
Robust Optimization Framework for Process 
Parameter and Tolerance Design 

Fernando P. Bernard0 and Pedro M. Saraiva 
Dept. of Chemical Engineering, University of Coimbra, 3000 Coimbra, Portugal 

This article introduces a framework for including different uncertainties at the chemi- 
cal plant design stage. Through an integrated robust optimization approach and prob- 
lem formulation, equipment, operating, control, and quality costs are simultaneously 
taken into account, leading to system, parameter, and tolerance design. Rather than 
using single pointwise solutions in the decision space, operating windows leading to 
overall best performance are identified and defined. Such windows and their width al- 
low us to point out control needs and goals at a very early stage of plant design. Two 
small-scale case studies (for a CSTR and a batch distillation column) provide enough 
evidence to support the practicality of the optimization framework: the robust solutions 
found are digerent and much better than the corresponding solutions obtained with the 
fully deterministic optimization paradigms. 

Introduction 
Process control, parameter, and tolerance design issues are 

not explicitly taken into account at the design stage for most 
chemical plants. Traditionally, design and control are treated 
in a sequential way with the following two steps: 

(1) Design stage-definition and sizing of equipment and 
determination of the operating nominal point (usually based 
on steady-state models). 

( 2 )  Control stage-choice and design of the control system 
based on the operating nominal point determined in the first 
stage (taking into account dynamic issues). 

Furthermore, design stage calculations are traditionally 
made under deterministic optimization paradigms: an eco- 
nomic objective function is optimized and leads to a point- 
wise solution in the decision space, without taking into con- 
sideration different sorts of uncertainty. Designing a control 
system based on this solution may be difficult or even impos- 
sible since the approach does not consider operability as- 
pects, such as controllability and flexibility. 

As Saraiva and Stephanopoulos (1992) and Saraiva (1993, 
1996) have shown in previous studies, by considering this tra- 
ditional approach one ignores the fact that operating deci- 
sion variables behave as random variables and are always as- 
sociated with some variability. No matter how good control 
systems happen to be, in reality ranges of values for the deci- 
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sion variables (concentrations, pressures, flows, etc.) will al- 
ways occur, eventually bounded within a narrow, but not null, 
operation window. 

As a consequence of not taking into account this process- 
inherent uncertainty, the final solutions found by the conven- 
tional approach may be suboptimal: the decision-space zone 
that surrounds the best deterministic pointwise solution does 
not correspond in general to the zone of the decision space 
where best average performance can be achieved. 

Besides randomness of operating variables, the determinis- 
tic approach also ignores other uncertainties (Pistikopoulos, 
1995) such as model-inherent uncertainty (kinetic constants, 
physical properties, thermodynamic parameters) or external 
uncertainty (feedstream availability, product demands, eco- 
nomic indexes, environmental regulations). 

Several researchers have recently attempted to integrate 
process design and control. Luyben and Floudas (1994) com- 
bine economic and control objectives through a multi- 
objective optimization framework, incorporating open-loop 
controllability measures in the mathematical formulation of 
process synthesis. Bahri et al. (1996, 1997) present a method- 
ology for considering flexibility and controllability in process 
design, where both steady-state and dynamic cases are con- 
sidered. Mohideen et al. (1996) approach the problem of op- 
timal design for dynamic systems under uncertainty consider- 
ing both flexibility and control aspects, with the best control 
structure being proposed through multiloop controllers. 
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Process design under uncertainty has also been studied in 
the literature: flexibility analysis is one of the research direc- 
tions taken to deal with uncertainty at the design stage (Swa- 
ney and Grossmann, 1985; Grossmann and Floudas, 1987; 
Straub and Grossmann, 1990; Straub, 1991). Pistikopoulos 
and Ierapetritou (1995) introduced an approach involving 
stochastic parameters for optimal process design that maxi- 
mizes an expected revenue while simultaneously measuring 
design feasibility. 

In the context of quality engineering, a common approach 
for dealing with parameter design is based on running statis- 
tically designed experiments and treating the results obtained 
in order to find robust operating points (Taguchi, 1986; 
Phadke, 1989; Schmidt and Launsby, 1992; Czitrom and 
Spagon, 1997; Taylor, 1991). This approach is not adequate 
for an early stage of plant design, or when reliable process 
models are available. Diwekar and Rubin (1991, 1994) pre- 
sented a stochastic optimization framework for implementa- 
tion of parameter design in chemical processes. In this 
methodology, uncertain parameters are described by proba- 
bility density functions (PDFs) and a sampling technique is 
used to estimate objective function expected values. 

This article combines and covers concepts from the broad 
spectrum of research areas mentioned above (integration of 
process design and control, process design under uncertainty, 
and quality engineering). In particular, we will expand on 
ideas previously developed in the context of process opera- 
tions (Saraiva 1993, 1996) in order to define and apply a ro- 
bust stochastic optimization process design framework that 
combines system, parameter, and tolerance design as they 
were defined by Taguchi (1986) in his approach to quality 
engineering. 

