializing NEKO, the

processor sends the start execution command and waits until the CU finishes. Finally, it

recovers the resulting values present in the registers, and prints them to the screen.

Listing 3.1: Sample program flow used to test the compute unit

#define NEKO_EXEC (NEKO_BASE_ADDR + 24)
#define NEKO_INSTR_ADDR (NEKO_BASE_ADDR + 28)
#define NEKO_INSTR_VALUE (NEKO_BASE_ADDR + 32)
#define NEKO_REG_WRITE (NEKO_BASE_ADDR + 40)
#define NEKO_REG_ADDR (NEKO_BASE_ADDR + 44)
#define NEKO_REG_VALUE (NEKO_BASE_ADDR + 48)

unsigned int instructions []={}; // instructions are inserted here

28

3.4 FPGA Validation

int main(){
//Set values in the registers
for (i = 0; i < num_of_registers; i++){

write(NEKO_REG_ADDR ,i); //set register address to i
write(NEKO_REG_VALUE ,i); //write register i with value i
write(NEKO_REG_WRITE ,1); //send the write command
write(NEKO_REG_WRITE ,0); //reset the flag

}

// Populate the instruction buffer
for (i = 0; i < num_of_instructions; i++){

write(NEKO_INSTR_ADDR ,i);
write(NEKO_INSTR_VALUE ,instructions[i]);

}

//Start Execution
write(NEKO_EXEC ,1);

//Wait for the execution to end
while(read(NEKO_EXEC)==0);

//Read the resulting from the registers
for (i = 0; i < num_of_registers; i++){

write(NEKO_REG_ADDR ,i); //set register address to i
int value = read(NEKO_REG_VALUE); //read value in register i
print(value);

}

}

The program flow in Listing 3.1 allows the testing of each type of instruction defined

in the ISA. Thus, a test script was developed with the goal of identifying the correctly im-

plemented instructions from the complete listing present in the ISA [17]. The script is sep-

arated into three different programs, each working with either scalar, vector, or memory

instructions. The main flow, for all three programs, is the same. For each type of instruc-

tion, one opcode (specific operation) is selected, following a sequential approach. The

instruction binary is then generated in a set of functions which receive all the operands

and output the corresponding machine code. The data used is randomly generated to

perform a functional verification at the system-level. Thereupon, the CU is initialized

with both the instructions and data, and execution starts. Once NEKO finishes execut-

ing, the results are recovered. Finally, the results obtained are passed to a function that

compares them with the expected output. This process is repeated until all instructions

are covered. The developed scripts may be seen in Appendices C, D, and E.

After exhaustive testing, a malfunction affecting all vector instructions (correspond-

ing to a total of 104 instructions) was identified and corrected. To this effect, the system

developed for simulation purposes was used to locate the faulting hardware modules,

and correct their functionality.

29

3. MIAOW Base Architecture

Accordingly, after identifying incorrectly implemented instructions, the following

procedure was used to identify the majority of the detected errors. Initially, the operand

data is placed inside the register files (either scalar, vector, or both) and the broken in-

struction is implanted at the entry of the ’Fetch’ unit. Upon fetching the instruction, the

’Decode’ unit’s output is analyzed, verifying if it selected the right execution unit and

operands. Under those circumstances, the pipeline-flow progresses until the instruction

is scheduled for execution. At this point, the validity of the operand data is verified,

followed by an internal inspection of the execution unit, which has to select the opera-

tion to be performed by controlling its sub-modules. Afterwards, the result is analyzed,

as well as the write-back procedures. This analysis permits a rapid identification of the

main module responsible for an error. If at any given moment an incorrect signal or value

appears, then the sub-units of the responsible module are thoroughly analyzed until the

fault is corrected.

More broken instructions were identified and fixed. These include the vector mem-

ory writes, the floating-point reciprocal (needed for divisions), and correcting the usage

of inline constants in memory operations. The debugging process for all these was the

same as before, using Vivado Simulator. A list of all currently working instructions was

compiled and is presented in the results chapter (Chapter 5). Each correction made was

communicated to the original development team of MIAOW. Of those, some changes

were already introduced in the original project’s repository, whereas in other cases a dis-

cussion is ongoing to decide on the best approach to solve such errors.

3.5 Summary

This chapter described the features of a Southern Islands compute unit. The focus

was then shifted to the differences between the CU used, NEKO, and the one described

in the ISA [17], emphasizing the current limitations imposed by the FPGA technology.

Afterwards, the original system was ported to the available FPGA, requiring an itera-

tive process of system design and validation. At each iteration, more functionalities were

added, until a complete system, capable of supporting NEKO, was obtained.

Subsequently, a comprehensive script was developed to evaluate which subset of in-

structions from AMD’s ISA [17] were functionally synthesized.

The tests made using the Microblaze system revealed a subgroup of malfunctioning

instructions, which were corrected using a convenient simulation environment.

The next chapter focus on the improvements made to the base architecture, as well as

on how the system was benchmarked, and, finally, on the development of application-

specific GPGPU cores.

30

4
Application-specific GPU

Architecture

Contents
4.1 Enhancing functionality and throughput performance 32

4.1.1 Vector register direct access interface 32
4.1.2 Dual clock domain . 33
4.1.3 Internal block RAM memory . 33

4.2 System benchmark . 34
4.2.1 Applications . 34
4.2.2 Compute unit initialization . 35
4.2.3 Benchmarking procedures . 36

4.3 Application-Specific system development 39
4.4 Summary . 40

31

4. Application-specific GPU Architecture

In Chapter 3 useful insights over AMD’s Southern Islands compute unit (CU) [17] were

discussed. A detailed description of the system design and validation was also provided,

along with a list of corrections made to NEKO [12].

Taking this into account, this chapter focuses on the improvements made to the orig-

inal system to increase throughput. After describing such architectural modifications,

the CU is benchmarked, establishing a comparison in the throughput performance be-

tween the original (unmodified) and the improved systems. Finally, the development of

application-specific compute units is discussed.

4.1 Enhancing functionality and throughput performance

NEKO’s support system uses Microblaze to perform the tasks of an ultra-threaded

dispatcher. This unit is responsible for initializing state registers with data (see Section

3.1). Thus, an interface capable of directly accessing the CU’s register files is required.

Although NEKO featured such an interface for the scalar general purpose registers (SGPRs),

this was not implemented for the vector general purpose registers (VGPRs).

Moreover, there is an added delay corresponding to the processing time for a given

request, since every memory access is satisfied by the Microblaze processor. This delay

can be mitigated either by accelerating Microblaze’s response time, or by adding a small

memory block inside the CU—moving data closer to the processing units.

4.1.1 Vector register direct access interface

Adding the interface to the vector register file requires changing two major blocks:

the advanced extensible interface (AXI) [25] interconnect peripheral, and the compute unit’s

top level module.

The AXI interconnect peripheral has a set of memory mapped registers, through

which the Microblaze processor [21] can communicate with NEKO. The new interface re-

quires expanding the existing register set to support it. Since the vector length is defined

as 2048 bits [17], and a Microblaze processor only outputs 32bit words, a set of 64 data

registers is added to the peripheral. An address register is also set—controlling which

VGPR is written. Additionally, to control which words of a vector are written, two 32bit

registers contain the write mask. Finally, a special address is defined to signal a write

command, which causes the values in the data registers to be propagated to the VGPR.

Due to the limited number of input ports in the VGPR file, the compute unit’s top

level module is responsible for multiplexing input signals. Therefore, a new entry is set

to accommodate the interface port.

32

4.1 Enhancing functionality and throughput performance

4.1.2 Dual clock domain

Due to architectural constraints, graphics processing units (GPUs) usually have lower

clock frequencies—around 800MHz—when compared to central processing units (CPUs)—

around 2-3GHz. Thus, having the entire system running at 50MHz constrains the po-

tential system’s performance. Furthermore, Microblaze [21] controls memory accesses,

receiving the requests from the CU, and communicating with the memory interface gen-

erator (MIG) [22] to satisfy them. Increasing Microblaze’s clock frequency, while retaining

NEKO’s, causes the CU to perceive lower access times. The addition of a second clock

domain in the system requires redirecting the existing signals for all modules, except

NEKO and its interconnect peripheral. The latter remain connected to the 50MHz clock

from the clocking wizard module [29], while the former are directly fed by MIG’s output

with a frequency of 200MHz.

4.1.3 Internal block RAM memory

A further development to decrease memory access times is placing a small subset

of block RAM (BRAM) inside the CU. This block brings the data closer to the execution

units, decreasing latency. Moreover, since the BRAM is placed directly inside the CU,

there is no interaction with the processor when performing memory accesses. BRAM

blocks have fixed delays, which can be set to a single clock cycle, allowing complete

control over access time.

To access external double data rate 3 (DDR3) memory modules, the CU features a mem-

ory controller responsible for interacting with the interconnect peripheral and, conse-

quently, with the Microblaze processor. This module receives a request being processed

in the load store unit (LSU) and directs it to the host processor, to be satisfied. With the

addition of the BRAM block, this module becomes responsible for directing the memory

request to the right component. The selection between accessing BRAM or external DDR3

is made based on the requested address. In this work, the BRAM module is designed such

that it represents the first 220 (1048576) bytes in memory. The entire redirection procedure

is transparent to both the LSU block and the Microblaze processor.

The Microblaze processor has access to the BRAM module through the preexisting

memory interface, used to satisfy LSU’s requests. Using this communication, the internal

memory is initialized, containing data for processing.

The changes proposed to increase throughput performance can be visualized in Fig-

ure 4.1.

The LSU module relies on the memory controller to interact with the Microblaze pro-

cessor. Adding the BRAM module does not alter this behavior, allowing the LSU to keep

its modularity, even if the internal memory block is changed.

33

4. Application-specific GPU Architecture

Figure 4.1: Simplified scheme of the improved FPGA system. The modules highlighted in blue are connected
to the 200MHz clock domain, while the interconnect module is connected to the 50MHz clock. Inside the
CU a small BRAM module was inserted.

4.2 System benchmark

Upon implementing and validating the proposed changes to increase throughput per-

formance, a timing profile is used to quantify the improvements. This timing profile uses

unmodified Open Computing Language (OpenCL) applications, which are compiled on

AMD’s standard tools, to compare the execution times of the systems.

This section focuses on the application selection and the general bring-up details, as

well as on the benchmarking procedures.

4.2.1 Applications

Benchmarking applications were chosen from well established platforms, namely

Multi2Sim [34] and Rodinia [35]. From these suites, a subset of five benchmarks, supported

by the synthesized instruction set architecture (ISA), was selected. Three applications are

provided by Multi2Sim’s benchmark platform, namely, bitonic sort, floating-point ma-

34

4.2 System benchmark

trix multiplication, and integer matrix multiplication. The other two benchmarks used

are K-means clustering, and matrix Gaussian elimination, both from the Rodinia suite.

The benchmarking suites provide the programs in OpenCL, a high-level language,

which is compiled using AMD’s CodeXL [36]. Figures 4.2 and 4.3 show this work-flow.

Figure 4.2 provides an example of a high-level program which is then compiled into

assembly code—and binary machine code—, as shown in Figure 4.3.

Due to a malfunction in the instruction that simultaneously performs a floating-point

multiply-and-add, changes have to be made to the compiled binary code. All such in-

structions are, thus, replaced with separate floating-point multiplication and addition

operations. Moreover, usage of inline constants is still conditioned in vector ALU (VALU)

operations. This requires placing the constant value on an auxiliary register and using it

as an operand.

4.2.2 Compute unit initialization

Prior to execution, the CU needs to be initialized with state data registers. This ini-

tialization is performed by the Microblaze, acting as an ultra-threaded dispatcher. Figure

4.3 clearly illustrates the use of pre-initialized registers. For instance, the first instruc-

tion loads a value on to scalar register zero (s0), using the value that was preset in scalar

registers eight to eleven (s[8:11]) as the base address. Each application may set the reg-

ister state by using specific system calls [37] [38]. This causes the number of pre-initialized

register to vary on a per-application basis. Upon performing the compilation of a given

kernel, CodeXL provides detailed information over the initial register state (see Figure

4.4).

On the selected applications, there are four major sets of scalar registers used, and

three major vector registers used.

The first three sets of scalar registers contain memory descriptors. These are defined

in AMD’s Southern Islands ISA [17] as a combination between a 48 bit address and state

data for the memory access. The first set is identified, in Figure 4.4, as IMM_UAV, and

is present in scalar registers four to seven. This memory descriptor contains an offset for

data gathering accesses. The second set of registers, IMM_CONST_BUFFER 0 (s[8:11]),

contains the base address of OpenCL [4] call values. For instance, if a thread inquires its

global ID this memory area is accessed, using a specific offset, to retrieve the required

value. The third set of registers, IMM_CONST_BUFFER 1 (s[12:15]), holds a pointer to

the space in memory where the kernel arguments are kept. The fourth—and final—set

of scalar registers contains the thread group ID across the three possible dimensions (X,

Y, and Z). In Figure 4.4, the flag TGID_X_EN is enabled (’1’), meaning that the register

35

4. Application-specific GPU Architecture

Figure 4.2: OpenCL Code Example. This code is used as part of the bitonic sort benchmark, from the suite
Multi2Sim.

following the third set is initialized with the workgroup ID for dimension X. Since the

flags for dimensions Y and Z are not set, only the first register of this set is initialized.

The vector registers are pre-initialized to contain the thread IDs on the different di-

mensions (X, Y, or Z). The dimensions depend on the type of application. A program

whose data consists of one dimensional arrays only operates on the X dimension. If

working on a two, or three, dimensional matrix then the second, or third, dimensions—Y

and Z, respectively—, are also operated upon. The first vector register (v0) contains the

thread IDs on dimension X and should always be defined. The subsequent registers are

only initialized if more than one dimension is used.

4.2.3 Benchmarking procedures

After compiling the applications previously selected, the kernel binary is exported

from CodeXL [36] and hard-coded in the benchmarking program, running in Microblaze.

36

4.2 System benchmark

Figure 4.3: AMD CodeXL Assembly result of the compilation of the bitonic sort OpenCL code from
Multi2Sim’s benchmark, depicted in Figure 4.2. The figure shows the ISA instruction opcode and operands,
as well as the resulting hexadecimal code.

Microblaze initially acts as the host processor, defining the data present in external

memory. This includes not only the data to be processed, but the initialization data de-

scribed in Sub-section 4.2.2 as well.

Afterwards, the processor operates as an ultra-threaded dispatcher, predefining the

CU’s instruction buffer with the given kernel binary, the scalar registers with pointers to

the memory spaces set earlier, as well as the work-group ID, and the vector registers with

the thread ID of each current thread.

After completing all initialization procedures, Microblaze signals NEKO to start ex-

ecution. At the end of execution, every application writes-back the results to external

memory. These are then validated using MATLAB.

According to the number of workers required to complete execution, a kernel may

need multiple instantiations, since at most 64 threads can run simultaneously on the

37

4. Application-specific GPU Architecture

Figure 4.4: AMD CodeXL Pre-Initialized Registers. CodeXL details the pre-initialized registers and their
usage. The three user elements present consist of three memory descriptors that have to be initialized.
Furthermore, a few usage statistics are given, like the number of used VGPRs. To the end, there is indication
that the first sixteen registers are initialized. Afterwards, there is a list of enabled flags, in this case only
TGID_X_EN is set, which means that register number 16 has the workgroup ID in dimension X.

CU [17]. One such example is the multiplication of two matrices of dimension 64 by

64. Each worker computes a small four-by-four sub-matrix, therefore, 256 threads are

required for the entire multiplication process. Since only 64 threads run simultaneously,

the kernel must be executed four times. Prior to every run the Microblaze processor must

reinitialize the register values, and update the thread IDs.

From the selected applications a small subset requires further processing from Mi-

croblaze, namely K-means clustering and Gaussian elimination. K-means is an iterative

algorithm which partitions N observations into K clusters. Between iterations, Microb-

laze has to recompute the center of mass for each cluster. Gaussian elimination, on the

other hand, only requires Microblaze to act after NEKO finishes. Initially, the CU puts

the matrix in triangular form. Then, Microblaze performs the back-substitution to obtain

the final result.

NEKO’s execution time, for all applications, was measured using a cycle counter in-

ternal to the CU. Moreover, Microblaze’s processing time, on K-means clustering and

Gaussian elimination, was also quantified using the timer module [23] in the design.

To obtain a significant time profile, each application was tested with multiple prob-

lem sizes. The problem’s dimension and execution time values are presented in the re-

sults chapter (Chapter 5). Furthermore, a comparison between the execution times of all

developed systems is established to validate the improvements introduced in Section 4.1.

38

4.3 Application-Specific system development

4.3 Application-Specific system development

To deal with current field-programmable gate array (FPGA) limits when trying to imple-

ment a system with the complexity of a compute unit, this work proposes the creation

of application-specific cores. These cores discard all functionality that is not required by

each specific application. By disabling non-necessary functionalities, a simpler core is

obtained, with a reduced size, saving area (resources) on the board. This core has lower

power requirements, since there are less board components to feed, which also results in

a lower energy-consumption, since the removal of unused resources does not affect per-

formance. The obtained core is, therefore, optimized in terms of area, power, and energy

to each application.

The extra resources obtained from trimming down the core can be used to reestablish

more execution units that had to be discarded initially (see Section 3.2), increasing the

parallelism when executing instructions and, therefore, further improving throughput

performance.

The developed cores are based in the applications selected to benchmark the CU, each

being able to run one of the five programs used.

The CU is composed of eight major components, namely, fetching, decoding and

scheduling units, the scalar and vector register files, and the execution units (LSU, scalar

ALU (SALU), and VALU).

The units responsible for fetching and scheduling instructions—Fetch and Issue,

respectively—do not alter their behavior for a given instruction. Furthermore, the reg-

ister file units serve only as storage. Consequently, these units are not affected when

developing the application-specific cores.

The Decode unit receives the fetched instruction and produces a number of control

signals, including the execution unit selector and register addresses. For each instruction,

the control output changes. Reducing the number of supported instructions simplifies

the decode unit since part of the control circuit is eliminated.

Each execution unit performs a second instruction decode, which selects the correct

operation to be executed. Furthermore, they perform complex operations—from memory

accesses (LSU) to floating-point arithmetic (SALU and VALU)—requiring a great num-

ber of resources. The VALUs are also the modules that consume more resources in the

design [12], hence, simplifying these units helps reducing the occupied area.

For each application, a list of used instructions is compiled—using CodeXL—, and

the support for all others is removed. It is worth noticing that, for the applications which

use only integer instructions, namely the integer matrix multiplication and the bitonic

sort, the whole floating-point VALU is removed. This is a significant achievement since

39

4. Application-specific GPU Architecture

this unit uses almost twice the resources of an integer VALU, being the single largest unit

in the design [12].

The reduced cores are synthesized and their functionality is validated by running the

corresponding benchmark applications and confirming the legitimacy of the results.

A comparison between the resulting resource usage and power requirements for each

developed system is shown in Chapter 5. These values are also compared with those

of the original system, prior to and following the improvements on throughput perfor-

mance.

4.4 Summary

In this chapter, the improvements made to the original CU were described. These

featured the addition of an interface for directly accessing the VGPR file, as well as two

strategies to decrease memory access time, increasing throughput memory. The addition

of a second clock domain improved the response time of the Microblaze processor, when

performing memory accesses on behalf of the CU. Additionally, a BRAM module was

instantiated inside NEKO. This block represents the first 220 bytes in memory, and allows

bypassing the Microblaze processor on the memory accesses corresponding to its address

space.

Afterwards, the improvements made to the CU were quantified using benchmarks.

A set of well known real-world applications were run on the developed systems (prior to

and following the changes). Along with this time profiling, a detailed description of all

initialization procedures is provided.

Finally, the focus was shifted to the development of application-specific cores. These

consist of simplified CUs—with all non-required functionality removed—, which con-

sume less resources and have lower power requirements.

The next chapter presents the experimental results obtained. First, a list of the syn-

thesized ISA instructions—compiled using the comprehensive testing script developed

in Chapter 3—is shown. Then, the results of the time profile made in this chapter are an-

alyzed. Finally, a quantization of the savings provided by the application-specific cores

is made by comparing them to the starting system.

