
THE CONTROL OF BAXTER ROBOT, AND ITS
INTERACTION WITH OBJECTS USING FORCE
SENSITIVE AR10 HANDS, GUIDED BY KINECT

Pedro Jorge da Cruz Lino

09/2017

Dissertação de Mestrado em Engenharia Eletrotécnica e de Computadores

TH
E

CO
NT

RO
L
OF

 B
AX

TE
R

RO
BO

T,
AN

D
ITS

 IN
TE

RA
CT
IO
N

WI
TH

 O
BJE

CT
S U

SIN
G

FO
RC

E
SE
NS

ITI
VE

 A
R1

0
HA

ND
S,

GU
IDE

D
BY

 K
INE

CT
Pe

dro
 Jo

rge
 d

a
Cru

z L
ino

U
n

i
v

e
r

s
i

d
a

d
e

d

e

C
o

i
m

b
r

a

U n i v e r s i d a d e d e C o i m b r a
Departamento de Engenharia Electrotécnica

e de Computadores

Master Thesis

The control of Baxter Robot, and its
interaction with objects using force

sensitive AR10 hands, guided by Kinect

Date: 11-9-2017

Author: Pedro Jorge da Cruz Lino

Advisor: Hélder Araújo

Advisor: Rui Cortesão

Master Thesis
Author: Pedro Jorge da Cruz Lino

Index

1 Abstract 2

2 Acknowledgments 2

3 Preface 3

4 Introduction to Baxter 4

5 A first touch on Baxter 5
5.1 Baxter Hardware controllers . 5
5.2 Baxter Hardware limitations . 6
5.3 Study of the best Joint Position Control function given by Rethink Robotics . . 7
5.4 Study of the Joint Angular Positions and Velocities stability 12

6 Baxter arms and Control Architectures for the end-effector 16
6.1 Control by Position . 18
6.2 Control by Velocity . 23
6.3 Control by Torque . 28

7 Kinect Sensor and its usefulness with Baxter 32
7.1 Finding objects within an image . 32
7.2 Object tracking with Kinect using color intervals 33
7.3 Object tracking with Kinect using the color histogram 33
7.4 Object 3D mapping using Kinect . 35

8 Touch sensors 38

9 AR10 Hands 40
9.1 Controlling the AR10 hands on their own . 40
9.2 Controlling the AR10 hands with touch sensors 42

10 Baxter Interaction with an Object 43
10.1 Interaction with velocity control . 47
10.2 Interaction with torque control . 48
10.3 Comments on the fulfilment of the task, and the controllers performance 49

11 Conclusions 50
11.1 Baxter Robot . 50
11.2 AR10 robotic hands . 51
11.3 Soft Sensors . 51
11.4 Kinect . 51
11.5 Baxter Robot control and integration with the peripherals 52
11.6 Possible future improvements . 52

12 Web-graphy and Bibliography 53

1

Master Thesis
Author: Pedro Jorge da Cruz Lino

1. Abstract

This work was made in the context of a master thesis, and it aims to explore Baxter
Robot capabilities, and explore architectures of control to move its robotic arms. This work also
includes the installation of Baxter workstation, for the first time, in our university department
(Departamento de Engenharia Electrotécnica e de Computadores da Universidade de Coimbra).

The concrete objective of this thesis is to get Baxter to pick and place objects, as a prove of
concept task, in the safest way possible for Baxter to be working side by side with humans. This
work takes its greatest emphases on learning how Baxter works, and it will be explained how to
take the leap from Baxter given examples, to the study of Velocity and Impedance controllers
and how to use their null-space to take advantage of the 7 DOF available on Baxter arms.

To fulfil this pick-and-place task, there will be implement alongside Baxter a Kinect sensor,
that will map the position of the object to pick and the site to place, and send this mapped
position to Baxter.

To enable a better grasping of objects there were also integrated AR10 robotic hands with
soft pressure sensors on the fingers.

Figure 1: Image representative of the robot final build, with peripherals.

2. Acknowledgments

I would like to thank my family and friends and how their work and patience helped me in
my journey.

I thank the trust that my advisors, Hélder Araújo and Rui Cortesão deposited in me, and I
would also like to thank the professor responsible for the soft sensors Mahmoud Tavakoli, and
two of his co-workers Luís Lourenço and Rui Pedro Rocha, that delivered a quite good assistance.

I would particularity like to thank Gonçalo Martins for his help in teaching me the basics
of Python and ROS.

2

Master Thesis
Author: Pedro Jorge da Cruz Lino

3. Preface

I’ve always been an enthusiast of robotics. This enthusiasm led me to finish a masters in
Automation and Control. When searching for a thesis theme, the university had just acquired a
Baxter robot, and I was given the chance to be the first to work with it. This seemed to me as
the perfect opportunity, to express my dedication and knowledge in getting this "machine" to
work.

It wasn’t trivial to "build" the workstation from the ground up. It was necessary to install
Ubuntu (and all the necessary libraries required), to install the ROS workspace for the robot,
to install all the other software required to work with the peripherals (AR10 hands, Kinect,
Arduino and Sensors) and, finally, to make them all interact, efficiently, with each other. I also
had to learn Python and ROS in the process almost all by myself.

Programming Baxter wasn’t trivial either, since passing from the Gazebo simulator to the
real thing was not without its "surprises".

Things that proved to be difficult to manage in order to get Baxter to accommodate velocity
and torque controllers were:

• the fluctuation/noises of Baxter given joint angular positions and velocities, at each instant;

• the management of the process running the control cycle, that was very sensitive to the
adage of more ROS subscribers, since they would decrease its frequency.

• the official Rethink Robotics site (the source of many of the information available on Baxter)
has its information scattered and it’s not always very easy to find a specific subject, topic
or page in it;

Adding to these difficulties, the AR10 hands were relatively slow, full of fluctuations and
noises, and the tutorials weren’t very useful at preparing the user to deal with the "real" hand
limitations themselves.

The Kinect sensor, however widely used, was a little tricky to implement in Ubuntu/Linux
using ROS indigo, with freenect library and drivers.

Finally, the soft sensors used were a little hard to get right, since they usually leaked liquid
metal, and had to be repaired sometimes, until a robust solution was found.

Bottom line, in engineering every problem leads to other problems and questions, and
the process of making something work, takes its time. To the best of my work, many of these
problems were bypassed or solved throughout the thesis development, and I was satisfied with
the final result.

Better results could have been achieved with more time and effort, but I’ll leave my work
in a proper state, so it can be grabbed and continued by anybody interest in the subject. I
encourage people to improve the problems discussed, and find new, better solutions to them, so
society can start to integrate safer and more useful robots in our daily lives.

3

Master Thesis
Author: Pedro Jorge da Cruz Lino

4. Introduction to Baxter

Baxter is an accessible robot from Rethink Robotics. Because it was built and designed to
be robust and safe to work around, it delivers an overall great solution as a collaborative robot,
that can work continuoulsy in a variety of environments. "Baxter is easy to train and fast to
deploy" - as stated in the official site [1].

Baxter most evident attributes are two independent force sensing arms, with 7 DOF
(Degrees of Freedom) each, and it also includes 3 independent cameras one in the top of the LCD
and two in each wrist (the wrists also include an accelerometer and a distance IR laser sensor).

The greatest advantage of using Baxter, and similar robots, is that they can match many
human repetitive tasks (if used well), and, therefore, they are a step forward in the automation
of processes and in the human-robot interaction and conjoint work.

The Baxter version utilized in this thesis is the: Baxter Research Robot (v1.2.0.57), which
does not contain the Intera software [2]. The Intera software was specifically designed to make
Baxter more accessible ("plug and play"), and to help workers interact easily with Baxter
interface, allowing them, also, to teach him to perform tasks and help with their own job, in
their specific environment.

The version used, allows Baxter to be programmed from the ground up, with the additional
freedom that derives from it.

In order to program Baxter, it was followed the Rethink Robotics tutorials and example
codes avaiable for Baxter from the offical site [6]. In order to get the examples to work, there
was installed ROS Indigo in Ubuntu 14.04 (as recommended) and used Python as the codding
language. The Python processes will be executing/running directly in the robot’s computer, via
SSH (Secure SHell).

Baxter arm is composed by seven joints and these joints will sometimes be referred to as a
vector q of 7 dimensions.

Figure 2: Image of Baxter left Limb/Arm and it’s joint names.

4

Master Thesis
Author: Pedro Jorge da Cruz Lino

5. A first touch on Baxter

Before jumping to the real robot, some codes were experimented in the Gazebo Baxter
simulation. However it was a very accurate simulator, and helped understanding Baxter examples
very easily, it wasn’t without its limitations. The real implementation was needed to identify
real-time problems, like noises associated with measurements, tremors and fluctuations, and
force interactions with the robot, in between others (for example: cameras and distance sensors).

After turning on the robot for the first time, and calibrating and taring the arms, there
were executed some of the given examples, that had already been tested on the Gazebo simulator.
The first thing noticed, in all the examples, was the electrical motors noises, and tremors, that
led to suspect that the robot wasn’t very precise, even right after being calibrated. This resulted
in going through a series of tests to find the best way to program, deal with the robot, and its
"real" environment limitations.

5.1. Baxter Hardware controllers

In order to communicate correctly with Baxter, ROS messages must be shared between the
Robot Hardware, and a higher level programming language like C++ or Python. In this work,
to follow Baxter’s example codes, Python was the language chosen.

The Software programed, must, at all times, respect the Hardware restrictions (like ROS
frequencies, and sensor resolutions). One of the most important things that must be respected
at all times, while testing architectures of control, is the given lower-lever control modes avaiable
to control the arms motors movements. These are talked about in Rethink Robotics site [5], and
the information can be summarized in these images:

(a) This Control is the one used in the functions:
move_to_joint_positions(),
set_joint_positions(,raw=False)

(b) This Control is the one used in the function:
set_joint_positions(,raw=True)

5

Master Thesis
Author: Pedro Jorge da Cruz Lino

(c) This Control is the one used in the function:
set_joint_velocities()

(d) This Control is the one used in the function:
set_joint_torques()

Figure 4

5.2. Baxter Hardware limitations

Before advancing further on this thesis, it is important to know some of the robot hardware
limitations (taken out from the official site [5]). These limitations will be more evident in the
accuracy of the results obtained from the tests that the robot will be exposed throughout the
work. These might be in the root of many problems and imprecisions in the plots.

The following items, were taken from Rethink Robotics official site:

• (Quote regarding the Torque motor controller) A control rate timeout is also enforced
at this motor controller layer. This states that if a new ’JointCommand’ message is not
received within the specified timeout (0.2 seconds, or 5Hz), the robot will ’Timeout’. When
the robot ’Times out’, the current control mode is exited, reverting back to position control
mode where the robot will command (hold) it’s current joint angles.

• (Quote) When commanding joint velocities, if a commanded velocity to one of the joints will
result in a joint position that is beyond the joints limits, no joints will be commanded, as all
of the command is considered invalid. Reason we do this; an example of a common control
method, using the Jacobian for Cartesian control resulting in joint velocity commands.
If a single joint hits its limit, the rest of the joints will still be commanded, resulting in
obscure and potentially dangerous motions. We recommend either implementing a joint
space potential field or joint limit check before submitting the joint velocity commands.

• (Quote) The resolution for the joint sensors is 14 bits (over 360 degrees); so 360/(214) =
0.021972656 degrees per tick resolution.

6

Master Thesis
Author: Pedro Jorge da Cruz Lino

• (Quote) All of the joints have a sinusoidal non-linearity, giving a typical accuracy on the
order of +/-0.10 degrees, worst case +/-0.25 degrees accuracy when approaching joint
limits. In addition, there may be an absolute zero-offset of up to +/-0.10 degree when the
arm is not calibrated properly. Be sure to tare and calibrate the arms if you’re trying to
minimize accuracy errors in the joint sensors. (...) The performance of the joint controllers
is a separate matter; ultimately, the accuracy of the controller is only limited by the
accuracy of the sensors. In a case where joint position controllers are included, we use
a threshold to determine when the joint states are "close enough" to the commanded
joint angles to call it acceptable. In the baxter_interface for the RSDK, we use a default
threshold of: JOINT_ANGLE_TOLERANCE = 0.00872664626 radians (0.5 degrees),
which is set in settings.py and used by the limb interface and the joint_position examples.
If you want to improve the accuracy, you can write your own controller to adjust the
setpoint and to overcome any steady-state error in the internal low-level controllers. Even
when the joint controller is slightly off the target position, it always knows exactly how far
off it is, via the joint position sensors.

5.3. Study of the best Joint Position Control function given by Rethink
Robotics

The simplest way to test the stability of the robot was to run some of the Rethink Robotics
own code, to make the arm stay at a given pose, for a specific amount of time, and see if the
tremors/noises would continue, and if so, what could be in the root of this problem.