Our main goal is to determine the optimal design together 
with the best zone in the operating decision variables space 
to run the plant, while maximizing an economic objective 
function that integrates equipment, operating, control and 
quality costs. Several kinds of uncertainty are taken into ac- 
count, with expected values of the objective function being 
estimated through an efficient sampling technique. 

The suggested new formulation maximizes overall process 
performance from an economic point of view, exploring 
trade-offs between pointwise profitability and robustness 
(Taguchi, 1986). That is the reason why we will designate our 
final solution as a robust solution, which represents the opti- 
mal balance between process tolerances (reflected in control 
costs) and output variabilities (reflected in quality costs). 
Thus, control aspects are also incorporated in the formula- 
tion (without considering dynamic behavior) and the robust 
solution corresponds to an operating region, defined as a set 
of windows for each operating variable, that identifies control 
needs and goals, conveying important information for the 
control system designer. 

Therefore, the major contributions of the proposed 
stochastic framework can be stated as follows: 

(1) It leads to the definition of optimal operating regions 
accounting for control costs and integrates process control 
issues at an early process design stage. 

(2) It considers robustness aspects, the intrinsic random 
nature of process operating variables, and a wide range of 
uncertainty sources, enlarging considerably the scope of ran- 

domness usually incorporated in the field of stochastic pro- 
cess design. 

( 3 )  It combines in an integrated way system, parameter, 
and tolerance design under a common stochastic optimiza- 
tion framework that explores existing plant models, bringing 
some important quality engineering concepts into the field of 
process design. 

The remaining parts of this article are structured as fol- 
lows: 

First, we present the design problem statement, clarify 
its meaning (by way of a CSTR example) and develop its 
mathematical formulation, leading to a stochastic optimiza- 
tion problem definition. 

Then, a generalized framework is proposed to solve the 
optimization problem, by coupling a stochastic process model 
with an external optimization procedure. 

Finally, the relevance of the approach is illustrated 
through its application to some chemical process design ex- 
amples, including a CSTR and a batch distillation column. 

Problem Statement 
The design problem that we want to address may be de- 

fined as follows. 
Given a process model described as a set of equations, a 

set of constraints for feasible plant operation, and appropri- 
ate probability density functions for several different uncer- 
tainty sources, we want to find the best operating region to 
run the plant, coupled together with the corresponding de- 
sign variables' optimal values. 

To achieve such a goal, an objective function that is able to 
integrate equipment, operating, control, and quality costs 
must be assumed, exploring the trade-offs between these sev- 
eral cost categories. 

In order to clarify this problem statement and its objec- 
tives, let's consider the CSTR previously studied by Diwekar 
and Rubin (19941, where a sequential reaction system ( A  + 

B -+ C) takes place (Figure 1). The system is described by the 
stationary relationships of material and energy, with five op- 
erating variables (volumetric flow rate, F; rate of heat re- 
moval, Q; inlet concentrations of A and B,  C,, and CBo; 

Q 

Figure 1. CSTR. 
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and inlet temperature, To) that are subject to uncertainty. 
Our design objective is to find the best operating region (in 
the five variables-space just mentioned) together with the 
corresponding optimal reactor volume. The determination of 
such a solution will take simultaneously into account equip- 
ment, operating, control, and quality costs, being formulated 
as a stochastic optimization problem. 

In our mathematical formulation, the design objective 
function is assumed to be an overall annual plant cost (C) 
that considers equipment cost (C,), operating cost (CJ, con- 
trol cost (C,), and quality cost (CJ 

c = c, f c,  f c, + c, (1) 

Only equipment costs are considered to have no uncertain- 
ties associated with them (since equipment size, dimensions, 
and materials are considered to be fully deterministic vari- 
ables). Remaining costs are influenced by the random nature 
of process variables and parameters. Control costs grow as 
the tolerances for controlled variables become smaller. Qual- 
ity costs, expressed by Taguchi (1986) loss functions, increase 
both with the variability of process outputs that correspond 
to product quality characteristics and the deviation of their 
mean from desired nominal target values. Operating costs also 
depend upon nominal set points of process variables and on 
their associated tolerances. 

Taking into account all uncertainty effects, we will estab- 
lish overall design decisions through an integrated determi- 
nation of equipment dimensions and operating zones (de- 
fined by both nominal and tolerance values associated with 
each process variable). Let's suppose that a process model 

is available, with the following set of constraints 

where h represents the model equations vector and g the 
model restrictions vector. The vectors of variables are 

d = deterministic equipment design variables (dimensions, 

z = operating decision random variables (concentrations, 

O= process model parameters, also subject to uncertain- 

y ,  = quality-related variables, with associated Taguchi loss 

A broad scope of situations can be handled and covered 
under the above formulation, including the following possibil- 
ities: 

The process model does not have to be a steady-state 
model, but rather may also represent a distributed parameter 
or even a transient model, since it can be expressed as an 
input-output model such as y ,  = h'(d, z ,  01, where h' defines 
implicitly the integration of differential equations. 