40

5
Experimental Results

Contents
5.1 Synthesized Instruction Set Architecture 42
5.2 Validation of dual-clock domain and BRAM usage 44

5.2.1 Benchmark results . 44
5.2.2 Area and power analysis . 47

5.3 Application-specific area gains and power savings 49
5.3.1 Power savings . 49
5.3.2 Area gains . 52

5.4 Summary . 54

41

5. Experimental Results

This chapter presents the experimental results obtained during the development of

this thesis. In Chapter 3 a comprehensive script was conceived to evaluate which subset

of instructions, from AMD’s instruction set architecture (ISA) [17], are synthesized. The

script’s results are presented in Section 5.1.

Chapter 4 proposed changes to the compute unit (CU) intended to increase throughput

performance. Section 5.2 quantifies the improvements made by comparing the execution

times of all the developed systems on a set of five representative benchmarks, while also

presenting the respective power requirements and resource usage. Also, Chapter 4 pro-

posed the creation of application-specific CUs. A detailed analysis of area gains and

power savings is made in 5.3.

5.1 Synthesized Instruction Set Architecture

Table 5.1 shows the subset of instructions, from AMD’s ISA [17], currently synthesized

in NEKO.

Table 5.1: Synthesized ISA.

Scalar Operations Vector Operations
Type Instruction Name Type Instruction Name

SO
P2

S_ADD_U32

V
O

P2

V_CNDMASK_B32
S_SUB_U32 V_ADD_F32
S_ADD_I32 V_SUB_F32
S_SUB_I32 V_SUBREV_F32
S_MIN_U32 V_MUL_F32
S_MAX_I32 V_MUL_I32
S_MAX_U32 V_MAX_F32
S_CSELECT_B32 V_MAX_I32
S_AND_B32 V_MIN_U32
S_AND_B64 V_MAX_U32
S_OR_B32 V_LSHRREV_B32
S_OR_B64 V_ASHRREV_I32
S_ANDN2_B64 V_LSHLREV_B32
S_LSHL_B32 V_AND_B32
S_LSHR_B32 V_OR_B32
S_ASHR_I32 V_ADD_I32
S_MUL_I32 V_SUB_I32

SO
PK

S_MOVK_I32 V_SUBREV_I32
S_ADDK_I32 V_ADDC_I32
S_MULK_I32 V_RCP_F32

Continued on next page

42

5.1 Synthesized Instruction Set Architecture

Continued from previous page
Scalar Operations Vector Operations

Type Instruction Name Type Instruction Name

SO
P1

S_MOV_B32 VOP1 V_MOV_B32
S_MOV_B64

V
O

PC

V_CMP_F_F32
S_NOT_B32 V_CMP_LT_F32
S_BREV_B32 V_CMP_EQ_F32
S_AND_SAVEEXEC_B64 V_CMP_LE_F32

SO
PC

S_CMP_EQ_I32 V_CMP_GT_F32
S_CMP_LG_I32 V_CMP_LG_F32
S_CMP_GT_I32 V_CMP_GE_F32
S_CMP_GE_I32 V_CMP_NGE_F32
S_CMP_LT_I32 V_CMP_NLG_F32
S_CMP_LE_I32 V_CMP_NGT_F32
S_CMP_EQ_U32 V_CMP_NLE_F32
S_CMP_LG_U32 V_CMP_NEQ_F32
S_CMP_GT_U32 V_CMP_NLT_F32
S_CMP_GE_U32 V_CMP_TRU_F32
S_CMP_LT_U32 V_CMP_F_I32
S_CMP_LE_U32 V_CMP_LT_I32/U32

SO
PP

S_ENDPGM V_CMP_EQ_I32/U32
S_BRANCH V_CMP_LE_I32/U32
S_BRANCH_SCC0 V_CMP_GT_I32/U32
S_BRANCH_SCC1 V_CMP_LG_I32/U32
S_BRANCH_EXECZ V_CMP_GE_I32/U32
S_BRANCH_EZECNZ V_CMP_TRU_I32/U32
S_BARRIER

V
O

P3
a

All from VOPC
S_WAITCNT

SM
R

D

S_LOAD_DWORD V_ADD_F32
S_LOAD_DWORDX2 V_SUB_F32
S_LOAD_DWORDX4 V_MUL_F32
S_BUFFER_LOAD_DWORD V_MAX_F32
S_BUFFER_LOAD_DWORDX2 V_MAX_U32

V_AND_B32
V_BFE_U32
V_BFE_I32
V_BFI_B32
V_MUL_LO_U32
V_MUL_HI_U32
V_MUL_LO_I32

Continued on next page

43

5. Experimental Results

Continued from previous page
Scalar Operations Vector Operations

Type Instruction Name Type Instruction Name

Ve
ct

or
M

em
.

TBUFFER_LOAD_FORMAT_X
TBUFFER_LOAD_FORMAT_XY
TBUFFER_LOAD_FORMAT_XYZ
TBUFFER_LOAD_FORMAT_XYZW
TBUFFER_STORE_FORMAT_X
TBUFFER_STORE_FORMAT_XY
TBUFFER_STORE_FORMAT_XYZ
TBUFFER_STORE_FORMAT_XYZW

NEKO’s ISA consists of 154 instructions. These perform a wide variety of oper-

ations, either bit-wise, arithmetical, or memory related. Using this ISA, a subset of

five well known real-world applications could be executed in the CU. The benchmark

programs were chosen from well established platforms, namely Multi2Sim [34] and Ro-

dinia [35]. Three applications are provided by Multi2Sim’s platform, notably bitonic sort,

floating-point matrix multiplication, and integer matrix multiplication. The other two

benchmarks used are K-means clustering and matrix Gaussian elimination, both from

the Rodinia suite. Benchmarking these applications provided a comparison between the

execution time of the original and improved systems.

5.2 Validation of dual-clock domain and BRAM usage

5.2.1 Benchmark results

Tables 5.2, 5.3, 5.4, 5.5, and 5.6 present the results for the benchmarks, applied to three

different scenarios:

i) the original system;

ii) the system where a second clock domain was introduced;

iii) the system where a block RAM (BRAM) module was added to the compute unit.

Each application is benchmarked with different problem sizes, as indicated in the

tables. The CU’s execution times are provided by an internal cycle counter. For the sub-

set of applications which require further processing, namely Gaussian elimination and

K-means clustering, time measurements of Microblaze’s execution are made using the

timer module present in the system. Apart from the K-means clustering algorithm, which

has an iterative nature, every benchmark has a fixed number of steps to completion.

44

5.2 Validation of dual-clock domain and BRAM usage

Table 5.2: Results for integer matrix multiplication.

Matrix Size Original system (µs) System with dual
clock domain (µs)

System with internal
BRAM (µs)

4x4 0.402 0.329 0.048
8x8 1.945 1.585 0.093

16x16 13.133 10.689 0.261
32x32 98.160 79.903 1.239
64x64 761.698 620.313 9.603

128x128 5999.254 4886.868 75.604
256x256 47616.701 38792.411 599.949
512x512 380106.431 309129.876 4780.063

Table 5.3: Results for floating-point matrix multiplication.

Matrix Size Original system (µs) System with dual
clock domain (µs)

System with internal
BRAM (µs)

4x4 0.452 0.383 0.106
8x8 1.951 1.600 0.209

16x16 13.083 10.712 0.493
32x32 97.853 80.199 3.052
64x64 759.279 622.851 24.111

128x128 5980.112 4907.847 191.664
256x256 47469.927 38962.936 1528.430
512x512 378169.119 310504.064 12207.913

Table 5.4: Results for Gaussian elimination.

Matrix
size

Original System
(µs)

System with dual
clock domain (µs)

System with
internal BRAM (µs)

Compute
Unit

Microblaze Compute
Unit

Microblaze Compute
Unit

Microblaze

4x4 1.253 0.182 1.026 0.0620 0.089 0.062
8x8 6.106 0.693 4.988 0.251 0.244 0.251

16x16 38.867 2.726 31.711 1.016 0.963 1.016
32x32 281.482 10.909 229.558 4.121 5.603 4.121

45

5.Experim
entalR

esults
Table 5.5: Results for K-means clustering computation.

Problem size Iterations
to

Original System (µs) System with dual
clock domain (µs)

System with internal
BRAM (µs)

Num. of
points

Features
per point

Num. of
clusters

completion Compute
Unit

Microblaze Compute
Unit

Microblaze Compute
Unit

Microblaze

32

4

5

4 7.564 1.934 6.193 0.501 0.196 0.517
8 4 14.827 3.875 12.133 1.003 0.365 1.019
32 3 58.397 15.810 47.780 4.086 1.380 4.103
64 2 116.492 32.660 95.309 8.432 2.734 8.449
4

10

2 14.842 2.304 12.152 0.596 0.383 0.612
8 2 29.367 4.675 24.033 1.208 0.721 1.224
32 2 116.506 19.082 95.328 4.925 2.752 4.942
64 2 232.696 39.146 190.385 10.095 5.459 10.112

64

4

5

3 14.948 3.535 12.235 0.916 0.310 0.949
8 5 29.415 7.134 24.075 1.847 0.592 1.879
32 5 116.218 28.890 95.115 7.470 2.281 7.503
64 3 231.953 61.314 189.835 15.951 4.534 18.044
4

10

3 29.433 3.903 24.095 1.011 0.610 1.044
8 6 58.368 7.866 47.775 2.035 1.173 2.067
32 3 231.972 32.533 189.855 8.401 4.552 8.434
64 3 463.444 69.325 379.295 17.978 9.058 20.089

512

4

5

24 119.586 27.236 97.883 7.049 2.480 7.313
8 15 235.322 58.011 192.603 15.072 4.732 17.446
32 13 929.739 238.637 760.923 61.805 18.249 70.533
64 19 1855.627 480.647 1518.683 124.598 36.272 141.773
4

10

26 235.471 27.449 192.759 7.566 4.877 7.369
8 18 466.943 58.582 382.199 15.250 9.383 17.597
32 12 1855.805 241.795 1518.838 62.540 36.416 71.279
64 13 3707.550 491.499 3034.388 127.243 72.461 144.422

46

5.2 Validation of dual-clock domain and BRAM usage

Table 5.6: Results for bitonic sorting algorithm.

Array
size

Original System (µs) System with dual
clock domain (µs)

System with internal
BRAM (µs)

32 5.844 4.770 0.164
64 15.663 12.768 0.311
128 40.837 33.259 0.629
512 262.501 213.794 4.046
1024 641.677 522.604 9.891
2048 1540.259 1254.243 23.740

As such, for this specific program, the time per iteration is averaged and shown together

with the required number of iterations. Each benchmark is repeated ten times, and the

averaged results are presented.

As expected, increasing the problem size causes an increment in execution time. Fur-

thermore, both modified systems present better results than the original one. The system

with a dual clock domain always has slightly better throughput performance—compared

to the original—, while the one containing an internal BRAM presents a substantial im-

provement to both.

The preceding results clearly identify memory accesses to be the main bottleneck

in the original system, and even in the system with a dual clock domain. For in-

stance, although floating-point operations take longer to complete than their integer

counterparts—as an example, multiplication is 11x slower—, the original system bench-

marks seem to indicate otherwise. Tables 5.2 and 5.3 show higher processing times

for integer matrix multiplication, when compared to the floating-point scenario. This

tendency is inverted when improvements are made to memory delay, and the difference

in processing times is clearly visible in the system with a BRAM, where a multiplication

of two 512x512 integer matrices takes almost three times less than the floating-point case.

The results in this sub-section are presented graphically in Appendix A.

5.2.2 Area and power analysis

All the designs are synthesized using Xilinx’s Vivado 2015.1, targeting Alpha Data’s

ADM-PCIE-7V3 [1] board. After synthesis and implementation procedures, Vivado pro-

vides detailed statistics on resource usage and power requirements. Table 5.7 establishes

a comparison between the resource usage in the original system and the ones with in-

creased throughput.

47

5. Experimental Results

Table 5.7: Comparison in resource utilization between the original system and the improved throughput
performance systems, for Alpha Data’s ADM-PCIE-7V3 [1] board.

Resource
Original system System with dual

clock domain
System with dual
clock domain &

BRAM

Total
Available
Resources

Utilization % Utilization % Utilization %
FF 14.92 14.21 14.23 866400

LUT 48.71 47.54 48.75 433200
Memory LUT 1.90 1.26 1.26 174200

I/O 22.33 22.33 22.33 600
BRAM 15.14 15.14 78.27 1470
DSP48 5.64 5.50 5.50 3600
BUFG 56.25 56.25 56.25 32

MMCM 10.00 10.00 10.00 20
PLL 5.00 5.00 5.00 20

The BRAM instantiation can be clearly seen in Table 5.7, where the usage of this type

of modules increases 63%. The remaining resources either remain unaltered or observe

slight changes.

Figures 5.1a), 5.1b), and 5.2 show the detailed power distribution for all three sys-

tems.

(a) Original System (b) System with two clock domains

Figure 5.1: On-chip power distribution for the base system (a)) and the system with two clock domains (b)).

In Figure 5.1 it is shown that adding another clock domain to the system slightly

increases the power requirement, mostly due to clock propagation and phase-shifting

(PHASER) blocks. Adding the BRAM module to the system causes a significant increase

in dissipated power of 10% (the difference in the total on-chip power between this system

48

5.3 Application-specific area gains and power savings

Figure 5.2: Power requirements for the system with two clock domains and a BRAM module.

and the original is 0.356W), as seen in Figure 5.2. However, the higher power requirement

is compensated by the gain in throughput performance, which in the worst case is 76%,

corresponding to the multiplication of two four-by-four floating-point matrices (see Table

5.3). The total energy (Energy=Power×Time) consumed by each system on the respective

benchmark is shown in graphical form in Appendix B.

5.3 Application-specific area gains and power savings

After development, the application-specific systems are synthesized for the Alpha

Data ADM-PCIE-7V3 [1] board, using Vivado 2015.1. This tool-chain provides detailed

statistics on resource usage and power requirements, which are shown in the following

subsections.

5.3.1 Power savings

All application-specific cores are derived from the system with a dual-clock domain

and an internal BRAM. Figure 5.3 shows the total on-chip power requirements for the

base and application-specific systems. Thus, a comparison of required power can be es-

tablished. Figures 5.4a), 5.4b), 5.5a), 5.5b), and 5.6 detail the on-chip power distribution

per each application-specific system.

Every application-specific system has a lower power requirement than the original,

as depicted in Figure 5.3. Furthermore, in the worst case a 5.2% decrease in power rating

is observed—from 3.947W to 3.743W, corresponding to the Gaussian elimination system,

whereas the best scenario achieves a reduction in the power rating of 18%—from 3.947W

to 3.246W, corresponding to the integer matrix multiplication system. The best scenar-

49

5. Experimental Results

Systems
0

0.5

1

1.5

2

2.5

3

3.5

4

P
ow

er
 R

eq
ui

re
m

en
ts

 (W
)

On-chip power requirements for each system

System prior to modifications
Integer matrix multiplication
F.P. matrix multiplication
Gaussian elimination
Bitonic sort
K-means

Figure 5.3: Total on-chip power per system. The first bar establishes the baseline, presenting the energy
consumption of the system prior to the architectural trim-down. The latter five bars represent the power
requirements for the application-specific systems.

(a) Integer matrix multiplication system (b) F.P. matrix multiplication system

Figure 5.4: Power requirements for the integer (a)) and floating-point (b)) matrix multiplication systems.

50

5.3 Application-specific area gains and power savings

(a) Gaussian elimination system (b) Bitonic sort system

Figure 5.5: Power requirements for the Gassian elimination (a)) and bitonic sort (b)) systems.

Figure 5.6: Power requirements for the K-means clustering system.

51

5. Experimental Results

ios, namely integer matrix multiplication and bitonic sort, correspond to the cases where

there is no need for the floating-point vector ALU (VALU), which greatly decreases the

power requirements. The remaining cases also see a reduction in the requirement, al-

though not as expressive, due to the different functionalities of each application. The

best floating-point system is the matrix multiplication one with a reduction of 7.8% in the

power requirement. The difference in the power requirement between all the systems

shows that simply removing an entire unit significantly decreases this rating. However,

even in the cases where this does not occur (floating-point systems), a reduction in the

requirement is also attainable and, in the studied systems, it can go up to 7.8%. Since

throughput performance is not affected by the application-specific optimizations of the

CU, then the energy expenditure also decreases. The total energy consumed by each

application-specific system is shown in graphical form in Appendix B.

In the remaining figures (5.4a), 5.4b), 5.5a), 5.5b), and 5.6), a detailed distribution

of on-chip power is shown. These clearly identify clocks, signals, and logic as the most

affected blocks by the changes proposed. On the other hand, static power only decreases

on the integer matrix multiplication and bitonic sort systems, due to the lower number

of modules that need powering, since it represents the power drawn by the device when

it is powered up.

Digital signal processor (DSP)’s stasis could seem strange, since they can be used to per-

form decimal operations, and some systems completely remove all floating-point capa-

bility. However, the initial system did not, directly, instantiate DSP blocks, with floating-

point operations being implemented in Verilog instead. This is due to the original design

team’s intention of remaining vendor-neutral [12].

5.3.2 Area gains

Figure 5.7 presents the resource usage for each application-specific system in a bar

chart. Reference values are also shown, corresponding to the data from the system

prior to the architectural trim-down. Resource usage is defined regarding flip-flops (FFs),

lookup-tables (LUTs), Memory LUTs, I/Os, BRAMs, DSPs, global buffers (BUFGs), mixed-

mode clock managers (MMCMs), and phase locked loops (PLLs).

Across all application-specific systems a decrease in the usage of FFs, LUTs, and DSPs

can be observed. Memory LUTs, I/Os, MMCMs, and PLLs remain constant throughout

all systems, while BUFG reduces to less than half on the benchmarks without floating-

point operations. BRAM usage only sees a decrease in the integer matrix multiplication

system.

52

5.3 Application-specific area gains and power savings

FF

LUT

Memory LUT

I/O

BRAM

DSP48

BUFG

MMCM

PLL

R
es

ou
rc

es

0 10 20 30 40 50 60 70 80
Resource Utilization (%)

Resource utilization for each application-specific system

System prior to modifications
Integer Matrix Multiplication
F.P. Matrix Multiplication
Matrix Gaussian Elimination
Bitonic Sort
K-means Clustering

Figure 5.7: Comparison in resource utilization between the system prior to the architectural trim-down and
all the application-specific systems, for Alpha Data’s ADM-PCIE-7V3 [1] board.

53

5. Experimental Results

Every resource, except the BRAM and BUFG, has a usage rate below 50%. However,

Table 5.7 shows that BRAM utilization can vary from the current 78.27% to a minimum

of 15.14%, as defined by the system designer.

BUFG utilization decreases 31.25% for the benchmarks that do not require a floating-

point unit—integer matrix multiplication and bitonic sort. Since the maximum usage for

this resource is 56.25%, at least one more vector execution unit can be instantiated in all

the application-specific cores and, in the integer-only systems, at least two more units can

be added.

Another possible exploration is adding a new CU to the system, which is only possible

in the integer matrix multiplication and bitonic sort systems, and if the size of the BRAM

module instantiated is decreased.

5.4 Summary

In this chapter the experimental results obtained were presented. First, the com-

plete listing of instructions from the synthesized ISA was provided, as a result from the

comprehensive testing script developed. Then, benchmark results were shown, and the

changes proposed in Chapter 4 to increase throughput performance were validated and

quantified. Finally, the analysis of area and power savings for the proposed application-

specific systems was made.

The next chapter presents the conclusions and future work directions.