The tests that are about to conducted, and presented, will be experimenting the Python class
"Limb", from Rethink Robotics API reference ([4]), to show Baxter static performance with the
functions: move_to_joint_positions() , set_joint_positions(,raw=False) and set_joint_positions
(,raw=True). These Python functions, theoretically, do exactly the same thing, that is: send the
desired angular position command to the joints motors. The ROS message being used by these
functions is: "/robot/limb/(left/right)/joint_command", which properties result in the different
nuances:

• move_to_joint_positions() commands the joints to arrive at the desired position at the
same time, using a low-pass filter of 0.2 Hz. The function relies on the ROS message
property POSITION_MODE, thus uses the controller from image 3a;

• set_joint_positions(,raw=False) simply commands the joints to the specified positions.
The function relies on the ROS message property POSITION_MODE, thus uses the
controller from image 3a;

• set_joint_positions(,raw=True) commands the joints to the specified positions, providing
a much more direct position control on the joints (it can be also more dangerous to use).
The function relies on the ROS message property RAW_POSITION_MODE, thus uses
the controller from image 3b

The commands carried by the messages must respect the hardware properties of the robot,
including the recommended ROS rate of 1kHz. This also means that the end-user/programmer,
has to submit to Baxter hardware limitations (stated in section 5.2).

To test the robot response for a static reference, the following tests were run after calibrating
and taring the robot, and were all executed in the left limb/arm. The same tests were conducted
for the right arm, but the results were similar, since the arms are very similar in structure and
behaviour.

7

Master Thesis
Author: Pedro Jorge da Cruz Lino

The static angular reference given to the left-arm joints (referenced in 2) (s0..w2), at an
approximate rate of 1kHz, was:

qinitial(s0..w2) =
[
−π/4 −π/4 0 π/4 0 π/2 0

]
(1)

which corresponds to an approximate end-effector position, referenced on the robot’s
root/origin, of:

Xinitial(x, y, z) '
[
0.815 0.257 0.364

]
(2)

it goes without saying that the static behaviour predicts no angular velocities on the joints
from (s0..w2).

Note: In the following examples the Xinitial will always be the first X,Y,Z position
read by the robot in the beginning of its movement, after being put on the qinitial using
move_to_joint_positions().

For the use of the function: move_to_joint_positions(), the following plots were obtained
(measures in millimetres):

5 10 15 20 25 30
time(s)

804.82

806.93

809.04

811.15

813.26

815.37

817.48

819.59

821.70

823.81

po
si

tio
n(

m
m

)

X plane

5 10 15 20 25 30
time(s)

252.017

253.066

254.114

255.163

256.212

257.260

258.309

259.358

260.406

261.455

po
si

tio
n(

m
m

)

Y plane

5 10 15 20 25 30
time(s)

358.06

359.21

360.36

361.51

362.67

363.82

364.97

366.12

367.27

368.42

po
si

tio
n(

m
m

)

Z plane

Figure 5: Plots of the Left arm end-effector position in (x,y,z) for move_to_joint_positions()

As it can be noticed in the plots, something strange happened in the interval from the 1st
to 3rd seconds. What happened, is that the end-effector position started being published in a
different way. This might be explained by the filter being used in the function, and its nuance
of blocking Baxter’s data flow. Anyhow, it can be seen that the end-effector position, doesn’t
remain still even with the filter being applied by the function: move_to_joint_positions(). It
can also be clearly seen a stationary error, left to correct, in the X plane.

8

Master Thesis
Author: Pedro Jorge da Cruz Lino

For the use of the function: set_joint_positions(,raw=False), the following plots were
obtained (measures in millimetres):

5 10 15 20 25 30
time(s)

805.14

807.31

809.47

811.64

813.80

815.96

818.13

820.29

822.46

824.62

po
si

tio
n(

m
m

)

X plane

5 10 15 20 25 30
time(s)

253.59

255.20

256.81

258.42

260.03

261.64

263.25

264.86

266.47

268.08

po
si

tio
n(

m
m

)

Y plane

5 10 15 20 25 30
time(s)

349.40

351.54

353.67

355.81

357.94

360.08

362.21

364.35

366.49

368.62

po
si

tio
n(

m
m

)

Z plane

Figure 6: Plots of the Left arm end-effector position in (x,y,z) for set_joint_positions(,raw=False)

It can be seen in the plots that there were left great stationary errors to correct, in the
X and Z planes. One can be led to suspect that the function set_joint_positions(,raw=False)
gives worse results than the previous move_to_joint_positions() function. This only stands
true depending on the implementations.

For the use of the function: set_joint_positions(,raw=True), the following plots were
obtained (measures in millimetres):

5 10 15 20 25 30
time(s)

805.01

807.28

809.54

811.81

814.08

816.35

818.62

820.89

823.16

825.43

po
si

tio
n(

m
m

)

X plane

5 10 15 20 25 30
time(s)

255.904

256.994

258.083

259.173

260.263

261.352

262.442

263.531

264.621

265.710

po
si

tio
n(

m
m

)

Y plane

5 10 15 20 25 30
time(s)

350.36

352.46

354.56

356.66

358.76

360.86

362.96

365.06

367.17

369.27

po
si

tio
n(

m
m

)

Z plane

Figure 7: Plots of the Left arm end-effector position in (x,y,z) for set_joint_positions(,raw=True)

From the plots, it can be deduced that, for small movements, there are little differences
between the function set_joint_positions() with the attributes raw=True and raw=False.

As shown in the plots, the arm end-effector position has associated a lot of noise. This
noise is to be expected since the robot is exposed to the "real" environment. The signal tends to
stabilize eventually, but always far away from the reference with a remaining stationary error. It
is good to recall that this (X,Y,Z) reference was achieved by moving the arm to a certain initial
joint position with the function move_to_joint_positions(), that seems to be the most accurate
of them all.

9

Master Thesis
Author: Pedro Jorge da Cruz Lino

From the previous plots, it could be argued that this reference was not well taken, and that
the arm’s reference is not the one shown in blue, but should be the one it is tending/stabilizing
to. In order to disprove this, the following tests were taken to examine the exact same system
when subjected to an outside perturbation. This perturbation will have three stages: stage one
- a small perturbation will be applied to the side of the arm, not enough to move the motors out
of place; stage two- a harder perturbation will be applied to the side of the arm, rough enough
to move the motors out of place. stage three- redo a similar perturbation to the one done in
stage one;

It’s important to remember that the joints angular positions of reference (from 1) are
constantly being applied to the arm.

For the use of the function: move_to_joint_positions(), the following plots were obtained:

5 10 15 20 25 30
time(s)

806.06

808.15

810.24

812.34

814.43

816.53

818.62

820.71

822.81

824.90

po
si

tio
n(

m
m

)

X plane

5 10 15 20 25 30
time(s)

251.22

254.19

257.17

260.15

263.13

266.10

269.08

272.06

275.04

278.01

po
si

tio
n(

m
m

)

Y plane

5 10 15 20 25 30
time(s)

353.27

355.05

356.83

358.61

360.39

362.17

363.95

365.73

367.51

369.29

po
si

tio
n(

m
m

)

Z plane

Figure 8: Plots of the Left arm end-effector position in (x,y,z) for move_to_joint_positions()

For the use of the function: set_joint_positions(,raw=False), the following plots were
obtained:

5 10 15 20 25 30
time(s)

729.78

740.37

750.97

761.56

772.16

782.75

793.35

803.94

814.54

825.13

po
si

tio
n(

m
m

)

X plane

5 10 15 20 25 30
time(s)

75.0

30.5

14.0

58.5

103.0

147.5

192.0

236.5

281.0

325.5

po
si

tio
n(

m
m

)

Y plane

5 10 15 20 25 30
time(s)

347.31

349.47

351.64

353.80

355.96

358.12

360.29

362.45

364.61

366.77

po
si

tio
n(

m
m

)

Z plane

Figure 9: Plots of the Left arm end-effector position in (x,y,z) for set_joint_positions(,raw=False)

10

Master Thesis
Author: Pedro Jorge da Cruz Lino

For the use of the function: set_joint_positions(,raw=False), the following plots were
obtained:

5 10 15 20 25 30
time(s)

739.39

748.98

758.57

768.16

777.75

787.34

796.93

806.51

816.10

825.69

po
si

tio
n(

m
m

)

X plane

5 10 15 20 25 30
time(s)

58.9

11.9

35.1

82.0

129.0

176.0

223.0

270.0

316.9

363.9

po
si

tio
n(

m
m

)

Y plane

5 10 15 20 25 30
time(s)

349.65

351.80

353.96

356.12

358.28

360.43

362.59

364.75

366.91

369.07

po
si

tio
n(

m
m

)

Z plane

Figure 10: Plots of the Left arm end-effector position in (x,y,z) for set_joint_positions(,raw=True)

As shown in the plots above, the response of the hardware control systems for the pertur-
bations applied should be able to recover to the same end-effector position reference they were
stabilizing to, before the three perturbations were applied. It can be seen, however, that the
control systems recover to another stability state, that is different from the initial one. This
might suggest a deeper problem associated with the joints, and some approaches will be taken
to solve this problem in the next sections.

An important result was to discredit move_to_joint_positions() from being the best
function to control the position of the joints, since it is not fast enough to deal correctly with
perturbations. The observed experimental results, using this function, was bad publishing of the
joint positions, velocities and the position of the end-effector, which resulted in an unexpected
movement of the arm.

Another interesting result is that, when using the raw=True feature, it can be seen a greater
overshoot (more evident in the Y plane) relative to raw=False, but the recovery time is almost
the same. One can be led to conclude that the raw=False is a smoother way to obtain almost
the same results as raw=True, but with more safely - without the risk of reaching dangerous
torques and without the risk of collisions with Baxter itself.

Everything led to the conclusion that using the function: set_joint_positions(,raw=False),
was the best way to control the joint angular positions, in a safe way, for most of the applications.

(These tests were also conducted for the right arm, but with very similar results.)

11

Master Thesis
Author: Pedro Jorge da Cruz Lino

5.4. Study of the Joint Angular Positions and Velocities stability

As shown in the plots, in the previous section, the position of the end-effector is filled with
noise, and there might be occurring problems in the joints that cause this (x,y,z) end-effector
state and behaviour. To examine closer the angular values responsible for this, and because
they were filled with noise, there was applied a low-pass filter (which is an adequate solution for
these high-frequency noises), so that the actual signal could be differentiated from the noise.
The desired signal is supposed to contain the ROS subscriber message of the joint positions and
velocities, and these are crucial for the implementation of the velocity and torque controllers.
Therefore, the filtered signals won’t solve the end-effector position problem (at least directly),
but will help to stabilize the control architectures used in sections 6.1, 6.2 and 6.3.

A good discrete low-pass filter was verified to be the following (applied to the angular
positions and to the joint velocities respectively):

qfiltered[k] = αhqread[k] + qfiltered[k − 1]
1 + αh

(3)

q̇filtered[k] = αhq̇read[k] + q̇filtered[k − 1]
1 + αh

(4)

where q is the joint angular position, q̇ is the joint angular velocity, α is the cut-off frequency
constant, and h is the sample time (commonly used as ∆t).

In order not to overload the reader with plots, from now on, I’ll make use of the function:
set_joint_positions(,raw=False). It was concluded in section 5.3 that this function was
able to follow a real-time reference (which the filtered version move_to_joint_positions() can’t)
and it’s less dangerous to use than its version raw=True. The differences in the end-effector
positions, by taking this choice, are minimal as you saw in the previous section.

Continuing with the study of the arm joints, for a static reference (the same as in 1), but
now looking at the angular joint positions and velocities, the following plots were obtained:

12

Master Thesis
Author: Pedro Jorge da Cruz Lino

The plots in this page show three different signals: the green is the angular static reference,
the read signal in red, and the filtered red signal in blue. The low-pass filter used had a cut-off
frequency of 100Hz.

5 10 15 20 25 30
time(s)

0.79596

0.79371

0.79145

0.78919

0.78693

0.78468

0.78242

0.78016

0.77790

0.77565

an
gl

e(
ra

d)

s0(red is q0/ blue is q0f/ green is the ref.)

(a) s0

5 10 15 20 25 30
time(s)

0.80100

0.79789

0.79477

0.79166

0.78855

0.78544

0.78233

0.77921

0.77610

0.77299

an
gl

e(
ra

d)

s1(red is q1/ blue is q1f/ green is the ref.)

(b) s1

5 10 15 20 25 30
time(s)

0.001162

0.000646

0.000129

0.000387

0.000904

0.001420

0.001937

0.002453

0.002970

0.003486

an
gl

e(
ra

d)

e0(red is q2/ blue is q2f/ green is the ref.)

(c) e0

5 10 15 20 25 30
time(s)

0.77185

0.77461

0.77738

0.78015

0.78291

0.78568

0.78844

0.79121

0.79397

0.79674
an

gl
e(

ra
d)

e1(red is q3/ blue is q3f/ green is the ref.)

(d) e1

5 10 15 20 25 30
time(s)

0.01975

0.01588

0.01201

0.00813

0.00426

0.00039

0.00349

0.00736

0.01123

0.01511

an
gl

e(
ra

d)

w0(red is q4/ blue is q4f/ green is the ref.)

(e) w0

5 10 15 20 25 30
time(s)

1.55129

1.55594

1.56058

1.56522

1.56987

1.57451

1.57916

1.58380

1.58844

1.59309

an
gl

e(
ra

d)

w1(red is q5/ blue is q5f/ green is the ref.)

(f) w1

5 10 15 20 25 30
time(s)

0.001937

0.001635

0.001334

0.001033

0.000732

0.000430

0.000129

0.000172

0.000473

0.000775

an
gl

e(
ra

d)

w2(red is q6/ blue is q6f/ green is the ref.)

(g) w2

Figure 11: Plots of the Left arm joints (s0..w2) angular positions (referenced in 2), in radians

13

Master Thesis
Author: Pedro Jorge da Cruz Lino

The plots in this page show two different signals: the read signal in red, and the filtered
red signal in blue. Because the arm is supposed to be still, the velocities on the joints should
be zero. The low-pass filter used had a cut-off frequency of 100Hz.