If a plant configuration is not yet available, the design 
variables, d, will include binary decision variables based on a 
superstructure that defines all the possible process flowsheet 

materials, etc.); 

flows, temperatures, pressures, etc.); 

ties; 

functions. 
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configurations, thus corresponding to a synthesis/design 
problem. 

The uncertainties in z and 0 are described by probability 
density functions (PDFs) Z(z) and J ( O ) ,  which lead to the 
definition of the corresponding space regions: 

If the density functions Z(z) or J ( 0 )  have infinite domains, 
they must be truncated in order to identify finite Z or T re- 
gions. The joint PDF ZJ(z, O), which may lead to the defini- 
tion of the corresponding space region 

when propagated through the process model, generates a 
probability density function K ( y , )  and the associated region 

Putting Eqs. 1-7 together results in the following stochas- 
tic optimization problem (PI formulation: 

The decision variables are the design variables, d, and op- 
erating regions, Z ;  model equations are satisfied for all z and 
0 values in the Z and T regions, respectively, so that 
P(h(d ,  z ,  y,, 0 )  = 0) = 1; a is the minimum value required by 
the designer for the probability of feasible operation under 
existing uncertainties, that is, the minimum required stochas- 
tic flexibility (Straub and Grossmann, 1990). 

This problem formulation (P) leads to a final optimal ro- 
bust solution [d* ,  Z * ]  that defines equipment sizes together 
with the best zone Z* of the operating decision variables 
space to run the plant (identified by the combined determi- 
nation of nominal set points and the associated tolerances for 
the z variables). 

The operating region Z is given as a set of operating win- 
dows, Z,,  for each random variable z :  

( 9 )  zu=  pL, ( l+ E,) and z L =  ~ ~ ( 1 -  E,) 

where p, stands for the mean value of z and E ,  for the 
associated tolerance. 

The definition of E, depends on the probability density 
function used to describe the random behavior of z.  When z 
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is described by a normal distribution, we will consider: 

“z 

F z  
E, = 3.09-, (10) 

so that P ( z  E 2 )  = 0.998. 
If other types of probability density functions are used, ap- 

propriate similar tolerance definitions can be assumed. 
In the above formulation, two things occur. The economic 

objective function, C, properly explores interactions between 
several cost categories, set points, and tolerances, including 
process robustness in the sense of Taguchi (1986) and control 
costs. Second, the optimal robust solution, Z*, defines oper- 
ating set points and tolerances that result from considering in 
an integrated way different uncertainty sources, as well as 
control difficulties already known at this early design stage. 

The above remarks, it must be noted, stem from an ap- 
proach that explores only nondynamic plant behavior. This is 
due to two factors: 

(1) Simplicity-the application of a stochastic dynamic 
formulation to large-scale industrial problems would result in 
time-consuming and hard-to-solve optimization problems. 

(2) Reliability-dynamic considerations at such an early 
design stage decrease solution reliability due to additional 
problem complexity. Usually, not enough information is 
available at this point for studying plant dynamics in an effi- 
cient way. 

Although we will not study this issue in the forthcoming 
case studies, flexibility requirements and trade-offs can be 
evaluated by varying the parameter a and studying the im- 
pact over the optimal robust solution found to analyze rela- 
tionships between flexibility and overall plant cost (C). 

The direct solution of problem (P) would derive from the 
calculation of overall annual cost expected values: 

In the next section we will present a methodology for solv- 
ing this problem (PI, which uses an efficient sampling tech- 
nique to compute C estimates. 

Optimization Methodology 
The optimization problem (P) defined in the previous sec- 

tion is solved by coupling a stochastic process model with an 
external optimization procedure (Figure 2). Saraiva (1993, 
1996) used a similar approach for identifying robust operat- 
ing regions from available plant data, while Diwekar and Ru- 
bin (1994) followed the same methodology for achieving pa- 
rameter design. In this article, we expand on such previous 
techniques for solving in an integrated way both parameter 
and tolerance design problems, since both nominal and toler- 
ance values for the operating variables, z ,  are determined 
simultaneously. Furthermore, and as stated before, different 
sources of uncertainty and types of costs are accounted for, 
leading to a new process design framework that combines and 
puts together important concepts from process control inte- 

(13) 

gration at an early design stage, stochastic process design, 
and quality engineering. 

In the stochastic process model, a sampling technique is 
used to generate a specified number of observations, N,, 
taken from the joint probability distribution IJ(z ,  0). Each 
[z, ,  0,] pair generated this way is propagated through the de- 
terministic model h(d ,  2, y,, 0 )  to compute the corresponding 
values for y,, C,(Y,,~), C,(z,) and g(d, z , , ~ , , , ,  0,). 