54

6
Conclusions

Contents
6.1 Future work . 57

55

6. Conclusions

With the increasing demand in performance requirements of modern scientific appli-

cations, two approaches have been widely used. In particular, the focus has been split

between using general-purpose GPUs (GPGPUs) or field-programmable gate arrays (FPGAs)

for accelerating data processing. Although graphics processing unit (GPU)’s massively par-

allel architectures provide high flexibility and performance, off-the-shelf devices have

fixed designs that cannot be adapted towards the specific characteristics of the target

applications. On the other hand, application-specific architectures can be designed and

implemented in FPGAs that can be easily tailored to maximize the performance of a given

application. However, such approaches often require a profound architectural redesign

at the presence of minimal algorithmic changes. To overcome both issues, soft-GPGPUs

arised as a solution that unites general-purpose massively parallel and programmable ar-

chitectures (GPGPUs) with reconfigurable fabric (FPGAs). Designing this kind of system

is a complex task and developers have overlooked the effect of extra functionalities not

required by the targeted application, in terms of saving resource usage and energy con-

sumption. Thus, the main goal of this thesis was to develop application-specific GPGPU

cores, that feature all the required functionalities for a given application and are stripped

of all others. Achieving the proposed objectives resulted in four major contributions.

A Microblaze-based system was designed and implemented on an Alpha Data ADM-

PCIE-7V3 [1] board, featuring a Xilinx Virtex-7 XC7VX690T FPGA. Since this is not a

development board from Xilinx, there are no example projects easily available, and the

system must be designed from scratch. This work provided a detailed explanation on the

design procedures for non-development boards.

Moreover, while testing the compute unit (CU), a thorough validation script was cre-

ated, identifying the complete synthesized instruction set architecture (ISA)—which is a

subset of AMD Southern Islands, which aided in the addition of new instructions. Cur-

rently, a total of 154 instructions are synthesized and correctly implemented in the sys-

tem, including vector (104) and memory (8) functionalities. Which is the result of an

increase of 112 in the number of supported instructions.

Changes were implemented targeting an increase in throughput performance of the

system, by reducing memory access delays, and validated using a timing profile of the

GPGPU cores. The timing profile used five different benchmarks from well established

platforms, namely Rodinia [35]—K-means clustering and matrix Gaussian elimination—

and Multi2Sim [34]—bitonic sort, floating-point matrix multiplication, and integer matrix

multiplication. The changes made, namely accelerating the memory access by increasing

the clock frequency of both the processor (Microblaze) and the memory controller (MIG)

by adding a second clock domain, and introducing a block RAM (BRAM) module to the

CU to bypass the Microblaze in the memory accesses, resulted in a reduction of execution

56

6.1 Future work

time of up to 79.5x, namely when multiplying two 512x512 integer matrices. With this

decrease in the execution time the system became more energy-efficient as a reduction of

up to 72x was achieved, for the same application as before.

Finally, the application-specific cores initially proposed were developed, and the cor-

responding power savings showed a reduction of, up to, 18% of the base system’s initial

rating, which directly translates in equivalent energy savings, since the throughput per-

formance remains unaltered. Moreover, the decrease in resource usage proved that the

number of execution units (vector ALUs (VALUs)) in all the application-specific systems

can be increased, which can would result in more instruction-level parallelism, and, in

the integer matrix multiplication and bitonic sort cases, a new CU can be instantiated,

doubling the available computational power.

These application-specific cores can be used in both ends of the technology spectrum.

If applied to low-power devices, focused on mobile or Internet of things (IoT) applications

like artificial intelligence, they can be used as accelerators with minimal power and re-

source requirements, providing energy savings. On the other hand, they can be used

in larger boards, providing an efficient resource usage, which can be used to maximize

parallelism for demanding applications like neural networks.

6.1 Future work

Although adding the dual-clock domain into the system and an internal BRAM mod-

ule to the CU helped increase throughput performance, further improvements can be

attained by exploring the newly available resources resulting from the architectural trim-

down. Thus, a trade-off between the number of vector execution units (floating-point

and integer), the number of CU, power requirements, and throughput performance can

be studied.

Instantiating more vector execution units could increase throughput performance if

the application has multiple independent computation instructions near each other, as

they could be done in parallel. Adding a new CU not only doubles the computational

resources available but it also increases the necessary control logic. The Microblaze pro-

cessor would have to answer memory requests from both units, and control their kernel

execution. Furthermore, a trade-off between the internal BRAM size and the number of

compute units in the same design has to be made.

These explorations will lead to new time profiles, namely by repeating the bench-

marks made in this work and by developing new ones.

Moreover, the BRAM currently works as a replacement for the first 220 bytes in mem-

ory. Different approaches can be made, for instance setting this module as a cache level.

57

6. Conclusions

This would require altering the memory controller, creating a structure that would im-

plement a cache scheme, in hardware.

Finally, memory access times could be improved by removing Microblaze as an in-

termediary for requests, allowing the CU to directly interact with the memory interface

generator (MIG) controller.

58

Bibliography

[1] Alpha Data, “ADM-PCIE-7V3 User Manual,” 2016. [Online]. Available: http://www.alpha-data.com/
pdfs/adm-pcie-7v3%20user%20manual.pdf

[2] R. Pepper and J. Garrity, “Global Information Technology Report,” pp. 35–42, 2014. [Online]. Available:
http://blogs.cisco.com/wp-content/uploads/GITR-2014-Cisco-Chapter.pdf

[3] N. Corporation, “Whitepaper NVIDIA’s Next Generation CUDATM Compute Architecture: FermiTM,”
2009. [Online]. Available: http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_
compute_architecture_whitepaper.pdf

[4] A. Bourd, “The OpenCL Specification: Version 2.2,” March 2016. [Online]. Available: https://www.
khronos.org/registry/cl/specs/opencl-2.2.pdf

[5] NVIDIA, “NVIDIA Jetson TK1 Development Kit: Bringing GPU-accelerated computing to Embedded
Systems (Technical Brief v1.0),” NVIDIA Corporation, Tech. Rep., April 2014.

[6] R. Mijat, “Take GPU Processing Power Beyond Graphics with Mali GPU Computing,” ARM Limited,
Tech. Rep., Aug 2012. [Online]. Available: http://malideveloper.arm.com/downloads/WhitePaper_
GPU_Computing_on_Mali.pdf

[7] S. Ma, M. Huang, E. Cartwright, and D. Andrews, “Scalable memory hierarchies for embedded many-
core systems,” in Proceedings of the 8th International Conference on Reconfigurable Computing: Architectures,
Tools and Applications, ser. ARC’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 151–162. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-28365-9_13

[8] Xilinx Inc., “The Xilinx SDAccel Development Environment.” [Online]. Available: http://www.xilinx.
com/publications/prod_mktg/sdnet/sdaccel-backgrounder.pdf

[9] Altera Corp., “Altera SDK for OpenCL. Programming Guide,” 2014.

[10] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable Computing Architectures,” Proceedings of the IEEE,
vol. 103, no. 3, pp. 332–354, March 2015.

[11] K. Andryc, M. Merchant, and R. Tessier, “Flexgrip: A soft gpgpu for fpgas,” in Field-Programmable
Technology (FPT), 2013 International Conference on, Dec 2013, pp. 230–237.

[12] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho, C. Joseph, J. Menon, M. P. Drumond, R. Paul,
S. Prasad, P. Valathol, and K. Sankaralingam, “Enabling gpgpu low-level hardware explorations with
miaow: An open-source rtl implementation of a gpgpu,” ACM Trans. Archit. Code Optim., vol. 12, no. 2,
pp. 21:21:1–21:21:25, Jun. 2015. [Online]. Available: http://doi.acm.org/10.1145/2764908

[13] M. Al Kadi, B. Janssen, and M. Huebner, “FGPU: An SIMT-Architecture for FPGAs,” in Proceedings of
the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York, NY, USA:
ACM, 2016, pp. 254–263.

[14] A. Severance and G. Lemieux, “Venice: A compact vector processor for fpga applications,” in Field-
Programmable Technology (FPT), 2012 International Conference on, Dec 2012, pp. 261–268.

[15] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G. Lemieux, “Vegas: Soft vector processor
with scratchpad memory,” in Proceedings of the 19th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 15–24. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950420

59

http://www.alpha-data.com/pdfs/adm-pcie-7v3%20user%20manual.pdf
http://www.alpha-data.com/pdfs/adm-pcie-7v3%20user%20manual.pdf
http://blogs.cisco.com/wp-content/uploads/GITR-2014-Cisco-Chapter.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.2.pdf
http://malideveloper.arm.com/downloads/WhitePaper_GPU_Computing_on_Mali.pdf
http://malideveloper.arm.com/downloads/WhitePaper_GPU_Computing_on_Mali.pdf
http://dx.doi.org/10.1007/978-3-642-28365-9_13
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-backgrounder.pdf
http://doi.acm.org/10.1145/2764908
http://doi.acm.org/10.1145/1950413.1950420

Bibliography

[16] A. Al-Dujaili, F. Deragisch, A. Hagiescu, and W. F. Wong, “Guppy: A gpu-like soft-core processor,” in
Field-Programmable Technology (FPT), 2012 International Conference on, Dec 2012, pp. 57–60.

[17] AMD, “Southern Islands Series Instruction Set Architecture Reference Guide,” Dec. 2012.

[18] Xilinx, “7 Series FPGAs Overview,” 2015. [Online]. Available: http://www.xilinx.com/support/
documentation/data_sheets/ds180_7Series_Overview.pdf

[19] Xilinx, “Vivado Design Suite User Guide: Getting Started,” Apr. 2015. [Online]. Available: http://
www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.
pdf

[20] Xilinx, “Vivado Design Suite Tutorial: Embedded Processor Hardware Design,” Apr. 2015.
[Online]. Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/
ug940-vivado-tutorial-embedded-design.pdf

[21] Xilinx, “MicroBlaze Soft Processor Core ,” 2015. [Online]. Available: http://www.xilinx.com/
products/design-tools/microblaze.html

[22] Xilinx, “Zynq-7000 All Programmable SoC and 7 Series Devices Memory Interface Solutions v2.3
User Guide,” Jun. 2015. [Online]. Available: http://www.xilinx.com/support/documentation/ip_
documentation/mig_7series/v2_3/ug586_7Series_MIS.pdf

[23] Xilinx, “AXI Timer v2.0 LogiCORE IP Product Guide,” Nov. 2015. [Online]. Available: http://www.
xilinx.com/support/documentation/ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf

[24] Xilinx, “MicroBlaze Debug Module (MDM) v3.2 LogiCORE IP Product Guide,” Nov. 2015. [On-
line]. Available: http://www.xilinx.com/support/documentation/ip_documentation/mdm/v3_2/
pg115-mdm.pdf

[25] Xilinx, “Vivado Design Suite: AXI Reference Guide,” Jun. 2015. [Online]. Available:
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/
ug1037-vivado-axi-reference-guide.pdf

[26] Xilinx, “Vivado IP Integrator,” 2013. [Online]. Available: http://www.xilinx.com/publications/prod_
mktg/vivado/Vivado_IP_Integrator_Backgrounder.pdf

[27] Xilinx, “Vivado Design Suite Tutorial: Creating and Packaging Custom IP,” 2015. [On-
line]. Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/
ug1119-vivado-creating-packaging-ip-tutorial.pdf

[28] Xilinx, “Vivado Design Suite Tutorial: Designing IP Subsystems Using IP Integrator,” Apr.
2015. [Online]. Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_
1/ug995-vivado-ip-subsystems-tutorial.pdf

[29] Xilinx, “Clocking Wizard v5.1 LogiCORE IP Product Guide,” Apr. 2015. [Online]. Available: http://
www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_1/pg065-clk-wiz.pdf

[30] Xilinx, “Getting Started with Xilinx SDK,” 2015. [Online]. Available: http://www.xilinx.com/support/
documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html

[31] Xilinx, “Vivado Design Suite Tutorial: Logic Simulation,” 2015. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/
ug937-vivado-design-suite-simulation-tutorial.pdf

[32] Xilinx, “Vivado Design Suite User Guide: Logic Simulation,” Apr. 2015. [Online].
Available: http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/
ug900-vivado-logic-simulation.pdf

[33] Xilinx, “Vivado Design Suite User Guide: Using Tcl Scripting,” Apr. 2015. [Online]. Available: http:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug894-vivado-tcl-scripting.
pdf

60

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug910-vivado-getting-started.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/products/design-tools/microblaze.html
http://www.xilinx.com/support/documentation/ip_documentation/mig_7series/v2_3/ug586_7Series_MIS.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mig_7series/v2_3/ug586_7Series_MIS.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_timer/v2_0/pg079-axi-timer.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mdm/v3_2/pg115-mdm.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mdm/v3_2/pg115-mdm.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_IP_Integrator_Backgrounder.pdf
http://www.xilinx.com/publications/prod_mktg/vivado/Vivado_IP_Integrator_Backgrounder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1119-vivado-creating-packaging-ip-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug1119-vivado-creating-packaging-ip-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug995-vivado-ip-subsystems-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug995-vivado-ip-subsystems-tutorial.pdf
http://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_1/pg065-clk-wiz.pdf
http://www.xilinx.com/support/documentation/ip_documentation/clk_wiz/v5_1/pg065-clk-wiz.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/SDK_Doc/index.html
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug937-vivado-design-suite-simulation-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug937-vivado-design-suite-simulation-tutorial.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug900-vivado-logic-simulation.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug894-vivado-tcl-scripting.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug894-vivado-tcl-scripting.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_1/ug894-vivado-tcl-scripting.pdf

Bibliography

[34] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A simulation framework for cpu-gpu
computing,” in Proceedings of the 21st International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’12. New York, NY, USA: ACM, 2012, pp. 335–344. [Online]. Available: http:
//doi.acm.org/10.1145/2370816.2370865

[35] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron, “Rodinia: A benchmark
suite for heterogeneous computing,” in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, Oct 2009, pp. 44–54.

[36] AMD, “Getting Started with CodeXL,” 2012. [Online]. Available: http://developer.amd.com/
wordpress/media/2012/10/CodeXL_Quick_Start_Guide.pdf

[37] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & transforma-
tion,” in Proceedings of the International Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization, ser. CGO ’04. Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=977395.977673

[38] Edwards, A., “Getting Started with Radeon Open Compute Plat-
form (ROCm),” apr 2016. [Online]. Available: http://gpuopen.com/
getting-started-with-boltzmann-components-platforms-installation/

61

http://doi.acm.org/10.1145/2370816.2370865
http://doi.acm.org/10.1145/2370816.2370865
http://developer.amd.com/wordpress/media/2012/10/CodeXL_Quick_Start_Guide.pdf
http://developer.amd.com/wordpress/media/2012/10/CodeXL_Quick_Start_Guide.pdf
http://dl.acm.org/citation.cfm?id=977395.977673
http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/
http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/

Bibliography

62

A
Plots of benchmark results

63

A. Plots of benchmark results

0 0.5 1 1.5 2 2.5 3

Num. of elements in matrix #10 5

0

0.5

1

1.5

2

2.5

3

3.5

4

E
xe

cu
tio

n
tim

e
(

7
s)

#10 5 Results for the integer matrix multiplication benchmark

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.1: Integer matrix multiplication results

0 0.5 1 1.5 2 2.5 3

Num. of elements in matrix #10 5

0

0.5

1

1.5

2

2.5

3

3.5

4

E
xe

cu
tio

n
tim

e
(

7
s)

#10 5 Results for the F.P. matrix multiplication benchmark

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.2: Floating-point matrix multiplication results

64

0 200 400 600 800 1000 1200

Num. of elements in matrix

0

50

100

150

200

250

300

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the Gaussian elimination benchmark - Compute Unit

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.3: Matrix Gaussian elimination results - CU

0 200 400 600 800 1000 1200

Num. of elements in matrix

0

2

4

6

8

10

12

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the Gaussian elimination benchmark - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.4: Matrix Gaussian elimination results - Microblaze

65

A. Plots of benchmark results

0 500 1000 1500 2000 2500

Num. of elements in array

0

200

400

600

800

1000

1200

1400

1600

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the bitonic sort benchmark

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.5: Bitonic sort results

0 10 20 30 40 50 60 70

Num. of features per point

0

20

40

60

80

100

120

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 32points, 5clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.6: K-means clustering benchmark results - 32points, 5clusters - CU

66

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 32points, 10clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.7: K-means clustering benchmark results - 32points, 10clusters - CU

0 10 20 30 40 50 60 70

Num. of features per point

0

5

10

15

20

25

30

35

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 32points, 5clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.8: K-means clustering benchmark results - 32points, 5clusters - Microblaze

67

A. Plots of benchmark results

0 10 20 30 40 50 60 70

Num. of features per point

0

5

10

15

20

25

30

35

40
E

xe
cu

tio
n

tim
e

(
7

s)
Results for the K-means clustering benchmark - 32points, 10clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.9: K-means clustering benchmark results - 32points, 10clusters - Microblaze

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 64points, 5clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.10: K-means clustering benchmark results - 64points, 5clusters - CU

68

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 64points, 10clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.11: K-means clustering benchmark results - 64points, 10clusters - CU

0 10 20 30 40 50 60 70

Num. of features per point

0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 64points, 5clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.12: K-means clustering benchmark results - 64points, 5clusters - Microblaze

69

A. Plots of benchmark results

0 10 20 30 40 50 60 70

Num. of features per point

0

10

20

30

40

50

60

70
E

xe
cu

tio
n

tim
e

(
7

s)
Results for the K-means clustering benchmark - 64points, 10clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.13: K-means clustering benchmark results - 64points, 10clusters - Microblaze

0 10 20 30 40 50 60 70

Num. of features per point

0

200

400

600

800

1000

1200

1400

1600

1800

2000

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 512points, 5clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.14: K-means clustering benchmark results - 512points, 5clusters - CU

70

0 10 20 30 40 50 60 70

Num. of features per point

0

500

1000

1500

2000

2500

3000

3500

4000
E

xe
cu

tio
n

tim
e

(
7

s)

Results for the K-means clustering benchmark - 512points, 10clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.15: K-means clustering benchmark results - 512points, 10clusters - CU

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 512points, 5clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.16: K-means clustering benchmark results - 512points, 5clusters - Microblaze

71

A. Plots of benchmark results

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

300

350

400

450

500

E
xe

cu
tio

n
tim

e
(

7
s)

Results for the K-means clustering benchmark - 512points, 10clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system

Figure A.17: K-means clustering benchmark results - 512points, 10clusters - Microblaze

72

B
Energy consumption results

73

B. Energy consumption results

0 0.5 1 1.5 2 2.5 3

Num. of elements in matrix #10 5

0

2

4

6

8

10

12

14

E
ne

rg
y

(
7

J)

#10 5 Energy spent in the integer matrix multiplication benchmark

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.1: Energy spent in the integer matrix multiplication benchmark

0 0.5 1 1.5 2 2.5 3

Num. of elements in matrix #10 5

0

2

4

6

8

10

12

14

E
ne

rg
y

(
7

J)

#10 5 Energy spent in the F.P. matrix multiplication benchmark

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.2: Energy spent in the floating-point matrix multiplication benchmark

74

0 200 400 600 800 1000 1200

Num. of elements in matrix

0

200

400

600

800

1000

1200
E

ne
rg

y
(
7

J)
Energy spent in the Gaussian elimination benchmark - Compute Unit

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.3: Energy spent in the Gaussian elimination benchmark - Compute Unit (CU)

0 200 400 600 800 1000 1200

Num. of elements in matrix

0

5

10

15

20

25

30

35

40

E
ne

rg
y

(
7

J)

Energy spent in the Gaussian elimination benchmark - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.4: Energy spent in the Gaussian elimination benchmark - Microblaze

75

B. Energy consumption results

0 500 1000 1500 2000 2500

Num. of elements in array

0

1000

2000

3000

4000

5000

6000

E
ne

rg
y

(
7

J)

Energy spent in the bitonic sort benchmark

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.5: Energy spent in the bitonic sort benchmark

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

300

350

400

450

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 32points, 5clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.6: Energy spent in the K-means clustering benchmark - 32points, 5clusters - CU

76

0 10 20 30 40 50 60 70

Num. of features per point

0

100

200

300

400

500

600

700

800

900
E

ne
rg

y
(
7

J)
Energy spent in the K-means clustering benchmark - 32points, 10clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.7: Energy spent in the K-means clustering benchmark - 32points, 10clusters - CU