(a) s0 (b) s1

(c) e0 (d) e1

(e) w0 (f) w1

(g) w2

Figure 12: Plots of the Left arm joints (s0..w2) angular velocities (referenced here 2), in rad/s

14

Master Thesis
Author: Pedro Jorge da Cruz Lino

From the plots in the previous pages, it can be seen that the filter took away a lot of
undesired noise from the read measurements. However, low-pass filters tend to delay the signal
received, in this case, that delay was negligible.

The filter only actuates on the read values, and, by itself, cannot mitigate the ever so
slightly movements of the joints, even for a static reference.

It was observed, that, unfortunately, some joints keep a static angular error from the desired
reference. This can only be blamed on the hardware motor controllers, since the same reference is
being given at an almost constant rate of 1kHz. Altering the JOINT_ANGLE_TOLERANCE to
a smaller value, to increase the precision of these controllers, resulted in irrelevant improvements;
in fact other problems started to emerge, like: the joints never reached the desired position
with set_joint_positions(,raw=false); the joints took too long to reach the positions with
move_to_joint_positions(); even in the best case, with set_joint_positions(,raw=true), where
the desired positions were achieved, there weren’t noticeable any great improvements in the joint
positions precision and noises.

In some extreme cases, the noises associated with the joints, admitted errors of 0.5 degrees,
even after the robot had been calibrated and tared. This seems to be a small error for a single
joint, however, there are 7 joints, meaning that this effect can, and will, be escalated to the
end-effector position (and might be the cause of the oscillations seen in 9). This problem will also
escalate with the time of execution, since, with time operating, the robot will lose its calibration.

The limitations in section 5.2, should account for some imprecisions in the control architec-
tures studied in the next sections.

In the next sections there will be implemented control architectures, which will face real-
time problems, and even with the applied filter, there should be expected vibrations of some
sort through the arms, or slight deviations from the desired positions. This imprecisions are
not a "surprise", in the sense of the word. References to this issues, can be found in articles
like the IEEE article [9], and the relative price of this robot compared to other, more precise,
ones (that should give a hint about why these problems/imprecisions happen). Even with some
complications, satisfactory results were obtained.

15

Master Thesis
Author: Pedro Jorge da Cruz Lino

6. Baxter arms and Control Architectures for the end-effector

The arm geometry:
Baxter robot has two great arms with 7 DOF each. To take advantage of these degrees of

freedom, one can control the angular positions of the 7 joints, as well as their velocity and torque,
to output a certain position of the end-effector, and "theoretically", with zero steady state error.
This end-effector might be holding some tool (which can be a gripper or a hand) attached to
Baxter’s cuffs, and it’s worth controlling with the best precision possible. The end-objective
of this control, is to attach the AR10 hand to the end-effector, and control its position and
orientation at all times.

The easiest way to control the end-effector in a desired (x, y, z) position is through inverse
kinematics (IK). Baxter tutorial examples, provides us with an inverse kinematic example based
on Baxter’s URDF (Unified Robot Description Format). This approach, however, is quite slow,
not immune to singularities, and cannot always solve for positions in obvious reach of the arm.
Therefore, for a real-time control of the arm, without human teaching, another approach is
needed.

To control the end-effector Cartesian coordinate, it must be generated an error vector. This
error vector can be calculated using the difference between the actual position of the end-effector
and the desired (x,y,z) position, referenced on Baxter’s root. This control will make the arm
reach for that point or the closest point that minimizes that (quadratic) error.

One easy way to describe the end-effector position depending on the state of the seven
joints, is through the Denavit–Hartenberg (DH) parameters. The specific DH parameters for
Baxter are:

Figure 13: Baxter generic arm, dimensions.

16

Master Thesis
Author: Pedro Jorge da Cruz Lino

Figure 14: Table of Baxter’s Denavit–Hartenberg (DH) parameters. This measurements are in meters
(di, ai) and in radians (θi, αi)

The geometric transformation T 0
7 (dimensions 4x4), provides information of both the

end-effector Cartesian position (in x,y,z) and orientation (in a rotation matrix).
Note: Because the arm origin has an offset from Baxter’s root, the approximate values

should be added to the given end-effector position for the left arm of: [+0.0652,+0.26089,+0.117422]
and [+0.0652,−0.26089,+0.117422] for the right arm.

The Jacobian (J) for the end-effector of the arm can be obtained by deriving this end-effector
(x,y,z values) in relation to all the angles joints (from s0 to w2).

Figure 15: Baxter on Gazebo simulator, and Axis visualisation

Baxter publishes the end-effector position and orientation, and this information can be
extracted in the function: endpoint_pose(). This function can be found in the Python class
"Limb" given by Rethink Robotics. Other very usefull functions to calculate the Jacobian and
Inertia Matrices, based on Baxter’s URDF files, are given in an additional Python library from
Orcos [7] called "baxter_pykdl".

Because of hardware dependencies/restrictions, some of the input values for the control,
sourced from the ROS messages related to the "end point" (or end-effector), are published at
a lower frequency (100Hz) than the "joint states" (1000Hz). These limitations can sometimes
result in real time problems. Because of this, in order to source some input values more correctly
and faster, to obtain the velocity of the end-effector, there was used the relation: Ẋ = Jq̇.

17

Master Thesis
Author: Pedro Jorge da Cruz Lino

The control architectures will base themselves on the minimization of the Cartesian error
vector, this error vector is made by differencing the actual position and/or velocity from the
desired position and/or velocity, at each instant (in case of the impedance control it can be
added a desired acceleration). In addition to this, other error vectors can be minimized, because
the robot is redundant, and allows many configurations for the same end-effector position (this
will be explained in more detail on the next sections).

The following subsections will explore the control architectures: Control by Position,
Control by velocity and Control by Torque. The order these architectures will be presented,
was chosen in order to contextualize the reader and to escalate the complexity of the architectures
slowly.

Note: In the control architectures explained in the next sections, there weren’t taken in
account additional loads (weights) applied on arm’s the end-effector. In the case of adding these
weights to the end-effector, its recommend to tune the gains to compensate for the loads, and
still keep the desired behaviour.

6.1. Control by Position

In between Baxter’s examples, there is one in which the robot reads the angular positions
of the joints from a file, and tries to comply with the angular positions and time schedule listed
in that file. This file is supposed to be originated from running another example in which a
human teaches Baxter a trajectory, by taking control of the arm in "Zero-G mode".("Zero-G
mode" is a mode in which Baxter’s arms behave like they had no weigh, so they can be easily
posed by a user, who can obtain that control by grabbing Baxter’s cuffs) Note: Through out
this thesis this Zero-G mode will have to be suppressed at all instants, so it won’t override the
control architecture running.

In order to control the robot, it was made use of the function set_joint_positions(,raw=False)
(used previously in section 5.4), to adapt the example, to use our own desired trajectory and
schedule. This was the first approach to take, because it was the simplest to derive from the
given examples, and it was the simplest to start testing and implementing control architectures
for the end-effector, in this case Position Control.

Controlling a robot end-effector position is a mathematical problem that can be solved
using geometry. Some simple trajectories such as lines and ellipses are usually used to test the
tracking/compliance capabilities of a robot, to obey the desired commands.

Two approaches can be taken doing this tests. In one hand, the desired trajectory to be
followed can be know beforehand, and implemented so, on the other hand, one might want the
robot to follow a certain, arbitrary, trajectory based on the minimization of the end-effector
position error.

I’ll begin with the simplest approach, that is: for a beforehand knowledge of the trajectory.
Only after, I’ll resume with the error based approach.

18

Master Thesis
Author: Pedro Jorge da Cruz Lino

The mathematical problem context involved in the process, will be explained as follows:
To map a desired velocity in Cartesian space to the angular joint space (and vice-versa),

the following physical relation is needed:

Ẋ = Jq̇ ≡ q̇ = J+Ẋ (J−1 ∼= J+) (5)

In the equation, let X be the (x,y,z) Cartesian position vector and Ẋ the Cartesian velocity
vector; J is the Jacobian matrix with dimensions 3x7, and q̇ is the angular velocity of the joints
(from s0 to w2) that respect the relation/equation. Note: The almost equivalent sign was used
because Baxter is redundant and J cannot be directly inverted.

The Jacobian matrix can be separated into two distinct matrices, the top one related to
the Cartesian velocities, and the bottom one related to the angular velocities like so:

J =
[
Jv

Jw

]
(6)

Even with the use of only one of these subdivisions of J , the equations hold true. This fact
will be widely used along this thesis, in order to work with the null-space of some equations.

In order to invert the Jacobian matrix (that is not square, because the robot is
redundant), it was used the Moore-Penrose pseudo-inverse relation. In this relation, the
solution will be approximated via the least squares method.

J−1 will be, from now on, called J+.

J+ = JT (JJT)−1 (7)

Now, in order to control the angular position of the joints, that respect a given end-effector
position, a discrete approximation of the angular velocity can be made, by transforming the
previous equations into:

q[k + 1] = q[k] + ∆tJ+
v Ẋv k ∈ [0, 1, 2...N] (8)

In the equation, q[0] needs to start in the initial joint configuration (qinitial), ∆t is around
0,001 seconds (respecting the 1kHz ROS frequency), and Ẋv is the desired Cartesian velocity at
each instant, compliant with ∆t. This approximation, however being the easiest to derive from
Baxter examples, has its limitations, and those will be studied.

19

Master Thesis
Author: Pedro Jorge da Cruz Lino

The following tests will be experimenting a reference Cartesian velocity (in meters by
seconds), for 30 seconds, of:

Ẋv =

 0
−0.01
−0.01

 (9)

with a perturbation, to see if the robot can comply with a Cartesian line, even when
disturbed.

The robot started with a initial joint position of:

qinitial(s0..w2) =
[
−π/4 −π/4 0 π/4 0 π/2 0

]T
(10)

5 10 15 20 25 30
time(s)

721.1

732.7

744.3

755.9

767.5

779.1

790.7

802.3

813.9

825.5

po
si

tio
n(

m
m

)

X plane(blue is the reference sig.)

5 10 15 20 25 30
time(s)

58.9

119.8

180.6

241.5

302.3

363.2

424.0

484.9

545.7

606.5

po
si

tio
n(

m
m

)

Y plane(blue is the reference sig.)

5 10 15 20 25 30
time(s)

153.5

178.2

202.8

227.5

252.1

276.8

301.4

326.0

350.7

375.3

po
si

tio
n(

m
m

)

Z plane(blue is the reference sig.)

Figure 16: Plots of the end-effector position for a line trajectory on the left arm, with raw=False
position control, with a perturbation.

As it can be seen in the plots, the control of the end-effector is being well applied,
corresponding to the end-effector being able to follow the reference signal in blue, relatively
well. In fact the controller is even able to recover partially from a strong perturbation but, not
without stationary-regime errors. Unfortunately, it can still be seen a slight deviation from the
reference signal at each instant, that might evolve into bigger deviations with time.

20

Master Thesis
Author: Pedro Jorge da Cruz Lino

This same problem occurred when applying sinusoidal trajectories. For example, another
test made with this architecture, was to apply a circular trajectory as the reference signal. The
circle was of radius R=0.05 meters and placed on a plane. These circles were made by starting
on the circle edge (keeping a small initial error).

From now on in this thesis, this X plane circle trajectory, will be repetitively used, because
it’s a good example to see the tracking capabilities of the controllers in all axis. This trajectory,
of radius 5cm, and of frequency 0.08Hz, gave the following plots for this case:

Ẋ =

 0
−R0.5sin(0.5t)
R0.5cos(0.5t)

 (11)

qinitial(s0..w2) =
[
−π/4 −π/4 0 π/4 0 π/2 0

]T
(12)

0 10 20 30 40 50 60
time(s)

1023.61

1027.31

1031.01

1034.71

1038.41

1042.11

1045.81

1049.52

1053.22

1056.92

po
si

tio
n(

m
m

)

X plane(blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

156.0

168.5

181.0

193.5

206.0

218.6

231.1

243.6

256.1

268.6

po
si

tio
n(

m
m

)

Y plane(blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

518.0

533.0

547.9

562.8

577.7

592.6

607.5

622.4

637.3

652.2

po
si

tio
n(

m
m

)

Z plane(blue is the reference sig.)

Figure 17: Plots of the end-effector position for a circular trajectory on the left arm, with raw=False
position control.

In this example, it can be evidently seen that there is a growing error in the X plane, and
it can also be seen that, however following the reference, the robot overshoots too much on the
sides of the circle, were the derivative is higher.

One solution to try to minimize the observed flaws, is to implement a PID controller that
outputs a desired velocity vector, based on two very convenient errors that can be computed at
all times (the position and velocity error vectors), and an extra approximate error, made from
the position error, that can be integrated in time.

The control equation can be expanded to:

Ẋv = Kp(Xdesired −Xactual) +Kd(Ẋdesired − Ẋactual) +Ki

∫ t

0
(Xdesired −Xactual)δt (13)

Note: The Kp, Kd and KI are positive scalars applied to the values of a square identity
matrix, however, depending on our intentions, some of the diagonal values can be "over-controlled"
or "under-controlled" by taking more or less scalar importance/weight than the rest.