After computing these values for all the N, cases, expected 
values for C, and C, are estimated by the sample mean val- 
ues: 

N ~ 

- 1 - 1  
J’, jTCS(d ,  z ,  O ) N ( z ,  O)d@dz c CS(d, z , ,  0,) 

- E(C,) = - jzj+J(z,  0)dOdz N, 

(12) 

N ,  

- 1 = 1  

C, (Z )Z (Z )dZ  c C&I) 
- E(C,) = jz - 

j;(z)dz N, 

The probability P ( g ( d ,  z ,  y,, 0 )  I 0) is estimated by the ratio 
of the number of g, values less than or equal to zero to the 
total number of observations, N,. 

To compute the costs C,  and Cz sampling values are not 
needed: C, depends only on the deterministic values of the 
design variables, and the control cost Cz is determined from 
probability distribution parameters (for instance, the control 
cost associated with a single normal distributed variable may 
be expressed as a function of its mean and standard deviation 
estimates). 

The overall objective function used is computed by sum- 
ming the expected value estimates for C, and C ,  with equip- 
ment and control costs: 

C = E(CJ  + E(CJ  + CJd)  + CJZ), (14) 

where C is itself an expected value for a total cost random 
variable that depends on the joint PDF ZJ(z,  0). 

After the values for the objective function and restrictions 
(inequalities) have been calculated as stated above, an opti- 
mization procedure (NPSOL package, Gill et al., 1986) up- 
dates the values of the decision variables using information 
about partial derivatives of the objective function and restric- 
tions (inequalities). Although the NPSOL algorithm is inher- 
ently deterministic, the generalized framework presented in 
this article is stochastic because the evaluation of the objec- 
tive function accounts for the behavior of random variables. 

The computational effort associated with this approach de- 
pends on the sampling technique chosen. We have applied 
the Hammersley sequence sampling (HSS) technique pro- 
posed by Diwekar and Kalagnanam (1996, 1997a,b), as it has 
been shown to be particularly efficient, reducing the number 
of observations required to come up with reliable objective 
function estimates. Subroutine SPARCLHS2 implements this 
and other sampling techniques, allowing the user to consider 
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, 
I 

I 

I 

several kinds of input PDFs (independent or correlated, con- 
tinuous or discrete). 

The generic optimization approach presented so far allows 
almost any sort of process design problem subject to several 
kinds of uncertainty to be addressed. 

Some issues related with the above optimization methodol- 
ogy deserve further discussion. 

1) The external algorithm progression does not take into 
account the deterministic model as an explicit restriction. In 
fact, the deterministic model works as an implicit restriction 
because the objective function evaluation needs the output 
values, y , , , ,  to be computed for all observations. If the deter- 
ministic model doesn’t converge for a specific sample point, 
then the region Z that includes that point is considered in- 
feasible and the objective function (annual cost) is penalized 
with an infinite value, in order to guarantee that 

2 )  Before starting the stochastic Optimization procedure, 
the accuracy of the sampling technique used in the internal 
cycle must be evaluated. This is done by computing the num- 
ber of observations, N,, that are needed to predict the mean 

P M d ,  z ,  y ,  0 )  = 0) = 1. 

and standard deviation for the relevant outputs with enough 
accuracy (a maximum error of 1% is considered). Since N, 
depends on the process model used, sampling accuracy must 
be evaluated for each plant. 

3) Computational effort depends directly on the value of 
N,, since the total number for deterministic model evalua- 
tions that are needed is N, x N, + D, where N,. represents 
the number of iterations of the external optimization proce- 
dure and D the number of evaluations needed to estimate 
partial derivatives. The HSS technique significantly reduces 
the magnitude of N, when compared with other techniques, 
such as MCS (Monte Carlo Sampling) or LHS (Latin Hyper- 
cube Sampling). 

4) During the external algorithm progression we kept N, 
constant, although Chaudhuri and Diwekar (1996, 1997) have 
presented a “stochastic annealing algorithm” that uses in- 
creasing values of N, when the solution seems to approach 
optimality. When applied to process synthesis problems, this 
alternative has contributed to additional computational effort 
reduction and may also be explored within our optimization 
framework. 
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5 )  The external algorithm procedure used in this article 
(NPSOL package) requires a large number of objective func- 
tion evaluations (since partial derivatives are estimated by fi- 
nite differences), fails to take full advantage of the informa- 
tion about the deterministic model obtained in each external 
iteration (for each objective function evaluation the deter- 
ministic model is applied N, times, and such values might 
possibly be explored in order to speed up and guide conver- 
gence), and does not offer global optimization guarantees. 