0 10 20 30 40 50 60 70

Num. of features per point

0

20

40

60

80

100

120

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 32points, 5clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.8: Energy spent in the K-means clustering benchmark - 32points, 5clusters - Microblaze

77

B. Energy consumption results

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 32points, 10clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.9: Energy spent in the K-means clustering benchmark - 32points, 10clusters - Microblaze

0 10 20 30 40 50 60 70

Num. of features per point

0

100

200

300

400

500

600

700

800

900

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 64points, 5clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.10: Energy spent in the K-means clustering benchmark - 64points, 5clusters - CU

78

0 10 20 30 40 50 60 70

Num. of features per point

0

200

400

600

800

1000

1200

1400

1600

1800
E

ne
rg

y
(
7

J)
Energy spent in the K-means clustering benchmark - 64points, 10clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.11: Energy spent in the K-means clustering benchmark - 64points, 10clusters - CU

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 64points, 5clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.12: Energy spent in the K-means clustering benchmark - 64points, 5clusters - Microblaze

79

B. Energy consumption results

0 10 20 30 40 50 60 70

Num. of features per point

0

50

100

150

200

250

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 64points, 10clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.13: Energy spent in the K-means clustering benchmark - 64points, 10clusters - Microblaze

0 10 20 30 40 50 60 70

Num. of features per point

0

1000

2000

3000

4000

5000

6000

7000

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 512points, 5clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.14: Energy spent in the K-means clustering benchmark - 512points, 5clusters - CU

80

0 10 20 30 40 50 60 70

Num. of features per point

0

2000

4000

6000

8000

10000

12000

14000
E

ne
rg

y
(
7

J)
Energy spent in the K-means clustering benchmark - 512points, 10clusters - CU

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.15: Energy spent in the K-means clustering benchmark - 512points, 10clusters - CU

0 10 20 30 40 50 60 70

Num. of features per point

0

200

400

600

800

1000

1200

1400

1600

1800

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 512points, 5clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.16: Energy spent in the K-means clustering benchmark - 512points, 5clusters - Microblaze

81

B. Energy consumption results

0 10 20 30 40 50 60 70

Num. of features per point

0

200

400

600

800

1000

1200

1400

1600

1800

E
ne

rg
y

(
7

J)

Energy spent in the K-means clustering benchmark - 512points, 10clusters - Microblaze

Original system
Dual-clock domain system
Dual-clock domain & BRAM system
Application-specific system

Figure B.17: Energy spent in the K-means clustering benchmark - 512points, 10clusters - Microblaze

82

C
Scalar Instruction Testing

83

C. Scalar Instruction Testing

#include <stdio.h>
#include "platform.h"
#include "xio.h"
#include "xparameters.h"

#define NEKO_CMD_ADDR XPAR_AXI_SLAVE_0_S00_AXI_BASEADDR
#define NEKO_BASE_LDS (NEKO_CMD_ADDR + 16)
#define NEKO_INSTR_ADDR (NEKO_CMD_ADDR + 28)
#define NEKO_INSTR_VALUE (NEKO_CMD_ADDR + 32)
#define NEKO_GPR_CMD (NEKO_CMD_ADDR + 40)
#define NEKO_SGRP_ADDR (NEKO_CMD_ADDR + 44)
#define NEKO_SGRP_QUAD_0 (NEKO_CMD_ADDR + 48)
#define NEKO_SGRP_QUAD_1 (NEKO_CMD_ADDR + 52)
#define NEKO_SGRP_QUAD_2 (NEKO_CMD_ADDR + 56)
#define NEKO_SGRP_QUAD_3 (NEKO_CMD_ADDR + 60)

#define NEKO_MEM_OP (NEKO_CMD_ADDR + 128)
#define NEKO_MEM_RD_DATA (NEKO_CMD_ADDR + 132) // Address for data to be

read
//from MIAOW and written to memory
#define NEKO_MEM_ADDR (NEKO_CMD_ADDR + 136)
#define NEKO_MEM_WR_DATA (NEKO_CMD_ADDR + 192)//Addr. for writing data to

MIAOW
#define NEKO_MEM_WR_EN (NEKO_CMD_ADDR + 196)
#define NEKO_MEM_ACK (NEKO_CMD_ADDR + 200)
#define NEKO_MEM_DONE (NEKO_CMD_ADDR + 204)

#define NEKO_CYCLE_COUNTER (NEKO_CMD_ADDR + 192)

#define NEKO_RESET (NEKO_CMD_ADDR + 36)

#define MEM_WR_ACK_WAIT 1
#define MEM_WR_RDY_WAIT 2
#define MEM_WR_LSU_WAIT 3
#define MEM_RD_ACK_WAIT 4
#define MEM_RD_RDY_WAIT 5
#define MEM_RD_LSU_WAIT 6
#define VGPR_DATA (NEKO_CMD_ADDR + 0x0D4)
#define VGPR_ADDR (NEKO_CMD_ADDR + 0x0D0)
#define VGPR_WR_CMD (NEKO_CMD_ADDR + 0x01D4)
#define VGPR_WR_CLEAN (NEKO_CMD_ADDR + 0x01D8)
#define VGPR_WR_MASK_LO (NEKO_CMD_ADDR + 0x01DC)
#define VGPR_WR_MASK_HI (NEKO_CMD_ADDR + 0x01E0)

#define END_PRGRM 0xBF810000

union ufloat{
float f;
unsigned u;

};

uint32_t reverse_bit_order(register uint32_t x){
// Inverts the bits in a 32bit word
// Credits to: Sean Eron Anderson
//http :// graphics.stanford.edu/~ seander/bithacks.html
x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
return ((x >> 16) | (x << 16));

84

}
int32_t create_sop2(int32_t op, int32_t sdst , int32_t s1, int32_t s0){

/* SOP2 instruction format:
* MSB -> LSB
* | ENC (2) = 2’b10 | OP(7) | SDST (7) | SSRC1 (8) | SSRC0 |
*/

int32_t inst = 0x80000000;
op = op << 23;
sdst = sdst << 16;
s1 = s1 << 8;
inst = inst | op | sdst | s1 | s0;
return(inst);

}
int32_t create_sopk(int32_t op, int32_t sdst , int32_t simm){

/* SOPK instruction format:
* MSB -> LSB
* | ENC (4) = 4’b1011 | OP(5) | SDST (7) | SIMM16 (16) |
*/

int32_t inst = 0xB0000000;
op = op << 23;
sdst = sdst << 16;
inst = inst | sdst | op | simm;
return(inst);

}
int32_t create_sop1(int32_t op, int32_t sdst , int32_t s0){

/* SOP1 instruction format:
* MSB -> LSB
* | ENC (9) = 9’b101111101 | SDST (7) | OP(8) | SSRC0 (8) |
*/

int32_t inst = 0xBE800000;
op = op << 8;
sdst = sdst << 16;
inst = inst | sdst | op | s0;
return(inst);

}
int32_t create_sopc(int32_t op, int32_t s1, int32_t s0){

/* SOPC instruction format:
* MSB -> LSB
* | ENC (9) = 9’b101111110 | OP(7) | SSRC1 (8) | SSRC0 (8) |
*/

int32_t inst = 0xBF000000;
s1 = s1 << 8;
op = op << 16;
inst = inst | op | s1 | s0;
return(inst);

}
int32_t create_sopp(int32_t op, int32_t simm){

/* SOPP instruction format:
* MSB -> LSB
* | ENC (9) = 9’b101111111 | OP(7) | SIMM16 (16) |
*/

int32_t inst = 0xBF800000;
op = op << 16;
inst = inst | op | simm;
return(inst);

}
int32_t create_smrd(int32_t op, int32_t sdst , int32_t sbase , int32_t imm ,

int32_t offset
){

/* SMRD instruction format:

85

C. Scalar Instruction Testing

* MSB -> LSB
* | ENC (5) = 5’b11000 | OP(5) | SDST (7) | SBASE (6) | IMM(1) | OFFSET (8)

|
*/

int32_t inst = 0xC0000000;
op = op << 22;
sdst = sdst << 15;
sbase = sbase << 9;
imm = imm << 8;
inst = inst | op | sdst | sbase | imm | offset;
return(inst);

}
int32_t run_sop_program_neko(int32_t insts[],int32_t num_insts ,

int32_t inst_data[], int32_t num_data ,
int32_t max_clocks){

/*
* Resets Neko
* Populates NEKO’s instruction buffer and the scalar registers
* Send "start execution" command and waits for program completion or

until
* the timeout is reached
* If the program reaches the end of execution before the timeout the

data in
* the scalar regs is read and success (1) is returned
* Otherwise returns 0 (unsuccessful)
*/

int32_t index , address , data;
int32_t cycle_counter = 0;
int32_t succeeded = 1;

//NEKO’s reset pulse
XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

XIo_Out32(NEKO_BASE_LDS , XPAR_MIG_7SERIES_0_BASEADDR);

//Load scalar registers with data
for(index = 0; index < num_data; index +=4)
{

XIo_Out32(NEKO_SGRP_ADDR , index);
XIo_Out32(NEKO_SGRP_QUAD_0 , inst_data[index]);
XIo_Out32(NEKO_SGRP_QUAD_1 , inst_data[index +1]);
XIo_Out32(NEKO_SGRP_QUAD_2 , inst_data[index +2]);
XIo_Out32(NEKO_SGRP_QUAD_3 , inst_data[index +3]);
XIo_Out32(NEKO_GPR_CMD , 1);

}

//Load the instruction buffer
for(index = 0; index < num_insts; index ++)
{

XIo_Out32(NEKO_INSTR_ADDR , index);
XIo_Out32(NEKO_INSTR_VALUE , insts[index]);

}

//Start execution
XIo_Out32(NEKO_CMD_ADDR , 1);

86

//Wait for the end of execution
while(XIo_In32(NEKO_CMD_ADDR) != 1)
{
// Verify the timeout

cycle_counter = XIo_In32(NEKO_CYCLE_COUNTER);
if(cycle_counter >max_clocks){

succeeded =0;
break;

}
data = XIo_In32(NEKO_MEM_OP);
if(data != 0)
{

int nextValue = MEM_RD_RDY_WAIT;
if(data == MEM_RD_ACK_WAIT)
{

nextValue = MEM_RD_RDY_WAIT;
}
else if(data == MEM_WR_ACK_WAIT)
{

nextValue = MEM_WR_RDY_WAIT;
}
else if(data == MEM_WR_LSU_WAIT || data == MEM_RD_LSU_WAIT)

continue;//last instruction is not finished yet

XIo_Out32(NEKO_MEM_ACK , 0);
XIo_Out32(NEKO_MEM_ACK , 1);

do {
data = XIo_In32(NEKO_MEM_OP);

} while(data != nextValue);

address = XIo_In32(NEKO_MEM_ADDR);

if(nextValue == MEM_RD_RDY_WAIT)
{

data = XIo_In32(address);
XIo_Out32(NEKO_MEM_WR_DATA , 0x012345678);
nextValue = MEM_RD_LSU_WAIT;

}
else
{

data = XIo_In32(NEKO_MEM_RD_DATA);
XIo_Out32(address , data);
nextValue = MEM_WR_LSU_WAIT;

}

XIo_Out32(NEKO_MEM_DONE , 0);
XIo_Out32(NEKO_MEM_DONE , 1);

do {
data = XIo_In32(NEKO_MEM_OP);

} while(data != 0 && data != nextValue && data != MEM_RD_ACK_WAIT
&& data != MEM_WR_ACK_WAIT);

}
}

if(succeeded){
// Retrieve the data in the scalar registers (results)
for(index = 0; index < num_data; index +=4)

87

C. Scalar Instruction Testing

{
XIo_Out32(NEKO_SGRP_ADDR , index);
inst_data[index]= XIo_In32(NEKO_SGRP_QUAD_0);
inst_data[index +1]= XIo_In32(NEKO_SGRP_QUAD_1);
inst_data[index +2]= XIo_In32(NEKO_SGRP_QUAD_2);
inst_data[index +3]= XIo_In32(NEKO_SGRP_QUAD_3);

}
}
//NEKO’s reset pulse
XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

return(succeeded);
}
int32_t analyze_sop2(int32_t opcode , int32_t s1, int32_t s0,

int32_t res ,int32_t scc){
// Checks the result of the operation (opcode) with operands s1 and s0 and

// results in res
//Some instructions write to the scc register

//TODO: Correctly implement 64bit functionality in opcodes: 15, 17, 21
int32_t correct = 0;
// Convertion of operands and result to unsigned int which is used by some

//of the operations
uint32_t u_s1 = (uint32_t)s1;
uint32_t u_s0 = (uint32_t)s0;
uint32_t u_res = (uint32_t)res;

// Result storage variables
int32_t ver_res;
uint32_t u_ver_res;

switch(opcode){
case 0:// s_add_u32

u_ver_res = u_s0 + u_s1;
if(u_res == u_ver_res)

correct = 1;
break;

case 1:// s_sub_u32
u_ver_res = u_s0 - u_s1;
if(u_res == u_ver_res)

correct = 1;
break;

case 2:// s_add_i32
ver_res = s0+s1;
if(ver_res ==res)

correct = 1;
break;

case 3:// s_sub_i32
ver_res = s0 -s1;
if(ver_res ==res)

correct = 1;
break;

case 7:// s_min_u32
ver_res = s0 < s1 ? s0 : s1;
if(ver_res ==res)

correct = 1;
break;

case 8:// s_max_i32

88

ver_res = s0 > s1 ? s0 : s1;
if(ver_res ==res)

correct = 1;
break;

case 9:// s_max_u32
u_ver_res = u_s0 > u_s1 ? u_s0 : u_s1;
if(u_ver_res == u_res)

correct = 1;
break;

case 10:
u_ver_res = (scc & 0x01) ? u_s0 : u_s1;
correct = (u_ver_res == u_res);
break;

case 14:// s_and_b32
case 15:// s_and_b64

if((s0 & s1) == res){
if(res !=0)

correct = scc == 1 ? 1 : 0;
else

correct = scc == 1 ? 0 : 1;
}
break;

case 16:// s_or_b32
case 17:// s_or_b64

if((s0 | s1) == res){
if(res !=0)

correct = scc == 1 ? 1 : 0;
else

correct = scc == 1 ? 0 : 1;
}
break;

case 21:// s_andn2_b64
if((s0 & ~s1) == res){

if(res !=0)
correct = scc == 1 ? 1 : 0;

else
correct = scc == 1 ? 0 : 1;

}
break;

case 30:// s_lshl_b32
u_ver_res = u_s0 << (u_s1 & 0x01f);
if(u_ver_res == u_res){

if(u_res !=0)
correct = scc == 1 ? 1 : 0;

else
correct = scc == 1 ? 0 : 1;

}
break;

case 32:// s_lshr_b32
u_ver_res = u_s0 >> (u_s1 & 0x01f);
if(u_ver_res == u_res){

if(u_res !=0)
correct = scc == 1 ? 1 : 0;

else
correct = scc == 1 ? 0 : 1;

}
break;

case 34:// s_ashr_i32
ver_res = s0 >> (s1 & 0x01f);
if(ver_res == res){

89

C. Scalar Instruction Testing

if(res !=0)
correct = scc == 1 ? 1 : 0;

else
correct = scc == 1 ? 0 : 1;

}
break;

case 38:// s_mul_i32
ver_res = s0 * s1 ;
if(ver_res == res)

correct = 1;
break;

default:
correct = -1;

}
return correct;

}

int32_t analyze_sopk(int32_t opcode , int16_t simm , int32_t s0,
int32_t res ,int32_t scc){

// Checks the result of the operation (opcode) with operands simm and
//s0(original register value) and results in res(final register value)

//Some instructions write to the scc register

int32_t correct = 0;
int32_t i_simm = (int32_t)simm;

switch(opcode){
case 0:// s_movk_i32

if(res == i_simm)
correct = 1;

break;
case 15:// s_addk_i32

if((s0 + i_simm) == res)
correct = 1;

break;
case 16:// s_mulk_i32

if((s0 * i_simm) == res)
correct = 1;

break;
default:

correct = -1;
}
return correct;

}
int32_t analyze_sop1(int32_t opcode , int32_t s[], int32_t res[],int32_t scc

){
// Checks the result of the operation (opcode) with operands s[] and

results
//in res[]

//Some instructions write to the scc register

//TODO: Correctly implement 64bit functionality in opcodes: 4, 8

int32_t correct = 0;
uint32_t u_ver_res;

switch(opcode){
case 3:// s_mov_b32
case 4:// s_mov_b64

if(res[0] == s[2])

90

correct = 1;
break;

case 5:
u_ver_res = (scc & 0x01) ? (uint32_t)s[2] : (uint32_t)s[0];
correct = (u_ver_res == (uint32_t)res [0]);
break;

case 7:// s_not_b32
case 8:// s_not_b64

if(~s[2] == res [0])
correct = 1;

break;
case 11:

correct = (reverse_bit_order(s[2]) == (uint32_t)res [0]);
break;

case 36:// s_and_saveexec_b64
//needs to read exec!
/* exec_lo = s2 (==1)
* exec_hi = s1 (==0)
* s_and_saveexec_b64 s0 , s2
* s2 = exec_lo
* s3 = exec_hi
* */

if(res[0] == s[2] && res[1] == s[1]){// res[0] = (exec_lo = s2)
// res[1] = (exec_hi = s1)

if(res[2] == (res [0] & s[2]) && res[3] == (res [1] & s[3])){
//res [2] = exec [31:0] & s2
//res [3] = exec [63:32]& s3

if(res [2]!=0 || res [3]!=0) //exec !=0 -> scc = 1
correct = scc == 1 ? 1 : 0;

else
correct = scc == 1 ? 0 : 1;

}
}
break;

default:
correct = -1;

}
return correct;

}
int32_t analyze_sopc(int32_t opcode , int32_t s1 , int32_t s0, int32_t scc){

// Checks the result(scc) of the comparison (opcode) with operands s1 and
s0

int32_t correct = 0;

// Conversion for the unsigned comparisons
uint32_t u_s0 = (uint32_t)s0;
uint32_t u_s1 = (uint32_t)s1;

switch(opcode){
case 0:// s_cmp_eq_i32

if((s0 == s1) == scc)
correct = 1;

break;
case 1:// s_cmp_lg_i32

if((s0 != s1) == scc)
correct = 1;

break;
case 2:// s_cmp_gt_i32

if((s0 > s1) == scc)

91

C. Scalar Instruction Testing

correct = 1;
break;

case 3:// s_cmp_ge_i32
if((s0 >= s1) == scc)

correct = 1;
break;

case 4:// s_cmp_lt_i32
if((s0 < s1) == scc)

correct = 1;
break;

case 5:// s_cmp_le_i32
if((s0 <= s1) == scc)

correct = 1;
break;

case 6:// s_cmp_eq_u32
if((u_s0 == u_s1) == scc)

correct = 1;
break;

case 7:// s_cmp_lg_u32
if((u_s0 != u_s1) == scc)

correct = 1;
break;

case 8:// s_cmp_gt_u32
if((u_s0 > u_s1) == scc)

correct = 1;
break;

case 9:// s_cmp_ge_u32
if((u_s0 >= u_s1) == scc)

correct = 1;
break;

case 10:// s_cmp_lt_u32
if((u_s0 < u_s1) == scc)

correct = 1;
break;

case 11:// s_cmp_le_u32
if((u_s0 <= u_s1) == scc)

correct = 1;
break;

default:
correct = -1;

}
return correct;

}
int32_t analyze_sopp(int32_t opcode , int32_t res , int32_t exec , int32_t scc

){
//Test if the branches were taken (jumps over s0 = 16)

//TODO: Correctly test opcodes 10 and 12

int32_t correct = 0;

switch(opcode){
case 0://s_nop

correct = (res == 17);
break;

case 1:// s_endpgm
correct = (res == 0);
break;

case 2:// s_branch
correct = (res == 1);