Ẋactual can be obtained at all times by Ẋactual = Jv q̇actual, because Baxter also publishes
the joints velocities. Ẋv can also be plugged in directly onto the equation:

q[k + 1] = q[k] + ∆tJ+
v Ẋv k ∈ [0, 1, 2, 3...] (14)

21

Master Thesis
Author: Pedro Jorge da Cruz Lino

When applying this controller, using the same equation as before, but now for a line
trajectory, using the gains KP = 2, KD = 0.4 and KI = 0.5, the following plots were obtained:

Figure 18: Plots of the end-effector position for a line trajectory on the left arm, with raw=False
position control.

However it does not seem like a bad controller, and better gains can lead to an even more
accurate following of the reference, this controller is not robust against ruff environments. If
per say, the robot faces a wall or a person on its rigid movement (which is characteristic of a
velocity controller), the robot won’t deal nicely with the error generated in the process, and it
will degenerate the control to become unstable, as it can be seen on the plots below:

5 10 15 20 25 30
time(s)

207.2

306.4

405.6

504.8

603.9

703.1

802.3

901.5

1000.7

1099.8

po
si

tio
n(

m
m

)

X plane(blue is the reference sig.)

5 10 15 20 25 30
time(s)

502

368

235

101

33

166

300

433

567

701

po
si

tio
n(

m
m

)

Y plane(blue is the reference sig.)

5 10 15 20 25 30
time(s)

346.5

239.0

131.5

24.1

83.4

190.9

298.3

405.8

513.3

620.7

po
si

tio
n(

m
m

)

Z plane(blue is the reference sig.)

Figure 19: Plots of the end-effector position for a line trajectory on the left arm, with raw=False
position control, with a perturbation.

This effect becomes even worse, when used its variation with "raw=True". This is one
of the greatest limitations of this discrete velocity controller, that relies heavily on Baxter
maintaining the desired joint angular position with precision, and fast enough. Other limitations
were observed when trying to apply a null-space behaviour to this controller.

The good news are the limitations of this controller, can be overcame by an even better
controller, very similar to this one, which is the velocity controller.

22

Master Thesis
Author: Pedro Jorge da Cruz Lino

6.2. Control by Velocity

This is the section where the effects of acting directly on Baxter’s joints velocities will be
examined. The function used to this end was: set_joint_velocities(). The physical relation
(from 6.1) can be reused for the control:

Ẋv = Kp(Xdesired −Xactual) +Kd(Ẋdesired − Ẋactual) +Ki

∫
(Xdesired −Xactual)δt (15)

q̇ = J+
v Ẋv (16)

For the circular trajectory on the X plane (the same trajectory as in figure 17), with the
gains KP = 5, KD = 1 and KI = 0.1, the following end-effector results were obtained:

qinitial(s0..w2) =
[
−π/3 0 −π/3 0 0 π/2 0

]T
(17)

0 10 20 30 40 50 60
time(s)

902.72

913.20

923.68

934.16

944.64

955.11

965.59

976.07

986.55

997.03

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

121.0

69.1

17.2

34.7

86.6

138.5

190.4

242.3

294.2

346.1

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

559.0

576.3

593.5

610.8

628.1

645.3

662.6

679.9

697.1

714.4

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 20: Plots of the end-effector position for a circular trajectory on the left arm, with velocity
control, and with perturbations.

It can be seen from the plots that the process starts following the desired trajectory very
well until it is softly disturbed by a perturbation at around the 10 seconds, and, however with
some vibration, the process almost recovers completely. At around 20 seconds another, more
abrupt, perturbation is applied to the robot, and it can also recover from it quite well.

One possible cause for the vibrations on the Y plane is the layout of the arm, since it’s
almost all stretched in the X direction/axis, and the Coriolis effect generated by the movement
of the joints can be significant.

The null-space
Doing some job alongside Baxter, might call for a specific arm layout, that does not interfere

with the environment nor with the workers. Because the arm is redundant, the available degrees
of freedom can be used to position the arm in a specific orientation, without disrupting Baxter
end-effector control. This can be done by expanding the control equation, and finally taking
advantage of Baxter 7 DOF arms by controlling the null-space. The 7 degrees of freedom allow
us to control the robot end-effector position (x,y,z) and orientation (wx,wy,wz), and leave one
degree of freedom alone. This last one, is the one responsible for the redundancy, as it allows
different arm joint layouts, that respect the same position and orientation (except in very specific

23

Master Thesis
Author: Pedro Jorge da Cruz Lino

situations, in which the end-effector is said to be in a singularity). The robot can favour a joint
layout, if this joint layout is given in an error vector q̇0.

Note: Using this type of controllers, the arm never reaches the singularity problems that
happen in an Inverse Kinematics approach.

For example, using geometry, if it’s desirable for the arm layout to be tending to the pose:

qdesired(s0..w2) =
[
0 0 −π/2 π/2 0 0 0

]T
(18)

and the actual pose is qactual, then an error vector can be generated as: q̇0 = (qdesired −
qactual). This error can be minimized (by the least squares) with a constant gain and a damped
behaviour (desired velocity =0) as:

q̇0 = KP q(qdesired − qactual) +KDq(0− q̇actual) (19)

And the equation can be expanded by adding a desired velocity based on this error, in the
null-space:

q̇ = J+
v Ẋv + (I7 − J+

v Jv)q̇0 (20)

Note: Once again, KP q and KDq are positive scalars applied to the values of a square
identity matrix, and, depending on our intentions, some of the diagonal values can be neglect
(put to zero), or controlled by taking more or less scalar importance than the rest.

The null-space used here, acts on the Cartesian velocity part of the Jacobian (Jv), since
the equations are using the pseudo-inverse of that same part to control the end-effector position
with Ẋv (the main task).

From the equation, q̇ will be directly applied to the joints, respecting the hardware
limitations 5.2.

Taking on the previous example (image 20), and applying the null-space using Kpq = 0.8
and Kdq = 0.1, and lowering Kp to 3 (so less vibrations are generated), the following results
were obtained:

0 10 20 30 40 50 60
time(s)

966.17

969.09

972.01

974.93

977.85

980.77

983.68

986.60

989.52

992.44

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

149.4

162.9

176.4

189.9

203.4

216.9

230.4

243.9

257.5

271.0

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

601.9

614.8

627.7

640.6

653.5

666.4

679.3

692.2

705.2

718.1

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 21: Plots of the end-effector position for a circular trajectory on the left arm, with velocity
control, and with null-space arm layout control.

In the plots, it can be seen the arm following the reference signal quite well, however, the
oscillations in the Y axis remained. It can also be seen that the position of the end-effector
was but slightly oscillating at the beginning (more evidently in the X and Y planes), because
of the initial arm adjustment to the desired configuration. This shouldn’t be expected from
the null-space, but this is where small imprecisions on the values used to build the null-space,

24

Master Thesis
Author: Pedro Jorge da Cruz Lino

in addition to the error of q̇0, can disturb the independence of the equations, resulting in a
deviation of the end-effector. The oscillations can also be originating from the physical motor’s
strings.

The plots can’t show what actually happened differently from the previous example, but
in fact, the arm is now turned left, reaching for the desired layout: qdesired, even though the
end-effector remains trying to reach the objective/reference Ẋv.

Controlling the cuff orientation:
One way to control the end-effector orientation is through the use of the part of the Jacobian

related to the angular velocities (Jw). This part can be controlled in the null-space, without
interrupting or disturbing the "main" control task that is: follow the circle trajectory. Having a
good orientation of the end-effector might be more desirable than having a good layout of the
arm. This is the case that is going to be studied. In order to achieve this, the previous null-space
will now act on the end-effector orientation null-space. This way, the 3 controllers can be acting
simultaneously and hierarchically, publishing just one velocity for each joint, at all times.

To get this controller to damp the movement and converge constantly to the desired angular
position Ẋw without a stationary error, a PID was used, similarly to what has been done
previously to control Ẋv. This PID was proven to work with the relatively small axis errors
used. This has been made by adding the terms to the equations:

Ẋw = KPwOrientationerror +KDw(0− Jwq̇actual) +KIw

∫ t

0
(Orientationerror)dt (21)

q̇ = J+
v Ẋ + (I7 − J+

v Jv)(J+
w Ẋw + (I7 − J+

w Jw)q̇0) (22)

The Orientationerror was obtained, through the quaternions given by the function from
the Python class "Limb": endpoint_pose() at each instant. An error vector can be obtained
by using, directly, the relations between the desired quaternion and the actual quaternion
(Orientationerror). For safety (avoiding abrupt movements), the methodology for the calculation
of Orientationerror was the following:

Let a quaternion be represented by Q =
[
qv qw

]T
, and qv =

[
qx qy qz

]T

Another way of representing quaternions is through a rotation matrix (R), and, reciprocally,
an axis-angle representation (θ,Axis).

A more detailed explanation is that, at every given moment, the end-effector orientation
differs from the desired orientation by some specific rotation matrix R. The following rotation
matrix relations can be derived (considering the rotation matrix properties):

RRactual = Rdesired ≡ R = RdesiredR
T
actual (23)

The rotation matrix can be obtained by using the quaternions as follows (for the Rdesired

similarly):

Ractual =

 1− 2qy2
a − 2qz2

a 2qxaqya − 2qzaqwa 2qxaqza + 2qyaqwa

2qxaqya + 2qzaqwa 1− 2qx2
a − 2qz2

a 2qyaqza − 2qxaqwa

2qxaqza − 2qyaqwa 2qyaqza + 2qxaqwa 1− 2qx2
a − 2qy2

a

 (24)

R is a 3 by 3 rotation matrix, that can be mapped to the axis-angle notation. This allows
us to make our desired error vector by:

θ = acos(0.5(R(1, 1) +R(2, 2) +R(2, 2)− 1)) (25)

25

Master Thesis
Author: Pedro Jorge da Cruz Lino

Axis = 1
sin(θ)

(R(3, 2)−R(2, 3)
(R(1, 3)−R(3, 1)
(R(2, 1)−R(1, 2)

 (26)

Orientationerror = θAxis (27)

Note: This error cannot actually become zero, it only tends to a 0/0 indetermination.

If the desired end-effector orientation corresponds to the quaternion (which can be mapped
to Rdesired):

Qdesired =
[
0.5 −0.5 0.5 −0.5

]T
(28)

this desired orientation can be fed to the controller from image (22), with KPw = 5
Kdw = 0.5 and KIw = 1, and the following results for a circular trajectory were obtained:

0 10 20 30 40 50 60
time(s)

967.38

970.47

973.57

976.67

979.77

982.86

985.96

989.06

992.16

995.25

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

146.8

162.3

177.8

193.3

208.9

224.4

239.9

255.4

271.0

286.5

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

591.3

604.3

617.3

630.4

643.4

656.4

669.5

682.5

695.5

708.6

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 22: Plots of the end-effector position for a circular trajectory on the left arm, with velocity
control, and with null-space desired configuration and orientation control.

No big differences can be detected between the previous plots and the plots from image 21,
the only difference noticeable, is that the vibrations increased slightly in the Y axis (these were
possibly inherited from the null-space arm layout control). The unnoticeable difference is that
the end-effector is now turned 90o degrees.

26

Master Thesis
Author: Pedro Jorge da Cruz Lino

In order to visualise better the evolution orientation error, the end-effector quaternion
was transformed to Euler angles (rotation in the X, Y and Z axis). The corresponding plots
containing the orientation error of the rotation of the wrist can be seen here:

0 10 20 30 40 50 60
time(s)

0.075

0.108

0.291

0.474

0.656

0.839

1.022

1.205

1.388

1.571

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

X rotarion (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

3.077

2.883

2.688

2.494

2.299

2.105

1.911

1.716

1.522

1.327

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Y rotarion (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

3.083

2.907

2.731

2.556

2.380

2.204

2.029

1.853

1.677

1.502

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Z rotarion (blue is the reference sig.)

Figure 23: Plots of the end-effector orientation for a circular trajectory on the left arm, with velocity
control, and with null-space desired configuration and orientation control.

It might be argued that the plots above don’t seem to follow the reference well enough, but
they aren’t strictly supposed to. Because the position control was prioritized over the orientation
control of the end-effector, the position control might interfere with the orientation control.
This wouldn’t have happened, if the controllers were both placed in the main task, however,
it was preferred to have bad orientation over bad positioning of the end-effector. Anyway, the
orientation errors were negligible, and, because of the integral component, they are decaying
with time.

Note: The remaining vibration seen in the orientation plots, after the big "chunk" of the
orientation error has been corrected, can be correlated with the oscillations generated by the
main trajectory.

Continuing with the same control equation(22) (using the same gains), but now following a
line trajectory with perturbations, the following results were obtained :

0 10 20 30 40 50 60
time(s)

647.5

689.6

731.8

774.0

816.1

858.3

900.5

942.6

984.8

1027.0

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

167.1

259.5

352.0

444.4

536.8

629.3

721.7

814.2

906.6

999.0

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

464.7

489.2

513.7

538.2

562.6

587.1

611.6

636.1

660.6

685.1

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 24: Plots of the end-effector position for a line trajectory on the left arm, with velocity control,
with null-space desired configuration and orientation control, and with perturbations.

As it can be seen in the previous plots, the full control equation, is taking effect as well for
a line trajectory. Three perturbations were applied to the arm, the first two were applied along

27

Master Thesis
Author: Pedro Jorge da Cruz Lino

the arm, and the last one directly on the end-effector. Even subjected to the perturbations,
the control of the layout and the end-effector position and orientation were maintained. It can
also be seen, more precisely, the PID taking control and correcting the stationary errors. The
orientation plots were very similar to the ones in figure 23.