The major goal of this article is to introduce a new robust 
optimization conceptual framework and problem formulation 
that has been applied and tested successfully over a small 
sample of relatively simple process models (which required 
CPU times on the order of minutes for finding an optimal 
solution). Therefore, we do not concentrate too much on al- 
gorithm or computational efficiency details or on comparing 
different optimization routines. The development of an ex- 
ternal algorithm that assures a global optimum and tries to 
overcome some of the previous NPSOL limitations, together 
with applications to large scale problems, is currently the sub- 
ject of further work, and will be reported in forthcoming pub- 
lications. 

Case Studies 
To provide specific examples of application for the sug- 

gested robust design framework and methodology, we will 
consider two chemical processes. First, we will examine a 
simple model for a continuous stirred tank reactor (CSTR) 
subject to process-inherent uncertainty. Later, a batch distil- 
lation column will provide a more complex case study, subject 
to additional types of uncertainty. 

Table 1. CSTR Model Nomenclature 

v = reactor volume, m3 
F = volumetric flow rate, m3/min 
Q = rate of heat removal, J/min 

To = inlet temperature. K 

T = reactor temperature, K 

C,,,,,C,, = inlet concentrations of A and B, mol/m-' 

CA,CB = concentrations in the reactor, mol/rn' 

PB = rate of production of B,  mol/min 
EA, E ,  = activation energies, J/rnol 
k i ,  k i  = preexponential constants, min- ' 

A H , ,  A H ,  = molar heats of the reactions, J/mol 
p = system density, kg/m' 

cp = system specific heat, J/kg K 
R = ideal gas constant, J/mol K 

The parameter values and the initial operating conditions 
are presented in Table 2. Process-inherent uncertainty is con- 
sidered by describing all operating variables through inde- 
pendent normal probability density functions (these uncer- 
tainties are expressed using the operating window format in 
Table 2). The output quality-related variable is assumed to 
be the rate of production of B, PB, with a desired nominal 
value of 600 mol/min (PB* 1. 

Our objective function is, as stated before, the overall an- 
nual plant cost, C, obtained from the following set of consid- 
erations (further details about cost functions can be found in 
Appendix A): equipment cost, C,, is the annually amortized 
reactor investment, expressed as a function of reactor volume 
(V); operating costs are functions of both the flow rate, F ,  
and the rate of heat removal, Q; and control costs, C,, associ- 
ated with each operating variable, z ,  are given by: 

CSTR application 
In this section we will consider the CSTR already briefly 

introduced (Figure 1) with the nomenclature presented in 
Table 1. 

Two first-order reactions in series ( A  --$ B -+ C )  with Ar- 
rhenius kinetics are assumed to occur. The stationary process 
model is obtained through an energy balance around the re- 
actor and two material balances, referring to components A 
and B: 

pc,F(T, - T ) +  k j  exp(- E,/RT)C,( - AH,)V 

+ k i  exp( - E,/RT)C,( - AH,)V - Q = 0 (15) 

F(C,, -C,)+ k j  exp(- EA/RT)CAV 

The model variables can be classified according to our 
problem mathematical formulation (P): 

d = [ V]-design variable 
z=  [ F ,  Q, CAo, C,,, T,,IT-operating variables 
O=[E, ,  E,, k j ,  k i ,  AHl, AH,, p ,   process model 

parameters 
y ,  = [ PB]-quality variable 

(18) 

where (Y and P are constants, p, is the mean value of z ,  and 
uz its standard deviation; quality costs are expressed by a 
symmetric Taguchi loss function: 

where k is a constant (quality loss coefficient). 
The number of observations, Nx, needed to predict objec- 

tive function values with enough accuracy is evaluated by in- 
creasing the number of observations employed until the mean 
and standard deviation for the output variable PB can be 

Table 2. CSTR Parameter and Initial Conditions 

Parameters Initial Operating Cond. 

EA 3.64 X lo4 
En 3.46 x 104 

8.4 x 105 
k: 1.6 X lo4 

A H ,  - 2 . 1 2 ~ 1 0 ~  
AH2 - 6.36 X lo4 

P 1,180 
3.2 x 103 cP 

R 8.314 

0.391 
1.004 ( 1  +0.10) 

3,118 (1 +0.05) 
342.5 (1 + 0.05) 

314 (1 k0.05) 

2 . 5 4 ~  107 ( i+o. ioj  

2,416 
940.2 
311.6 
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Table 4. Outputs and Cost Associated with the Different 
Solutions 

6001 , , , , , , , , , , , , 

0 100 200 300 400 500 
Number of Observations 

70 
0 100 200 300 400 500 

Number of Observations 

Figure 3. Mean (a) and standard deviation (b) PB esti- 
mates. 

estimated with a maximum error of 1%. Figure 3 shows the 
results obtained for the CSTR initial operating conditions, 
where a number of observations greater than 344 places the 
two represented quantities within the assumed error bands 
(dashed lines), therefore leading us to a conservative value of 
N, = 400. 