92

break;
case 4:// s_branch_scc0

if(scc == 0)
correct = (res == 1);

else
correct = (res == 17);

break;
case 5:// s_branch_scc1

if(scc == 1)
correct = (res == 1);

else
correct = (res == 17);

break;
case 6:// s_branch_vccz
case 7:// s_branch_vccnz

break;
case 8:// s_branch_execz

if(exec == 0)
correct = (res == 1);

else
correct = (res == 17);

break;
case 9:// s_branch_execnz

if(exec == 1)
correct = (res == 1);

else
correct = (res == 17);

break;
//TODO: not sure how to test these 2

case 10:// s_barrier
case 12:// s_waitcnt

correct = 1;
break;

default:
correct = -1;

}
return correct;

}
int32_t analyze_smrd(int32_t opcode , int32_t s[]){

//Tests if the right number of registers got the word "0 x12345678"

switch(opcode){
case 0:// S_LOAD_DWORD
case 8:// S_BUFFER_LOAD_DWORD

return (s[0] == 0x12345678);
break;

case 1:// S_LOAD_DWORDX2
case 9:// S_BUFFER_LOAD_DWORDX2

return (s[0] == 0x12345678 && s[1] == 0x12345678);
break;

case 2:// S_LOAD_DWORDX4
case 10:// S_BUFFER_LOAD_DWORDX4

return (s[0] == 0x12345678 && s[1] == 0x12345678 && s[2] == 0x12345678
&& s[3] == 0x12345678);

break;
case 3:// S_LOAD_DWORDX8
case 11:// S_BUFFER_LOAD_DWORDX8

return (s[0] == 0x12345678 && s[1] == 0x12345678 && s[2] == 0x12345678
&& s[3] == 0x12345678 && s[4] == 0x12345678
&& s[5] == 0x12345678 && s[6] == 0x12345678

93

C. Scalar Instruction Testing

&& s[7] == 0x12345678);
break;

case 4:// S_LOAD_DWORDX16
case 12:// S_BUFFER_LOAD_DWORDX16

return (s[0] == 0x12345678 && s[1] == 0x12345678 && s[2] == 0x12345678
&& s[3] == 0x12345678 && s[4] == 0x12345678 && s[5] == 0x12345678
&& s[6] == 0x12345678 && s[7] == 0x12345678 && s[8] == 0x12345678
&& s[9] == 0x12345678 && s[10] == 0x12345678 && s[11] == 0

x12345678
&& s[12] == 0x12345678 && s[13] == 0x12345678 && s[14] == 0

x12345678
&& s[15] == 0x12345678);

break;

default:
return 0;

}
}
int32_t test_sop2 (){

//Tests are done by issuing the following instructions and reading the
results

//s0 = s2 op s3 -> sop2 inst
//s1 = scc -> sop1 inst

int32_t insts [3];
insts [1] = create_sop1 (3, 1, 0xFD); //s1 = scc - sop1 inst
insts [2] = END_PRGRM;

int32_t inc_counter , data_counter , res , res_check , inst_data [12];
int32_t running_insts_counter = 0;

// Generates SOP2 instructions and verifies their state (running with/
without

// correct result or not running)
for(inc_counter = 0; inc_counter <45; inc_counter ++){

if(inc_counter ==12 || inc_counter == 13)
continue;

//Data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++)

inst_data[data_counter] = data_counter;

// Generate SOP2 Instruction
insts [0] = create_sop2(inc_counter , 0, 2, 3);

//Check running state
res = run_sop_program_neko(insts ,3,inst_data ,12 ,500);

if(res){//If the program finishes verifies the result
res_check = analyze_sop2(inc_counter , 2, 3, inst_data [0], inst_data

[1]);
if(res_check == 1){

xil_printf("SOP2:␣OPCODE␣%d␣OK\n\r",inc_counter);
running_insts_counter ++;

}
else if(res_check == 0)

xil_printf("SOP2:␣OPCODE␣%d␣Wrong␣Result\n\r",inc_counter);
else

xil_printf("SOP2:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);
}

94

else
xil_printf("SOP2:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);

}
return(running_insts_counter);

}
int32_t test_sopk (){

//Tests are done by issuing the following instructions and reading the
results

//s0 = op imm (=2) -> sopk inst
//s1 = scc -> sop1 inst

int32_t insts [3];
insts [1] = create_sop1 (3, 1, 0xFD); //s1 = scc -> sop1 inst
insts [2] = END_PRGRM;
int32_t inc_counter ,data_counter;
int32_t res , res_check , inst_data [12];
int32_t running_insts_counter = 0;

// Generates SOPK instructions and verifies their state (running with/
without

// correct result or not running)
for(inc_counter = 0; inc_counter <17; inc_counter ++){//Last 4 (17 -21)

if(inc_counter ==1) //are not implemented
continue;

//Data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++)

inst_data[data_counter] = data_counter +1;

// Generate SOPK Instruction
insts [0] = create_sopk(inc_counter , 0, 2);

//Check running state
res = run_sop_program_neko(insts ,3,inst_data ,12 ,500);

if(res){//If the program finishes verifies the result
res_check = analyze_sopk(inc_counter , 2, 1, inst_data [0], inst_data

[1]);
if(res_check == 1){

running_insts_counter ++;
xil_printf("SOPK:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(res_check == 0)

xil_printf("SOPK:␣OPCODE␣%d␣Wrong␣Result\n\r",inc_counter);
else

xil_printf("SOPK:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);
}
else

xil_printf("SOPK:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_sop1 (){

//Tests are done by issuing the following instructions and reading the
results

// exec_hi = s1 -> sop1 inst
// exec_lo = s2 -> sop1 inst
//s0 = op s2 -> sop1 inst
//s2 = exec_lo -> sop1 inst
//s3 = exec_hi -> sop1 inst

95

C. Scalar Instruction Testing

//s4 = scc -> sop1 inst

int32_t insts [7];
insts [0] = create_sop1 (3, 127 ,1);// exec_hi = s1 (==0)
insts [1] = create_sop1 (3, 126 ,2);// exec_lo = s2 (==1)
insts [3] = create_sop1 (3, 2,126);//s2 = exec_lo (==0)
insts [4] = create_sop1 (3, 3,127);//s3 = exec_hi (==0)
insts [5] = create_sop1 (3, 4, 0xFD); //s4 = scc -> sop1 inst
insts [6] = END_PRGRM;

int32_t inc_counter , data_counter , res , res_check , inst_data [12], ori_data
[12];

int32_t running_insts_counter = 0;

// Generates SOP1 instructions and verifies their state (running with/
without

// correct result or not running)
for(inc_counter = 3; inc_counter <54; inc_counter ++){

if(inc_counter == 35 || inc_counter == 51)
continue;

//Data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter -1;
ori_data[data_counter] = data_counter -1;

}

// Generate SOP1 Instruction
insts [2] = create_sop1(inc_counter , 0, 2);

//Check running state
res = run_sop_program_neko(insts ,7,inst_data ,12 ,500);

if(res){//If the program finishes verifies the result
res_check = analyze_sop1(inc_counter , ori_data , inst_data ,inst_data

[4]);
if(res_check == 1){

running_insts_counter ++;
xil_printf("SOP1:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(res_check == 0)

xil_printf("SOP1:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("SOP1:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);
}
else

xil_printf("SOP1:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_sopc (){

//Tests are done by issuing the following instructions and reading the
results

//scc = s2 comp s3 -> sopc inst
//s1 = scc -> sopc inst

int32_t insts [3];
insts [1] = create_sop1 (3, 1, 0xFD); //s1 = scc -> sop1 inst
insts [2] = END_PRGRM;

96

int32_t inc_counter , res , res_check , inst_data [12];
int32_t running_insts_counter = 0;

//Data for the scalar registers
for(inc_counter = 0; inc_counter <12; inc_counter ++)

inst_data[inc_counter] = inc_counter -1;

// Generates SOPC instructions and verifies their state (running with/
without

// correct result or not running)
for(inc_counter = 0; inc_counter <17; inc_counter ++){//Last 5 (12 -16)

// are not
implemented

// Generate SOPC Instruction
insts [0] = create_sopc(inc_counter , 2, 3);

//Check running state
res = run_sop_program_neko(insts ,3,inst_data ,12 ,500);

if(res){//If the program finishes verifies the result
res_check = analyze_sopc(inc_counter , 2, 3, inst_data [1]);

if(res_check == 1){
running_insts_counter ++;
xil_printf("SOPC:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(res_check == 0)

xil_printf("SOPC:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("SOPC:␣OPCODE␣%d␣No␣test␣available\n\r",
inc_counter);

}
else

xil_printf("SOPC:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_sopp (){

/*Tests are done by issuing the following instructions and reading the
results

* scc = s2 comp s3 == 1 -> sopc inst
* exec = 0x00000000 0x00000001 -> sop1 instructions
* vcc = ??? (not implemented yet)
* sopp instruction with imm=1
* s0 = 16 (may be jumped) -> sopk
* s0 = s0 + 1 -> sopk
*/

int32_t insts [7];
insts [0] = create_sopc (1, 2, 3);//set scc as 1->(scc=(s2 != s3) which is

true)

//set exec as 1
insts [1] = create_sop1 (3, 127 ,0);// exec_hi = s0 (==0)
insts [2] = create_sop1 (3, 126 ,1);// exec_lo = s1 (==1)

// branch testing instructions
insts [4] = create_sopk (0, 0, 16);//s0 = 16
insts [5] = create_sopk (15, 0, 1);//s0 = s0 +1

97

C. Scalar Instruction Testing

insts [6] = END_PRGRM;

int32_t inc_counter ,data_counter , res , res_check , inst_data [12];
int32_t running_insts_counter = 0;

for(inc_counter = 0; inc_counter <13; inc_counter ++){
////Last 10 are not implemented nor tested

if(inc_counter == 3 || inc_counter == 11)
continue;

//Data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++)

inst_data[data_counter] = data_counter;

// Generate sopp instruction
insts [3] = create_sopp(inc_counter , 1);

//Test if the instruction is running
res = run_sop_program_neko(insts ,7,inst_data ,12 ,500);

if(res){//If the instruction is running verifies the result
res_check = analyze_sopp(inc_counter , inst_data [0], 1, 1);

if(res_check == 1){
running_insts_counter ++;
xil_printf("SOPP:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(res_check == 0)

xil_printf("SOPP:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("SOPP:␣OPCODE␣%d␣No␣test␣available\n\r",
inc_counter);

}
else

xil_printf("SOPP:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_smrd (){

//Tests are done by issuing the following instructions and reading the
results

// exec_lo = 0xffffffff
// exec_hi = 0xffffffff
//s[0..] = mem_access (accesses can get 1,2,4,8,or 16 words from memory ,

which
//will be written contiguosly in the registers)

//s0 = memory access sbase = s4, imm = 0;

int32_t insts [4];

insts [0] = create_sop1 (3, 126, 0);//0xBEFE0302 ;// exec_lo = s0 = 0
xFFFFFFFF

insts [1] = create_sop1 (3, 127, 0);//0xBEFF0302 ;// exec_hi = s0 = 0
xFFFFFFFF

insts [3] = END_PRGRM;
int32_t inc_counter , data_counter;
int32_t res;
int32_t inst_data [16];
int32_t running_insts_counter = 0;

98

inc_counter = 0;
for(inc_counter = 0; inc_counter <13; inc_counter ++){//Last 2 (30 -31) are

not
// implemented

if(inc_counter >4 && inc_counter <8)
continue;

for(data_counter = 0; data_counter <16; data_counter ++){
inst_data[data_counter] = data_counter -1;
if(data_counter == 0)

inst_data[data_counter] = 0xffffffff;
}

insts [2] = create_smrd(inc_counter , 0, 2, 1, 0);

res = run_sop_program_neko(insts ,4,inst_data ,16 ,300000000);
if(res){

if(analyze_smrd(inc_counter , inst_data)){
running_insts_counter ++;
xil_printf("SMRD:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else

xil_printf("SMRD:␣OPCODE␣%d␣Wrong␣Result\n\r",inc_counter);
}
else

xil_printf("SMRD:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_scalar_inst_creation (){

// Verifies the instruction creation by comparing against manually
generated

// instructions

xil_printf("Instruction␣generation\n\r");
if(create_sop2 (2, 1, 4, 1) != 0x81010401){// s_add_i32 s1 , s1, s4 -

81010401
xil_printf("SOP2:␣Failed\n\r");
return 0;

}
else

xil_printf("SOP2:␣Ok\n\r");

if(create_sopk (15, 5, 2) != 0xB7850002){// s_addk_i32 s5 , 0x0002 -
B7850002
xil_printf("SOPK:␣Failed\n\r");
return 0;

}
else

xil_printf("SOPK:␣Ok\n\r");

if(create_sop1 (36, 2, 6) != 0xBE822406){// s_and_saveexec_b64 s[2:3] , s
[6:7]

// - BE822406
xil_printf("SOP1:␣Failed\n\r");
return 0;

}
else

99

C. Scalar Instruction Testing

xil_printf("SOP1:␣Ok\n\r");

if(create_sopc (11, 0, 4) != 0xBF0B0004){// s_cmp_le_u32 s4 , s0 - BF0B0004
xil_printf("SOPC:␣Failed\n\r");
return 0;

}
else

xil_printf("SOPC:␣Ok\n\r");

if(create_sopp (12, 1) != 0xBF8C0001){// s_waitcnt vmcnt (1) & lgkmcnt (0)
//& expcnt (0) -BF8C0001

xil_printf("SOPP:␣Failed\n\r");
return 0;

}
else

xil_printf("SOPP:␣Ok\n\r");

if(create_smrd (2, 0,6,1,2) != 0xC0800D02){// s_load_dwordx4 s[0:3], s
[12:13] , 2

xil_printf("SMRD:␣Failed\n\r");
return 0;

}
else

xil_printf("SMRD:␣Ok\n\r");

return 1;
}

void test_scalar_instructions (){
uint32_t total = 0, type_count = 0;
type_count = test_sop2 ();
total += type_count;
xil_printf("SOP2␣-␣%d␣instructions␣running\n\r",type_count);
type_count = test_sopk ();
total += type_count;
xil_printf("SOPK␣-␣%d␣instructions␣running\n\r",type_count);
type_count = test_sop1 ();
total += type_count;
xil_printf("SOP1␣-␣%d␣instructions␣running\n\r",type_count);
type_count = test_sopc ();
total += type_count;
xil_printf("SOPC␣-␣%d␣instructions␣running\n\r",type_count);
type_count = test_sopp ();
total += type_count;
xil_printf("SOPP␣-␣%d␣instructions␣running\n\r",type_count);
type_count = test_smrd ();
total += type_count;
xil_printf("SMRD␣-␣%d␣instructions␣running\n\r",type_count);
xil_printf("Total␣scalar␣instructions␣running:␣%d\n\r",total);

}
int main()
{

init_platform ();

XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

if(! test_scalar_inst_creation ())
return 1;

100

test_scalar_instructions ();

cleanup_platform ();
return 0;

}

101

C. Scalar Instruction Testing

102

D
Vector Instruction Testing

103

D. Vector Instruction Testing

#include <stdio.h>
#include <math.h>
#include "platform.h"
#include "xio.h"
#include "xparameters.h"

#define NEKO_CMD_ADDR XPAR_AXI_SLAVE_0_S00_AXI_BASEADDR
#define NEKO_BASE_LDS (NEKO_CMD_ADDR + 16)
#define NEKO_INSTR_ADDR (NEKO_CMD_ADDR + 28)
#define NEKO_INSTR_VALUE (NEKO_CMD_ADDR + 32)
#define NEKO_GPR_CMD (NEKO_CMD_ADDR + 40)
#define NEKO_SGRP_ADDR (NEKO_CMD_ADDR + 44)
#define NEKO_SGRP_QUAD_0 (NEKO_CMD_ADDR + 48)
#define NEKO_SGRP_QUAD_1 (NEKO_CMD_ADDR + 52)
#define NEKO_SGRP_QUAD_2 (NEKO_CMD_ADDR + 56)
#define NEKO_SGRP_QUAD_3 (NEKO_CMD_ADDR + 60)

#define NEKO_MEM_OP (NEKO_CMD_ADDR + 128)
#define NEKO_MEM_RD_DATA (NEKO_CMD_ADDR + 132) // Address for data to be

read
//from MIAOW and written to memory
#define NEKO_MEM_ADDR (NEKO_CMD_ADDR + 136)
#define NEKO_MEM_WR_DATA (NEKO_CMD_ADDR + 192)//Addr. for writing data to

MIAOW
#define NEKO_MEM_WR_EN (NEKO_CMD_ADDR + 196)
#define NEKO_MEM_ACK (NEKO_CMD_ADDR + 200)
#define NEKO_MEM_DONE (NEKO_CMD_ADDR + 204)

#define NEKO_CYCLE_COUNTER (NEKO_CMD_ADDR + 192)

#define NEKO_RESET (NEKO_CMD_ADDR + 36)

#define MEM_WR_ACK_WAIT 1
#define MEM_WR_RDY_WAIT 2
#define MEM_WR_LSU_WAIT 3
#define MEM_RD_ACK_WAIT 4
#define MEM_RD_RDY_WAIT 5
#define MEM_RD_LSU_WAIT 6
#define VGPR_DATA (NEKO_CMD_ADDR + 0x0D4)
#define VGPR_ADDR (NEKO_CMD_ADDR + 0x0D0)
#define VGPR_WR_CMD (NEKO_CMD_ADDR + 0x01D4)
#define VGPR_WR_CLEAN (NEKO_CMD_ADDR + 0x01D8)
#define VGPR_WR_MASK_LO (NEKO_CMD_ADDR + 0x01DC)
#define VGPR_WR_MASK_HI (NEKO_CMD_ADDR + 0x01E0)

#define END_PRGRM 0xBF810000
union ufloat{

float f;
uint32_t u;

};
union ufloat64{

double f;
uint64_t u;

};

int32_t create_sop1(int32_t op, int32_t sdst , int32_t s0){
/* SOP1 instruction format:
* MSB -> LSB
* | ENC (9) = 9’b101111101 | SDST (7) | OP(8) | SSRC0 (8) |
*/

104

int32_t inst = 0xBE800000;
op = op << 8;
sdst = sdst << 16;
inst = inst | sdst | op | s0;
return(inst);

}
int32_t create_vop2(int32_t op, int32_t vdst , int32_t vsrc1 , int32_t src0){

/* VOP2 instruction format:
* MSB -> LSB
* | ENC (1) = 1’b0 | OP(6) | VDST (8) | VSRC1 (8) | SRC0 (9) |
*/

int32_t inst = 0x00000000;
op = op << 25;
vdst = vdst << 17;
vsrc1 = vsrc1 << 9;
inst = inst | op | vdst | vsrc1 | src0;
return(inst);

}
int32_t create_vop1(int32_t op, int32_t vdst , int32_t src0){

/* VOP1 instruction format:
* MSB -> LSB
* | ENC (7) = 7’b0111111 | VDST (8) | OP(8) | SRC0 (9) |
*/

int32_t inst = 0x7E000000;
op = op << 9;
vdst = vdst << 17;
inst = inst | op | vdst | src0;
return(inst);

}
int32_t create_vopc(int32_t op_base ,int32_t op_offset ,

int32_t vsrc1 , int32_t src0){
/* VOPC instruction format:
* MSB -> LSB
* | ENC (7) = 7’b0111110 | OP_Base + OP_Offset (8) | VSRC1 (8) | SRC0 (9) |
*/

int32_t inst = 0x7C000000;
int32_t op = (op_base + op_offset) << 17;
vsrc1 = vsrc1 << 9;
inst = inst | op | vsrc1 | src0;
return(inst);

}
void create_vop3a(int32_t op, int32_t op_offset , int32_t vdst ,int32_t src2 ,

int32_t src1 , int32_t src0 ,int32_t abs , int32_t clamp ,
int32_t omod , int32_t neg , int32_t *inst){

/* VOP3a instruction format:
* MSB -> LSB
* | NEG (3) | OMOD (2) | SRC2 (9) | SRC1 (9) | SRC0 (9) |
* | ENC (6) = 6’b110100 | OP(9) | RESERVED (1) | CLAMP (1) | ABS(3) | VDST