6.3. Control by Torque

The objective from the beginning was to control Baxter with a torque (τ) controller, that
can publish to all joints the torques needed to comply with a reference based on the end-effector
position and orientation, as well as comply with the arm layout reference. The objective was
set, because, by controlling the robot via torque, people can interact with the arm without it
being rigid (contrary to all the other previous controllers). The controllers used on this mode
had frequencies in the range: 200-1000Hz.

The algebraic physical relation between torque and force is:

τ = JTF (29)

The equation can be similarly manipulated as it was for the velocity controller, with slight
changes. For example, one of the advantages of using this controller, is that it can intake a
desired Cartesian acceleration for the end-effector:

τ = JT (Λ(Ẍdesired − J̇ q̇actual) + Fdesired) (30)

where Λ = (JM−1J)−1, and M is the 7 by 7 inertia matrix in joint space. M can be
obtained, similarly as is obtained the Jacobain(J), using Orcos ([7]) "baxter_pykdl" library
functions.

Because J̇ q̇actual is usually just a source of noise, and it’s almost zero (for small movements
of the arm), adjustments to the equation can be made, without disturbing the equation general
effect.

In order to run our main task in the Cartesian coordinate system, the equation can be
rewritten as:

τ = JT (Λv(Ẍdesired) + Fdesired) (31)

where Λv = (JvM
−1Jv)−1.

It’s important to know, while using the equation above, that when Ẍdesired = 0, the
impedance controller "falls" back into a simple torque controller.

Everything is in place to control the end-effector force Fdesired with a PID controller:

Fdesired = KP (Xdesired −Xactual) +KD(Ẋdesired − Ẋactual) +KI

∫ t

0
(Xdesired −Xactual)δt (32)

28

Master Thesis
Author: Pedro Jorge da Cruz Lino

For the previous circular trajectory (in figure 17), with R=5cm,

qinitial =
[
−π/3 0 π/3 0 0 0 0

]T
(33)

Xdesired = Xinitial +
[
0 R(cos(0.5t)− 1) Rsin(0.5t)

]T
(34)

Ẋdesired =
[
0 −R0.5sin(0.5t) R0.5cos(0.5t)

]T
(35)

Ẍdesired =
[
0 −R0.25cos(0.5t) −R0.25sin(0.5t)

]T
(36)

and using the gains: Kp = 130, Kd = 20 and KI = 10, the following plots were obtained:

0 10 20 30 40 50 60
time(s)

915.47

925.36

935.25

945.13

955.02

964.91

974.80

984.68

994.57

1004.46

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

146.3

160.0

173.8

187.5

201.3

215.0

228.8

242.5

256.3

270.0

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

594.4

608.5

622.6

636.7

650.8

664.9

679.1

693.2

707.3

721.4

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 25: Plots of the end-effector position for a circular trajectory on the left arm, with torque control.

As it can be seen in the plots, the controller is following the reference trajectory, but not
without its flaws. It was challenging tuning the controller to follow the reference signal, without
succumbing to the joint noises. However, the noises on the first 5 seconds can be traced to the
adjustment of the arm layout. It is good to keep in mind, that, because the arm is not rigid, it
is now susceptible to the effect of "environment" forces (like gravity, and Coriolis effect), and
little noises become very significant to the output result. Because of this, there was applied
a 30Hz low-pass filter, to take away some of this noises coming from the read joint velocities
q̇actual (which is already in use in the plots above).

A problem associated with this control, as it is, is that the arm has no restrictions to
hold some of the joints angular positions in place, since the robot is redundant. This is were
the null-space control can be used to solve this problem, even if the gains are low. In the case
of using torque control, the equation for the null-space must be changed to accommodate the
dynamically consistent null-space matrix:

τ = JT (Λv(Ẍdesired) + Fdesired) + (I − JT
v ΛvJvM

−1)τ0 (37)

where τ0 can be controlled analogous to q̇0:

τ0 = KP q(qdesired − qactual) +KDq(0− q̇actual) (38)

29

Master Thesis
Author: Pedro Jorge da Cruz Lino

Note: As it happens with all the null-space control approaches, they take in account
the arm geometry, but they do not take in account the arm physical angle limits. This might
result in the arm trying to follow a trajectory that will get the arm "stuck" on its joint limits.
If for some reason the arm gets "unstuck" from one of these positions, it might do some wild
movements to readjust itself to the equation inputs/restrictions, therefore it’s recommended to
do a good tuning of the controller gains beforehand.

For initial joint angles:

qdesired =
[
0 0 −π/2 π/2 0 0 0

]T
(39)

and for the gains KP q = 2 KDq = 1, the following plots were obtained:

0 10 20 30 40 50 60
time(s)

957.5

970.0

982.4

994.8

1007.3

1019.7

1032.2

1044.6

1057.1

1069.5

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

127.0

146.9

166.8

186.7

206.6

226.5

246.4

266.3

286.1

306.0

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60
time(s)

601.5

618.5

635.4

652.3

669.3

686.2

703.1

720.0

737.0

753.9

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 26: Plots of the end-effector position for a circular trajectory on the left arm, with impedance
control, and null-space control.

No great differences can be observed between these plots and the previous ones from image
25, however the reference signal is still being followed, as intended, while the arm layout took its
time to adjust itself (within the first 5 seconds). The torques generated through the arm that
control the null-space weren’t that dangerous, because the gains used do not allow great torques.

In order to implement the the orientation control of the end-effector, as similarly done on
the velocity controller (27), the same Orientationerror can be obtained, and the final control
equation can be expanded to:

Fw = KPwOrientationerror +KDw(0− Jwq̇actual) +KIw

∫ t

0
(Orientationerror)dt (40)

τ = JT
v (Λv(Ẍdesired) + Fv) + (I − JT

v ΛvJvM
−1)(JT

wFw + (I − JT
w ΛwJwM

−1)τ0) (41)

In the equation above: Fv ≡ Fdesired.

This way, the 3 controllers are working simultaneously and hierarchically, without overlap-
ping, as before for velocity.

30

Master Thesis
Author: Pedro Jorge da Cruz Lino

The following plots prove that this control is fairly robust, and can posteriorly be used for
more demanding tasks (for example, attaching the AR10 hand to the end-effector).

The plots were made using KPw = 0.8, KDw = 0.5 and KIw = 0.1

10 20 30 40 50 60
time(s)

883.6

904.9

926.2

947.5

968.9

990.2

1011.5

1032.8

1054.2

1075.5

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

10 20 30 40 50 60
time(s)

45.7

70.9

96.1

121.3

146.4

171.6

196.8

222.0

247.2

272.4

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

10 20 30 40 50 60
time(s)

571.6

596.3

621.0

645.7

670.4

695.1

719.8

744.5

769.2

794.0

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 27: Plots of the end-effector position for a circular trajectory on the left arm, using the torque
controller, with perturbations; where the end-effector, the null-space orientation and the arm layout are
being controlled.

10 20 30 40 50 60
time(s)

0.599

0.358

0.116

0.126

0.367

0.609

0.851

1.093

1.334

1.576

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

X rotarion (blue is the reference sig.)

10 20 30 40 50 60
time(s)

1.948

1.737

1.527

1.316

1.106

0.895

0.685

0.474

0.264

0.053

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Y rotarion (blue is the reference sig.)

10 20 30 40 50 60
time(s)

2.263

2.018

1.772

1.527

1.282

1.036

0.791

0.546

0.301

0.055

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Z rotarion (blue is the reference sig.)

Figure 28: Plots of the end-effector orientation, for a circular trajectory on the left arm, using the
torque controller, with perturbations; where the end-effector, the null-space orientation and the arm
layout are being controlled.

In the previous plots, after the adjustment to the orientation of the end-effector (first 5
seconds), 3 types of perturbations were applied. The first perturbation (around 9 seconds) was
applied on the side of the arm (joint e0 to be more precise), the second (around 17 seconds)
was a direct bump on the end-effector, and the third (around 45 seconds) was a push on the
X direction applied on the end-effector. This last one, was to show that the controller can act
individually in one axis, leaving the Y and Z tracking almost intact. These last plots seem to
show the effectiveness of the controller since it was able to recover from all these perturbations,
while still trying to follow the reference signal.

Having established good controllers for the arm, the following sections will take advantage
of this controllers, to get Baxter robot to conduct useful tasks.

31

Master Thesis
Author: Pedro Jorge da Cruz Lino

7. Kinect Sensor and its usefulness with Baxter

Kinect it’s a very compact match up of sensors that can give, at each instant, a RGB-D
image. It also contains a microphone and a tilt motor, but these weren’t used in this work. The
advantages of integrating Kinect with Baxter, are that it can map points in a 3D Cartesian space,
using its depth sensor. In the previous sections the controllers have been using a 3D (x,y,z) point
as an input, now, using Kinect, a point can be fed to the controller, at all times, associated with,
for example, a specific object. This is not a trivial process, since these points have to mapped
from the Kinect axes to match with the coordinate system of Baxter. Another problem, is also
to find the desired object in the workspace with the sensory information available. The Kinect
version used for this work was Kinect v1.0.

To facilitate the integration of Kinect with Python, so it would be directly compatible with
Baxter code, the "libfreenect" library was used. (To facilitate the manipulation of images, there
were also used OpenCV functions)

7.1. Finding objects within an image

There are many subjective ways of choosing the best algorithm to find certain features in
an image. There are ones that fit better than others depending on the specific situation and
application. In our case, two "main" constraints should be respected:

• the time to process and find the object in the image should be minimal, and the results
should be received by the controller efficiently, in a way they do not delay their cycle;

• the method must be robust, in order to be the most independent possible of the light being
applied to environment under observation;

These are the reasons behind the methods chosen, and those will be explained in the
following sections.

To better track an object and its orientation, methods to find features (such as pattern
and symbol recognition in between others) should have been preferable to the methods used,
however, the "main" focus of this thesis wasn’t to find the best of this methods, but to show an
application where Baxter integrates the Kinect sensor in order to find and interact with objects
in the workspace.

There will be shown two methods to find in a given image a desired color, this color
is supposed to be the color of the desired object. The essential difference between the algo-
rithms/methods shown, is that one generates a binary masks using the pixel color value, and
the other generates the masks using the pixel percentage value. These are the color intervals
and color histogram methods, respectively.

32

Master Thesis
Author: Pedro Jorge da Cruz Lino

7.2. Object tracking with Kinect using color intervals

A common and easy approach to find portions of a picture within a certain color range is
using color intervals. Kinect sensor provides us with an 8-bit RGB image, meaning that the
color of the object will always be in a certain range of these Red, Green and Blue quantities,
that vary between 0 and 255. The paradigm is to find in the picture all the pixels in which Red,
Green and Blue values are within a certain range. This information can be, posteriorly, turned
into a binary mask with the target/object pixels turned to 1(white).

To find the desired color in the image, the intervals must contain that color. As an example,
if the objective is to find a specific shade of blue, the intervals can be chosen to be: R=[0:140],
G=[0:140], B=[200:255]. Then, using OpenCV "inRange()" function, the three binary masks
resulting from these three intervals can be multiplied together. The results associated with these
intervals can be seen in the images:

(a) Original picture (b) Obtained image from the multiplication
of the 3 masks

Figure 29

This method is not without its limitations. If the overall ambient light provides more or less
intensity (for example in environments exposed to sunlight, during the day and night periods),
all the pixels RGB values will have an offset increase/decrease accordingly. This effect should be
followed by the intervals set up, but they cannot always cope with the differential.

A better method that resists this effect is the color histogram, that depending on the
application, should be preferable to this one.

The greatest advantage of the color intervals method is that it can detect all the colors,
even in the gray scale range, the same cannot be said for the color histogram method.

7.3. Object tracking with Kinect using the color histogram

A common approach to find portions of a picture within a certain color ratio, is the color
histogram method. This method finds the ratio of Red, Green and Blue on a specific pixel. As
an example, let RatioR be the ratio of Red in the pixel (i,j) from the image:

RatioR(i, j) = R(i, j)
R(i, j) +G(i, j) +B(i, j) (42)

A problem arises when the pixel (i,j) is completely black, which results in a division by
zero, but that problem can be easily bypassed, because the numerator will also be zero.

33

Master Thesis
Author: Pedro Jorge da Cruz Lino

A clear limitation of this method is that all the pixels in the gray scale will converge to
the same value. Therefore, depending on the circumstances, it might be preferable to use color
intervals method.
Note: Because the Baxter robot model used for the tests was red, it is not recommended to use
this method to search for red, or near red pixels, in order not to be confused with Baxter’s arms.

The greatest advantage of this method is that it doesn’t depend on the ambient light
intensity, as long as this light is mostly white (so it doesn’t disturb the color ratios of
the object), and as long as it it doesn’t "flood" the object with the color of the light
(which can neutralise the object natural color).

In order to look for a specific color in the RGB picture using this method, it must be
known in advance, two of the desired ratio ranges of the object being looked for. The third
ratio range can be deduced by the remaining ratio that respects the truncated limits 0 to 1. By
definition, the ratio of a color must be between 0 and 1 (inclusive), and our desired values in
between. Three of these intervals can form a sub-volume of the normalized RGB space that can
be parsed and filtered from the image. Because this normalized RGB space derives from images
using discrete values between 0 and 255, the RGB space can be compared to an histogram with
255x255x255 maximum bins (thus the method’s name).