To stress the relevance of considering different kinds of 
uncertainties and the associated robustness issues, Table 3 
compares the results obtained under a fully deterministic ap- 
proach, where all uncertainties are ignored, with the ones 
achieved by the proposed integrated robust optimization 
framework. Under a deterministic approach, the decision 
variables are the nominal values of the operating variables, 
while in our stochastic approach the E,  tolerances are also 
considered as additional decision variables, besides the asso- 
ciated pZ values. It can be seen that indeed both solutions 
are quite different and located in separate zones of the oper- 
ating space. The robust solution defines the best operating 
region to implement a control system and the feed stream 
temperature, To, was identified as the critical control vari- 
able, for which a quite small tolerance must be achieved. 

Table 3. Comparison Between the Deterministic and Robust 
Solution 

Deterministic Robust 

I/ (m’) 0.3918 0.3463 
F (m3/min) 0.6621 0.5023 (1 f 0.099) 
Q (kJ/min) 1,619 146.7 (1 + 0.080) 

C,qo (moi/m3) 3,449 3,140 (1 f0.050) 
CBo (moi/m3) 34.25 510.7 (1 f0.050) 

To (K) 305.7 313.8 (1 f0.005) 

Determ.* Determ.* * Robust 

p p B  (mol/min) 608 602 600 
&p,,(mol/min) 117 17.2 16.8 
C, ($/year) 1,149 1,149 1,064 
C, ($/year) 1,145 2,105 2,105 
C, ($/year) 89,890 1,973 1,835 
C, ($/year) 9,688 9,688 9,712 
C ($/year) 101,872 14,915 14,716 

*Tolerances of 10% (F and Q) and 5% (C,fo, C,,, and T o )  as initial 
conditions, placed around deterministic optimum. 
Optimal robust solution tolerances placed around the optimal deter- 
ministic pointwise solution. 

** 

In Table 4 we compare the outputs and the different costs 
obtained by the two approaches (deterministic and robust op- 
timization), as well as the cost associated with placing the 
optimal robust solution tolerances around the deterministic 
optimal pointwise solution, thus building an operating region 
around it. The results obtained for the deterministic ap- 
proach were obtained considering as tolerances the initial 
guesses used for stochastic programming (10% for F and Q, 
5% for CAo, C,,, and To), and placing them around the opti- 
mal deterministic pointwise solution. The stochastic formula- 
tion corresponds to an expected output standard deviation 
that is approximately 14% of that obtained with the deter- 
ministic approach, the same percentage that occurs in the 
case of the overall average annual plant cost. 

Figure 4 shows the optimal input PDFs that define the op- 
erating region Z * .  The PDFs for the output variable, PB, 
before and after robust optimization (Figure 5) illustrate the 

30 

2800 3100 3400 
C~o(moVm ) 

0.8 ~ 

y 0.4 

0.2 , 
0 

280 300 320 340 
To 00 

Figure 4. Optimal robust CSTR operating region. 
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Figure 5. PB PDF before (broken line) and after (solid 
line) robust optimization. 

quality improvement obtained when the stochastic methodol- 
ogy is used (initial values are the ones reported in Table 2).  

Batch distillation column application 
The batch distillation column (Figure 6) consists of a re- 

boiler at the bottom, a rectifier column and a condenser at 
the top, with the nomenclature and initial operating condi- 
tions provided in Table 5 (we will only consider binary mix- 
tures, with all the compositions mentioned referring to molar 
fractions on the more volatile component). 

During batch time, the feed mixture becomes poorer in the 
more volatile component, and therefore x D  decreases. In or- 
der to maximize the batch average product composition, x; ,  
the distillation column operates with time dependent reflux 
ratio and grows linearly with batch time: 

(7) 
Reboiler 

Figure 6. Batch distillation column. 

2014 September 1998 

Table 5. Batch Distillation Column Nomenclature and 
Initial Conditions 

(Y = relative volatility 2 
N = number of theoretical stages 
R = reflux ratio, R( t )  = R ,  + R,t 
V = vapor boilup rate, mol/h 
F = total feed, mol 
x F  = feed composition 0.5 

t =batch time, h 
T = final total batch time, h 

8 
R ( f )  = 2.3 + t 

100 
100 

- 

0.7 
17.59 

0.9499 

D = total distillate, mol 
x D  = product composition - 

B = bottom product, mol 
xB =bottom composition - 

xT, = average product composition 
- 

R ( t )  = R, + R,t (20) 

Model variables can be classified as follows, according to 

d = [ N]-design variable 
z = [ R ( , ,  R, ,  V ,  F ,  x F ,  TIT-operating variables 
O =  [ a]-process model parameter 

y ,  = [ xg]-quality variable. 
As output quality-related variable we will consider the av- 

erage product composition, x; ,  with a nominal desired value 
of 0.95. 