(8) |
*/

inst [0] = 0xD0000000;
op = (op + op_offset) << 17;
clamp = clamp << 11;
abs = abs << 8;
inst [0] = inst [0] | vdst | abs | clamp | op;

inst [1] = 0x00000000;
src1 = src1 << 9;
src2 = src2 << 18;
omod = omod << 27;

105

D. Vector Instruction Testing

neg = neg << 29;
inst [1] = inst [1] | neg | omod | src2 | src1 | src0;

}
void create_vop3b(int32_t op , int32_t sdst , int32_t vdst ,int32_t src2 ,

int32_t src1 , int32_t src0 , int32_t omod , int32_t neg ,
int32_t *inst){

/* VOP3b instruction format:
* MSB -> LSB
* | NEG (3) | OMOD (2) | SRC2 (9) | SRC1 (9) | SRC0 (9) |
* | ENC (6) = 6’b110100 | OP(9) | RESERVED (2) | SDST (7) | VDST (8) |
*/

inst [0] = 0xD0000000;
op = op << 17;

sdst = sdst << 8;
inst [0] = inst [0] | sdst | vdst | op;

inst [1] = 0x00000000;
src1 = src1 << 9;
src2 = src2 << 18;
omod = omod << 27;
neg = neg << 29;
inst [1] = inst [1] | neg | omod | src2 | src1 | src0;

}

int32_t run_vop_program_neko(int32_t insts[],int32_t num_insts ,
int32_t inst_scalar_data [], int32_t

num_scalar_data
,int32_t inst_vect_data [], int32_t

num_vect_data ,
int32_t max_clocks){

/*
* Execution Flow:
* Resets Neko
* Populates NEKO’s instruction buffer , the scalar registers and the

vector
* registers (all 64 words of a register are initialized with the same

value)
* Send "start execution" command and waits for program completion or

until
* the timeout is reached
* If the program reaches the end of execution before the timeout the

data in
* the registers is read and success (1) is returned
* Otherwise returns 0 (unsuccessful)
*/

int32_t index , cycle_counter = 0, succeeded = 1;
int32_t vgpr , vgpr_word;
int32_t * vgpr_data_pointer = (int32_t *) VGPR_DATA;

//NEKO’s reset pulse
XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

XIo_Out32(NEKO_BASE_LDS , XPAR_MIG_7SERIES_0_BASEADDR);

//Load scalar registers with data
for(index = 0; index < num_scalar_data; index +=4){

XIo_Out32(NEKO_SGRP_ADDR , index);
XIo_Out32(NEKO_SGRP_QUAD_0 , inst_scalar_data[index]);

106

XIo_Out32(NEKO_SGRP_QUAD_1 , inst_scalar_data[index +1]);
XIo_Out32(NEKO_SGRP_QUAD_2 , inst_scalar_data[index +2]);
XIo_Out32(NEKO_SGRP_QUAD_3 , inst_scalar_data[index +3]);
XIo_Out32(NEKO_GPR_CMD , 1);

}

//Load vector registers with data (replicating the data for every word of
//the register)

for(vgpr =0;vgpr <num_vect_data;vgpr ++){
XIo_Out32(VGPR_ADDR , vgpr);
XIo_Out32(VGPR_WR_CLEAN , 1);
XIo_Out32(VGPR_WR_CMD , 1);
for(vgpr_word =0; vgpr_word <64; vgpr_word ++){

vgpr_data_pointer[vgpr_word] = inst_vect_data[vgpr];
}
XIo_Out32(VGPR_WR_CMD , 1);

}

//Load the instruction buffer
for(index = 0; index < num_insts; index ++){

XIo_Out32(NEKO_INSTR_ADDR , index);
XIo_Out32(NEKO_INSTR_VALUE , insts[index]);

}

//Start execution
XIo_Out32(NEKO_CMD_ADDR , 1);

//Wait for the end of execution
while(XIo_In32(NEKO_CMD_ADDR) != 1){

// Verify the timeout
cycle_counter = XIo_In32(NEKO_CYCLE_COUNTER);
if(cycle_counter >max_clocks){

succeeded =0;
break;

}
}

//NEKO’s reset pulse
XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

if(succeeded){
// Retrieve the data in the scalar registers (results)
for(index = 0; index < num_scalar_data; index +=4){

XIo_Out32(NEKO_SGRP_ADDR , index);
inst_scalar_data[index]= XIo_In32(NEKO_SGRP_QUAD_0);
inst_scalar_data[index +1]= XIo_In32(NEKO_SGRP_QUAD_1);
inst_scalar_data[index +2]= XIo_In32(NEKO_SGRP_QUAD_2);
inst_scalar_data[index +3]= XIo_In32(NEKO_SGRP_QUAD_3);

}

// Retrieve the data in the vector registers (results)
for(vgpr =0;vgpr <num_vect_data;vgpr ++){

XIo_Out32(VGPR_ADDR , vgpr);
inst_vect_data[vgpr] = vgpr_data_pointer [0];

}
}
return(succeeded);

107

D. Vector Instruction Testing

}

int32_t test_vector_inst_creation (){
// Verifies the instruction creation by comparing against manually

generated
// instructions

xil_printf("Instruction␣generation\n\r");
if(create_vop2 (37, 3, 2, 5) != 0x4A060405){// v_add_i32 v3 , vcc , s5,v2 -4

A060405
xil_printf("VOP2:␣Failed\n\r");
return 0;

}
else

xil_printf("VOP2:␣Ok\n\r");

if(create_vop1 (1, 5, 0x106) != 0x7E0A0306){// v_mov_b32 v5 , v6 - 7E0A0306
xil_printf("VOP1:␣Failed\n\r");
return 0;

}
else

xil_printf("VOP1:␣Ok\n\r");

if(create_vopc (0x80 ,4, 2, 0x102) != 0x7D080502){// v_cmp_gt_i32 vcc , v2,
v2

xil_printf("VOPC:␣Failed\n\r");
return 0;

}
else

xil_printf("VOPC:␣Ok\n\r");

int32_t inst_3a [2];
create_vop3a (362, 0, 5,0x108 , 3,0x102 ,0, 0, 0, 0, inst_3a);
// v_mul_hi_u32 v5, v2, s3 - D2D40005 04200702
if(inst_3a [0] != 0xD2D40005 || inst_3a [1] != 0x04200702){

xil_printf("VOP3a:␣Failed\n\r");
return 0;

}
else

xil_printf("VOP3a:␣Ok\n\r");

int32_t inst_3b [2];
create_vop3b (293, 1, 2,0, 0x100 , 0x101 , 0, 0, inst_3b);
//v_add v2 , v0 , v1 ; s1 = carry_out
if(inst_3b [0] != 0xD24A0102 || inst_3b [1] != 0x00020101){

xil_printf("VOP3b:␣Failed\n\r");
return 0;

}
else

xil_printf("VOP3b:␣Ok\n\r");

return 1;
}

int32_t analyze_vop2(int32_t opcode , int32_t s1, int32_t s0, int32_t d,
int32_t res ,int32_t vcc_lo , int32_t vcc_hi){

/* Checks the first result of the operation (opcode) with vector operands
s1

* and s0 and results in res
*

108

* Some instructions write to the vcc register , and some use the extra
value

* ’d’ (which can be the initial value of the register or some constant)
*
* TODO: IMPLEMENT COMPLETE VECTOR VERIFICATION (for all 64 words)
*
* IMPORTANT: This function assumes that the exec mask is all ones
* (EXEC_hi = EXEC_lo = 0xFFFFFFFF)
*
*/

int32_t correct = 0;
// Convertion of operands and result to unsigned int and float formats

which
//are used by some of the operations

uint32_t u_s1=(uint32_t)s1 ,
u_s0=(uint32_t)s0 ,
u_res=(uint32_t)res;

union ufloat f_s1 , f_s0 , f_res , f_d , f_aux;
f_s1.u=s1, f_s0.u=s0, f_res.u=res , f_d.u = d;

xil_printf("s1=%08x\n\rs0 =%08x\n\rres =%08x\n\r",f_s1.u,f_s0.u,f_res.u);
switch(opcode){
case 0:// v_cndmask_b32

correct = (vcc_lo & 0x01) ? (u_res == u_s1) : (u_res == u_s0);

/*if((vcc_lo & 0x01)!=0){
correct = (u_res == u_s1);

}
else{

correct = (u_res == u_s0);
}*/

break;
case 3:// v_add_f32

f_aux.f = f_s1.f+f_s0.f;
correct = (f_res.u==f_aux.u);
break;

case 4:// v_sub_f32
correct = (f_res.f==(f_s0.f-f_s1.f));
break;

case 5:// v_subrev_f32
correct = (f_res.f==(f_s1.f-f_s0.f));
break;

case 8:// v_mul_f32
correct = (f_res.f==(f_s0.f*f_s1.f));
break;

case 9:// v_mul_i32_i24
//only the 24 lsb’s are multiplied
correct = (res==(s0&0 x00FFFFFF)*(s1&0 x00FFFFFF));
break;

case 15:// v_min_f32
correct = (f_res.f == (f_s0.f < f_s1.f ? f_s0.f : f_s1.f));
break;

case 16:// v_max_f32
correct = (f_res.f == (f_s0.f > f_s1.f ? f_s0.f : f_s1.f));
break;

case 18:// v_max_i32
correct = (res == (s0 > s1 ? s0 : s1));

109

D. Vector Instruction Testing

break;
case 19:// v_min_u32

correct = (u_res == (u_s0 < u_s1 ? u_s0 : u_s1));
break;

case 20:// v_max_u32
correct = (u_res == (u_s0 > u_s1 ? u_s0 : u_s1));
break;

case 22://s1.u >> s0 [4:0] v_lshrrev_b32
correct = (u_res == (u_s1 >> (u_s0 & 0x0F)));
break;

case 24://s1.i >> s0 [4:0] v_ashrrev_i32
correct = (res == (s1 >> (s0 & 0x0F)));
break;

case 26://s1.i << s0 [4:0] v_lshlrev_b32
correct = (u_res == (u_s1 << (u_s0 & 0x0F)));
break;

case 27:// v_and_b32
correct = (u_res == (u_s1 & u_s0));
break;

case 28:// v_or_b32
correct = (u_res == (u_s1 | u_s0));
break;

case 31:// v_mac_f32 D = S0*S1+D
correct = (f_res.f == (f_s0.f*f_s1.f+f_d.f));
break;

case 32:// v_madmk_f32 D = S0*constant+S1
correct = (f_res.f == (f_s0.f*f_d.f+f_s1.f));
break;

case 37:// v_add_i32
correct = (u_res == (u_s1 + u_s0));
break;

case 38:// v_sub_i32
correct = (u_res == (u_s0 - u_s1));
break;

case 39:// v_subrev_i32
correct = (u_res == (u_s1 - u_s0));
break;

case 40:// v_addc_u32 d = s0 + s1 + vcc
correct = (u_res == (u_s1 + u_s0 + vcc_lo));
break;

default:
correct = -1;

}
return correct;

}
int32_t analyze_vop1(int32_t opcode , int32_t s0, int32_t res ,int32_t vcc_lo

,
int32_t vcc_hi){

/* Checks the first result of the operation (opcode) with vector operand
s0

* and results in res
*
* Some instructions write to the vcc register
*
* IMPORTANT: This function assumes that the exec mask is all ones
* (EXEC_hi = EXEC_lo = 0xFFFFFFFF)
*
*/

/*

110

* TODO:
* IMPLEMENT COMPLETE VECTOR VERIFICATION (for all 64 words)
* conversions
* op 35 -> round nearest integer (right now only checks if is equal to 2
* (since we give 1.5f as our s0))
* op 37/53/54 -> pow/sin/cos busts the memory instruction available ,

need to
* check result in a better way
*
*
*/

int32_t correct = 0;

// Convertion of operands and result to unsigned int and to float formats
which

// are used by some of the operations
uint32_t u_s0=(uint32_t)s0 ,

u_res=(uint32_t)res;

union ufloat f_s0 , f_res;
f_s0.u=s0, f_res.u=res;

switch(opcode){
case 1:// v_mov_b32

correct = (u_res == u_s0);
break;

case 5:// v_cvt_f32_i32
correct = (f_res.f == (float)s0);

case 6:// v_cvt_f32_u32
correct = (f_res.f == (float)u_s0);

case 7:// v_cvt_u32_f32
correct = (u_res == (uint32_t)f_s0.f);

case 8:// v_cvt_i32_f32
correct = (res == (int32_t)f_s0.f);

case 32:// v_fract_f32
correct = (f_res.f == (f_s0.f-floor(f_s0.f)));
break;

case 33:// v_trunc_f32
correct = (f_res.f == floor(f_s0.f));
break;

case 34:// v_ceil_f32
correct = (f_res.f == ceil(f_s0.f));
break;

case 35:// v_rndne_f32
correct = (f_res.f == 2.0f);
break;

case 36:// v_floor_f32
correct = (f_res.f == floor(f_s0.f));
break;

case 37:// v_exp_f32
correct = (f_res.u == 0x403504f3);//pow (2.0f,f_s0.f))
break;

case 38:// v_log_clamp_f32
case 39:// v_log_f32

correct = (f_res.f == log2(f_s0.f));
break;

case 40:// v_rcp_clamp_f32
case 42:// v_rcp_f32

correct = (f_res.f == (1.0f/f_s0.f));

111

D. Vector Instruction Testing

break;
case 44:// v_rsq_clamp_f32
case 46:// v_rsq_f32

correct = (f_res.f == (1.0f/sqrt(f_s0.f)));
break;

case 51:// v_sqrt_f32
correct = (f_res.f == sqrt(f_s0.f));
break;

case 53:// v_sin_f32
correct = (f_res.f == 0x3f7f5bd5);//sin(f_s0.f))
break;

case 54:// v_cos_f32
correct = (f_res.f == 0x3d90deab);//cos(f_s0.f))
break;

default:
correct = -1;

}
return correct;

}
int32_t analyze_vopc(int32_t opcode , int32_t s0, int32_t s1,int32_t vcc_lo ,

int32_t vcc_hi){
/* Checks the first result of the comparison with vector operands s1 and

s0
* and results in the vcc register
* returns 1 if the result is correct; 0 if incorrect and -1 if there isn

’t a
* test available
*
* TODO: IMPLEMENT COMPLETE VECTOR VERIFICATION (for all 64 words)
*
* IMPORTANT: This function assumes that the exec mask is all ones
* (EXEC_hi = EXEC_lo = 0xFFFFFFFF)
*/

int32_t correct = 0;
// Convertion of operands and result to unsigned int and to float formats

which
// are used by some of the operations

uint32_t u_s1=(uint32_t)s1 ,
u_s0=(uint32_t)s0;

union ufloat f_s1 , f_s0;
f_s1.u=s1, f_s0.u=s0;

switch(opcode){
case 0:// v_cmp_F_f32
case 0x10:// v_cmpx_F_f32
case 0x40:// v_cmps_F_f32
case 0x50:// v_cmpsx_F_f32

correct = (vcc_lo == 0 && vcc_hi == 0);
break;

case 1:// v_cmp_LT_f32
case 0x11:// v_cmpx_LT_f32
case 0x41:// v_cmps_LT_f32
case 0x51:// v_cmpsx_LT_f32

correct = ((vcc_lo & 0x01) == (f_s0.f < f_s1.f));
break;

case 2:// v_cmp_EQ_f32
case 0x12:// v_cmpx_EQ_f32
case 0x42:// v_cmps_EQ_f32
case 0x52:// v_cmpsx_EQ_f32

112

correct = ((vcc_lo & 0x01) == (f_s0.f == f_s1.f));
break;

case 3:// v_cmp_LE_f32
case 0x13:// v_cmpx_LE_f32
case 0x43:// v_cmps_LE_f32
case 0x53:// v_cmpsx_LE_f32

correct = ((vcc_lo & 0x01) == (f_s0.f <= f_s1.f));
break;

case 4:// v_cmp_GT_f32
case 0x14:// v_cmpx_GT_f32
case 0x44:// v_cmps_GT_f32
case 0x54:// v_cmpsx_GT_f32

correct = ((vcc_lo & 0x01) == (f_s0.f > f_s1.f));
break;

case 5:// v_cmp_LG_f32
case 0x15:// v_cmpx_LG_f32
case 0x45:// v_cmps_LG_f32
case 0x55:// v_cmpsx_LG_f32

correct = ((vcc_lo & 0x01) == (f_s0.f != f_s1.f));
break;

case 6:// v_cmp_GE_f32
case 0x16:// v_cmpx_GE_f32
case 0x46:// v_cmps_GE_f32
case 0x56:// v_cmpsx_GE_f32

correct = ((vcc_lo & 0x01) == (f_s0.f >= f_s1.f));
break;

case 7:// v_cmp_O_f32
case 0x17:// v_cmpx_O_f32
case 0x47:// v_cmps_O_f32
case 0x57:// v_cmpsx_O_f32

// float32 NaN -> Exponent = all ones (8bits) (infinity)
// Mantissa = at least one bit different than 0
if(!(((f_s0.u & 0x7f800000) == 0x7f800000) && ((f_s0.u & 0x007fffff)

!=0))
//!(s0 is nan)
&&

!(((f_s1.u & 0x7f800000) == 0x7f800000) && ((f_s1.u & 0x007fffff)
!=0))

//!(s1 is nan)
){

correct = ((vcc_lo & 0x01) == 1) ? 1 : 0;
}
else

correct = ((vcc_lo & 0x01) == 0) ? 1 : 0;
break;

case 8:// v_cmp_U_f32
case 0x18:// v_cmpx_U_f32
case 0x48:// v_cmps_U_f32
case 0x58:// v_cmpsx_U_f32

if(!(((f_s0.u & 0x7f800000) == 0x7f800000) && (f_s0.u & ~0 x007fffff))
//!(s0 is nan)
||
!(((f_s1.u & 0x7f800000) == 0x7f800000) && (f_s1.u & ~0 x007fffff))
//!(s1 is nan)

)
correct = ((vcc_lo & 0x01) == 1) ? 1 : 0;

else
correct = ((vcc_lo & 0x01) == 0) ? 1 : 0;

break;
case 9:// v_cmp_NGE_f32

113

D. Vector Instruction Testing

case 0x19:// v_cmpx_NGE_f32
case 0x49:// v_cmps_NGE_f32
case 0x59:// v_cmpsx_NGE_f32

correct = ((vcc_lo & 0x01) == !(f_s0.f >= f_s1.f));
break;

case 10:// v_cmp_NLG_f32
case 0x1A:// v_cmpx_NLG_f32
case 0x4A:// v_cmps_NLG_f32
case 0x5A:// v_cmpsx_NLG_f32

correct = ((vcc_lo & 0x01) == !(f_s0.f != f_s1.f));
break;

case 11:// v_cmp_NGT_f32
case 0x1B:// v_cmpx_NGT_f32
case 0x4B:// v_cmps_NGT_f32
case 0x5B:// v_cmpsx_NGT_f32

correct = ((vcc_lo & 0x01) == !(f_s0.f > f_s1.f));
break;

case 12:// v_cmp_NLE_f32
case 0x1C:// v_cmpx_NLE_f32
case 0x4C:// v_cmps_NLE_f32
case 0x5C:// v_cmpsx_NLE_f32

correct = ((vcc_lo & 0x01) == !(f_s0.f <= f_s1.f));
break;

case 13:// v_cmp_NEQ_f32
case 0x1D:// v_cmpx_NEQ_f32
case 0x4D:// v_cmps_NEQ_f32
case 0x5D:// v_cmpsx_NEQ_f32

correct = ((vcc_lo & 0x01) == !(f_s0.f == f_s1.f));
break;

case 14:// v_cmp_NLT_f32
case 0x1E:// v_cmpx_NLT_f32
case 0x4E:// v_cmps_NLT_f32
case 0x5E:// v_cmpsx_NLT_f32

correct = ((vcc_lo & 0x01) == !(f_s0.f < f_s1.f));
break;

case 15:// v_cmp_TRU_f32
case 0x1F:// v_cmpx_TRU_f32
case 0x4F:// v_cmps_TRU_f32
case 0x5F:// v_cmpsx_TRU_f32

correct = (vcc_lo == 0xFFFFFFFF && vcc_hi == 0xFFFFFFFF);
break;

case 0x80:// v_cmp_F_i32
correct = (vcc_lo == 0 && vcc_hi == 0);
break;

case 0x81:// v_cmp_LT_i32
correct = ((vcc_lo & 0x01) == (s0 < s1));
break;

case 0x82:// v_cmp_EQ_i32
correct = ((vcc_lo & 0x01) == (s0 == s1));
break;

case 0x83:// v_cmp_LE_i32
correct = ((vcc_lo & 0x01) == (s0 <= s1));
break;

case 0x84:// v_cmp_GT_i32
correct = ((vcc_lo & 0x01) == (s0 > s1));
break;

case 0x85:// v_cmp_LG_i32
correct = ((vcc_lo & 0x01) == (s0 != s1));
break;