As an example, if searching for a green covered bottle, the values of the ratios can be:

PBmin = 0.3125 PBmax = 0.46875 PGmin = 0.375 PGmax = 1.0 (43)

The Red values can then be deduced by respecting the normalization (of course that this
ratio must always be truncated to the space [0,1]).

PRmax = 1− PBmin − PGmin PRmin = 1− PBmax − PGmax (44)

While trying to find a green bottle, the "volume" of colors that was intended to extract
from the RGB space forms a shape of a parallelepiped, that can be represented in cyan in the
picture:

Figure 30: Image representing a 3 dimensional space formed by the components R,G and B corresponding
to the axis. The volume of the chosen color is limited by the black pyramid, since the values can never
leave it, respecting the ratio interval [0,1]

The cyan parallelepiped is the respective volume that was sub-selected/filtered from the
image, as it is also the respective portion of pixels belonging to the object.

34

Master Thesis
Author: Pedro Jorge da Cruz Lino

Now, having the "volume" of the colours being looked for, OpenCV functions can be used
to obtain the desired mask of pixels corresponding to the object. A fast way to do this, is to
find the desired mask, by multiplying each of the 2 binary masks (blue and green) that have
pixels with colors ratios within the defined limits. The pixels being looked for, can be narrowed
down, by also multiplying the resulting mask, for the red mask. An example picture, obtained
with the 3 masks multiplication, can be seen in the image:

(a) RGB source picture (b) Obtained image from the multiplication
of the 3 masks color ratios masks

Figure 31

7.4. Object 3D mapping using Kinect

The natural way of using Kinect to find the (x,y,z) position of a pixel referenced in Kienct’s
origin, is to use the PointCloud2 ROS message published by Kinect. This message can start
being published from running "roslaunch", with "freenect-registered-xyzrgb.launch" (which was
the driver used to read data from Kinect, using ROS indigo). Unfortunately, the full process
of capturing the (x,y,z) + (r,g,b) + (i,j) information associated with each pixel using the
PointCloud2, was very time consuming, therefore, it was preferable to use "libfreenect", which
is a library for python, that can capture Kinect images in a running loop, independent from
Baxter’s ROS environment. Using "libfreenect" allowed to launch the Baxter process, containing
the controllers, alongside the Kinect processing, by launching just one main process, that would
be parent to the peripherals. The Baxter python process can then communicate with this Kinect
process sharing a Queue(). The error between the information captured from the method that
will be used, relative to the one using the Pointcloud2, was very low (in the order of 1mm). Both
methods worked very similarly, and both could achieve the final desired results. It was made the
choice of choosing the method that favoured: compactness, simplicity and speed.

Following up from the previous section, after obtaining the desired binary mask using one
of the previous methods, this mask must be filtered from noises. Erosions and dilations can be
applied on that mask, to filter undesired noises, but in order to find the desired object in the
mask (which should correspond to the biggest white spot), the one white spot with the greatest
area must be sub-selected. After this, its geometric center/momentum can be found, to get the
object most reliable position in (i,j) coordinates from the image. (OpenCV provides functions
that do just that, like "contourArea()" and "moments()")

35

Master Thesis
Author: Pedro Jorge da Cruz Lino

This (i,j) point/pixel can then be placed over the registered depth image (33b), which can
then be translated to the object distance from Kinect in millimetres. In the case that Kinect is
not detecting our one pixel distance properly, it was considered a 5 by 5 pixels square window
centred around that (i,j) pixel. That window of 25 pixels/distances can be averaged to give a
more reliable distance results for the object. This is more critical if the surface being looked for
is not plain.

In the pictures on the left, there can be seen the masks obtained from filtering (with
erosions and dilations, and selection of the greatest "island"), the corresponding place of object
being searched for in the images.

In the pictures on the right, there can be seen the overlapping between the 5 by 5 window
(with its center in the center of the object) and the registered depth image (with a blend of
50%).

(a) Image (b) after small filtering, with ero-
sion and dilation

(b) Blend between distance image and de-
sired position window

Figure 32: Adaptation of image 29a, filtered in order to find the center of the blue envelope

(a) Image (b) after filtering, with erosion
and dilation

(b) Blend between distance image and de-
sired position window

Figure 33: Adaptation of image 31a, filtered in order to find the center of the green covered bottle

36

Master Thesis
Author: Pedro Jorge da Cruz Lino

After obtaining the correct pixel corresponding to the center of the object, that pixel can
be overlapped with the registered depth image to produce a 3D (x,y,z) point, using geometry.

It is known from the official Microsoft site, that Kinect sensor images capture pixels in a
spread (FOV) of +/- 57o degrees horizontally and +/- 43o degrees vertically, from the optical
axis. These correspond to the yaw and pitch angles, shown in image 34a, respectively. It’s also
known that Kinect can tilt a maximum of -27o degrees downwards, but because of Baxter’s
shape, and the working space in front of it, a plastic piece was inserted beneath the Kinect that
adds, approximately, -22o degrees to the -27o degrees tilt down. This configuration, however
good enough, makes the camera capture a little portion of Baxter’s LCD screen (as seen in 31a),
that might be undesirable, and to reduce this effect, the Kinect tilt down was instead set to
-10.8o degrees, approximately (making a total of -32.8o of tilt).

In order to more acculturate describe the field of view (FOV) of the RGB image, the yaw
and pitch angles were changed to +/- ' 32.5o and +/- ' 26.5o, respectively. These angles were
chosen, because they generated, almost exactly, the same values given by the ROS PontCloud2
message, when generating (x,y,z) registered points (with approximation errors of 1mm).

(a) Coordinate Mapping visualization, from Kinect to Baxter

(b) Visualization of how the geometry was applied to convert
the data from the Kinect Depth stream values to the actual
3D position.

Figure 34

The way to map the the pixel (i,j) to (x,y,z) coordinates, that was found best, was:
let [N,M] be the image size in pixels [640,480] respectively, dmesured the Depth information

related to the (i,j) pixel, and the offsets X0 ' 0.01m, Z0 ' 0.95m taken from the previous
image 34a:

yaw = −32.5(−1 + 2i/N) pitch = −26.5(−1 + 2j/M) tilt = −(22 + 10.8) (45)

Because the Kinect is tilted, and because of its properties shown in 34b, adjustments must
be made to accurately calculate the depth of each pixel, and how that transforms to Baxter’s

37

Master Thesis
Author: Pedro Jorge da Cruz Lino

root 3D coordinate system:

XBaxter = X0 + dmesured
cos(pitch+tilt)

cos(pitch)

YBaxter = dmesuredtan(yaw)

ZBaxter = Z0 + dmesured
sin(pitch+tilt)

cos(pitch)

(46)

In order to get Kinect communicating with Baxter, without interrupting its processing,
Kinect should be running in a separate Python process while doing the 3D mapping. This can
be achieved by using a shared Queue between Baxter and Kinect, that delivers the last (X,Y,Z)
reliable position, of the where and when the desired object was detected.

8. Touch sensors

The AR10 hands, however specific for Baxter, lack the capacity of perceiving touch. This
makes it challenging to do repetitive pick-and-place tasks without the force feedback that the
hand is applying on the object it is trying to grasp/pick. This might even result in not picking
the object at all. Even if the object is picked, there is no way to know if it’s being squished too
hard, or too less (so it might fall). The use of Soft electronics can be very well applied to this
situation, in which the best of two worlds can be combined: getting more grasp at the fingers
of the AR10 hands and get a flexible (soft) electronic pressure sensor on those fingers, to give
feedback of the pressure they apply on things.

Such sensor can be made by applying a fabrication technique that traps a conductor inside
a flexible material. In this case the conductor will be an alloy of Indium-Gallium, and the flexible
material will be layers of PDMS (Polydimethylsiloxane).

Figure 35: Sample image of one of the sensors utilized.

38

Master Thesis
Author: Pedro Jorge da Cruz Lino

The disposition/shape of the trapped conductor, was specifically made to perceive a pressure
when a force is applied perpendicular to it. The resistance of the metal increases with the
expression:

R = ρ
`

A
(47)

where A is the cross-sectional area of the resistor, ` is its length, and ρ is its electrical
resistivity (constant through the alloy).

Looking at the equation, it should be obvious to understand that, by stretching the liquid
metal, its volume remains and, therefore, the cross section area(A) decreases, and ` increases
resulting in an increment of electrical resistance(R).

One of the restrictions of this sensor, because it is made of a very conductive alloy, is
that its change in resistivity is very low, in the order of 1 ⇀↽ 5Ω, for natural and stretched,
respectively. This means that if our sensor of measurement is based on the Voltage, there should
be caution while applying electrical current through the sensor, in order not to overheat it.

An electric circuit that suits our needs is the following, considering the ideal OpAmp:

Figure 36: Circuit used to read the sensor, that doesn’t overflow it with too much current, and takes
advantage of its full range.

The circuit used, even though working on the region where the OpAmp is saturated, works
in a way that doesn’t damage the OpAmp, nor allows too much current to flow through R3,
while still being sensitive to its resistance.

In order to get the digital feedback from this circuit, and integrate it with Python (via
Serial port), it was included an Arduino Mega 2560 which contains a lot of independent
analogue input ports.

Arduino Mega 2560 has a 5V direct current (DC) source that I used as Vcc, and the circuit
elements that I used were: R1 = R2 = 1kΩ, R4 = 60Ω, and the OpAmp used was the MCP6281.
These elements were chosen to respect the circuit low resistivity, in order not to overflow it with
current, and overheat it. The capacitor was inserted in the mesh in order to act as a low-pass
filter to remove high-frequency variations of the sensor resistivity.

Using the circuit, any pressure being applied on the sensor R3, can be parsed using the
Vout value. Arduino allows us to convert the analogue measurement of Vout, to a digital value
within the discrete range 0 to 1024, correspondent to the range 0V to 5V. In order to be certain
that a concrete touch was felt, it was used a filter that averaged the most recent 500 samples
read from Vout. This average can give, with more certainty, the stable value of the resistivity of
the sensor in its normal state -the reference state. When applying pressure to the sensor, Vout
should increase, and, if above a certain threshold level, and if that level is sustained more than

39

Master Thesis
Author: Pedro Jorge da Cruz Lino

once, the program running should "understand" that a "touch" has been perceived. The touch
measurements do not enter the average in order not to affect the perceived reference state.

Note: This was the process used to detect a touch signal from the sensor. The focus of
this thesis was not to get the sensor to accurately measure real pressures being applied to it,
however it is capable of doing so.

Arduino can then send this pressure state to a Python process dedicated to read Arduino’s
Serial information, and this process can itself, share a Queue() with Baxter main control process.
Baxter main control process can then, posteriorly send the information of "touch" to the AR10
hand/s.

9. AR10 Hands

The AR10 hand from Activ8 Robots, was given its name, because its movements are governed
by using 10 Firgelli Servos (PQ12), that act like linear actuators, which are controlled by a
Pololu Maestro Mini 24 Servo Controller.

In order to get the best frequency out of Pololu Maestro, its settings were altered so that
the full loop, that goes through the control of each servo, tries to comply with a frequency of
1kHz. This enables a good communication with the Python process that reads the values from
each finger encoder, and commands them to a desired position.

After testing the Pololu given examples for Python, the hands started showing off their
limitations. They are relatively slow to reach their goal positions, and, sometimes, the goal
commands need to be sent several times to obtain the desired response.

An annoying fact, was that, sometimes, the hands switched the serial ports they were being
read from, and they were assigned to. It was also very hard to distinguish the right from the
left hand, as they only diverge in the serial string number. These last problems don’t occur
when using the Pololu interface, however, using it, it’s not a viable solution, since the hands
need/should to be running in a Python process. This is not an unnatural approach, since there
are given code examples to calibrate and control the hands with Python.

Some of the problems of the AR10 hand can be traced to its hardware, because the
potentiometers used are filled with noises, and these problems are talked about in the AR10
Manual.

The AR10 hands purpose, in this work, is to grasp an object that cannot be as easily
grasped by an ordinary gripper.

9.1. Controlling the AR10 hands on their own

The 10 servo motors of the hand, encode their digital position using a potentiometer. This
potentiometer values vary from 600 to 0, approximately, but the hand digital position commands
vary from 4450 to 8000, respectively to the potentiometer. Note: To be more intuitive to
interpret how the command and the potentiometer readings relate to each other, the signal
values that range from 4450 to 8000 were re-mapped from 600 to 0, respectively.

When the hand is fully closed, the servos are fully stretched, this corresponds to the encoder
reading: 600; and the command to reach that desired position: 8000. These range of values
aren’t exactly the same for all the servos, but if the values are too high or too low, the Pololu
Maestro will truncate them.

40

Master Thesis
Author: Pedro Jorge da Cruz Lino

In order to exemplify how fast the hand is to comply with the given commands, in the next
plot, it will be shown the process of: getting the hand to open completely from a neutral state,
and, after that, getting it to close completely. To get the hand to move uniformly, the same
command was sent to all the servos, thus, for simplification, the plot presented is relative just to
one servo. Also in the plot, the blue signal is the servo encoder position, and the red signal is
the reference signal (command):

0 1 2 3 4 5 6
time(s)

0.0

67.3

134.7

202.0

269.3

336.7

404.0

471.3

538.7

606.0
va

lu
es

perception of position (red is the reference sig)

Figure 37: Normalized measurements from the sensors and command signal, for a simple open-close
cycle of one servo.