Our assumed objective function is the plant annual profit: 

our problem mathematical formulation (PI: 

L = L ,  - c, (21) 

where L ,  stands for the nominal revenue and C represents 
overall annual cost of operating the plant. 

The nominal revenue is computed taking into account the 
nominal sales value for the product relative to the cost of 
feed. As before, the overall annual cost, C, is the sum of 
equipment, operating, control and quality costs (details in 
Appendix A), where 

Equipment cost is a function of the number of theoreti- 
cal stages, N, and the vapor boilup rate, V. 

Operating costs depend on the vapor boilup rate, V,  and 
the average molar weight of the mixture, M .  

Control cost is computed by considering as control vari- 
ables the vapor boilup ratio, V,  and the reflux ratio (con- 
trolled by the initial value, R,), with the associated Cz values 
being given by Eq. 18. 

Quality cost is expressed by an asymmetric quadratic 
Taguchi loss function, with a larger penalty associated with 
product that is poor on the more volatile component. 

This example integrates different sorts of uncertainties, as 
defined by Pistikopoulos (1995). The purpose of the robust 
design problem formulation is to define a batch distillation 
column that is flexible enough to operate well with different 
feed mixtures and compositions. Therefore, a design scenario 
under high levels of uncertainty is assumed (Table 6): 

Thermodynamic relationship errors lead to uncertainties 
in the relative volatility-model-inherent uncertainty. 

0 Operating variables are also subject to uncertainties, and 
therefore initial reflux ratio, R,; vapor boilup rate, V, total 
feed, F ;  and feed composition, x F ,  are considered to be ran- 
dom variables. 
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Table 6. Batch Distillation Column Uncertainties 

Modelkherent a = 2 (1 kO.1) (uniform) 
Process-inherent R ,  = 2.3 (1 kO.1) (normal) 

I/= 100 (1 i 0.1) mol/h (normal) 
F = 100 (1 F 0.2) mol (uniform) 

x F  = 0.5 (1 f 0.2) (uniform) 
M = 0.085 (1 f 0.2) kg/mol (uniform) 

- 
External 

External uncertainties are also accounted for through the 
consideration of the mixture average molar weight as a pa- 
rameter with a given probability density function. 

As stated before, the accuracy of the sampling technique 
must be evaluated for each process model, with 500 observa- 
tions needed in this case to reliably predict the xT, mean and 
standard deviation. 

The results obtained by the two distinct approaches are 
compared in Table 7. In the deterministic formulation the 
decision variables are the number of theoretical stages, N ;  
the reflux ratio (variables R ,  and R l ) ;  the vapor boilup rate, 
V ;  and the batch time, T ;  whereas in the robust optimization 
tolerances for the control variables V and R ,  are also treated 
as decision variables. The optimal robust solution is once 
again located in a quite different zone of the decision space, 
indicating V as the control variable where a smaller tolerance 
should be achieved (Figure 7). When we attempted to place 
optimal robust tolerances around the deterministic pointwise 
solution, the resulting region was found to be infeasible (the 
batch distillation column model does not converge for at least 
one observation). This fact, by itself, reinforces the relevance 
of the stochastic approach and points out the limitations of 
fully deterministic solutions that do not account for impor- 
tant uncertainty sources that affect plant operation. 

Table 8 compares the outputs and costs before and after 
stochastic optimization (the initial values are the ones re- 
ported in Table 5,  with the uncertainty scenario of Table 6). 
The optimization procedure results in a reduction of 35% in 
the annual plant cost and a 13% increase in annual profit. 
The output PDF for average product composition moves in 
the direction of richer product and its standard deviation is 
reduced from 0.0318 to 0.0290 (Figure S), resulting in a 48% 
decrease of quality cost. This output variability reduction is 
achieved while control tolerances increase significantly ( R , )  
or slightly ( V ) ,  indicating that the space region identified 
leads to better performance and was able to do so together 
with easier to achieve process control goals (Figure 8). 

Conclusions 
We have developed a robust optimization framework that 

is able to integrate different sorts of uncertainties, control, 

Table 7. Comparison Between Deterministic and 
Robust Solutions 

Deterministic Robust 
N 15.74 11.63 
4, 2.063 2.058 (1 k0.181) 
R ,  0.6622 1.690 

T (h) 0.5000 0.6912 
V (mol/h) 122.2 107.2 (1 f 0.0988) 

3 -  

h 2 -  

1 
s 

0 -  -'-- 

1.6 1.8 2 2.2 2.4 
Relative volatllay 

0.15 

85 105 125 
V (mofi) 
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Ro 
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Figure 7. Parameter uncertainty and operating regions 
for the distillation column: initial conditions 
(broken line) and after robust optimization 
(solid line). 

quality, and operation issues at an early plant design stage, 
leading to the simultaneous definition of optimal system, pa- 
rameter, and tolerance designs as defined by Taguchi (1986). 
Optimal operating zones are identified together with associ- 
ated control needs, providing a solution that takes into ac- 
count investment, quality, operating, and control costs. 