114

case 0x86:// v_cmp_GE_i32
correct = ((vcc_lo & 0x01) == (s0 >= s1));
break;

case 0x87:// v_cmp_TRU_i32
correct = (vcc_lo == 0xFFFFFFFF && vcc_hi == 0xFFFFFFFF);
break;

case 0xC0:// v_cmp_F_u32
correct = (vcc_lo == 0 && vcc_hi == 0);
break;

case 0xC1:// v_cmp_LT_u32
correct = ((vcc_lo & 0x01) == (u_s0 < u_s1));
break;

case 0xC2:// v_cmp_EQ_u32
correct = ((vcc_lo & 0x01) == (u_s0 == u_s1));
break;

case 0xC3:// v_cmp_LE_u32
correct = ((vcc_lo & 0x01) == (u_s0 <= u_s1));
break;

case 0xC4:// v_cmp_GT_u32
correct = ((vcc_lo & 0x01) == (u_s0 > u_s1));
break;

case 0xC5:// v_cmp_LG_u32
correct = ((vcc_lo & 0x01) == (u_s0 != u_s1));
break;

case 0xC6:// v_cmp_GE_u32
correct = ((vcc_lo & 0x01) == (u_s0 >= u_s1));
break;

case 0xC7:// v_cmp_TRU_u32
correct = (vcc_lo == 0xFFFFFFFF && vcc_hi == 0xFFFFFFFF);
break;

default:
correct = -1;

}
return correct;

}
int32_t analyze_vop3a(int32_t opcode , int32_t s2 , int32_t s1, int32_t s0,

int32_t d, int32_t res ,int32_t vcc_lo , int32_t vcc_hi
){

/* Checks the first result of the operation with vector operands s1 and
s0

* (and , in some cases s2) and results in res
*
* TODO: IMPLEMENT COMPLETE VECTOR VERIFICATION (for all 64 words)
* 64bit instructions - opcodes: 332 ,356 ,357 ,358 ,359
*
* IMPORTANT: This function assumes that the exec mask is all ones
* (EXEC_hi = EXEC_lo = 0xFFFFFFFF)
*/

int32_t correct = 0;

// Convertion of operands and result to unsigned int , float and unsigned
int

//64bit formats which are used by some of the operations
uint32_t u_s2=(uint32_t)s2 ,

u_s1=(uint32_t)s1 ,
u_s0=(uint32_t)s0 ,

u_res=(uint32_t)res;

115

D. Vector Instruction Testing

union ufloat f_s2 ,f_s1 , f_s0 , f_res , f_aux;
f_s2.u=s2,f_s1.u=s1 , f_s0.u=s0 , f_res.u=res;

uint64_t u64_s1 = (uint64_t)s1,
u64_s0 = (uint64_t)s0;

switch(opcode){
case 321:// v_mad_f32 s0*s1+s2

correct = (f_res.f == (f_s0.f*f_s1.f+f_s2.f));
break;

case 328:// v_bfe_u32 (s0 >>s1 [4:0]) & ((1<<s2 [4:0]) -1)
correct = (u_res == ((u_s0 >> (u_s1 & 0x0f)) & ((1<<(u_s2 & 0x0f)) -1)))

;
break;

case 329:// v_bfe_i32
correct = (res == ((s0 >> (s1 & 0x0f)) & ((1<<(s2 & 0x0f)) -1)));
break;

case 330:// v_bfi_b32 (s0 & s1) | (~s0 & s2)
correct = (u_res == ((u_s0 & u_s1) | (~u_s0 & u_s2)));
break;

case 331:// v_fma_f32 s0*s1+s2
correct = (f_res.f == (f_s0.f*f_s1.f+f_s2.f));
break;

case 337:// v_min3_f32
f_aux.f = f_s0.f < f_s1.f ? f_s0.f : f_s1.f;
correct = (f_res.f == (f_aux.f < f_s2.f ? f_aux.f : f_s2.f));
break;

case 340:// v_max3_f32
f_aux.f = f_s0.f > f_s1.f ? f_s0.f : f_s1.f;
correct = (f_res.f == (f_aux.f > f_s2.f ? f_aux.f : f_s2.f));
break;

case 343:// v_med3_f32
//med -> a, b, c -- b>=a && b=<c
if(f_s0.f >= f_s1.f){

if(f_s1.f >= f_s2.f)
correct = (f_res.f == f_s1.f);

else if(f_s0.f >= f_s2.f)
correct = (f_res.f == f_s2.f);

else
correct = (f_res.f == f_s0.f);

}
else{

if(f_s0.f >= f_s2.f)
correct = (f_res.f == f_s0.f);

else if(f_s1.f >= f_s2.f)
correct = (f_res.f == f_s2.f);

else
correct = (f_res.f == f_s1.f);

}
break;

case 361:// v_mul_lo_u32
correct = (u_res == u_s0 * u_s1);
break;

case 362:// v_mul_hi_u32
correct = (u_res == (uint32_t)((u64_s0 * u64_s1) >>32));
break;

case 363:// v_mul_lo_i32
correct = (res == s0 * s1);
break;

default:

116

correct = -1;
}
return correct;

}

int32_t test_vop2 (){
/*Tests are done by issuing the following instructions and reading the

results
* exec_lo = s2
* exec_hi = s2
* s0 = vcc_lo
* s1 = vcc_hi
* v0 = v2 op v3
* s3 = vcc_hi (this instruction can be replaced by constant when needed)
* s2 = vcc_lo
* s3 = vcc_hi
*/

int32_t insts [9];

insts [0] = 0xBEFE0302;// exec_lo = s2 = 0xFFFFFFFF
insts [1] = 0xBEFF0302;// exec_hi = s2 = 0xFFFFFFFF
insts [2] = create_sop1 (3, 0, 106); //s0 = vcc_lo -> sop1 inst
insts [3] = create_sop1 (3, 1, 107); //s1 = vcc_hi -> sop1 inst

insts [5] = create_sop1 (3, 3, 107); // Repeated instruction is a place
holder

//for a constant
insts [6] = create_sop1 (3, 2, 106); //s2 = vcc_lo -> sop1 inst
insts [7] = create_sop1 (3, 3, 107); //s3 = vcc_hi -> sop1 inst
insts [8] = END_PRGRM;

int32_t inc_counter , data_counter , vect_data_counter;
int32_t res , check_res;
int32_t inst_data [12], inst_vect_data [10];//,ori_vect_data [10][64];
int32_t running_insts_counter = 0;

for(inc_counter = 0; inc_counter <49; inc_counter ++){
// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter;
if(data_counter == 2)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers (which will be replicated for

all
//64 words of the register)

for(vect_data_counter = 0; vect_data_counter <10; vect_data_counter ++){
inst_vect_data[vect_data_counter] = vect_data_counter;

}

// Generate the VOP2 instruction to be tested
insts [4] = create_vop2(inc_counter , 0, 3, 0x102);

//Set the constant for the op’s that need it (v_madmk_f32 and
v_madak_f32)

if(inc_counter == 32 || inc_counter == 33){
insts [5] = 0x0;

}
else

insts [5] = create_sop1 (3, 3, 107);

117

D. Vector Instruction Testing

//Test the instruction
res = run_vop_program_neko(insts ,9, inst_data , 12,inst_vect_data ,

10 ,15000);

if(res){
//If the program completed then the result is tested
check_res = analyze_vop2(inc_counter , 3,2,0, inst_vect_data [0],

inst_data [0], inst_data [1]);
if(check_res == 1){

xil_printf("VOP2:␣OPCODE␣%d␣OK\n\r",inc_counter);
running_insts_counter ++;

}
else if(check_res == 0)

xil_printf("VOP2:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("VOP2:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);
}
else

xil_printf("VOP2:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_vop1 (){

/*Tests are done by issuing the following instructions and reading the
results

* exec_lo = s2
* exec_hi = s2
* v0 = op v4
* s0 = vcc_lo
* s1 = vcc_hi
*/

int32_t insts [6];

insts [0] = 0xBEFE0302;// exec_lo = s2 = 0xFFFFFFFF
insts [1] = 0xBEFF0302;// exec_hi = s2 = 0xFFFFFFFF

insts [3] = create_sop1 (3, 0, 106); //s0 = vcc_lo -> sop1 inst
insts [4] = create_sop1 (3, 1, 107); //s1 = vcc_hi -> sop1 inst
insts [5] = END_PRGRM;

int32_t inc_counter , data_counter , running_insts_counter = 0;
int32_t res , check_res;
int32_t inst_data [12], inst_vect_data [10];

for(inc_counter = 0; inc_counter <68; inc_counter ++){
if(inc_counter >= 23 && inc_counter <= 31)// reserved values

continue;

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter;
if(data_counter == 2)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers (which will be replicated for

all
//64 words of the register)

for(data_counter = 0; data_counter <10; data_counter ++){

118

inst_vect_data[data_counter] = data_counter;
if(data_counter == 4)

inst_vect_data[data_counter] = 0x3fc00000;//v[4] = 1.5f
}

// Generate the VOP1 instruction to be tested
insts [2] = create_vop1(inc_counter , 0, 0x104);

//Test the instruction
res = run_vop_program_neko(insts ,6, inst_data , 12,inst_vect_data ,

10 ,15000);

if(res){
//If the program completed then the result is verified
check_res = analyze_vop1(inc_counter , 0x3fc00000 , inst_vect_data [0],

inst_data [0], inst_data [1]);
if(check_res == 1){

running_insts_counter ++;
xil_printf("VOP1:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(check_res == 0)

xil_printf("VOP1:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("VOP1:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);

}
else

xil_printf("VOP1:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter);
}
return(running_insts_counter);

}
int32_t test_vopc (){

/*Tests are done by issuing the following instructions and reading the
results

* exec_lo = s2
* exec_hi = s2
* vcc = v2 comp v3
* s0 = vcc_lo
* s1 = vcc_hi
*
* The instruction are only considered correct if the whole family
* (opcode base) is running correctly
* This rule has an exception when the base opcode corresponds to an OP16

and
* the offset is either 7 or 8 (checking if there is a NaN).
*/

int32_t insts [6];

insts [0] = 0xBEFE0302;// exec_lo = s2 = 0xFFFFFFFF
insts [1] = 0xBEFF0302;// exec_hi = s2 = 0xFFFFFFFF

insts [3] = create_sop1 (3, 0, 106); //s0 = vcc_lo -> sop1 inst
insts [4] = create_sop1 (3, 1, 107); //s1 = vcc_hi -> sop1 inst
insts [5] = END_PRGRM;

int32_t inc_counter , data_counter , running_insts_counter = 0,
group_inst_counter;

int32_t res , check_res;
int32_t inst_data [12], inst_vect_data [10];

119

D. Vector Instruction Testing

int32_t max_offset , offset , opcode;

for(inc_counter = 0; inc_counter <16; inc_counter ++){
//Set if it’s a cmp_{op16} or a cmp_{op8}
if(inc_counter <8)

max_offset = 15;
else

max_offset = 7;

//Set the OPcode Base
opcode = inc_counter << 4;

//Run through every OPcode offset
group_inst_counter = 0;
for(offset = 0; offset <= max_offset; offset ++){

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter;
if(data_counter == 2)

inst_data[data_counter] = 0xFFFFFFFF;
}

// Generate data for the vector registers (which will be replicated
for all

// 64 words of the register)
for(data_counter = 0; data_counter <10; data_counter ++)

inst_vect_data[data_counter] = data_counter;

// Generate the VOPC operation to be tested
insts [2] = create_vopc(opcode ,offset , 3, 0x102);

//Test the OP
res = run_vop_program_neko(insts ,6, inst_data , 12,inst_vect_data ,

10 ,15000);

if(res){
//If the program finished running then the result is verified
check_res = analyze_vopc(opcode+offset , 2,3,inst_data [0], inst_data

[1]);
if(check_res == 1){

group_inst_counter ++;
xil_printf("VOPC:␣OPCODE␣%02x␣OK\n\r",opcode+offset);

}
else if(check_res == 0){

xil_printf("VOPC:␣OPCODE␣%02x␣wrong␣result\n\r",opcode+offset);
if(!((opcode ==0x0 || opcode ==0x10 || opcode ==0x40|| opcode ==0 x50)

&&
(offset == 7 || offset == 8))){

group_inst_counter =0;
break;

}
}
else

xil_printf("VOPC:␣OPCODE␣%02x␣No␣test␣available\n\r",opcode+
offset);

}
else{

xil_printf("VOPC:␣OPCODE␣%02x␣did␣not␣finish␣running\n\r",opcode+
offset);

120

if(!((opcode ==0x0 || opcode ==0x10 || opcode ==0x40|| opcode ==0 x50) &&
(offset == 7 || offset == 8))){

group_inst_counter =0;
break;

}
}

}
running_insts_counter += group_inst_counter;

}
return(running_insts_counter);

}
int32_t test_vop3a (){

/*Tests are done by issuing the following instructions and reading the
results

* exec_lo = s0
* exec_hi = s0
* In the comparison (VOPC equivalent) instructions:
* s0 = v3 comp v2
* In the VOP2 equivalent:
* v0 = v2 op v1
*some of the vop2 have an extra constant which is added after the

instruction
* In the VOP3a only:
* v0 = v2 op v1 op v3
* In the VOP1 equivalent:
* v0 = op v4
* s2 = vcc_lo
* s3 = vcc_hi
*/

int32_t insts [8];

insts [0] = create_sop1 (3, 126, 0);//0xBEFE0302 ;// exec_lo = s0 = 0
xFFFFFFFF

insts [1] = create_sop1 (3, 127, 0);//0xBEFF0302 ;// exec_hi = s0 = 0
xFFFFFFFF

insts [4] = create_sop1 (3, 2, 106); //s2 = vcc_lo -> sop1 inst
insts [5] = create_sop1 (3, 3, 107); //s3 = vcc_hi -> sop1 inst
insts [6] = END_PRGRM;

int32_t inc_counter , data_counter ,running_insts_counter = 0;
int32_t max_offset , offset , opcode , group_inst_counter;
int32_t res , check_res;
int32_t inst_data [12], inst_vect_data [10];
int32_t d_constant = 0;

/* Separate the instructions between the comparison ones , the vop2 ones ,
the

* vop3 and the vop1 ones*/

// Testing the VOPC equivalent
for(inc_counter = 0; inc_counter <16; inc_counter ++){

//Set if it’s a cmp_{op16} or a cmp_{op8}
if(inc_counter <8)

max_offset = 15;
else

max_offset = 7;

group_inst_counter = 0;

121

D. Vector Instruction Testing

//Set the OPcode Base
opcode = inc_counter << 4;

//Run through every opcode offset
for(offset = 0; offset <= max_offset; offset ++){

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter;
if(data_counter == 0)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers (which will be replicated

for all
// 64 words of the register)

for(data_counter = 0; data_counter <10; data_counter ++)
inst_vect_data[data_counter] = data_counter;

// Generate the VOP3a operation to be tested
create_vop3a(opcode ,offset , 0,0x101 , 0x102 , 0x103 ,0,0,0,0, &insts [2])

;

//Test the program
res = run_vop_program_neko(insts ,7, inst_data , 12,

inst_vect_data , 10 ,15000);

if(res){//If the program finishes test the result (tests if the whole
// family is running correctly)

//These first instructions can be directly analyzed in the "
analyze_vopc"

check_res = analyze_vopc(opcode+offset , 3,2,inst_data [0], inst_data
[1]);

if(check_res == 1){
group_inst_counter ++;

}
else if(check_res == 0){

xil_printf("VOP3a:␣OPCODE␣%02x␣wrong␣result\n\r",opcode+offset);
if(!((opcode ==0x0 || opcode ==0x10 || opcode ==0x40|| opcode ==0 x50)

&& (offset == 7 || offset == 8))){
group_inst_counter =0;
break;

}
}
else

xil_printf("VOP3a:␣OPCODE␣%02x␣No␣test␣available\n\r",opcode+
offset);

}
else{

xil_printf("VOP3a:␣OPCODE␣%02x␣did␣not␣finish␣running\n\r",
opcode+offset);

if(!((opcode ==0x0 || opcode ==0x10 || opcode ==0x40|| opcode ==0 x50)
&& (offset == 7 || offset == 8))){
group_inst_counter =0;
break;

}
}

}
if(group_inst_counter !=0)//If the whole family ran that opcode base is

OK!