In order to get the hand to open, the command of 4450 had to be sent to the servos. When
the encoders read a value near from 0 (in this case the threshold was 40, because of the noises
associated with the encoder), the reference command being sent changed to 8000. It can be
detected a delayed response from the hand to the command, since the command started being
sent as around 2.75 seconds, but it only took effect around 2.9 seconds. After the encoder
reached around 600 (in this case the threshold was also 40), commands stooped being sent to
the hand, and, to guarantee that the hand stopped moving at the end of the code segment, there
was added a 0.5 waiting period. This period was necessary to add, because the hand could still
be trying to reach its final command.

In this previous example, the only way to get a force sensing, was to force the hand to grab
something, and figure out the difference between the command sent and the actual feedback
encoder position. If these two remain stagnant for a while, and not in the hand limits, there
could possibly be deduce that some kind of touch/encounter, stopped the hand from grasping
further. This is not a very efficient way to sense touch, because, judging from the response time
of the hands, one could be squishing the object too hard by the time the touch is actually felt.
With the integration of "dedicated" touch/pressure sensors, the process closing the hand can be
stopped almost at same moment it feels a threshold pressure on the fingers - just enough to get
a good grip of the object.

41

Master Thesis
Author: Pedro Jorge da Cruz Lino

9.2. Controlling the AR10 hands with touch sensors

The sensors form section 8, can be integrated on the tip of the fingers, to "answer" the
signal of: "when to stop the grasping?". For a normal open-close cycle, continuing from figure 37,
with a touch felt in the closing sub-cycle, the following plot was obtained. As before, the blue
signal stands for the hand encoder position, and the red signal stands for the sent reference):

0 1 2 3 4 5
time(s)

0.0

67.3

134.7

202.0

269.3

336.7

404.0

471.3

538.7

606.0

va
lu

es
perception of position (red is the reference sig)

Figure 38: Normalized measurements form the sensors and command signal, for a grasping movement
of the hand, with a touch perceived.

Because the hand started from a fully closed position, the servo tested took longer to reach
the desired, fully opened, position (this took 3.9 seconds). After this, the hand was commanded
to fully close, but, while grasping, a touch was perceived and the reference signal changed,
exactly, to that same point where it was perceived. By doing this, the whole hand will try to
regenerate the state where the object, it’s trying to grasp, was "felt" for the last time. It can be
seen in the plot that this state was achieved with a delay of almost 1 second (4th to the 5th
second), and this delay can be traced back to the speed that the hands are limited to comply
with the given commands. To guarantee that the object isn’t dropped, a little more grasp was
applied to the finger’s encoders giving them -500 units (within the 4450 to 8000 range). After
the finger reached a stability threshold, it must be commanded to stop, and hold that position,
this is where the 0.5 seconds of waiting was useful, to guarantee that the hand stopped in the
actual commanded/desired position, and not in previous ones.

The hand was noticed not to be very fast accepting commands, therefore a fast pick and
place task should be best handled to grippers instead of the AR10 hand. The hands have the
advantage of complying with many different configurations that are flexible for grabbing different
types of objects, in different configurations, with a firm grip. Therefore, the decision between
using a gripper or a hand, should be made accordingly to the task at hand. Furthermore, Baxter
has its own grippers from Rethink Robotics, that are fully compatible with the robot, having no
need for more Python processes.

42

Master Thesis
Author: Pedro Jorge da Cruz Lino

10. Baxter Interaction with an Object

This is the section where all the knowledge gathered in all the previous sections, converges
to the purpose of grabbing an object and land it safely in a landing site. In the image below, it
can be seen a symbolic data flow schematic of the processes used, to govern the task of grabbing
an object:

Figure 39: Data flow schematic

The object for the tests will be a green covered water bottle. This object was chosen
because it’s mostly a cylinder, it’s deformable, it’s easy to grasp by the hand, and the color is
uncommon in our lab, so it can be easily found.

The technique used to obtain the "center" of this water bottle, was previously explained
in the section 7.4. One inconvenience that comes by using Kinect on Baxter’s head, is that
Baxter’s arms tend to occult the desired object (even controlling the null-space, and the arm
layout), but this is not a great problem, since the task involved static objects. So, even if the
position of the object is calculated only once, it gives a reliable reference of where the object
might be "now", and, that’s enough to get the hand to position itself very near from object.

43

Master Thesis
Author: Pedro Jorge da Cruz Lino

when using the velocity controller, after reaching the proximity of the last position sent
from Kinect, one can take advantage of Baxter’s own cameras on the wrists. Trusting that the
position and orientation controls of the end-effector are working fine, it can be known with
precision how the axis of the camera is rotated and oriented, in relation to the origin axis. This
means that images of the object can be obtained in front of the hand, and, by finding the object
center, using the same methods used for Kinect, the distance from that center to the center of
the image can be used to generate an error vector. This error vector can be minimized by using
a small Cartesian velocity or force that does the fine adjustment of positioning the hand, right
in front of the bottle. Adding to this, Baxter has an infra-red (IR) distance sensor on the wrist,
that can give us the distance from that object, and this can be used to find the right distance to
grab the object. (It can almost be said that Baxter has an RGB-D sensor in its wrists, for close
distances).

Adding the camera to the whole control process is not without its disadvantages. Because the
camera is running on Baxter, and its data is arriving from the same "data bus" which transports
all Baxter’s ROS messages, using the camera adds to the cycle a delay of approximately 4
milliseconds. This delay degrades the control frequency, and, in the case of the torque
controller, makes it very hard to maintain a smooth movement of the arm/s.

(a) Baxter camera right ahead from
the bottle, twisted 90o to do an ap-
propriate grabbing

(b) Processing the green in the image
to find the bottle approximate center

(c) Baxter arm obstructing the object

Figure 40

Note: These pictures were taken without the hand in place, to maximize the interpretations
of the pictures.

In any case, even without the wrist camera, the position given by Kinect is in coordinates
(x,y,z), and it can be sent to the velocity or torque controller, so that the AR10 hand can position
itself to grab the bottle.

In the specific case of velocity control, even if the 3D mapping from the Kinect was just
"averagely" good, and only gave an "averagely" good approximation of the object position; the

44

Master Thesis
Author: Pedro Jorge da Cruz Lino

Kinect information should place the hand right in front of the bottle, and thus the hand camera.
If the bottle can be found in the images from the camera, fine adjustments can be done to grab
the bottle, that’s supposed to be right in front of the hand (as explained before).

While reaching for the object position, the orientation of the hand wrist plays and important
role on grabbing the bottle efficiency. This can be controlled by controlling the end-effector
orientation. If it’s desirable that the arm avoids certain trajectories in the workspace (such
as trajectories that get the arm stuck on its own joint limits), the layout of the arm can be
controlled by using the null-space. The approach taken, will take advantage of every degree of
freedom available in Baxter’s arms. Furthermore, in case of a perturbation being applied to the
arm, the controllers used can recover smoothly back to the desired trajectory.

Note: One should be careful not to reach the joint limits on the velocity control, because
it might result in the arm stopping indefinitely.

Note: In the case of torque control, one should be careful tuning the gains of the arm.

To make the orientation control take effect slowly (through 10 seconds), an acceleration
curve was added, so that there is an additional gain to the velocity and torque controller as
shown in the equations:

Ke(t) = 1− e− t
2.5 (48)

Fw ≡ Ẋw = KPw·Ke(t)·Orientationerror−KDw·Jwq̇actual+KIw

∫ t

0
(Orientationerror)dt (49)

When the Kinect finds the object, there is a great chance that the object is far away enough
from the end-effector, to generate a great error vector. In order to make this trajectory smoother,
a linear and parabolic trajectories were made to interpolate the points between the arm starting
position and the ending position. The parabolic trajectories had the advantage of reaching a
certain position faster than the linear trajectories, this was sometimes usefull to get in position
to grab the object. The gains were also adjusted to enable less aggressive movements of the arm
(Kp and Kd). The configuration of the arm was kept sideways (as in 18), and the end-effector
desired orientation was also kept (as in 28).

After reaching the best position to grab the bottle, grabbing will be done by compressing
the 4 fingers of the hand until a touch is perceived from the sensor in the middle finger. When
the touch is perceived, the fingers will stop in that position. A good solution was to use a
shared Queue between the Arduino process, the Baxter process and the Hands process, that is
responsible for sending a reliable touch signal to close the hand, just enough, to feel a certain
pressure, while grabbing the bottle. Note: The thumb will be, from the beginning, closed in a
way that the hand resembles a claw, making it easier to grab something.

After grabbing the object, the way to place it in a desired position, was achieved was by,
then again, searching for a coloured landing site (blue in this case). The object can be placed
safely on the landing site, by switching the desired position to be just above that of the desired
site; then the hand can be opened smoothly, so that the bottle falls into place. After this, the
arm can be raised just slightly, to separate the hand from the (placed) bottle.

To find the green bottle in the image, it was used the color histogram method, and to find
the blue envelope, it was used the color interval method, these were previously explained in
section 7.4.

45

Master Thesis
Author: Pedro Jorge da Cruz Lino

The task in study, is divided in sub-cycles, respectively:

• (before 0 seconds)- in this sub-cycle, the robot goes to its starting default position. Just
before going for the next sub-cycle, the Kinect is searching for the object so it can feed the
object position to Baxter, before exiting.

• (0 to 30 seconds)- in this sub-cycle, the robot is reaching for the 3D position of the
object, using a linear or parabolic trajectory, and one of the two controllers helps to follow
this trajectory.

• (30 to 37 seconds)- in this sub-cycle, the process that handles the hand closing task,
starts running, and closes the hand until a touch is felt from the middle finger sensor, or
until the hand is fully closed.

If using the velocity controller, the wrist camera can be taken advantage of (with
chosen resolution of 640x400) to do fine adjustments to the hand position, reaching for the
object 2D/3D position. When within a certain threshold of pixels (usually in the center
of the object), the program, responsible for the task, can then proceed to the subtask
that closes the hand. (This fine adjustment, might result on overpassing the 37 seconds
deadline. However, the sub-cycle will only end when the center of the object is found, and
the hand can start the grasping throughout around 7 seconds.)

At the end of the 37th second, Kinect will deliver the position of the landing site to
Baxter, just before before exiting this sub-cycle.

• (37 to 90 seconds maximum)- in this sub-cycle, similarly as in the beginning, the robot
will use the controller to reach to the desired position. When just above this site, the robot
opens the hand, and rises a little up in the Z axis, so it clears the hand from touching the
bottle. The robot is supposed to end this last sub-cycle in 30 seconds. If the robot doesn’t
finish the task before the 90 seconds limit, or if the task was finished in the 30 seconds,
the robot passes to the next sub-cycle.

• (90 plus or less seconds)- the robot returns to its starting default position.

Note: The robot should be controlled to move within its workspace.

Figure 41: Image of the working space used for the examples. The "start" and "end", are associated
with the bottle initial and final position

46

Master Thesis
Author: Pedro Jorge da Cruz Lino

10.1. Interaction with velocity control

In the following examples, the velocity controller can be seen in action, performing the task
of picking and placing a water bottle in a desired landing site.

Complete Control equation used:

q̇ = J+
v Ẋv + (I − J+

v Jv)(J+
w Ẋw + (I − J+

w Jw)q̇0)

Ẋv = 3(Xdesired −Xactual)− 1Jv q̇actual + 0.1
∫ t

0(Xdesired −Xactual)δt

Ẋw = 5Ke(t)Orientationerror − 0.5Jwq̇actual + 1
∫ t

0(Orientationerror)dt

q̇0 = 0.8(qdesired − qactual)− 0.1q̇actual

(50)

qdesired =
[
0 0 −π/2 π/2 0 0 0

]T
qinitial =

[
−π/4 −π/3 0 π/3 0 0 0

]T (51)

The linear and parabolic trajectories, taken for both torque and velocity, used to smooth
out the movement of the arm towards the target/bottle, were the following:

Xdesired(t) = Xinitial + (Xdesired −Xinitial)
t

30
[
− t

30 + 2 − t
30 + 2 1

]T
(52)

and when reaching for the landing site:

Xdesired(t) = Xinitial + (Xdesired −Xinitial)
t

30 (53)

where the time elapsed since the beginning of the trajectory is t, and it should be truncated
at the end of the trajectory time-out.

These trajectories also helped the hand arriving at the desired position for grabbing the
bottle, without tipping it over.

The results obtained were:

0 10 20 30 40 50 60 70
time(s)

733.6

762.6

791.6

820.6

849.6

878.6

907.6

936.6

965.6

994.6

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

273.6

180.8

87.9

4.9

97.7

190.5

283.3

376.2

469.0

561.8

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

61.7

129.7

197.7

265.7

333.7

401.7

469.6

537.6

605.6

673.6

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 42: End-effector positions through one cycle of pick and place, using velocity control.

47

Master Thesis
Author: Pedro Jorge da Cruz Lino

0 10 20 30 40 50 60 70
time(s)

0.080

0.104

0.289

0.473

0.657

0.841

1.025

1.209

1.393

1.577

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

X rotarion (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

2.775

2.617

2.460

2.303

2.146

1.988

1.831

1.674

1.517

1.359

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Y rotarion (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

2.770

2.619

2.468

2.317

2.166

2.014

1.863

1.712

1.561

1.410

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Z rotarion (blue is the reference sig.)