The mathematical formulation developed leads to a 
stochastic optimization problem solved by coupling a stochas- 
tic process model with an external optimization procedure. 
An efficient sampling technique is used to estimate objective 
function expected values. 

The suggested approach, and the solution methodology as- 
sociated with it, can be applied to almost any sort of process 
design problem. Two specific examples were addressed in this 

Table 8. Outputs and Costs Associated with Initial 
Conditions and Robust Solution 

Initial Conditions Robust Solution 
j& (moll 17.62 17.68 
eD (moll 0.6512 0.7524 

G ( x i )  0.9416 0.9667 
6 ( x : )  0.0318 0.0290 

C, ($/year) 196 

C, ($/year) 3,605 
C, ($/year) 611 
C ($/year) 4,806 

L,  ($/year) 19,298 
L ($/year) 14,492 

C, ($/year) 394 
244 
370 

1,879 
654 

3,147 
19,571 
16,424 
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Figure 8. xg PDF before (broken line) and after (solid 
line) robust optimization. 

article (a CSTR and a batch distillation column), providing 
enough evidence for the usefulness and relevance of both our 
problem formulation and solution methodology. 
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Appendix: Cost Functions 

CSTR application 
The assumed objective function is the overall annual plant 

cost, C, which includes the four cost categories: equipment 
cost, C,, operating cost, C,, control cost, Cz, and quality cost, 

Douglas (1988) presents an installation cost correlation for 
cylindrical reactors as a function of the diameter, 0 (ft), and 
the height, H (ft): 

cs. 

M&S 
101.90’ “66H”.s02(2.18+ F,) ,  (Al) 

where F, = 2 includes material and operating pressure in- 
dexes. Considering D = H ,  M&S = 900 and a three-year con- 
stant amortization, we have: 

, (A21 

with the volume expressed in m3. 
The operating costs include heating/refrigeration costs: 

900 
786 

Cutil, $/yr = ---(7,896-6,327q +4.764x lo4$ 

- 1.022X 104q4), (A3) 
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where q = Q/Q" and Q N  = 2.54X lo7 J/min; and pumping 
costs: 

900 38.60 
Cpump, $/yr = ( 834 1 ( 3 j i264.2F)0'8050, (A41 

with F expressed in mymin. Equation A3 results from a 
polynomial regression based on values presented by Douglas 
(1988); Eq. A4 is based on an installation cost graphic corre- 
lation for centrifugal pumps (Peters, 1991). 

Control costs are estimated by Eq. 18. The residual cost, 
a ,  is considered as 6% of C, + Cpump for the initial operating 
conditions (Table 21, which give LY = $143.2. The p parame- 
ter is computed considering the control cost for a single oper- 
ating variable as 7.5% of C, + Cpump (for the initial operating 
conditions), when the variable tolerance is E, = 0.15, leading 
to p = 1.736. The total control cost is the sum of the contri- 
butions corresponding to the five operating variables: 

Finally, quality costs are expressed by the symmetric 
Taguchi loss function Eq. 19, where the constant k is com- 
puted assuming that a 10% deviation on the quality-related 
variable PB leads to an increase of 50% in the cost C, + C, 
(for the initial operating conditions). This assumption results 
in a k value of 6.536. 

Batch distillation column application 

Eq. 21. 

the following expressions: 

Our objective function is the plant annual profit given by 

Equipment, operating costs, and control costs are given by 

c,vMP c,v 
C,,$/yr = - +-, 

G* G b  
iA6) 

where P is the number of theoretical plates ( P  = N - 11, c1 
= $15/m2/(theoretical plate)/yr, c2 = 1.65 $/m2/yr and G, = 

15 kg/h/m2 (Diwekar and Kalagnanam, 1997a,b); 

24(365)c,WT 
T + t ,  c,, $/yr = 

where c3 = 0.00935 $/kg and t ,  = 0.1 h is the stop time be- 
tween batches (Diwekar and Kalagnanam, 1997a,b); 

where a and p have the same values as for the CSTR exam- 
ple: a = $143.2 and p = 1.736. 

The nominal profit is based on the nominal sales value for 
the product relative to the cost of feed, P/ = 0.1 $/mol (Di- 
wekar and Kalagnanam, 1997a,b): 

When the average product composition differs from the 
desired value (0.95), the product sales price, Pr, is penalized 
through an asymmetric quadratic Taguchi loss function. For 
a given observation i, corresponding to an average product 
composition x&, the penalty function is: 

P: - kl(xE,8 -0.95)2 

P;"- k,(x;,, -0.95)* > 0.95, 

x;,, I 0.95 
(A101 pr,, = 

where k ,  = 20 and k ,  = 4. The associated quality cost is given 
by: 
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