122

xil_printf("VOP3a:␣OPCODE␣%02x␣OK␣-␣%d␣instructions␣running\n\r",
opcode ,

group_inst_counter
);

else
xil_printf("VOP3a:␣OPCODE␣%02x␣NOT␣OK\n\r",opcode);

running_insts_counter += group_inst_counter;
}
// Testing the VOP2 instructions
for(inc_counter = 256; inc_counter <306; inc_counter ++){

if(inc_counter >=293 && inc_counter <=298) //vop3b instructions
continue;

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter +1;
if(data_counter == 0)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers (which will be replicated for

all
//64 words of the register)

for(data_counter = 0; data_counter <10; data_counter ++)
inst_vect_data[data_counter] = (int32_t)data_counter;

d_constant = 0;

//Sets v1 and v2 to more computation "friendly" f32 values except for
the

// v_mul_i32_i24 instruction
if(inc_counter != 265){

inst_vect_data [1] = 0x3fc00000;//v[1] = 1.5f
inst_vect_data [2] = 0x40000000;//v[2] = 2.0f

}

//Adds a constant for the instructions that need it
//(v_madmk_f32 and v_madak_f32)
if(inc_counter ==288 || inc_counter ==289){

d_constant = 0x3f800000;//1.0
//Sets the constant after the instruction
insts [4] = d_constant; // inline constant == 1.0f
//Moves the remaining instructions one slot down
insts [5] = create_sop1 (3, 2, 106); //s2 = vcc_lo -> sop1 inst
insts [6] = create_sop1 (3, 3, 107); //s3 = vcc_hi -> sop1 inst
insts [7] = END_PRGRM;

}

// Generates the instruction to be tested
create_vop3a(inc_counter , 0, 0,0x103 , 0x101 , 0x102 ,0,0,0,0, &insts [2]);

//Tests the program
res = run_vop_program_neko(insts ,8, inst_data , 12,inst_vect_data ,

10 ,15000);

if(res){
//If the program has finished tests the result with the VOP2

verification
check_res = analyze_vop2(inc_counter -256, inst_vect_data [1],

123

D. Vector Instruction Testing

inst_vect_data [2], d_constant ,
inst_vect_data [0],

inst_data [2], inst_data [3]);
if(check_res == 1){

running_insts_counter ++;
xil_printf("VOP3a:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(check_res == 0)

xil_printf("VOP3a:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("VOP3a:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);
}
else

xil_printf("VOP3a:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter)
;

if(inc_counter ==288 || inc_counter ==289){
// Restores the instruction to their rightful place
insts [4] = create_sop1 (3, 2, 106); //s2 = vcc_lo -> sop1 inst
insts [5] = create_sop1 (3, 3, 107); //s3 = vcc_hi -> sop1 inst
insts [6] = END_PRGRM;

}
}
// Testing the VOP3 instructions
for(inc_counter = 320; inc_counter <373; inc_counter ++){

if(inc_counter == 365|| inc_counter == 366)//vop3b
continue;

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter +1;
if(data_counter == 0)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers (which will be replicated for

all
//64 words of the register)

for(data_counter = 0; data_counter <10; data_counter ++)
inst_vect_data[data_counter] = (int32_t)data_counter;

// Generates the instruction to be tested
create_vop3a(inc_counter , 0, 0,0x103 , 0x101 , 0x102 ,0,0,0,0, &insts [2]);

//Tests the program
res = run_vop_program_neko(insts ,7, inst_data , 12,inst_vect_data ,

10 ,15000);

if(res){
//If the program has finished tests the result with the VOP3a

verification
check_res = analyze_vop3a(inc_counter , inst_vect_data [3],

inst_vect_data [1], inst_vect_data [2],
d_constant ,

inst_vect_data [0], inst_data [2], inst_data
[3]);

if(check_res == 1){
running_insts_counter ++;
xil_printf("VOP3a:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(check_res == 0)

xil_printf("VOP3a:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);

124

else
xil_printf("VOP3a:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);

}
else

xil_printf("VOP3a:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter)
;

}

// Testing the VOP1 equivalent instructions
for(inc_counter = 384; inc_counter <453; inc_counter ++){

if(inc_counter >=407 && inc_counter <=415) // Reserved
continue;

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter +1;
if(data_counter == 0)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers (which will be replicated for

all
//64 words of the register)

for(data_counter = 0; data_counter <10; data_counter ++){
inst_vect_data[data_counter] = (int32_t)data_counter;
if(data_counter == 4)

inst_vect_data[data_counter] = 0x3fc00000;//1.5f
}
// Generates the instruction to be tested
create_vop3a(inc_counter , 0, 0,0x100 , 0x100 , 0x104 ,0,0,0,0, &insts [2]);

//Runs the program
res = run_vop_program_neko(insts ,7, inst_data , 12,inst_vect_data ,

10 ,15000);
if(res){

//If the program has finished tests the result with the VOP1
verification

check_res = analyze_vop1(inc_counter -384, 0x3fc00000 , inst_vect_data
[0],

inst_data [2], inst_data [3]);
if(check_res == 1){

running_insts_counter ++;
xil_printf("VOP3a:␣OPCODE␣%d␣OK\n\r",inc_counter);

}
else if(check_res == 0)

xil_printf("VOP3a:␣OPCODE␣%d␣wrong␣result\n\r",inc_counter);
else

xil_printf("VOP3a:␣OPCODE␣%d␣No␣test␣available\n\r",inc_counter);
}
else

xil_printf("VOP3a:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",inc_counter)
;

}
return(running_insts_counter);

}
int32_t test_vop3b (){

/*Tests are done by issuing the following instructions and reading the
results

* exec_lo = s0
* exec_hi = s0
* v0 = v3 op v2 ; s0 = carry_out

125

D. Vector Instruction Testing

*/

int32_t insts [5];

insts [0] = create_sop1 (3, 126, 0);//0xBEFE0302 ;// exec_lo = s0 = 0
xFFFFFFFF

insts [1] = create_sop1 (3, 127, 0);//0xBEFF0302 ;// exec_hi = s0 = 0
xFFFFFFFF

insts [4] = END_PRGRM;
int32_t inc_counter , data_counter , running_insts_counter = 0;
int32_t res;
int32_t inst_data [12], inst_vect_data [10];

for(inc_counter = 293; inc_counter <299; inc_counter ++){// missing 365 and
366

// Generate data for the scalar registers
for(data_counter = 0; data_counter <12; data_counter ++){

inst_data[data_counter] = data_counter +1;
if(data_counter == 0)

inst_data[data_counter] = 0xFFFFFFFF;
}
// Generate data for the vector registers
for(data_counter = 0; data_counter <10; data_counter ++)

inst_vect_data[data_counter] = (int32_t)data_counter;

// Generate the VOP3b operation to be tested
create_vop3b(inc_counter , 0, 0,0x101 , 0x102 , 0x103 , 0, 0, &insts [2]);

//Run the program
res = run_vop_program_neko(insts ,5, inst_data , 12,

inst_vect_data , 10 ,15000);

if(res){//Check if the program finishes
running_insts_counter ++;
xil_printf("VOP3b:␣OPCODE␣%d␣is␣running\n\r",inc_counter);
}

else
xil_printf("VOP3b:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",

inc_counter);
}
return(running_insts_counter);

}

void test_vector_instructions (){
uint32_t total = 0, type_count = 0;
type_count = test_vop2 ();
total += type_count;
xil_printf("VOP2␣-␣%d␣instructions␣running\n\r",type_count);

type_count = test_vop1 ();
total += type_count;
xil_printf("VOP1␣-␣%d␣instructions␣running\n\r",type_count);

type_count = test_vopc ();
total += type_count;
xil_printf("VOPC␣-␣%d␣instructions␣running\n\r",type_count);

type_count = test_vop3a ();
total += type_count;

126

xil_printf("VOP3a␣-␣%d␣instructions␣running\n\r",type_count);

type_count = test_vop3b ();
total += type_count;
xil_printf("VOP3b␣-␣%d␣instructions␣running\n\r",type_count);

xil_printf("Total␣number␣of␣vector␣instructions␣running␣correctly:␣%d\n\r
",

total
)
;

}

int main()
{

init_platform ();

XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

if(! test_vector_inst_creation ())
return 1;

test_vector_instructions ();

XIo_Out32(VGPR_ADDR , 0);
cleanup_platform ();
return 0;

}

127

D. Vector Instruction Testing

128

E
Memory Instruction Testing

129

E. Memory Instruction Testing

#include <stdio.h>
#include <math.h>
#include "platform.h"
#include "xio.h"
#include "xparameters.h"

#define NEKO_CMD_ADDR XPAR_AXI_SLAVE_0_S00_AXI_BASEADDR
#define NEKO_BASE_LDS (NEKO_CMD_ADDR + 16)
#define NEKO_INSTR_ADDR (NEKO_CMD_ADDR + 28)
#define NEKO_INSTR_VALUE (NEKO_CMD_ADDR + 32)
#define NEKO_GPR_CMD (NEKO_CMD_ADDR + 40)
#define NEKO_SGRP_ADDR (NEKO_CMD_ADDR + 44)
#define NEKO_SGRP_QUAD_0 (NEKO_CMD_ADDR + 48)
#define NEKO_SGRP_QUAD_1 (NEKO_CMD_ADDR + 52)
#define NEKO_SGRP_QUAD_2 (NEKO_CMD_ADDR + 56)
#define NEKO_SGRP_QUAD_3 (NEKO_CMD_ADDR + 60)
#define NEKO_MEM_OP (NEKO_CMD_ADDR + 128)
#define NEKO_MEM_RD_DATA (NEKO_CMD_ADDR + 132) // Address for data to be

read
//from MIAOW and written to memory
#define NEKO_MEM_ADDR (NEKO_CMD_ADDR + 136)
#define NEKO_MEM_WR_DATA (NEKO_CMD_ADDR + 192)//Addr. for writing data to

MIAOW
#define NEKO_MEM_WR_EN (NEKO_CMD_ADDR + 196)
#define NEKO_MEM_ACK (NEKO_CMD_ADDR + 200)
#define NEKO_MEM_DONE (NEKO_CMD_ADDR + 204)
#define NEKO_CYCLE_COUNTER (NEKO_CMD_ADDR + 192)
#define NEKO_PC (NEKO_CMD_ADDR + 196)
#define NEKO_RESET (NEKO_CMD_ADDR + 36)
#define MEM_WR_ACK_WAIT 1
#define MEM_WR_RDY_WAIT 2
#define MEM_WR_LSU_WAIT 3
#define MEM_RD_ACK_WAIT 4
#define MEM_RD_RDY_WAIT 5
#define MEM_RD_LSU_WAIT 6
#define VGPR_DATA (NEKO_CMD_ADDR + 0x0D4)
#define VGPR_ADDR (NEKO_CMD_ADDR + 0x0D0)
#define VGPR_WR_CMD (NEKO_CMD_ADDR + 0x01D4)
#define VGPR_WR_CLEAN (NEKO_CMD_ADDR + 0x01D8)
#define VGPR_WR_MASK_LO (NEKO_CMD_ADDR + 0x01DC)
#define VGPR_WR_MASK_HI (NEKO_CMD_ADDR + 0x01E0)
#define END_PRGRM 0xBF810000

union ufloat{
float f;
uint32_t u;

} x;
union ufloat64{

double f;
uint64_t u;

};
int32_t create_sop1(int32_t op, int32_t sdst , int32_t s0){

/* SOP1 instruction format:
* MSB -> LSB
* | ENC (9) = 9’b101111101 | SDST (7) | OP(8) | SSRC0 (8) |
*/

int32_t inst = 0xBE800000;
op = op << 8;
sdst = sdst << 16;
inst = inst | sdst | op | s0;

130

return(inst);
}

void create_mtbuf(int32_t op, int32_t offset ,int32_t offen ,int32_t idxen ,
int32_t glc ,int32_t addr64 ,int32_t dfmt , int32_t nfmt ,
int32_t vaddr ,int32_t vdata ,int32_t srsrc ,int32_t slc ,
int32_t tfe , int32_t soffset ,int32_t *inst){

/* MTBUF instruction format:
* MSB -> LSB
* 1st 32 bit word:
* | ENC (6) = 6’b111010 | NFMT (3) | DFMT (4) | OP(3) | ADDR64 (1) | GLC (1)

|
IDXEN (1) | OFFEN (1) | OFFSET (12) |

* 2nd 32bit word
*| SOFFSET (8) | TFE (1) | SLC(1) | RESERVED (1) | SRSRC (5) | VDATA (8) |

VADDR (8)|
*/

inst [0] = 0xE8000000;
inst [1] = 0x00000000;
offen = offen << 12;
idxen = idxen << 13;
glc = glc << 14;
addr64 = addr64 << 15;
op = op << 16;
dfmt = dfmt << 19;
nfmt = nfmt << 23;
inst [0] = inst [0] | nfmt | dfmt | op | addr64 | glc | idxen | offen |

offset;

vdata = vdata << 8;
srsrc = srsrc << 16;
slc = slc << 22;
tfe = tfe << 23;
soffset = soffset << 24;
inst [1] = inst [1] | soffset | tfe | slc | srsrc | vdata | vaddr;

}

int32_t run_vop_program_neko(int32_t insts[],int32_t num_insts ,
int32_t inst_scalar_data [], int32_t

num_scalar_data
,int32_t inst_vect_data [], int32_t

num_vect_data ,
int32_t max_clocks){

/*
* Execution Flow:
* Resets Neko
* Populates NEKO’s instruction buffer , the scalar registers and the

vector
* registers (all 64 words of a register are initialized with the same

value)
* Send "start execution" command , responds to memory requests and waits

for
* program completion or until the timeout is reached
* If the program reaches the end of execution before the timeout the

data in
* the registers is read and success (1) is returned
* Otherwise returns 0 (unsuccessful)
*/

uint32_t pc;

131

E. Memory Instruction Testing

int32_t index , cycle_counter = 0, succeeded = 1,address ,data;
int32_t vgpr , vgpr_word;
int32_t * vgpr_data_pointer = (int32_t *) VGPR_DATA;

//NEKO’s reset pulse
XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

XIo_Out32(NEKO_BASE_LDS , XPAR_MIG_7SERIES_0_BASEADDR);

//Load scalar registers with data
for(index = 0; index < num_scalar_data; index +=4){

XIo_Out32(NEKO_SGRP_ADDR , index);
XIo_Out32(NEKO_SGRP_QUAD_0 , inst_scalar_data[index]);
XIo_Out32(NEKO_SGRP_QUAD_1 , inst_scalar_data[index +1]);
XIo_Out32(NEKO_SGRP_QUAD_2 , inst_scalar_data[index +2]);
XIo_Out32(NEKO_SGRP_QUAD_3 , inst_scalar_data[index +3]);
XIo_Out32(NEKO_GPR_CMD , 1);

}

//Load vector registers with data (replicating the data for every word of
the

// register)
for(vgpr =0;vgpr <num_vect_data;vgpr ++){

XIo_Out32(VGPR_ADDR , vgpr);
XIo_Out32(VGPR_WR_CLEAN , 1);
XIo_Out32(VGPR_WR_CMD , 1);
for(vgpr_word =0; vgpr_word <64; vgpr_word ++){

vgpr_data_pointer[vgpr_word] = inst_vect_data[vgpr];
}
vgpr_data_pointer [60] = 1024;
XIo_Out32(VGPR_WR_CMD , 1);

}

//Load the instruction buffer
for(index = 0; index < num_insts; index ++){

XIo_Out32(NEKO_INSTR_ADDR , index);
XIo_Out32(NEKO_INSTR_VALUE , insts[index]);

}

//Start execution
XIo_Out32(NEKO_CMD_ADDR , 1);

//Wait for the end of execution
while(XIo_In32(NEKO_CMD_ADDR) != 1){

// Verify the timeout
cycle_counter = XIo_In32(NEKO_CYCLE_COUNTER);
if(cycle_counter >max_clocks){

succeeded =0;
break;

}
data = XIo_In32(NEKO_MEM_OP);
if(data != 0)
{

// checks if the instruction performs a read or a write
int nextValue = MEM_RD_RDY_WAIT;
if(data == MEM_RD_ACK_WAIT)
{

132

nextValue = MEM_RD_RDY_WAIT;
}
else if(data == MEM_WR_ACK_WAIT)
{

nextValue = MEM_WR_RDY_WAIT;
}
else if(data == MEM_WR_LSU_WAIT || data == MEM_RD_LSU_WAIT)

continue;//last instruction is not finished yet

// acknowledges that the request was received
XIo_Out32(NEKO_MEM_ACK , 0);
XIo_Out32(NEKO_MEM_ACK , 1);

do {
data = XIo_In32(NEKO_MEM_OP);

} while(data != nextValue);

//reads the requested address
address = XIo_In32(NEKO_MEM_ADDR);

// performs the memory access
if(nextValue == MEM_RD_RDY_WAIT)
{

data = XIo_In32(address);
XIo_Out32(NEKO_MEM_WR_DATA , 0x012345678);
nextValue = MEM_RD_LSU_WAIT;

}
else
{

data = XIo_In32(NEKO_MEM_RD_DATA);
XIo_Out32(address , data);
nextValue = MEM_WR_LSU_WAIT;

}

// signals request completion
XIo_Out32(NEKO_MEM_DONE , 0);
XIo_Out32(NEKO_MEM_DONE , 1);

do {
data = XIo_In32(NEKO_MEM_OP);

} while(data != 0 && data != nextValue && data != MEM_RD_ACK_WAIT
&& data != MEM_WR_ACK_WAIT);

}
}

//NEKO’s reset pulse
XIo_Out32(NEKO_RESET ,0);
XIo_Out32(NEKO_RESET ,1);
XIo_Out32(NEKO_RESET ,0);

if(succeeded){
// Retrieve the data in the scalar registers (results)
for(index = 0; index < num_scalar_data; index +=4){

XIo_Out32(NEKO_SGRP_ADDR , index);
inst_scalar_data[index]= XIo_In32(NEKO_SGRP_QUAD_0);
inst_scalar_data[index +1]= XIo_In32(NEKO_SGRP_QUAD_1);
inst_scalar_data[index +2]= XIo_In32(NEKO_SGRP_QUAD_2);
inst_scalar_data[index +3]= XIo_In32(NEKO_SGRP_QUAD_3);

}

133

E. Memory Instruction Testing

// Retrieve the data in the vector registers (results)
for(vgpr =0;vgpr <num_vect_data;vgpr ++){

XIo_Out32(VGPR_ADDR , vgpr);
inst_vect_data[vgpr] = vgpr_data_pointer [0];

}
}
return(succeeded);

}
int32_t test_mtbuf (){

//Tests are done by issuing the following instructions and reading the
results

// exec_lo = 0xffffffff
// exec_hi = 0xffffffff
//v0 is used to perform a memory access (either read or write)
int32_t insts [5];

insts [0] = create_sop1 (3, 126, 2);//0xBEFE0302 ;// exec_lo = s2 = 0
xFFFFFFFF

insts [1] = create_sop1 (3, 127, 2);//0xBEFF0302 ;// exec_hi = s2 = 0
xFFFFFFFF

insts [4] = END_PRGRM;
int32_t inc_counter;
int32_t data_counter;
int32_t res;

int32_t inst_vect_data [10];
int32_t running_insts_counter = 0;

int32_t dmft;
for(inc_counter = 0; inc_counter <1; inc_counter ++){

int32_t inst_data [] = {0,0,0xffffffff ,0,4,5,0x019 ,9,8,9,10,11};

for(data_counter = 0; data_counter <10; data_counter ++)
inst_vect_data[data_counter] = (int32_t)data_counter +3;

switch(inc_counter){
case ’0’:
case ’4’:

dmft = 4;
break;

case ’1’:
case ’5’:
dmft = 11;
break;
case ’2’:
case ’6’:
dmft = 13;
break;
case ’3’:
case ’7’:
dmft = 14;
break;
default:
dmft = 4;

}
create_mtbuf(inc_counter , 29,1,0,0,0,dmft ,0,0,0,0,0,0, 6,&insts [2]);
//v0 = mem_access

res = run_vop_program_neko(insts ,5, inst_data , 12,
inst_vect_data , 10 ,2000000000);

134

if(res){
running_insts_counter ++;
//if the instruction ran prints the result for us to evaluate it
xil_printf("MTBUF:␣OPCODE␣%d␣OK\n\r",inc_counter);
xil_printf("v0_0␣=␣0x%x␣␣␣␣␣␣␣",inst_vect_data [0]);
xil_printf("s0␣=␣0x%x\n\r",inst_data [0]);
}

else
xil_printf("MTBUF:␣OPCODE␣%d␣did␣not␣finish␣running\n\r",

inc_counter);
}
return(running_insts_counter);

}
int main(){

int32_t vgpr , count;
int32_t * vgpr_data_pointer = (int32_t *) VGPR_DATA;
test_mtbuf ();
//dumps the contents of the first 3 vgprs
for(vgpr =0;vgpr <3; vgpr ++){

XIo_Out32(VGPR_ADDR , vgpr);
for(count = 0; count <64; count ++)

xil_printf("%08x␣|␣",vgpr_data_pointer[count]);
xil_printf("\n\r");

}
return 0;

}

135

E. Memory Instruction Testing

136

	Cover
	Titlepage
	Acknowledgments
	Dedication
	Abstract
	Keywords

	Resumo
	Palavras Chave

	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	List of Listings

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Main Contributions
	1.4 Outline

	2 Soft-GPGPUs Overview
	2.1 FlexGrip
	2.2 MIAOW
	2.3 FGPU
	2.4 Summary

	3 MIAOW Base Architecture
	3.1 Base Instruction Set Architecture
	3.1.1 Compute Unit Architecture

	3.2 NEKO
	3.3 FPGA Design
	3.3.1 Base system
	3.3.2 Full system
	3.3.3 Simulation system

	3.4 FPGA Validation
	3.5 Summary

	4 Application-specific GPU Architecture
	4.1 Enhancing functionality and throughput performance
	4.1.1 Vector register direct access interface
	4.1.2 Dual clock domain
	4.1.3 Internal block RAM memory

	4.2 System benchmark
	4.2.1 Applications
	4.2.2 Compute unit initialization
	4.2.3 Benchmarking procedures

	4.3 Application-Specific system development
	4.4 Summary

	5 Experimental Results
	5.1 Synthesized Instruction Set Architecture
	5.2 Validation of dual-clock domain and BRAM usage
	5.2.1 Benchmark results
	5.2.2 Area and power analysis

	5.3 Application-specific area gains and power savings
	5.3.1 Power savings
	5.3.2 Area gains

	5.4 Summary

	6 Conclusions
	6.1 Future work

	Bibliography
	A Plots of benchmark results
	B Energy consumption results
	C Scalar Instruction Testing
	D Vector Instruction Testing
	E Memory Instruction Testing