Figure 43: End-effector orientation through one cycle of pick and place, using velocity control.

By looking at the plots, it can be seen the remarkable tracking of the reference by the
end-effector position controller. The orientation control of the end-effector, however without a
very good "aspect" (a more detailed explanation of this effect, can be found near figure 23), gets
the job done, and, at any moment, doesn’t compromise the orientation of the bottle.

10.2. Interaction with torque control

In the following examples, the torque controller can be seen in action, performing the task
of picking and placing a water bottle in the workspace.

The torque controller architecture is more difficult to implement than the velocity one (in
some ways, because the arm is not rigid, and is facing external forces). Through testing, the
solution that was found to be the most efficient way of controlling the position, orientation and
layout of the arm, was to put the orientation and position control of the end-effector in the
main task; the layout of the arm was posteriorly controlled in the null-space of the Cartesian
part of the Jacobian. (Using the full Jacobian would have been more intuitive, but it was seen
to give worst results. The null-space of the equation, the way it is, will act respecting only
the end-effector position restriction). This method, prioritizes the orientation and position
simultaneously, relative to the layout of the arm running in the null-space. The liabilities of
using this method, is that the orientation control might slightly degrade the end-effector position
control; and the layout of the arm, might slightly interfere with the end-effector orientation.

In order to remove the shaking of the arm, a low-pass filter of 30Hz was applied to the
read joint velocities values. The noise associated with these measurements, was found to be the
source of the problem. (A more detailed explanation of this filter is in section 3).

Complete Control equations used:

τ = JT
v Fv_desired + JT

wFw_desired + (I − JT
v (ΛvJ

T
v M

−1)τ0

Fv_desired = 150(Xdesired −Xactual)− 20Jv q̇actual + 10
∫ t

0(Xdesired −Xactual)δt

Fw_desired = 5.5KeOrientationerror − 1Jwq̇actual) + 0.1
∫ t

0(Orientationerror)dt

τ0 = 1(qdesired − qactual)− 0.75q̇actual

(54)

qdesired =
[
0 0 −π/2 π/2 0 0 0

]T
qinitial =

[
−π/4 −π/3 0 π/3 0 0 0

]T (55)

48

Master Thesis
Author: Pedro Jorge da Cruz Lino

The results obtained were:

0 10 20 30 40 50 60 70
time(s)

756.9

786.9

816.9

846.9

876.9

906.9

936.9

966.9

996.9

1026.9

po
si

tio
n(

m
m

)

X plane (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

212.6

128.4

44.2

40.0

124.2

208.4

292.6

376.8

461.0

545.2

po
si

tio
n(

m
m

)

Y plane (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

46.9

115.5

184.0

252.5

321.1

389.6

458.2

526.7

595.3

663.8

po
si

tio
n(

m
m

)

Z plane (blue is the reference sig.)

Figure 44: End-effector positions through one cycle of pick and place, using torque control.

0 10 20 30 40 50 60 70
time(s)

0.065

0.118

0.300

0.483

0.666

0.848

1.031

1.213

1.396

1.579

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

X rotarion (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

3.123

2.439

1.756

1.072

0.388

0.296

0.979

1.663

2.347

3.030

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Y rotarion (blue is the reference sig.)

0 10 20 30 40 50 60 70
time(s)

3.108

2.424

1.740

1.056

0.372

0.311

0.995

1.679

2.363

3.047

an
gu

la
r p

os
iti

on
(r

ad
ia

ns
)

Z rotarion (blue is the reference sig.)

Figure 45: End-effector orientation through one cycle of pick and place, using torque control.

Looking at the plots, it can be seen the end-effector position controller tracking the reference
quite well, considering the initial adjustment of the arm layout. By using the orientation control
in the main task, it can be achieved better orientation results than the ones achieved with the
velocity controller.

10.3. Comments on the fulfilment of the task, and the controllers per-
formance

The task of grabbing a desired object in space and placing it safely on a desired surface
was fulfilled successfully, and the controllers used were up to the task. The previous plots show
that the controllers were working correctly, following the desired reference trajectories, while
also respecting the null-spaces references being applied.

All the individual sub-cycles can be distinguished, in their corresponding time slots, with
the exception of the time slot, in the velocity controller, where the wrist camera is making the
adjustments to the end-effector.

The velocity and torque controllers, are successful examples that manage to prove that,
the not so trivial task of "grabbing a bottle in the workspace without squishing it too hard, and
placing it on the landing site", can be done with Baxter robot and its peripherals, in a safe

49

Master Thesis
Author: Pedro Jorge da Cruz Lino

manner.

11. Conclusions

Being the first person to work with Baxter robot, with the specific soft-sensors and the
AR10 robotic hands, in my department, was a very challenging process. Even more challenging,
was to integrate everything together, running simultaneously (including the Kinect), at a pace
that didn’t disturb Baxter controllers frequency.

Many of the problems that I set myself to solve, like: applying the torque and velocity
controllers to the arms; integrating the AR10 hands with the soft sensors; and integrating the
Kinect object searching and 3D mapping, gave satisfactory results. The solutions found were
applied in a manner that allowed Baxter to pick and place a bottle in the workspace, successfully,
several times. This task was a prove of concept and I hope that it can inspire other researchers
to do better, more complex, tasks using the concepts presented.

Some conclusions were taken along the thesis, and aren’t specifically explained in this
section. Many of these conclusions were taken about specific tests and examples, that had the
final goal of applying the velocity and torque controllers, and, finally, complete the task of
picking and placing the bottle/object. Some of these conclusions that can be taken out from
this thesis, might be proven inaccurate in the future with further, deeper, study of the subjects
treated, and with better implementation methods than the ones used. I was led to suspect that
the majority of the conclusions taken hold true.

The work done shows promising implementations where Baxter robot can start to help
in the industry and in households, side by side with humans, as a servant, safe, robot. From
this thesis, the reader can take away not only good controllers that can comply with diverse
trajectories, but also can command the Baxter’s arms to remain still at a given position. If for
some reason the arm should be flexible, there were also shown a wide range of ways to control
this flexibility.

The following subsections, are about the general conclusions taken at each individual part
of this thesis (the parts in question are in the titles).

11.1. Baxter Robot

Baxter robot is very human friendly, and I encourage it to be used in human working
environments. In none of my tests I got hurt from interacting with the Robot, and, when in
Zero-G mode, I could control the arms very easily with my hands. Even when recovering from
perturbations, using the velocity and torque controllers, the arms returned smoothly to their
position, without the use of dangerous torques.

The architectures of control tested and used along this thesis, may have real world imple-
mentations, and might even be better alternatives to the use of Inverse Kinematics while using
Baxter (for example, the layout of the arm can be controlled, and the arm can be operating
without being rigid)

However, I was also led to conclude that Baxter might not be the best robot to do precision
tasks. The noises associated with the movement of the joints and the end-effector positions
represent some of the liabilities of using Baxter robot. I do suspect that better results could
have been achieved in the controllers if these noises weren’t so abundantly prominent. Other
thing that I was disappointed with, was the relatively low-frequencies that the robot operates on.

50

Master Thesis
Author: Pedro Jorge da Cruz Lino

The most critical frequencies were the ones responsible for the publishing of the joint states, and
the subscribing of the updated joint states, compromising the control cycles. These frequencies
weren’t also very stable, and depended on the task that the robot was doing.

Anyhow, the processes presented on this thesis show that Baxter, even with its limitations
and flaws, can fulfil many tasks, and, depending on the applications, can even exceed many
robots at these tasks. Many of Baxter limitations can be bypassed by good implementations
and programming.

11.2. AR10 robotic hands

The AR10 hands, however resembling a human hand, don’t act as fast as one. Their
servos are slow, and don’t always respond simultaneously. If I was to give the command for
the hand to close, sometimes, some servos would "close" first and the others would follow up
shortly after. This "shortly after" can be very significant, depending on the task, and I would
not recommend the AR10 hands for precision tasks. There was also much noise associated with
the potentiometers, that would encode the digital servo positions. I wouldn’t also recommend
the AR10 hands for tasks that might involve vibrating the hand in a way that can start loosing
its nuts.

However, I must say that the hand itself gets the job done, as it can pose better than a
claw gripper.

11.3. Soft Sensors

The soft sensors used were made by trial and error, until a reasonable solution was found.
They were not specifically made for using with the AR10 hands, but they can fit nicely in the
tip of the fingers. They are fair, stable potentiometers, that can sense pressure being applied to
them, and the concept shows promise. However, better shapes can be devised for the sensors
(in order to increase their efficiency), and make them more durable (without spilling the liquid
metal), they are good enough solutions to give the AR10 hands a "sensation" of pressure, and a
better grip.

11.4. Kinect

Using the Kinect alongside Baxter was a great add-on to the capabilities of the robot, as it
allows Baxter to have depth information of the workspace in front of it. Maybe in the future,
solutions involving coloured LIDAR’s (Light Detection And Ranging) sensors might give Baxter
a better understanding of its evolving environment, that extents to the full reach of its arms.

The image processing made with Kinect images was satisfactory, however, the filtering of
the images and the object tracking gave noisy results, probably resulting from unstable results
coming from the pixels’s color and depth information (as the light being applied wasn’t changing,
nor the objects were moving).

The (x,y,z) mapping of points wasn’t easy either, and I can’t guarantee that it will work
the same way with all the Kinects, however, the method used gave very close results from reality,
and from the point cloud.

51

Master Thesis
Author: Pedro Jorge da Cruz Lino

11.5. Baxter Robot control and integration with the peripherals

The "pick and place" task that culminates the usage of all the peripherals integrated with
Baxter (like the Kinect, Arduino, AR10 hands, the soft sensors and circuits, and the control
computer running Linux) was executed fairly well.

It is very unfortunate that the AR10 hands are advertised to be compatible with Baxter, but
the only compatible thing they have is the holes to put the screws. Because of this, controlling
the hand must be done separately from controlling Baxter, as the data exchanged with the hand
is made through a serial port. Anyhow, the link established between the two, using Python,
makes them interact reasonably well.

Arduino never gave any big issues, and it integrated the sensors just fine. In fact, Arduino
used can integrate 16 analogue inputs, and can make use of many more sensors, including soft
sensors.

Overall, I would recommend the integration of all the sensors, as they were implemented.
As for the controllers, the results achieved make way for many, varied implementations. In

this thesis they were shown to work along side the sensors and actuators (peripherals) fairly well,
and they were able to complete the prove of concept task (the "pick and place" task) documented
previously.

11.6. Possible future improvements

If I were to continue my work with Baxter, I would suggest starting by improving the
following points:

• Find better gains for each controller, in order to tune them better for any specific task.

• Improve the tracking capacities of each of the implemented controllers.

• Find a way to decrease Baxter robot noises, and improve the controllers cycle frequencies.

• Add voice commands to trigger Baxter behaviours. This could be a step forward turning
Baxter into a more collaborative robot.

• Improve the soft sensors used, and find room for different ones, like capacitive sensors to
perceive in close range different materials, like metal objects, and human skin.

• Study the AR10 hands better in order to improve our knowledge of the fingers positions
at each instant. Implementation of filters and predictive controllers might give better
solutions on this subject.

• Improve Baxter vision of its surroundings, and its object recognition, identification and
detection techniques.

52

Master Thesis
Author: Pedro Jorge da Cruz Lino

12. Web-graphy and Bibliography

References

[1] http://www.rethinkrobotics.com/smart-collaborative-difference/

[2] http://www.rethinkrobotics.com/intera/

[3] https://www.active8robots.com/robots/ar10-robotic-hand/

[4] http://api.rethinkrobotics.com/baxter_interface/html/index.html

[5] http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

[6] http://sdk.rethinkrobotics.com/wiki/Workstation_Setup

[7] http://sdk.rethinkrobotics.com/wiki/Baxter_PyKDL

[8] http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

[9] Sven Cremer, Lawrence Mastromoro, and Dan O. Popa On the Performance of the
Baxter Research Robot 2016.

[10] Matthew M. Williamson Series Elastic Actuators

[11] Baxter Hardware Specification Architecture Datasheet

[12] Yang, Chenguang, Ma, Hongbin, Fu, Mengyin Advanced Technologies in Modern
Robotic Applications

[13] Tsuneo Yoshikawa Foundations of Robotics Analysis and Control

[14] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar Robot Dynamics and Control

53

	Abstract
	Acknowledgments
	Preface
	Introduction to Baxter
	A first touch on Baxter
	Baxter Hardware controllers
	Baxter Hardware limitations
	Study of the best Joint Position Control function given by Rethink Robotics
	Study of the Joint Angular Positions and Velocities stability

	Baxter arms and Control Architectures for the end-effector
	Control by Position
	Control by Velocity
	Control by Torque

	Kinect Sensor and its usefulness with Baxter
	Finding objects within an image
	Object tracking with Kinect using color intervals
	Object tracking with Kinect using the color histogram
	Object 3D mapping using Kinect

	Touch sensors
	AR10 Hands
	Controlling the AR10 hands on their own
	Controlling the AR10 hands with touch sensors

	Baxter Interaction with an Object
	Interaction with velocity control
	Interaction with torque control
	Comments on the fulfilment of the task, and the controllers performance

	Conclusions
	Baxter Robot
	AR10 robotic hands
	Soft Sensors
	Kinect
	Baxter Robot control and integration with the peripherals
	Possible future improvements

	Web-graphy and Bibliography

